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Abstract—Intelligent reflection surface (IRS) has recently
been recognized as a promising technique to enhance the
performance of wireless systems due to its ability of recon-
figuring the signal propagation environment. However, the
perfect channel state information (CSI) is challenging to obtain
at the base station (BS) due to the lack of radio frequency
(RF) chains at the IRS. Since most of the existing channel
estimation methods were developed to acquire the cascaded
BS-IRS-user channels, this paper is the first work to study
the robust beamforming based on the imperfect cascaded BS-
IRS-user channels at the transmitter (CBIUT). Specifically, the
transmit power minimization problems are formulated subject
to the worst-case rate constraints under the bounded CSI error
model and the rate outage probability constraints under the
statistical CSI error model, respectively. After approximating
the worst-case rate constraints by using the S-procedure and
the rate outage probability constraints by using the Bernstein-
type inequality, the reformulated problems can be efficiently
solved. Numerical results show that the negative impact of the
CBIUT error on the system performance is greater than that
of the direct CSI error.

Index Terms—Intelligent reflecting surface (IRS), reconfig-
urable intelligent surface (RIS), robust design, imperfect chan-
nel state information (CSI), cascaded BS-IRS-user channels.

I. INTRODUCTION

Intelligent reflecting surface (IRS), which is also known
as reconfigurable intelligent surface (RIS) or large intelligent
surface (LIS), has emerged as a promising technique to
enhance the spectral and energy efficiency of the wireless
networks [1]–[3], thanks to its artificial planar passive radio
array structure which is cost-effective and energy-efficient.
More explicitly, each passive element on the IRS is capable
of reconfiguring the channels between the BS and users
constructively or destructively by imposing an independent
phase shift to the incident signal. The existing literature on
IRS-aided wireless communications has demonstrated that
IRS is an enabler for enhancing the spectral and energy
efficiency through jointly optimizing the active beamforming
at the BS and the passive beamforming at the IRS [4]–[11].
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However, the algorithms developed in the above contribu-
tions were based on the assumption of perfect channel state
information at the transmitter (CSIT).

Unfortunately, it is challenging to estimate the channels
for the IRS-aided wireless systems, since IRS is passive and
can neither send nor receive pilot symbols. In IRS-aided
communication systems, there are two types of channels:
the direct channel spanning from the BS to the user, and
the IRS-related channels. The direct channel can be readily
estimated by using conventional channel estimation methods
such as the least square algorithm. Hence, most of the
existing contributions focused on the channel estimation for
the IRS-related channels, which are composed of the channel
from the BS to the IRS (BS-IRS channel), and those from
the IRS to the users (IRS-user channels).

In general, there are two main approaches to estimate
the IRS-related channels. The first approach is to directly
estimate the IRS-related channels, i.e., estimate BS-IRS
channel and IRS-user channels separately [12]. Specifically,
in [12], some active channel elements are installed at the IRS
to estimate the individual channels. This method, however,
has several drawbacks. The active elements may increase
the hardware cost and consume extra power, which causes
unaffordable burden on the IRS. In addition, the channel
information estimated at the IRS needs to be fed back to the
BS, which increases the information exchange overhead.

Fortunately, it is observed that the cascaded BS-IRS-user
channels, which are the product of the BS-IRS channel and
the IRS-user channels, are sufficient for the joint active and
passive beamforming design [8]–[11]. As a result, most of
the existing contributions focused on the second approach,
i.e., the cascaded channel estimation [13]–[16]. Specifically,
the channel estimation of the cascaded channel has been
investigated both in the single-user multiple-input multiple-
output (SU-MIMO) system [13] and the multi-user multiple-
input single-output (MU-MISO) system [14]. However, the
pilot overhead of the estimation methods in [13], [14] is
prohibitively high, which scales up with the number of
reflection elements. In order to reduce the pilot overhead, the
authors in [15] exploited the sparse property of the channel
matrix and proposed a channel estimation method based on
compressed sensing technique. Furthermore, another sparsity
representation of the cascaded channel has been found in
[16] by using the fact that the height of the BS and the IRS
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are often the same.
All the above-mentioned literature [4]–[11] did not con-

sider the transmission design by taking into account the
channel estimation error. Due to the inevitable channel
estimation error, it will induce system performance loss
if naively treating the estimated channels as perfect ones.
Hence, it is imperative to design robust transmission strate-
gies for the IRS-aided wireless communication systems. To
the best of our knowledge, there are only a few contribu-
tions in this area [17], [18]. Specifically, in [17], we first
proposed a worst-case robust design algorithm by assuming
that the BS only knew the imperfect IRS-user channels in
a MU-MISO wireless system. Then, the authors in [18]
further proposed a robust secure transmission strategy by
also applying the worst-case optimization method when the
channels from the IRS to the eavesdroppers were imperfect.
However, to implement the above robust design algorithms
in [17] and [18], one should rely on the first channel
estimation approach, where the BS-IRS channels and IRS-
user channels should be independently estimated. This is
difficult to achieve since several active elements should be
installed at the IRS.

Against the above background, this paper studies the
robust transmission design based on the imperfect cas-
caded BS-IRS-user channels at the transmitter (CBIUT).
Specifically, we aim to design a robust active and passive
beamforming scheme to minimize the total transmit power
under both the bounded CSI error model and the statistical
CSI error model. Unfortunately, the robust beamforming
algorithms developed in [17] and [18] are not applicable
for the imperfect CBIUT case. Hence, the contributions of
this work are summarized as follows:

• To the best of our knowledge, this is the first work to
study the robust transmission design based on imperfect
cascaded BS-IRS-user channels, which is more practi-
cal than the previous works in which imperfect IRS-
user channels were considered. In addition, we consider
the robust transmission design under two channel error
models: the bounded CSI error model and the statistical
CSI error model. However, both [17] and [18] only
considered the bounded CSI error model.

• For the bounded CSI error, we formulate worst-case
robust beamforming design problems that minimize the
transmit power subject to unit modulus of the reflection
beamforming and the worst-case QoS constraints with
imperfect CBIUT. The worst-case robust design can
guarantee that the achievable rate of each user is no
less than its minimum rate requirement for all possible
channel error realizations. To address this non-convex
problem, S-procedure is firstly adopted to approximate
the semi-infinite inequality constraints. Then, under the
alternate optimization (AO) framework, the precoder is
updated in an second-order cone programming (SOCP)
and the reflection beamforming is updated by using the
penalty convex-concave procedure (CCP).

• For the statistical CSI error model, we aim to minimize

the transmit power subject to unit-modulus constraints
and the rate outage probability constraints. Here, the
rate outage probability constraints represent the proba-
bility that the achievable rate of each user being below
its minimum rate requirment needs to be less than a
predetermined probability. By applying the Bernstein-
Type Inequality, the safe approximation of the rate
outage probability is obtained to make the original
problem tractable. Then, the precoder and the reflection
beamforming are optimized by using the semidefinite
relaxation (SDR) and penalty CCP techniques respec-
tively in an iterative manner.

• We demonstrate through numerical results that the ro-
bust beamforming under the statistical CSI error model
can achieve superior system performance in terms of
the minimum transmit power, convergence speed and
complexity, than that under the bounded CSI error
model. In addition, it is observed that the level of
the CBIUT error plays an important role in the IRS-
aided systems. Specifically, when the CBIUT error
is small, the total transmit power decreases with the
number of the reflection elements due to the increased
beamforming gain. However, when the CBIUT error
is large, the transmit power increases with the number
of the reflection elements due to the increased channel
estimation error. Hence, whether to deploy the IRS in
wireless communication systems depends on the level
of the CBIUT error.

The remainder of this paper is organized as follows.
Section II introduces the system model and the CSI error
models. Worst-case robust design problems are formulated
and solved in Section III. Section IV further investigates
the outage constrained robust design problems. Section V
compares the computational complexity of the developed
robust design methods. Finally, Section VI and Section VII
show the numerical results and conclusions, respectively.
Notations: The following mathematical notations and sym-
bols are used throughout this paper. Vectors and matrices
are denoted by boldface lowercase letters and boldface up-
percase letters, respectively. The symbols X∗, XT, XH, and
||X||F denote the conjugate, transpose, Hermitian (conjugate
transpose), Frobenius norm of matrix X, respectively. The
symbol ||x||2 denotes 2-norm of vector x. The symbols
Tr{·}, Re{·}, |·|, λ(·), and 6 (·) denote the trace, real
part, modulus, eigenvalue, and angle of a complex number,
respectively. diag(x) is a diagonal matrix with the entries
of x on its main diagonal. [x]m means the mth element of
the vector x. The Kronecker product between two matrices
X and Y is denoted by X⊗Y. X � Ymeans that X−Y
is positive semidefinite. Additionally, the symbol C denotes
complex field, R represents real field, and j ,

√
−1 is the

imaginary unit.

II. SYSTEM MODEL

In this section, we first introduce the system model of the
IRS-aided MISO downlink communication system, and then
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Fig. 1: An IRS-aided multi-user communication system.

discuss the channel uncertainty scenarios as well as the CSI
error models.

A. Signal Transmission Model

As shown in Fig. 1, we consider an IRS-aided MISO
broadcast (BC) communication system, which consists of
one multi-antenna BS, K single-antenna users and one
IRS. It is assumed that the BS is equipped with N active
antennas, and transmits K Gaussian data symbols denoted
by s = [s1, · · · , sK ]T ∈ CK×1 to all the users, where
E[ssH] = I. IRS with M programmable phase shifters is
deployed to enhance the system performance. Therefore, by
defining the set of users as K = {1, 2, ...,K}, the received
baseband signal of users is given by

yk = (hH
k + hH

r,kEHdr)Fs + nk,∀k ∈ K. (1)

Here, F =[f1, · · · , fK ] ∈ CN×K is the precoder matrix, in
which fk is the precoding vector associated with user k.
Then, the transmit power at the BS is E{Tr

[
FssHFH

]
} =

||F||2F . nk is the additive white Gaussian noise (AWGN)
at user k, with zero mean and noise variance σ2

k, i.e.,
nk ∼ CN(0, σ2

k). The reflection beamforming of the IRS
is a diagonal matrix E =

√
ιdiag(e1, · · · , eM ) ∈ CM×M ,

of which has unit-modulus phase shifts, i.e., |em|2= 1.
0 ≤ ι ≤ 1 indicates the reflection efficiency and the power
loss of reflection operation usually comes from multiple
reflections of signals. Here, we assume that only the first-
order reflection on the IRS is considered and set ι = 1. It
is assumed that the phase shifts of the IRS are calculated
by the BS and then fed back to the IRS controller through
dedicated feedback channels [4], [5]. In addition, the channel
vectors spanning from the BS to user k and from the IRS
to user k are denoted by hk ∈ CN×1 and hr,k ∈ CM×1,
respectively. The channel matrix between the BS and the
IRS is represented by Hdr ∈ CM×N .

Denote by Gk = diag(hH
r,k)Hdr the cascaded chan-

nel from the BS to user k via the IRS, by e =

[e1, · · · , eM ]T ∈ CM×1 the vector containing diagonal ele-
ments of matrix E, and by βk = ||(hH

k +eHGk)F−k||22+σ2
k

the interference-plus-noises (INs) power of user k, where
F−k = [f1, · · · , fk−1, fk+1, · · · , fK ]. Then, the achievable
data rate (bit/s/Hz) at user k is given by

Rk (F, e) = log2

(
1 +

1

βk

∣∣(hH
k + eHGk

)
fk
∣∣2) . (2)

B. Two Scenarios and CSI Error Models

In the IRS-aided communication system, there are two
types of channels: the direct channel hk, and the cascaded
BS-IRS-user channel Gk. The system performance of the
IRS-aided communication system is highly affected by the
accuracy of the direct channel state information at the
transmitter (DCSIT) and the CBIUT. In the following, we
first introduce two scenarios of the channel uncertainties and
then two types of CSI error models.

1) Scenario 1: Partial Channel Uncertainty (PCU)
In IRS-aided communications, the CBIUT is much more

challenging to obtain than the DCSIT due to the passive
features of the IRS. Hence, in this scenario, we assume that
the DCSIT is perfect, while the CBIUT is imperfect. The
CBIUT can be represented as

Gk = Ĝk +4Gk,∀k ∈ K, (3)

where Ĝk is the estimated cascaded CSI known at the BS,
4Gk is the unknown CBIUT error.

2) Scenario 2: Full Channel Uncertainty (FCU)
In complex electromagnetic environment, the accurate

DCSIT is also challenging to obtain. In this scenario, we
assume both the DCSIT and the CBIUT are imperfect. In
addition to the CBIUT error model in (3), the direct channel
is expressed as

hk = ĥk +4hk,∀k ∈ K, (4)

where ĥk is the estimated DCSIT known at the BS and4hk

is the unknown DCSIT error.
In this work, we investigate two types of robust beam-

forming design for IRS-aided MISO communication systems
depending on the CSI error models.

1) Error model 1: Bounded CSI error model
Specifically, one is the worst-case robust beamforming

design subject to the bounded CSI error model, i.e.,

‖4Gk‖F ≤ ξg,k, ‖4hk‖2 ≤ ξh,k,∀k ∈ K, (5)

where ξg,k and ξh,k are the radii of the uncertainty regions
known at the BS. This CSI error model characterizes the
channel quantization error which naturally belongs to a
bounded region [19]. For example, in the frequency division
duplex (FDD) setting, the receiver estimates the downlink
channel and then feeds the rate-limited quantized CSI back
to the transmitter. Then, the acquired CSI is plagued by
quantization errors.

2) Error model 2: Statistical CSI error model
The other is the outage-constrained robust beamforming

design associated with the statistical CSI error model, in
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which each CSI error vector is assumed to follow the
circularly symmetric complex Gaussian (CSCG) distribution,
i.e.,

vec(4Gk) ∼ CN(0,Σg,k),Σg,k � 0,∀k ∈ K, (6a)
4hk ∼ CN(0,Σh,k),Σh,k � 0,∀k ∈ K, (6b)

where Σg,k ∈ CMN×MN and Σh,k ∈ CN×N are positive
semidefinite error covariance matrices. In this case, the CSI
imperfection is caused by the channel estimation error [20].
For example, in the time division duplex (TDD) setting,
noise and limited training will cause the uplink channel
estimation error. The conventional MMSE method is gener-
ally adopted to estimate the cascaded channel, and thus the
channel estimation generally follows the CSCG distribution.

In the following, we first consider the first type of robust
beamforming design based on the bounded CSI error model.
Then, we deal with the second one based on the statistical
CSI error model.

III. WORST-CASE ROBUST BEAMFORMING DESIGN

In this section, the worst-case robust beamforming design
is considered under the bounded CSI error model. We aim
to minimize the total transmit power of the BS by the joint
design of the precoder matrix F and reflection beamforming
vector e under the unit-modulus constraints and the worst-
case QoS constraints, i.e., ensuring the achievable rate of
each user to be above a threshold for all possible channel
error realizations. In order to solve the non-convex robust
design problem with semi-infinite inequality constraints and
coupled variables, an AO algorithm is proposed based on
S-Procedure, SOCP and penalty CCP [21].

First, two useful lemmas about multiple complex valued
uncertainties are formally introduced as follows, which will
be used in the later derivations.

Lemma 1 (General S-Procedure [22]) Define the quadratic
functions of the variable x ∈ Cn×1:

fi(x) = xHWix + 2Re
{
wH

i x
}
+ wi, i = 0, ..., P,

where Wi = WH
i . The condition {fi(x) ≥ 0}Pi=1 ⇒

f0(x) ≥ 0 holds if and only if there exist ∀i,$i ≥ 0 such
that [

W0 w0

wH
0 w0

]
−

P∑
i=1

$i

[
Wi wi

wH
i wi

]
� 0.

Lemma 2 (General sign-definiteness [23]) For a given set
of matrices W = WH, {Yi,Zi}Pi=1, the following linear
matrix inequality (LMI) satisfies

W �
P∑
i=1

(
YH

i XiZi + ZH
i XH

i Yi

)
,∀i, ||Xi||F≤ ξi,

if and only if there exist real numbers ∀i, µi ≥ 0 such that
W −

∑P
i=1 µiZ

H
i Zi −ξ1YH

1 · · · −ξPYH
P

−ξ1Y1 µ1I · · · 0
...

...
. . .

...
−ξPYP 0 · · · µP I

 � 0.

It is noted that Lemma 2 can be proved by applying
Lemma 1 and the detailed proof is given in [24].

A. Scenario 1: Partial Channel Uncertainty

In this subsection, we design the robust beamforming
for the IRS-aided communication system under Scenario 1
with perfect DCSIT and imperfect CBIUT. This problem is
simpler than the one with full channel uncertainty and the
algorithm developed for Scenario 1 has lower complexity
than that for Scenario 2. Mathematically, let E

partial
k ,

{∀ ‖4Gk‖F ≤ ξg,k} and denote by M = {1, 2, ...,M}
the set of reflection elements, the worst-case transmit power
minimization problem is formulated as

min
F,e
||F||2F (7a)

s.t. Rk (F, e) ≥ Rk,E
partial
k ,∀k ∈ K (7b)

|em|2= 1,∀m ∈M. (7c)

Here, Rk is the target rate of user k. Constraints (7b) are the
worst-case QoS requirements for the users, while constraints
(7c) correspond to the unit-modulus requirements of the
reflection elements at the IRS.

To start with, the non-convexity of constraints (7b) can be
addressed by firstly treating the INs power β = [β1, ..., βK ]T

as auxiliary variables. Hence, constraints (7b) are reformu-
lated as∣∣(hH

k + eHGk

)
fk
∣∣2 ≥ βk(2Rk − 1),Epartial

k ,∀k ∈ K, (8)∥∥(hH
k + eHGk

)
F−k

∥∥2
2
+ σ2

k ≤ βk,E
partial
k ,∀k ∈ K. (9)

Constraints (8) and (9) are termed as the worst-case useful
signal power constraints and the worst-case INs power
constraints, respectively.

Then, the non-convex semi-infinite inequality constraints
(8) are handled by firstly approximating the non-convex parts
and then dealing with the semi-infinite inequalities by using
the S-Procedure. Specifically, the following lemma shows
the linear approximation of the useful signal power in (8).

Lemma 3 Substituting Gk = Ĝk + 4Gk into the useful
signal power in (8) and let f

(n)
k and e(n) be the optimal

solutions obtained at iteration n, then |[hH
k + eH(Ĝk +

4Gk)]fk|2 is linearly approximated by its lower bound at
(f (n)k , e(n)) as follows

vecT(4Gk)Akvec(4G∗k) + 2Re
{
aT
k vec(4G∗k)

}
+ ak,

(10)
where

Ak = fkf
(n),H
k ⊗ e∗e(n),T + f

(n)
k fHk ⊗ e(n),∗eT

− (f
(n)
k f

(n),H
k ⊗ e(n),∗e(n),T),

ak = vec(e
(
hH
k + e(n),HĜk

)
f
(n)
k fHk )

+ vec(e(n)
(
hH
k + eHĜk

)
fkf

(n),H
k )

− vec(e(n)
(
hH
k + e(n),HĜk

)
f
(n)
k f

(n),H
k ),
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ak = 2Re
{(

hH
k + e(n),HĜk

)
f
(n)
k fHk

(
hk + ĜH

k e
)}

−
(
hH
k + e(n),HĜk

)
f
(n)
k f

(n),H
k

(
hk + ĜH

k e(n)
)
.

Proof: Please refer to Appendix A. �
By replacing the useful signal power in (8) with its linear

approximation (10), constraints (8) are reformulated as

vecT(4Gk)Akvec(4G∗k) + 2Re
{
aT
k vec(4G∗k)

}
+ ak

≥ βk(2Rk − 1),Epartial
k ,∀k ∈ K. (11)

Lemma 1 is then used to tackle the CSI uncertainty in the
above constraints. Specifically, constraint corresponding to
each user in (11) can be recast by setting the parameters in
Lemma 1 as follows

P = 1, W0 = Ak, w0 = ak, w0 = ak − βk(2Rk − 1),

x = vec(4G∗k), W1 = −I, w1 = ξ2k.

Then, (11) is transformed into the following equivalent
LMIs as[

$g,kIMN + Ak ak

aT
k Cpartial

k

]
� 0,∀k ∈ K, (12)

where $g = [$g,1, ..., $g,K ]T ≥ 0 are slack variables and
Cpartial

k = ak − βk(2Rk − 1)−$g,kξ
2
k.

Next, we consider the uncertainty in {4Gk}∀k∈K of (9).
Specifically, we firstly adopt Schur’s complement Lemma
[25] to equivalently recast the INs power inequalities in (9)
into matrix inequalities as follows[

βk − σ2
k tHk

tk I

]
� 0,∀k ∈ K, (13)

where tk = ((hH
k + eHGk)F−k)

H. By using Gk = Ĝk +
4Gk, (13) is then rewritten as[

βk − σ2
k t̂Hk

t̂k I

]
�−

[
0

FH
−k

]
4GH

k

[
e 0

]
−
[

eH

0

]
4Gk

[
0 F−k

]
,∀k ∈ K, (14)

where t̂k = ((hH
k + eHĜk)F−k)

H.
In order to use Lemma 2, we choose the following

parameters (It is noted that the subscript i in Lemma 2 has
been ignored since P = 1.) for each constraint in (14) as

W =

[
βk − σ2

k t̂Hk
t̂k I

]
,Y = −

[
0 F−k

]
,

Z =
[

e 0
]
, X = 4GH

k .

Then, the equivalent LMIs of the worst-case INs power
constraints (9) are given by βk − σ2

k − µg,kM t̂Hk 01×N
t̂k I(K−1) ξg,kFH

−k
0N×1 ξg,kF−k µg,kIN

 � 0,∀k ∈ K,

(15)
where µg = [µg,1, ..., µg,K ]T ≥ 0 are slack variables.

Based on the above discussions, Problem (7) is approxi-
mately rewritten as

min
F,e,β,$g,µg

||F||2F (16a)

s.t. (12), (15), (7c), (16b)
$g ≥ 0,µg ≥ 0. (16c)

This problem is still non-convex and difficult to optimize
F and e simultaneously since F and e are coupled in Ak,
ak and t̂k. In the following, we adopt the AO method to
optimize F and e sequentially in an iterative manner. In
particular, we minimize the transmit power by first fixing
the reflection beamforming e so that the problem reduces to
a convex one with respect to F. CVX tool [26] is adopted
to solve the resulting convex problem. Precoder F is then
fixed and the resulting non-convex problem of e is handled
under the penalty CCP method. Specifically, for given e, the
subproblem of F is given by

F(n+1) = arg min
F,β,$g,µg

||F||2F (17a)

s.t. (12), (15), (16c), (17b)

where F(n+1) is the optimal solution obtained in the (n+1)-
th iteration. Problem (17) is a semidefinite program (SDP)
and can be solved by the CVX tool.

Then, for given F, the subproblem of e is a feasibility-
check problem. According to [17], [27] and in order to
improve the converged solution in the optimization of e,
the useful signal power inequalities in (8) are modified by
introducing slack variables α = [α1, ..., αK ]T ≥ 0 and
recast as∣∣(hH

k + eHGk

)
fk
∣∣2 ≥ βk(2Rk − 1) + αk,∀k ∈ K. (18)

Subsequently, the LMIs (12) are modified as[
$g,kIMN + Ak ak

aT
k Cpartial

k − αk

]
� 0,∀k ∈ K. (19)

In addition, we note that only the submatrix of K ×K in
the upper left corner of (15) depends on e, so the dimension
of the LMIs (15) can be reduced from (K+N)× (K+N)
to K ×K as[

βk − σ2
k − µg,kM t̂Hk
t̂k I(K−1)

]
� 0,∀k ∈ K. (20)

Combining (19) and (20), the sub-problem of e can be
formulated as

max
α,e,β,$g,µg

K∑
k=1

αk (21a)

s.t. (19), (20), (7c), (16c), (21b)
α ≥ 0. (21c)

Note that the solution of Problem (21) can yield a lower
objective value compared with Problem (17), the explanation
of which can be found in [27].

We note that the above problem is still non-convex due to
the unit-modulus constraints. As in our previous work [17],
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we here adopt the penalty CCP [21] to deal with the non-
convex constraints. Following the penalty CCP framwork,
the constraints (7c) are firstly equivalently rewritten as 1 ≤
|em|2≤ 1,∀m ∈ M. The non-convex parts of the resulting
constraints are then linearized by |e[t]m |2−2Re(e∗me

[t]
m) ≤

−1,∀m ∈ M, at fixed e
[t]
m . We finally have the following

convex subproblem of e as

max
e,α,b,

β,$g,µg

K∑
k=1

αk − λ[t]
2M∑
m=1

bm (22a)

s.t. (19),(20),(16c),(21c), (22b)

|e[t]m |2−2Re(e∗me[t]m) ≤ bm − 1,∀m ∈M (22c)

|em|2≤ 1 + bM+m,∀m ∈M (22d)
b ≥ 0, (22e)

where b = [b1, ..., b2M ]Tare slack variables imposed over
the equivalent linear constraints of the unit-modulus con-
straints, and ||b||1 is the penalty term in the objective
function. ||b||1 is scaled by the regularization factor λ[t] to
control the feasibility of the constraints.

Problem (22) is an SDP and can be solved by the CVX
tool. The steps of finding a feasible solution of e to Problem
(21) is summarized in Algorithm 1. We remark that: a)
When χ is sufficiently low, constraints (7c) in the original
Problem (21) is guaranteed by ||b||1≤ χ; b) The maximum
value λmax is imposed to avoid a numerical problem, that
is, a feasible solution satisfying ||b||1≤ χ may not be
found when the iteration converges to the stopping criteria
||e[t] − e[t−1]||1≤ ν with the increase of λ[t]; c) Stopping
criteria ||e[t] − e[t−1]||1≤ ν controls the convergence of
Algorithm 1; d) As mentioned in [21], a feasible solution to
Problem (22) may not be feasible for Problem (21). Hence,
the feasibility of Problem (21) is guaranteed by imposing
a maximum number of iterations Tmax and, in case it is
reached, we restart the iteration based on a new initial point.

Algorithm 1 Penalty CCP optimization for reflection beam-
forming optimization

Initialize: Initialize e[0], γ[0] > 1, and set t = 0.
1: repeat
2: if t < Tmax then
3: Update e[t+1] from Problem (22);
4: λ[t+1] = min{γλ[t], λmax};
5: t = t+ 1;
6: else
7: Initialize with a new random e[0], set up γ[0] > 1

again, and set t = 0.
8: end if
9: until ||b||1≤ χ and ||e[t] − e[t−1]||1≤ ν.

10: Output e(n+1) = e[t].

Finally, under the AO framework, Problem (16) is solved
by solving Problems (17) and (21) in an iterative manner. We
remark that the fixed point e[t] in constraint (22c) is updated
iteratively in Algorithm 1, which is the same as λ[t]. While

fixed point e(n) in constraint (19) is updated iteratively in
the outer AO framework.

B. Scenario 2: Full Channel Uncertainty

In this subsection, we extend the robust beamforming
design in the previous subsection to the case where both
the DCSIT and CBIUT are imperfect. By considering the
full channel uncertainty in (3) and (4) and denoting E

full
k ,

{∀||4hk||2≤ ξh,k,∀||4Gk||F≤ ξg,k}, constraints (7b) can
be extended to

Rk (F, e) ≥ Rk,E
full
k ,∀k ∈ K, (23)

which is then equivalent to∣∣(hH
k + eHGk

)
fk
∣∣2 ≥ βk(2Rk − 1),Efull

k ,∀k ∈ K, (24)∥∥(hH
k + eHGk

)
F−k

∥∥2
2
+ σ2

k ≤ βk,E
full
k ,∀k ∈ K. (25)

The above non-convex semi-infinite inequality constraints
can be addressed in the same way as Scenario 1. In partic-
ular, the linear approximation of the useful signal power in
(24) is given in the following lemma.

Lemma 4 Let f
(n)
k and e(n) be the optimal solutions ob-

tained at iteration n, and by inserting hk = ĥk + 4hk

and Gk = Ĝk +4Gk into the useful signal power in (24),
then the resulting |[(ĥk +4hk)

H + eH(Ĝk +4Gk)]fk|2 is
lower bounded linearly at (f (n)k , e(n)) as follows

xH
k Ãkxk + 2Re

{
ãH
k xk

}
+ ãk, (26)

where

Ãk = Dk + DH
k − Zk,

Dk =

[
f
(n)
k

f
(n)
k ⊗ e(n),∗

] [
fHk fHk ⊗ eT

]
,

Zk =

[
f
(n)
k

f
(n)
k ⊗ e(n),∗

] [
f
(n),H
k f

(n),H
k ⊗ e(n),T

]
,

ãk = d1,k + d2,k − zk,

d1,k =

 fkf
(n),H
k

(
ĥk + ĜH

k e(n)
)

vec∗(e
(
ĥH
k + e(n),HĜk

)
f
(n)
k fHk )

 ,
d2,k =

 f
(n)
k fHk

(
ĥk + ĜH

k e
)

vec∗(e(n)
(
ĥH
k + eHĜk

)
fkf

(n),H
k )

 ,
zk =

 f
(n)
k f

(n),H
k

(
ĥk + ĜH

k e(n)
)

vec∗(e(n)
(
ĥH
k + e(n),HĜk

)
f
(n)
k f

(n),H
k )

 ,
ãk = 2Re {dk} − zk,

dk =
(
ĥH
k + e(n),HĜk

)
f
(n)
k fHk

(
ĥk + ĜH

k e
)
,

zk =
(
ĥH
k + e(n),HĜk

)
f
(n)
k f

(n),H
k

(
ĥk + ĜH

k e(n)
)
,

xk =
[
4hH

k vecH(4G∗k)
]H
.

Proof: Please refer to Appendix B. �
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Based on Lemma 4, constraints (24) are equivalently
rewritten as

xH
k Ãkxk + 2Re

{
ãH
k xk

}
+ ãk

≥ βk(2Rk − 1),Efull
k ,∀k ∈ K. (27)

Before applying Lemma 1, it is beneficial to express Efull
k

in terms of the following quadratic expressions as

E
full
k ,


xH
k

[
IN 0
0 0

]
xk − ξ2h,k ≤ 0,

xH
k

[
0 0
0 IMN

]
xk − ξ2g,k ≤ 0.

Therefore, after introducing $h = [$h,1, ..., $h,K ]T ≥ 0
and $g = [$g,1, ..., $g,K ]T ≥ 0 as slack variables,
constraints (24) can be transformed by Lemma 1 into the
following equivalent LMIs as Ãk +

[
$h,kIN 0

0 $g,kIMN

]
ãk

ãH
k Cfull

k

 � 0,∀k ∈ K,

(28)

where Cfull
k = ãk − βk(2Rk − 1)−$h,kξ

2
h,k −$g,kξ

2
g,k.

Next, by inserting hk = ĥk+4hk and Gk = Ĝk+4Gk

into the equivalent matrix inequality of the INs power in
(13), we have

0 �
[
βk − σ2

k t̃Hk
t̃k I

]
+

[
0

(
4hH

k + eH4Gk

)
F−k

FH
−k
(
4hk +4GH

k e
)

0

]
�
[

0
FH
−k

] [
4hr,k 0

]
+

[
4hH

r,k

0

] [
0 F−k

]
+

[
0

FH
−k

]
4GH

k

[
e 0

]
+

[
eH

0

]
4Gk

[
0 F−k

]
+

[
βk − σ2

k t̃Hk
t̃k I

]
, (29)

where t̃k = ((ĥH
k + eHĜk)F−k)

H.
Applying Lemma 2 and defining slack variables µg =

[µg,1, ..., µg,K ]T ≥ 0 and µh = [µh,1, ..., µh,K ]T ≥ 0, the
equivalent LMIs of the worst-case INs power constraints (25)
are given as

Tempk t̃Hk 01×N 01×N
t̃k I(K−1) ξg,kFH

−k ξh,kFH
−k

0N×1 ξg,kF−k µg,kIN 0N×N
0N×1 ξh,kF−k 0N×N µh,kIN

 � 0,∀k ∈ K,

(30)

where Tempk = βk − σ2
k − µg,kM − µh,k.

With (28) and (30), the worst-case robust beamforming
design problem under full channel uncertainty can be for-
mulated as

min
F,e,β,$g,
$h,µgµh

||F||2F (31a)

s.t. (28), (30), (7c), (31b)
$g ≥ 0,$h ≥ 0,µg ≥ 0,µh ≥ 0. (31c)

Problem (31) is again non-convex and has coupled variables,
which can be solved similarly to Problem (16) and thus
omitted for simplicity.

IV. OUTAGE CONSTRAINED ROBUST BEAMFORMING
DESIGN

In general, the channel estimation error follows the Gaus-
sian distribution [14]. Hence, it is unbounded. The above
bounded channel model may not be able to characterize the
practical channel error model. As a result, in this section,
we consider the statistical CSI error model. Specifically,
by defining the maximum data rate outage probabilities
ρ1, ..., ρK ∈ (0, 1], the transmit power minimization problem
is formulated as

min
F,e
||F||2F (32a)

s.t. Pr{Rk (F, e) ≥ Rk} ≥ 1− ρk,∀k ∈ K (32b)

|em|2= 1, 1 ≤ m ≤M. (32c)

The rate outage constraints (32b) guarantee that the proba-
bility of each user that can successfully decode its message
at a data rate of Rk is no less than 1− ρk.

The outage constrained robust beamforming design prob-
lem in (32) is computationally intractable due to the fact that
the rate outage probability constraints (32b) have no simple
closed-form expressions [28]. In order to solve Problem (32),
a safe approximation based on Bernstein-type inequality is
given in the following lemma.

Lemma 5 (Bernstein-Type Inequality: Lemma 1 in [28])
Assume f(x) = xHUx+2Re{uHx}+u, where U ∈ Hn×n,
u ∈ Cn×1, u ∈ R and x ∈ Cn×1 ∼ CN(0, I). Then for any
ρ ∈ [0, 1], the following approximation holds:

Pr{xHUx + 2Re{uHx}+ u ≥ 0} ≥ 1− ρ (33a)

⇒Tr {U} −
√
2 ln(1/ρ)x+ ln(ρ)λ+max(−U) + u ≥ 0

(33b)

⇒

 Tr {U} −
√

2 ln(1/ρ)x+ ln(ρ)y + u ≥ 0√
||U||2F+2||u||2 ≤ x
yI + U � 0, y ≥ 0,

(33c)

where λ+max(−U) = max(λmax(−U), 0). x and y are slack
variables.

Please refer to [28] for the proof of Lemma 5.
In the following subsections, we first design the relatively

simple robust beamforming under the partial channel un-
certainty, and then extend it to the full channel uncertainty
case.
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A. Scenario 1: Partial Channel Uncertainty

Before the derivations, the rate outage probability of user
k in (32b) is rewritten as

Pr

{
log2

(
1 +

∣∣(hH
k + eHGk

)
fk
∣∣2∥∥(hH

k + eHGk

)
F−k

∥∥2
2
+ σ2

k

)
≥ Rk

}
= Pr

{(
hH
k + eHGk

)
Φk

(
hk + GH

k e
)
− σ2

k ≥ 0
}
, (34)

where Φk = fkfHk /(2
Rk − 1)− F−kFH

−k.
For the convenience of derivations, we assume that

Σg,k = ε2g,kI, then the RCSIT error in (6) can be rewritten
as vec(4Gk) = εg,kig,k where ig,k ∼ CN(0, I). Defining
E = eeH, the rate outage probability (34) is reformulated in
(35) at the top of the next page. Therefore, the rate outage
constraints (32b) are given as

Pr
{
iHg,kUkig,k + 2Re{uH

k ig,k}+ uk ≥ 0
}

≥ 1− ρk,∀k ∈ K, (36)

where

Uk = ε2g,k(Φ
T
k ⊗E), (37a)

uk = εg,kvec((ehH
k + EĜk)Φ

H
k ), (37b)

uk = (hH
k + eHĜk)Φk(hk + ĜH

k e)− σ2
k. (37c)

Applying Lemma 5 and introducing auxiliary variables
x = [x1, ..., xK ]T and y = [y1, ..., yK ]T, rate outage con-
straint of user k in (36) is transformed into the deterministic
form as

Tr {Uk} −
√

2 ln(1/ρk)xk + ln(ρk)yk + uk ≥ 0, (38a)√
||Uk||2F+2||uk|||2 ≤ xk, (38b)

ykI + Uk � 0, yk ≥ 0. (38c)

(38) can be further simplified by some mathematical
transformations as follows

Tr {Uk} = ε2g,kTr
{
ΦT

k ⊗E
}
= ε2g,kTr {Φk}Tr {E}

= ε2g,kMTr {Φk} , (39a)

||Uk||2F= ε4g,k||(ΦT
k ⊗E)||2F= ε4g,k||Φk||2F ||E||2F

= ε4g,kM
2||Φk||2F , (39b)

||uk||2= ε2g,k||vec((ehH
k + EĜk)Φ

H
k )||2

= ε2g,kM ||
(
hH
k + eHĜk

)
Φk||22, (39c)

λ(Uk) = λ(ε2g,k(Φ
T
k ⊗E)) = ε2g,kλ(Φ

T
k ⊗E)

= ε2g,kλ(Φk)λ(E) = ε2g,kMλ(Φk). (39d)

Operation λ(X) means the eigenvalues of X. (39a) and (39b)
are from [P76 in [29]], (39d) is from [P421 in [29]].

Therefore, according to Lemma 5 and equation (39), the
approximation problem of Problem (32) can be given as

min
F,e,x,y

||F||2F (40a)

s.t. ε2g,kMTr {Φk} −
√

2 ln(1/ρk)xk − ln(1/ρk)yk

+ uk ≥ 0,∀k ∈ K (40b)

∥∥∥∥∥ ε2g,kMvec(Φk)√
2Mεg,kΦk

(
hk + ĜH

k e
) ∥∥∥∥∥ ≤ xk,∀k ∈ K

(40c)

ykI + ε2g,kMΦk � 0, yk ≥ 0,∀k ∈ K (40d)

|em|2= 1,∀m ∈M. (40e)

Problem (40) is still difficult to solve because constraints
(40c) are non-convex and have coupled variables F and e.
We use AO method to update F and e in an iterative manner.
More specifically, by first fixing e, the non-convex problem
in F at hand is relaxed by employing the SDR technique
[30] and solved by CVX. F is then fixed and the resulting
non-convex problem of e is also handled under the penalty
CCP method.

For fixed e, let Φk = Γk/(2
Rk−1)−

∑K
i=1,i6=k Γi where

Γk = fkfHk , Problem (40) corresponding to F is rewritten
as

min
Γ,x,y

K∑
k=1

Tr {Γk} (41a)

s.t. ε2g,kMTr {Φk} −
√
2 ln(1/ρk)xk − ln(1/ρk)yk

+ uk ≥ 0,∀k ∈ K (41b)∥∥∥∥∥ ε2g,kMvec(Φk)√
2Mεg,kΦk

(
hk + ĜH

k e
) ∥∥∥∥∥ ≤ xk,∀k ∈ K

(41c)

ykI + ε2g,kMΦk � 0, yk ≥ 0,∀k ∈ K (41d)

Γk � 0,∀k ∈ K (41e)
rank(Γk) = 1,∀k ∈ K, (41f)

where Γ = [Γ1, ...,ΓK ]. Problem (41) can be solved by
adopting the SDR technique, i.e., removing rank(Γk) =
1,∀k ∈ K from the problem formulation, the resulting
convex SDP problem is then efficiently solved by the CVX
tools. The following theorem reveals the tightness of the
SDR.

Theorem 1 If the relaxed version of Problem (41) is feasi-
ble, then there always exists a feasible solution, denoted as
Γ? = [Γ?

1, ...,Γ
?
K ], satisfying rank(Γ?

k) = 1,∀k ∈ K.

Proof: Please refer to Appendix C. �
Remark 1: Numerical results show that, the optimal Γ?

k is
usually of rank one before we construct the rank-1 solution
mentioned in Appendix C. The optimal fk can be obtained
from Γ?

k by using eigenvalue decomposition.
We now consider the subproblem of e with fixed F. With

the same purpose of (18), we introduce slack variables α =
[α1, ..., αK ]T to the rate outage probability in (34) and have

Pr
{(

hH
k + eHGk

)
Φk

(
hk + GH

k e
)
− σ2

k − αk ≥ 0
}
.

(42)

Then, (37c) is also modified as follows

ue
k = (hH

k + eHĜk)Φk(hk + ĜH
k e)− σ2

k − αk. (43)
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Pr
{(

hH
k + eH(Ĝk +4Gk)

)
Φk

(
hk + (Ĝk +4Gk)

He
)
− σ2

k ≥ 0
}

= Pr
{
vecH(4Gk)(Φ

T
k ⊗E)vec(4Gk) + 2Re{vecH((ehH

k + EĜk)Φk)vec(4Gk)}

+ (hH
k + eHĜk)Φk(hk + ĜH

k e)− σ2
k ≥ 0

}
= Pr

{
ε2g,kiHg,k(Φ

T
k ⊗E)ig,k + 2Re{εg,kvecH((ehH

k + EĜk)Φk)ig,k}+ (hH
k + eHĜk)Φk(hk + ĜH

k e)− σ2
k ≥ 0

}
.

(35)

We note that (43) is non-concave in e due to the fact
that eHĜkfkfHk ĜH

k e/(2Rk − 1) in ĜkΦkĜH
k is convex.

By using the first-order Taylor inequality given in Ap-
pendix A, eHĜkfkfHk ĜH

k e/(2Rk−1) can be lower bounded
linearly by ue

linear,k = (2Re{e(n),HĜkfkfHk ĜH
k e} −

e(n),HĜkfkfHk ĜH
k e(n))/(2Rk − 1). We then construct an

equivalent concave version of (43), which is given as

ue
k = ue

linear,k − eHĜkF−kFH
−kĜH

k e + 2Re{eHĜkΦkhk}
+ hH

k Φkhk − σ2
k − αk +MconstEk. (44)

In addition, constraints (40d) are independent of e and
transformed from λ+max(−U) in Lemma 5, we then can have
yk = max(λmax(−ε2g,kMΦk), 0),∀k ∈ K. With α and (44),
the subproblem of (40) corresponding to e is formulated as

max
e,α,x,y

K∑
k=1

αk (45a)

s.t. ε2g,kMTr {Φk} −
√

2 ln(1/ρk)xk

− ln(1/ρk)yk + ue
k ≥ 0,∀k ∈ K (45b)∥∥∥∥∥ ε2g,kM ||Φk||F√

2Mεg,kΦk

(
hk + ĜH

k e
) ∥∥∥∥∥ ≤ xk,∀k ∈ K

(45c)
α ≥ 0 (45d)

|em|2= 1,∀m ∈M. (45e)

The non-convex constraints (45e) in Problem (45) is solved
by using the same techniques as those used for solving
Problem (21), then the resulting approximation problem for
Problem (45) can be solved by using Algorithm 1.

B. Scenario 2: Full Channel Uncertainty

In this subsection, we extend the outage constrained robust
beamforming design from the partial channel uncertainty to
the case where all the channels are imperfect at the BS. By
considering the full statistical CSI error in (6), (34) is then
formulated as

Pr
{(

ĥH
k + eHĜk

)
Φk

(
ĥk + ĜH

k e
)

+ 2Re
{(

ĥH
k + eHĜk

)
Φk

(
4hk +4GH

k e
)}
− σ2

k

+
(
4hH

k + eH 4Gk

)
Φk

(
4hk +4GH

k e
)
≥ 0
}
. (46)

Assuming that Σh,k = ε2h,kI, then the DCSIT can be
expressed as 4hk = εh,kih,k where ih,k ∼ CN(0, I). The
second term inside (46) is rewritten as

2Re
{
(ĥH

k + eHĜk)Φk 4 hk

+ vecT(e(ĥH
k + eHĜk)Φk)vec(4G∗k)

}
= 2Re

{
εh,k(ĥ

H
k + eHĜk)Φkih,k

+ εg,kvec
T(e(ĥH

k + eHĜk)Φk)i
∗
g,k

}
= 2Re

{
ũH
k ĩk

}
,

where ĩk =
[

iHh,k iTg,k
]H

and

ũk =

[
εh,kΦk(ĥk + ĜH

k e)

εg,kvec
∗(e(ĥH

k + eHĜk)Φk)

]
.

The fourth term on the left hand side of (46) is rewritten as

4hH
k Φk 4 hk + 2Re

{
eH 4GkΦk 4 hk

}
+ eH 4GkΦk4GH

k e

= ε2h,kiHh,kΦkih,k + 2Re
{
4hH

k (Φk ⊗ eT)vec(4G∗k)
}

+ vecT(4Gk)(Φk ⊗ET)vec(4G∗k)

= ε2h,kiHh,kΦkih,k + 2Re
{
εh,kεg,kiHh,k(Φk ⊗ eT)i∗g,k

}
+ ε2g,kiTg,k(Φk ⊗ET)i∗g,k

= ĩHk Ũk ĩk,

where

Ũk =

[
Σ

1/2
h,kΦkΣ

1/2
h,k εh,kεg,k(Φk ⊗ eT)

εh,kεg,k(Φk ⊗ e∗) ε2g,k(Φk ⊗ET)

]
.

Denote ũk = (ĥH
k +eHĜk)Φk(ĥk + ĜH

k e)−σ2
k, the rate

outage constraint (46) is then equivalent to

Pr
{̃

iHk Ũk ĩk + 2Re
{

ũH
k ĩk

}
+ ũk ≥ 0

}
≥ 1− ρk. (47)

Combining Lemma 5 and new auxiliary variables x̃ =
[x̃1, ..., x̃K ]T and ỹ = [ỹ1, ..., ỹK ]T, the approximation of
the data rate outage constraint of user k in (47) is given by

Tr
{

Ũk

}
−
√

2 ln(1/ρk)x̃k + ln(ρk)ỹk + ũk ≥ 0, (48a)√
||Ũk||2F+2||ũk||2 ≤ x̃k, (48b)

ỹkI + Ũk � 0, ỹk ≥ 0. (48c)
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We simplify some terms in (48) as follows:

Tr
{

Ũk

}
= Tr

{[
εh,kΦ

1/2
k

εg,k(Φ
1/2
k ⊗ e∗)

]

•
[
εh,kΦ

1/2
k εg,k(Φ

1/2
k ⊗ eT)

]}
= (ε2h,k + ε2g,kM)Tr {Φk} , (49a)

||Ũk||2F= (ε2h,k + ε2g,kM)2||Φk||2F , (49b)

||ũk||2= (ε2h,k + ε2g,kM)||(ĥH
k + eHĜk)Φk||22, (49c)

ỹkI + Ũk � 0 =⇒ ỹkI + (ε2h,k + ε2g,kM)Φk � 0. (49d)

The derivations of (49) are similar to (39).
Based on the above results, Problem (32) with imperfect

DCSIT and imperfect CBIUT is given by

min
F,e,x̃,ỹ

||F||2F (50a)

s.t. (ε2h,k + ε2g,kM)Tr {Φk} −
√

2 ln(1/ρk)xk

− ln(1/ρk)yk + ũk ≥ 0,∀k ∈ K (50b)∥∥∥∥∥ (ε2h,k + ε2g,kM)vec(Φk)√
2(ε2h,k + ε2g,kM)Φk

(
ĥk + ĜH

k e
) ∥∥∥∥∥ ≤ x̃k,

(50c)
∀k ∈ K (50d)

ỹkI + (ε2h,k + ε2g,kM)Φk � 0, ỹk ≥ 0,∀k ∈ K

(50e)

|em|2= 1,∀m ∈M. (50f)

Comparing Problem (50) with Problem (40), we find that
the former can be obtained from the latter by replacing
ε2g,kM with ε2h,k + ε2g,kM and hk with ĥk. Therefore,
Problem (50) can be solved by using the same techniques
as those used to solve Problem (40). In addition, when
M is large, the impact of imperfect CBIUT dominates the
performance of the system, which will be illustrated in the
numerical results later. Thus, it is significant to investigate
the robust beamforming in an IRS-aided system in which
there are a large number of reflection elements with high
channel estimation error.

V. COMPUTATIONAL COMPLEXITY

In this section, we analyze the computational complexity
of the proposed robust transmission design methods. Since
all the resulting convex problems involving LMI, second-
order cone (SOC) constraints and linear constraints that can
be solved by a standard interior point method [31], we can
compare the computational complexity of different methods
in terms of their worst-case runtime, the general expression
(we ignore the complexity of the linear constraints) of which
is given by

O((

J∑
j=1

bj + 2I)1/2n(n2 + n

J∑
j=1

b2j +

J∑
j=1

b3︸ ︷︷ ︸
due to LMI

+ n

I∑
i=1

a2i︸ ︷︷ ︸
due to SOC

)),

(50,10) IRS

(0,0)

 BS

(70,0)

(0,0)

 BS

Users

Fig. 2: The simulated system setup.

TABLE I: System parameters

Path loss exponents of BS-user link αBU = 4
Path loss exponents of BS-IRS link αBI = 2.2
Path loss exponents of IRS-user link αIU = 2

Noise power σ2
1 = ... = σ2

K = −80 dBm
Convergence tolerance 10−4

Maximun outage probabilities ρ1 = ... = ρK = ρ = 0.05

where n is the number of variables, J is the number of LMIs
of size bj , and I is the number of SOC of size ai. Based
on the above expression, we provide the computational
complexity per iteration of the proposed methods as follows:

1) PCU-bounded method denotes the worst-case beam-
forming design method under Scenario 1. The approximate
complexity of Problem (17) is oF = O([K(MN +K+N +
1)]1/2n1[n

2
1+n1K((MN +1)2+(K+N)2)+K((MN +

1)3 + (K + N)3)]) where n1 = NK, and that of Problem
(22) is oe = O([K(MN + 1 + K) + 2M ]1/2n2[n

2
2 +

n2K((MN + 1)2 +K2) +K((MN + 1)3 +K3) + n2M ])
where n2 = M . Finally, the approximate complexity of
PCU-bounded method per iteration is oF + oe.

2) FCU-bounded method denotes the worst-case beam-
forming design method under Scenario 2. The approximate
complexity of Problem (31) is oF + oe, where
oF = O([K(MN+3N+K+1)]1/2n1[n

2
1+n1K((MN+

N + 1)2 + (K + 2N)2) + K((MN + N + 1)3 + (K +
2N)2)]) with n1 = NK, and oe = O([K(MN + 1+K) +
2M ]1/2n2[n

2
2+n2K((MN +1)2+K2)+K((MN +1)3+

K3) + n2M ]) with n2 =M .
3) PCU-statistic method denotes the outage constrained

beamforming design method under Scenario 1. The approx-
imate complexity of Problem (41) is oF = O([2K(N +
1)]1/2n1[n

2
1+2n1KN

2+2KN3+nKN2(N+1)2]) where
n1 = NK, and that of Problem (45) is oe = O([4K +
2M ]1/2n2[n

2
2 + n2(K(M2 + (N + 1)2) + M)]) where

n2 = M . Finally, the approximate complexity of PCU-
statistic method per iteration is oF + oe.

4) FCU-statistic method denotes the outage constrained
beamforming design method under Scenario 2. Here, the
approximate complexity per iteration is the same with the
PCU-statistic method since they only have some different
coefficients.

VI. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we provide numerical results to evaluate
the performance of our proposed algorithms. The simulated
system setup of our consider network is shown in Fig. 2,
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Fig. 3: Transmit power versus the iteration numbers of dif-
ferent algorithms, when K = 3 and {δg, δh} = {0.01, 0.02}.

in which we assume that the BS is located at (0 m, 0
m) and the IRS is placed at (50 m, 10 m). K users are
randomly and uniformly distributed in a circle centered at
(70 m, 0 m) with radius of 5 m. The channel models, i.e.,
{hk,Gk}∀k∈K, are assumed to include large-scale fading
and small-scale fading. The large-scale fading model is
expressed as PL = PL0 − 10α log10(d) dB, where α is
the path loss exponent and d is the link distance in meters.
PL0 denotes the pathloss at the distance of 1 meter, which
is set as −40 dB based on the 3GPP UMi model [32] with
3.5 GHz carrier frequency (i.e., carrier frequency of 5G in
China). The small-scale fading in {hk,Gk}∀k∈K is assumed
to be Rayleigh fading distribution. For the statistical CSI
error model, the variance of vec(4Gk) and4hk are defined
as ε2g,k = δ2g ||vec(Ĝk)||22 and ε2h,k = δ2h||ĥk||22, respectively.
δg ∈ [0, 1) and δh ∈ [0, 1) measure the relative amount of
CSI uncertainties. For the bounded CSI error model, the radii
of the uncertainty regions are set as

ξg,k =

√
ε2g,k
2
F−12MN (1− ρ),

and

ξh,k =

√
ε2h,k
2
F−12N (1− ρ),

where F−12MN (·) and F−12N (·) denote the inverse cumulative
distribution function (CDF) of the Chi-square distribution
with degrees of freedom equal to 2MN and 2N , respec-
tively. According to [28], the above bounded CSI error
model provides a fair comparison between the performance
of the worst-case robust design and the outage constrained
robust design. In addition, the target rates of all users are
assumed to be the same, i.e., R1 = ... = RK = R and
the fixed simulation settings for our simulations are given in
Table I.

4 5 6 7 8 9 10

Number of elements: N or M
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Fig. 4: Average CPU time versus the number of antenna
elements at the IRS M and at the BS N , when K = 2 and
{δg, δh} = {0.01, 0.02}.

Fig. 3 illustrates the convergence behavior of the proposed
four algorithms. Here, the minimum rate is set as R = 2
bit/s/Hz, and the channel uncertainty levels are chosen as
{δg, δh} = {0.01, 0.02}. It is observed that all algorithms
converge rapidly and 10 iterations are sufficient for the
algorithms to converge. It also shows that the convergence
speed increases with the number of antennas. In addition, the
algorithms under the statistical error model converge faster
than those under the bounded error model.

Fig. 4 compares the average (central processing unit) CPU
running time of the proposed algorithms versus the numbers
of antenna elements at the BS and/or reflection elements at
the IRS. The results are obtained by using a computer with
a 1.99 GHz i7-8550U CPU and 16 GB RAM. Here, we
set K = 2, R = 2 bit/s/Hz, and {δg, δh} = {0.01, 0.02}.
Firstly, it is observed that the robust algorithms under the
statistical CSI error model require much less CPU running
time than those under the bounded CSI error model. This is
due to the fact that there are some large-dimensional LMIs
that increase the computational complexity of the worst-case
algorithms. Secondly, the FCU-bounded algorithm requires
more CPU time than the PCU-bounded algorithm because
the DCSIT error 4hk increases the dimension of the LMIs.
Thirdly, when M = 6, the CPU running time of the outage
constrained algorithm under two scenarios is similar due
to the fact that no additional complexity is introduced by
considering the additional DCSIT error.

Fig. 5 shows the minimum transmit power of the IRS-
aided communication system versus the target rate require-
ments of users under various CSI error models. Some system
parameters are set as N =M = 6, K = {2, 3}, {δg, δh} =
{0.01, 0.02}. It is seen that the minimum transmit power
increases with the target rate for both channel uncertainty
scenarios and both CSI error models. In addition, it is also
observed that the minimum transmit power of the worst-case
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Fig. 5: Transmit power versus the target rate R under N =
M = 6 and {δg, δh} = {0.01, 0.02}.

robust design algorithms is larger than that of the outage
constrained robust design algorithms. This is due to the fact
that the worst-case optimization is the most conservative
robust design, which requires more transmit power with
the aim of ensuring that the achievable rate of each user
meets the target rate requirement for the worst-case CSI error
realization.

In the following, we study the impact of the accuracy
of the CSI on the system performance. We adopt outage
constrained robust beamforming design algorithms since the
computational complexity of the worst-case robust beam-
forming design algorithms is unacceptable at large numbers
of antennas.

Fig. 6 shows the feasibility rate and the minimum transmit
power versus N or M when only the CBIUT is imperfect,
i.e., δh = 0. We assume there are K = 2 users with R = 2
bit/s/Hz. The feasibility rate is defined as the ratio of the
number of feasible channel realizations to the total number
of channel realizations, where the feasible channel realiza-
tion means that there exists a feasible solution to the outage
constrained problem in (32) with this channel realization.
An interesting phenomenon can be observed from Fig. 6
(a). When fixing the number of transmit antennas N , the
feasibility rate decreases rapidly with the number of phase
shifters at a high level of channel uncertainty (δg ≥ 0.08).
By contrast, when fixing the number of phase shifters M the
feasibility rate keeps stable for different numbers of antennas
even at a high level of channel uncertainty.

Based on the observations of Fig. 6(a), we further exam-
ine the minimum transmit power consumption of different
channel uncertainty levels in Fig. 6(b) with a benchmark
scheme without IRS. Fig. 6(b) is generated based on the
channel realizations for which the feasible solutions can be
obtained at N = 16 or M = 16.

We first study the case with fixed number of transmit
antennas N = 6. In Fig. 6(b), the case with δg = 0 can
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(b) Transmit power

Fig. 6: Feasibility rate and transmit power versus the number
of antenna elements under the PCU scenario, when K = 2.

be regarded as the perfect CBIUT case, and its minimum
transmit power decreases with the number of the reflection
elements. This trend is consistent with that of Fig. 4 in [27].
The minimum transmit power consumption values under
small values of δg, e.g., δg = {0.05, 0.08}, also decrease
with the number of the reflection elements, and are higher
than that of the perfect CBIUT case. The reason is that
the BS needs to consume more power to compensate for
the rate loss caused by the CBIUT error. However, when
δg increases to 0.1 or larger, transmit power consumption
starts to increase with the number of reflection elements. The
reason is that increasing the number of reflection elements
cannot only reduce the transmit power due to its increased
beamforming gain, but also increase the channel estimation
error that more transmit power is required to compensate
for the channel errors. Therefore, when the CBIUT error is
small, the benefits brought by the increase of M , outweighs
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Fig. 7: Feasibility rate and transmit power versus the number
of antenna elements under the FCU scenario, when K = 2.

its drawbacks, and vice versa. As a result, the number of
IRS reflection elements should be carefully chosen, and the
accuracy of the CBIUT estimation is crucial to reap the
benefits offered by the IRS.

On the other hand, for the case with a fixed number of
reflection elements, the transmit power consumption values
decrease with the number of antennas at the BS even when
the CBIUT error is high as δg = 0.12. The reason is that
when the number of antennas is large, more degrees of free-
dom can be exploited to optimize the active beamforming
vector at the BS to compensate for the channel estimation
error. Finally, compared with the system without IRS, the
IRS may lose its performance gain advantage under high
CBIUT error.

Fig. 7 shows the feasibility rate and the minimum transmit
power versus M or N when both the DCSIT and the CBIUT
are imperfect. The simulation parameters are the same as

those in Fig. 6. Fig. 7(a) shows that when δg is low, the
feasibility rates achieved by various cases are always high.
In addition, from Fig. 7(b), we find that the increase of
the number of antennas at the BS is effective in reducing
the transmit power consumption, which is not affected by
the DCSIT error δh (see curves M = 6, δg = 0.01, δh =
{0.01, 0.05, 0.1}).

VII. CONCLUSIONS

In this work, we investigated robust beamforming designs
under imperfect CBIUT for the IRS-aided MU-MISO sys-
tem. Our aim was to minimize the transmit power subject to
the worst-case rate constraints under the bounded CSI error
model and the rate outage probability constraints under the
statistical CSI error model. The CSI uncertainties under the
bounded CSI error model were addressed by applying the
S-procedure, and those under the statistical CSI error model
were tackled by using the Bernstein-Type Inequality. The
reformulated problems were efficiently solved under the AO
framework. It is shown that the performance in terms of
the minimum achievable transmit power, convergence and
complexity under the statistical CSI error model is higher
than that under the bounded CSI error model. The number of
elements on the IRS may have a negative impact on system
performance when the CBIUT error is large. This conclusion
provides an engineering insight for the careful selection
of the size of the IRS. In the end, this work provides a
framework of robust transmission design in a simple single-
cell multiuser scenario. The more complicated scenarios,
such as the IRSs-assisted full-duplex communication sys-
tems, IRS-aided energy efficiency systems and IRS-aided
physical layer security systems, will be studied as our future
work. Furthermore, the robustness of the IRS in millimeter
wave system under a geometric channel model is also worth
studying.

APPENDIX A
THE PROOF OF LEMMA 3

Let x be a complex scalar variable, we have the first-order
Taylor inequality

|x|2 ≥ 2Re
{
x∗,(n)x

}
− x∗,(n)x(n), (51)

for any fixed point x(n). By replacing x and x(n) in (51) with
(hH

k + eHGk)fk and (hH
k + e(n),HGk)f

(n)
k , respectively, we

have∣∣(hH
k + eHGk

)
fk
∣∣2

≥ 2Re
{(

hH
k + e(n),HGk

)
f
(n)
k fHk

(
hk + GH

k e
)}

−
(
hH
k + e(n),HGk

)
f
(n)
k f

(n),H
k

(
hk + GH

k e(n)
)
. (52)

By plugging Gk = Ĝk + 4Gk into the right hand
side of (52) and expanding it by using mathematical
transformations, i.e., Tr(AHB) = vecH(A)vec(B) and
Tr(ABCD) = (vecT(D))T(CT ⊗A)vec(B) [29], we can
obtained (10).

Hence, the proof is completed.
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APPENDIX B
THE PROOF OF LEMMA 4

The lower bound of (26) can also be derived from (52)
under the full channel uncertainty. In particular, we insert
hk = ĥk +4hk and Gk = Ĝk +4Gk into the first term
on the right hand side of (52), and then get (53) at the top
of the next page.

With the similar mathematical transformations, the re-
maining two terms on the right hand side of (52) under the
full channel uncertainty can be expressed as

(hH
k + eHGk)fkf

(n),H
k (hk + GH

k e(n))

=̃iHk DH
k ĩk + dH

2,k ĩk + ĩHk d1,k + d∗k

+ (hH
k + e(n),HGk)f

(n)
k f

(n),H
k (hk + GH

k e(n))

=̃iHk Zk ĩk + zHk ĩk + ĩHk zk + zk. (54)

Hence, the proof is completed.

APPENDIX C
THE PROOF OF THEOREM 1

Denote by Γ̂? = [Γ̂?
1, ..., Γ̂

?
K ] the optimal solution of the

relaxed version of Problem (41) and define the projection
matrices as Pk = Γ̂

? 1
2

k ĥkĥH
k Γ̂

? 1
2

k /||Γ̂? 1
2

k ĥk||2,∀k ∈ K,
where ĥk =

(
hk + GH

k e
)
. Then, we construct a rank-one

solution Γ̃? = [Γ̃?
1, ..., Γ̃

?
K ], each sub-matrix of which is

given by

Γ̃?
k = Γ̂

? 1
2

k PkΓ̂
? 1

2

k . (55)

Firstly, we check the objective value of Problem (41) with
solution Γ̃?:
K∑

k=1

Tr
{

Γ̃?
k

}
−

K∑
k=1

Tr
{

Γ̂?
k

}
=

K∑
k=1

Tr
{

Γ̂
? 1

2

k (Pk − I)Γ̂
? 1

2

k

}
≤ 0, (56)

which means that the objective value acheived by using the
solution Γ̃? is no more than that generated from the optimal
solution Γ̂?.

Then, since it is computationally intractable to check
whether the constructed solution satisfies the constraints
(41b)-(41e) directly, we instead consider the constraint (32b)
in the original Problem (32). Specifically, from (34), we have

ĥH
k Γ̃?

kĥk

(2Rk − 1)
=

|ĥH
k Γ̂?

kĥk|2

||Γ̂? 1
2

k ĥk||2(2Rk − 1)
=

ĥH
k Γ̂?

kĥk

(2Rk − 1)
, (57)

as well as

ĥH
k Γ̃?

i ĥk = ĥH
i Γ̂

? 1
2

i

Γ̂
? 1

2
i ĥkĥH

k Γ̂
? 1

2
i

||Γ̂? 1
2

i ĥi||2
Γ̂
? 1

2
i ĥi

≤ λmax

(
Γ̂
? 1

2
i ĥkĥH

k Γ̂
? 1

2
i

)
= ĥH

k Γ̂?
i ĥk. (58)

Combining (57) with (58), we have

ĥH
k [Γ̃

?
k/(2

Rk − 1)−
K∑
i 6=k

Γ̃?
k]ĥk

≥ ĥH
k [Γ̂

?
k/(2

Rk − 1)−
K∑
i 6=k

Γ̂?
i ]ĥk, (59)

which implies that the constructed solution Γ̃? satisfies
constraint (32b) and then satisfies constraints (41b)-(41e).

With (56) and (59), we conclude that Γ̃? is also a feasible
solution of the relaxed version of Problem (41) with rank
one.

Hence, the proof is completed.
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k +4GH
k )e
]

=(ĥH
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