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Abstract—Intelligent reflecting surface (IRS) has recently
been envisioned to offer unprecedented massive multiple-input
multiple-output (MIMO)-like gains by deploying large-scale and
low-cost passive reflection elements. By adjusting the reflection
coefficients, the IRS can change the phase shifts on the impinging
electromagnetic waves so that it can smartly reconfigure the
signal propagation environment and enhance the power of the
desired received signal or suppress the interference signal. In this
paper, we consider downlink multigroup multicast communica-
tion systems assisted by an IRS. We aim for maximizing the sum
rate of all the multicasting groups by the joint optimization of
the precoding matrix at the base station (BS) and the reflection
coefficients at the IRS under both the power and unit-modulus
constraint. To tackle this non-convex problem, we propose two
efficient algorithms under the majorization—-minimization (MM)
algorithm framework. Specifically, a concave lower bound surro-
gate objective function of each user’s rate has been derived firstly,
based on which two sets of variables can be updated alternately
by solving two corresponding second-order cone programming
(SOCP) problems. Then, in order to reduce the computational
complexity, we derive another concave lower bound function of
each group’s rate for each set of variables at every iteration,
and obtain the closed-form solutions under these loose surrogate
objective functions. Finally, the simulation results demonstrate
the benefits in terms of the spectral and energy efficiency of the
introduced IRS and the effectiveness in terms of the convergence
and complexity of our proposed algorithms.

Index Terms—Intelligent reflecting surface (IRS), large intelli-
gent surface (LIS), multigroup, multicast, alternating optimiza-
tion, majorization-minimization (MM).

I. INTRODUCTION

In the era of 5G and Internet of Things by 2020, it is
predicted that the network capacity will increase by 1000 folds
to serve at least 50 billions devices through wireless commu-
nications [1] and the capacity is expected to be achieved with
lower energy consumption. To meet those Quality of Service
(QoS) requirements, intelligent reflecting surface (IRS), as
a promising new technology, has been proposed recently to
achieve high spectral and energy efficiency. It is an artificial
passive radio array structure where the phase of each passive
element on the surface can be adjusted continuously or dis-
cretely with low power consumption [2], [3], and then change
the directions of the reflected signal into the specific receivers
to enhance the received signal power [4]-[7] or suppress
interference as well as enhance security/privacy [8], [9].
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The IRS, as a new concept beyond conventional massive
multiple-input and multiple-output (MIMO) systems, main-
tains all the advantages of massive MIMO systems, such
as being capable of focusing large amounts of energy in
three-dimensional space which paves the way for wireless
charging, remote sensing and data transmissions. However, the
differences between IRS and massive MIMO are also obvious.
Firstly, the IRS can be densely deployed in indoor spaces,
making it possible to provide high data rates for indoor devices
in the way of near-field communications [10]. Secondly, in
contrast to conventional active antenna array equipped with
energy-consuming radio frequency chains and power ampli-
fiers, the IRS with passive reflection elements is cost-effective
and energy-efficient [4], which enables IRS to be a prospective
energy-efficient technology in green communications. Thirdly,
as the IRS just reflects the signal in a passive way, there is
no thermal noise or self-interference imposed on the received
signal as in conventional full-duplex relays.

Due to these significant advantages, IRS has been inves-
tigated in various wireless communication systems. Specifi-
cally, the authors in [4] first formulated the joint active and
passive beamforming design problem both in downlink single-
user and multiple-users multiple-input single-output (MISO)
systems assisted by the IRS, while the total transmit power
of the base station (BS) is minimized based on the semidefi-
nite relaxation (SDR) [11] and alternating optimization (AO)
techniques. In order to reduce the high computational com-
plexity incurred by SDR, Yu er al. proposed low complex-
ity algorithms based on MM (Majorization—-Minimization or
Minorization—-Maximization) algorithm in [8] and manifold
optimization in [12] to design reflection coefficients with the
targets of maximizing the security capacity and spectral effi-
ciency communications, respectively. Pan et al. considered the
weighted sum rate maximization problems in multicell MIMO
communications [5], simultaneous wireless information and
power transfer (SWIPT) aided systems [6], artificial-noise-
aided secure MIMO communications [9], all demonstrating the
significant performance gains achieved by deploying an IRS
in the networks. A deep reinforcement learning (DRL)-based
algorithm [7] and a mobile edge computing-based algorithm
[13] were proposed to jointly design the active and passive
beamformings in IRS-related systems. In cognitive radio (CR)
communication systems, the high rate for the secondary user
(SU) can be acheived with the assistance of the IRS [14].

However, all the above-mentioned contributions only inves-
tigated the performance benefits of deploying an IRS in unicast
transmissions, where the BS sends an independent data stream
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to each user. However, unicast transmissions will cause severe
interference and high system complexity when the number of
users is large. To address this issue, the multicast transmission
based on content reuse [15] (e.g., identical content may be
requested by a group of users simultaneously) has attracted
wide attention, especially for the application scenarios such
as popular TV programme or video conference. From the
perspective of operators, it can be envisioned that multicast
transmission is capable of effectively alleviating the pressure
of tremendous wireless data traffic and play a vital role in the
next generation wireless networks. Therefore, it is necessary to
explore the potential performance benefits brought by an IRS
during the multigroup multicast transmission. In specifically,
in multicast systems, the data rate of each group is limited
by the user with the worst-channel gains. Hence, the IRS
can be deployed to improve the channel conditions of the
worst-case user, which can be significantly improve the system
performance.

A common performance metric in multicast transmissions
is the max-min fairness (MMF), where the minimum signal-
to-interference-plus-noise-ratio (SINR) or spectral efficiency
of users in each multicasting group or among all multicasting
groups is maximized [16]-[20]. Prior seminal treatments of
multicast transmission in single-group and multigroup are
presented in [16], [17], where the MMF problems are formu-
lated as a fractional second-order cone programming (SOCP)
and are NP-hard in general. The SDR technique [11] was
adopted to approximately solve the SOCP problem with some
mathematical manipulations. In order to reduce the high com-
putational complexity of SDR, several low-complexity algo-
rithms, such as successive convex approximation approach in
the single-group multicast scenario [18], asymptotic approach
[19] and heuristic algorithm [20] in the multigroup multicast
scenario, have been proposed by exploiting the special feature
of near-orthogonal massive MIMO channels.

In this paper, we consider an IRS-assisted multigroup mul-
ticast transmission system in which a multiple-antenna BS
transmits independent information data streams to multiple
groups, and the single-antenna users in the same group share
the same information and suffer from interference from those
signals sent to other groups. Unfortunately, the popular SDR-
based method incurs a high computational complexity which
hinders its practical implementation when the number of
design parameters (e.g., precoding matrix and reflection coeffi-
cient vector) becomes large. Furthermore, the aforementioned
low-complexity techniques designed for the IRS-aided unicast
communication schemes cannot be directly applied in the
multigroup multicast communication systems since the MMF
metric is a non-differentiable and complex objective function.

Against the above background, the main contributions of
our work are summarized as follows:

o To the best of our knowledge, this is the first work
exploring the performance benefits of deploying an IRS
in multigroup multicast communication systems. Specif-
ically, we jointly optimize the precoding matrix and the
reflection coefficient vector to maximize the sum rate
of all the multicasting groups, where the rate of each
multicasting group is limited by the minimum rate of

users in the group. This formulated problem is much
more challenging than previous problems considered in
unicast systems since our considered objective function
is non-differentiable and complex due to the nature of the
multicast transmission mechanism. In addition, the highly
coupled variables and complex sum rate expression ag-
gravates the difficulty to solve this problem.

e The formulated problem is solved efficiently in an it-
erative manner based on the alternating optimization
method under the MM algorithm framework. Specifically,
we firstly minorize the original non-concave objective
function by a surrogate function which is biconcave
of precoding matrix and reflection coefficient vector,
and then apply the alternating optimization method to
decouple those variables. At each iteration of the alternat-
ing optimization method, the subproblem corresponding
to each set of variables is reformulated as an SOCP
problem by introducing auxiliary variables, which can
help to transform the non-differentiable concave objective
function into a series of convex constraints.

o To further reduce the computational complexity, we use
the MM method to derive closed-form solutions of each
subproblem, instead of solving the complex SOCP prob-
lems with a high complexity at each iteration. Specif-
ically, we firstly apply the log-sum-exp lower bound
to approximate the non-differentiable concave objective
function, yielding a differentiable concave function. Then,
we derive a tractable surrogate objective function of
the log-sum-exp function, based on which we derive
the closed-form solutions of each subproblem. Finally,
we prove that the proposed algorithm is guaranteed to
converge and the solution sequences generated by the
algorithm converge to KKT points.

o Finally, the simulation results demonstrate the superiority
of the IRS-assisted multigroup multicast system over
conventional massive MIMO systems in terms of the
spectral efficiency and energy efficiency. The convergence
and the low complexity of the proposed algorithms have
also been illustrated.

The remainder of this paper is organized as follows. Section II
introduces the system model and formulates the optimization
problem. An SOCP-based method is developed to solve the
problem in Section III. Section IV further provides a low-
complexity algorithm. Finally, Section V and Section VI show
the simulation results and conclusions, respectively.

Notations: The following mathematical notations and symbols
are used throughout this paper. Vectors and matrices are
denoted by boldface lowercase letters and boldface upper-
case letters, respectively. The symbols X*, XT, XH and
[|X||F denote the conjugate, transpose, Hermitian (conjugate
transpose), Frobenius norm of matrix X, respectively. The
symbols ||x||; and ||x||2 denote 1-norm and 2-norm of vector
x, respectively. The symbols Tr{-}, Re{-}, |-|, and Z (-) denote
the trace, real part, modulus and angle of a complex number,
respectively. diag(x) is a diagonal matrix with the entries of
X on its main diagonal. [x],, means the m'" element of the
vector x. The Kronecker product between two matrices X
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Fig. 1: An IRS-aided multigroup multicast communication
system.

and Y is denoted by X ® Y. X > Ymeans that X — Y
is positive semidefinite. Additionally, the symbol C denotes
complex field, R represents real field, and j 2 \/—1 is the
imaginary unit.

II. SYSTEM MODEL
A. Signal Transmission Model

As shown in Fig. 1, we consider an IRS-aided multigroup
multicast MISO communication system. There is a BS with
N transmit antennas serving GG multicasting groups. Users
in the same group share the same information data and
the information data destined for different groups are inde-
pendent and different, which means there exists inter-group
interference. Let us define the set of all multicast groups by
G ={1,2,...,G}. Assuming that there are K (K > G) users
in total, the user set belonging to group g € G is denoted
as X, and each user can only belong to one group, i.e.,
K;NK;=0,Vi,j € G,i # j. The transmit signal at the BS

is
G
X = ngsw ey
g=1

where s, is the desired independent Gaussian data symbol of
group g and follows E[|s,|?] = 1 as well as f, € CV*! is the
corresponding precoding vector. Let us denote the collection
of all precoding vectors as F =[fy, - - -, f5] € CV*& satisfying
the power constraint 8p = {F | Tr [FHF} < Pr}, where Pr
is the maximum available transmit power at the BS.

In the multigroup multicast system, we propose to employ
an IRS with the goal of enhancing the received signal strength
of users by reflecting signals from the BS to the users. It is
assumed that the signal power of the multi-reflections (i.e.,
reflections more than once) on the IRS is ignored due to
the severe path loss [4]. Denote M as the number of the
reflection elements on the IRS, then the reflection coeffi-
cient matrix of the IRS is modeled by a diagonal matrix
E = diag([e1, -, en]T) € CM*M_ where |e,,|*= 1,Ym =

1,---, M [4]. Please note that the design of the practical
reflection amplitude which was modeled as a function of the
phase shifts [21] is more complex and will be investigated in
our future work. The channels spanning from the BS to user
k, from the BS to the IRS, and from the IRS to user k are
denoted by hg € CN*1, Hy, € CM*N and h, , € CM*1,
respectively.

It is assumed that the channel state information (CSI) is
perfectly known at the BS. The BS is responsible for designing
the reflection coefficients of the IRS and sends them back to
the IRS controller as shown in Fig. 1. As a result, the received
signal of user k € X, belonging to group g is

G
ye = (hl), + i EH) > £y, + nx, )

g=1

where ny, is the received noise at user k, which is an additive
white Gaussian noise (AWGN) following circularly symmetric
complex Gaussian (CSCG) distribution with zero mean and
variance o7. Then, its achievable data rate (bps/Hz) is given
by

(b, +h!l, EHy,)f, |?
R = logs 1+ —o- e ] ®
Yingl (g, +h EHG ) E[2+o}
diag(h!!, )Hy,

Denoting by H, = lag(hgf];:) d € CMFUXN the
equivalent channel spanning from the BS to user k and by
e = [e1, e, 1|7 € CMHDXL the equivalent reflection
coefficient vector, we have

|(hily, + by EHa)fy |2 = [e"Hf, 2, @)
G G
S I, + b EHg > = [e"Hifi[*+o7.  (5)
i#g i#g

Note that e belongs to the set 8. = {e | e [?=1,1 < m <
M, epr41 = 1}. Then, the data rate expression in (3) can be
rewritten in a compact form as
|eHkag|2 (6)
e .
D igleH ;2 +o}
Due to the nature of the multicast mechanism, the achiev-

able data rate of group g is limited by the minimum user rate
in this group and is defined as follows

Ry (F,e) = log, (1 +

B. Problem Formulation

In this paper, we aim to jointly optimize the precoding
matrix F and reflection coefficient vector e to maximize the
sum rate of the whole system, which is defined as the sum
rate achieved by all groups. Mathematically, the optimization
problem is formulated as

¢
{F(F,e) = ane%? { Rk (F7e)}}
g=1 !

st. Fedp,e€s.. (8)

max
Fe
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Problem (8) is a non-convex problem and difficult to solve
since the objective function F' (F,e) is non-differentiable
and non-concave, while the unit-modulus constraint set 8. is
also non-convex. In the following, we propose two efficient
algorithms based on the MM algorithm framework to solve
Problem (8).

C. Majorization-Minimization Method

The aim of the MM method [22], [23] is to find an
easy-to-solve surrogate problem with a surrogate objective
function, then optimize it instead of the original complex
one. Specifically, suppose that f(x) is the original objective
function which needs to be maximized over a convex set 8.
Let f(x|x™) denote a real-valued function of variable x with
given x". The function f(x|x™) is said to minorize f(x) at a
given point x" if they satisfy the following conditions [23]:

(A1) :f(x"[x") = f(x"),Vx" € 8,

(A2) :f(x[x) < f(x),Vx,x" € 8,
(A3) :f (x|x™; d)|xexr= f (x":d),Vd with x” + d € S,;

(A4) :f(x|x") is continuous in x and x".

where f'(x";d), defined as the direction derivative of f(x")
in the direction d, is

L g f&E"+Ad) — f(x™)
III. SOCP-BASED MM METHOD

In this section, we propose an SOCP-based MM method
to solve Problem (8). Specifically, under the MM algorithm
framework, we first handle the non-convex objective function
by introducing its concave surrogate function. Then, we adopt
the alternating optimization method to solve the subproblems
corresponding to different sets of variables alternately.

Note that F'(F,e) is a composite function which is the
linear combinations of some pointwise minimum with non-
concave subfunction Ry (F,e). We first tackle the non-
concave property of Ry (F,e). To this end, we introduce the
following lemma.

Lemma 1 Let {F™, e™} be the solutions obtained at iteration
n — 1, then Ry, (F,e) is minorized by a concave surrogate
function Ry (F,e|F",e") defined by

Ek (F7 e|Fna en)

G
= const, + 2Re {akeHkag} — by Z\GHHka
i=1
§ Rk (Fv e) ) (9)
where
(£ e
ar =

0, (e TH,£7 2 +0?
(") HH£7 2

T (3G n G n ’
(S8 e Er ot ) (S (e Hefr P+0})

G
consty, = Ry, (F™,e") — byoi — by, <Z|(e")HH;€ff|2+ai> )
i=1

at fixed point {F" e"}.

Proof: Please refer to Appendix A. ]
Based on the above theorem, Problem (8) can be trans-
formed into the following surrogate problem:

XG: knelil%lg {Ek (F, e|F",e”)}}

g=1
(10)

max

F (F,e|F", e") =
na { (F,e[F",e")

st. FeSp,ecs,.

We note that Ry, (F,e|lF",e") is biconcave of F and e
[24], since Ry (F|E") = Ry (F,e|F",e") with given e is
concave of F and Ry (ele”) = Ry (F,e|F™, e™) with given
F is concave of e. This biconvex problem enables us to use
the alternating optimization (AO) method to alternately update
F and e.

A. Optimizing the Precoding Matrix F
In this subsection, we aim to optimize the precoding matrix
F with given e. With some manipulations, Ry, (F,e|F", e")
in (9) can be shown to be a quadratic function of F':
B G
Ry (F[F™) = consty + 2Re {are Hyf,} — b, > [ H,f|?
i=1
= consty, + 2Re {Tr [C}/F]} — Tr [F"B,F],
1D

where B, = kaI,jeeHHk, CE = aktgeHHk, and tg S
RE*1 is a selection vector in which the ¢'" element is equal
to one and all the other elements are equal to zero.

By using (11), the subproblem of Problem (10) for the
optimization of F is

G
i tr + 2Re {Tr [C}'F|} — Tr [FB,F

g 3 i foonss + 2Re T [CYF]} — o [BBF)

st. Fedp. 12)

We then tackle the pointwise minimum expressions in the
objective function of Problem (12) by introducing auxiliary

variables v = [71, ...,7g| ", as follows
G
2
s.t. F €8,
const, + 2Re {Tr [CEF]} —Tr [FHBkF] > Ygs
Vk € X4,Vg € G. (13)

Problem (13) is an SOCP problem and the globally solution
can be obtained by the CVX [25] solver, such as MOSEK
[26].

B. Optimizing the reflection coefficient vector e

In this subsection, we focus on optimizing the reflection
coefficient vector e with given F, then Ry (ele™) can be
rewritten as

Ry (e|e™) = const; + 2Re {ajle} —e"Are, (14)
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where Ay, = b Hy, Y5 | £,fFHY and aj, = a Hyf,.
Upon replacing the objective function of Problem (10) by
(14), the subproblem for the optimization of e is given by

G
max gz:; z?elﬁa, {constk + 2Re {al,je} - eHAke}

s.t. e € S.. (15)
Also introducing auxiliary variables k = [k, ..., Iig]T,
Problem (15) is equivalent to
G
max an
e,K et
s.t. e €8,
const, + 2Re {al,;le} —eflAe > Kg,
Vk € K4, Vg € §. (16)

The above problem is still non-convex due to the non-
convex unit-modulus set .. To address this issue, we replace
it with a relaxed convex one as

Se—relaz = {eHdiag(im)e <1, Vm=1,--- ,M,en+1 = 1}7

where i, € RM+DX1 jg 3 selection vector whose mt™

element is equal to one and all the other elements are equal to
zero. Let us denote by €; the optimal solution of the following
relaxed version of the SOCP problem, i.e.,

G
e =a
1 Ig max Z’yg
g=1
s.t. ee€ Sef'relaxa
const; + 2Re {alk{e} —ellAe > Kg,

Vk € K,,Vg € G. (17)

Then, the locally optimal solution e in the nt" iteration is

enJr] — 92,
e,

otherwise,

N . e
e2 B eXp {]1 (A) } '
[el]MJrl

t

(18)
19)

and symbol [€;],, denotes the m'™ element of the vector
€;. Here the exp{-} and the /() are both element-wise
operations.

C. Algorithm development

Based on the above analysis, Algorithm 1 summarizes the
alternating update process between precoding matrix F and
reflection coefficient vector e to maximize the sum rate of the
whole system.

if F(F"H8,[F", e") > F (F7+1 e"[F", en)

Algorithm 1 SOCP-based MM algorithm

Initialize: Initialize F° and €°, and n = 0.
1: repeat
2:  Calculate F**! by solving Problem (13) with given e;
3:  Calculate e"*! by solving Problem (17) with given
Fn+1;
4 n<n+1;
5. until The value of function F' (F,e) in (8) converges.

1) Complexity analysis: Now we analyze the computational
complexity of Algorithm 1, which mainly comes from opti-
mizing F in the SOCP problem in (13) and optimizing e in
the SOCP problem in (17).

According to [27], the complexity of solving an SOCP
problem, with Mg, second order cone constraints where the
dimension of each is Nyocp, is O(Nsocp M3;2, + N3, ., MZ5)).
Problem (13) contains one power constraint with dimension
NK and K rate constraints with dimension N K. There-
fore, the complexity of solving Problem (13) per iteration is
O(NK + N3K3 + NK*5 + N3K?55). Problem (17) has M
constant modulus constraints with dimension one for sparse
vector 1,,, and K rate constraints with dimension M + 1.
Therefore, the complexity of solving Problem (17) per iteration
is O(M35+M?5+(M+1)K35+(M+1)3K?5). Therefore,
the approximate complexity of Algorithm 1 per iteration is
O(N3K3 + NK*5 4+ N3K55 + MK3® + M3K?9).

2) Convergence analysis: The following theorem shows the
convergence and solution properties of Algorithm 1.

Theorem 1 The objective  function value  sequence
{F (F",e™)} generated by Algorithm 1 is guaranteed
to converge, and the optimal solution converges to a
Karush-Kuhn-Tucker (KKT) point.

Proof: Please refer to Appendix B. |

IV. LOW-COMPLEXITY MM METHOD

As seen in Algorithm 1, we need to solve two SOCP
problems in each iteration, which incurs a high computational
complexity. In this section, we aim to derive a low-complexity
algorithm containing closed-form solutions.

Since mingesc, {Ek (F,e|F", e”)} in Problem (10) is non-
differentiable, we approximate it as a smooth function by using
the following smooth log—sum—exp lower-bound [28]

min {Ek (F,e|F”,e”)} ~ f, (F,e)
= 1 log< Z exp {—ugék (F,e|F”,e”)}), (20)
Hg k€K,

where 14 > 0 is a smoothing parameter which satisfies

o (Fre) < min {Ek (F,e|F",e")}
1
< fy(F,e)+ ljlog(IKgI% 21
g9

Theorem 2 f, (F, e) is biconcave of F and e.
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Proof: According to [29], if the Hessian matrix of a function
is semi-negative definite, that function is concave. In particular,
we derive the Hessian matrix of the exp-sum-log function

f (@) = ~10g(Lyese, exp{-a}) as
1
(127)?

where z = (e™1,.. .,

V2 f(z) = — ((1"z) diag(z) —zz") , (22)

€N ). Then for all v, we have

vIV2f(z)v

1 N N N 2

= (b™ba"a - (a™h)’) <0, (23)

where the components of vectors a and b are a, =
Un+y/2Zn and b, = /z,, respectively. The inequality follows
from the Cauchy-Schwarz inequality. Then V2f(z) =< 0,
and the log-sum-exp function f (x) is concave. Therefore,
,#ig log (Zkeﬂcg exp {fung
cave function w.rt. Ry. Recall that Ry (F,e|F", e") is bi-
concave of F and e. Finally, according to the composition
principle [29], f, (F,e) is biconcave of F and e. The proof is
complete. ]

Large 114 leads to high accuracy of the approximation, but
it also causes the problem to be nearly ill-conditioned. When
ftg 1s chosen appropriately, Problem (10) is approximated as

is an increasing and con-

G
max g; fq(F.e)

st. FeS8p,ecs.. 24)

This problem is still a biconvex problem of F and e, which
enables us to alternately update F and e by adopting the
alternating optimization method.

A. Optimizing the Precoding Matrix F

Given e, the subproblem of Problem (24) for the optimiza-
tion of F is

€]
max Z fq (F)
g=1

st. Fe8p. 25)

Even f, (F) is a concave and continuous function of precoding
matrix F, it is still very complex and difficult to be optimized
directly. In this subsection, the surrogate function of f, (F)
in the MM algorithm framework is given in the following
theorem.

Theorem 3 Since f,; (F) is twice differentiable and concave,
we minorize fg (F) at any fixed F™ with a quadratic function
fo(F|F"™) satisfying conditions (Al)-(A4), as follows

fo(F|F™) = 2Re {Tr [UNF]} + ayTr [FUF] + consF,,
(26)

6
where
U, = > gr(F")(Cr — BJ'F") — o F", 27)
keX,
exp {fugék (F")}
gr(F") = - ke Xy, (28)
Zkeﬂcg exXp {_P‘ng‘ (F”)}

ag = —maz {be"H,H}e} — nglzréclz{gi {tpr}, (29)

tpr = Prbj|e"HyHjle[*+[|Ck||5+2/ Pr|[Bx Ci| |,
(30)
consFy = fo(F") + oy Tr [(F*)"F"] — 2Re {Tr [D}'F"] } .
€1y
Proof: Please refer to Appendix C. |

Upon replacing the objective function of Problem (25) with
(26), we obtain the following surrogate problem

G
mng Zl (2Re {Tr [U?F} } + agTr [FHF] + Conng)
g—
st. Fesp. (32)

The optimal F"*! could be obtained by introducing a La-
grange multiplier 7 > 0 associated with the power constraint,
yielding the Lagrange function

G

> UIF

L(F,7) = 2Re {Tr
g=1

G
} +) oy Tr [FIF]
g=1
G
+ Zconng - T (Tr [FHF] — PT) .

g=1

(33)

By setting the first-order derivative of L(F,7) w.rt. F* to
zero, we have

0LF)
OF*
Then the globally optimal solution of F' in iteration n can be
derived as
1 G
Pl — — Z U,. (34)

G
T Zg:l Qg g=1
By substituting (34) into the power constraint, one has
H
G G
Tr [(Zg_l Uy) (Zg:l Ug)}
G
(T — 2921 ag)?

It is obvious that the left hand side of (35) is a decreasing
function of 7.

< Pr. (35)

« If the power constraint inequality (35) holds when 7 = 0,
then

—1 G
= ———3"U,
€ g
Zg:l Qg g=1
o Otherwise, there must exist a 7 > 0 that (35) holds with
equality, then

(36)

Pr <
U, (37
v (v (£ 0] 5

Fn+1 —
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B. Optimizing the Reflection Coefficient Vector e

Given F, the subproblem of Problem (24) for the optimiza-
tion of e is

G
max Z fq ()
g=1

s.t. e € S,. (38)

Upon adopting the MM algorithm framework, we first need to
find a minorizing function of £, (e) and denote it as fg(e|e ).
Since S, is a non-convex set, we should modify (A3) so as to
claim stationarity convergence [30], [31]:

fo(ele™;d)|ecer= f,(e";d),¥d € Ts,(e"),
where Tg, (e") is the Boulingand tangent cone of S, at e”.

Therefore f,(ele™) is given in the following theorem.

Theorem 4 Since f, (e) is twice differentiable and concave,

we minorize fg(e) at any fixed " with a function fg (ele™)
satisfying conditions (Al)-(A4), as follows

fg(e|e") = 2Re {uge} + consEg, (39)
where
u, = Z gr(e™)(ar — Alle™) — B e", (40)
keX,
exp {—ugﬁk (e”)}
gr(e™) = ke Xy, 41)

> kex, XP {*ugék (e”)}

By = —maxpex, {Amax(Ar)} — 2pugmaxpesc, {tp21},
(42)

tp21 = [arl3+(M + 1) Amax(AxAY) +2/|Agar]l, (43)
consEqg = fg(e") +2(M +1)3, — 2Re {d}'e" } . (44)
Proof: Please refer to Appendix D. |

Upon replacing the objective function of Problem (38) by
(39), we obtain the following surrogate problem as

G
max Z (2Re {ugHe} + ConsEg)
g=1
s.t. e €S.. 45)

Then, the globally optimal solution of e at the n'" iteration is

G G
e" ! = exp{ j/ (Z ug> /lz ug] . (46)
g=1 9=l Jp41
where exp {j/ ()} is an element-wise operation.

C. Low-complexity algorithm design

In this section, we adopt alternating optimization algorithm
to alternately optimize precoding matrix F and reflection
coefficient vector e. Note that the tightness of the lower
bounds a4 in (29) and 3, in (42) affects the performance
of the convergence speed. Here, we adopt SQUAREM [32] to
accelerate the convergence speed of our proposed algorithm,
which is summarized in Algorithm 2.

Let Mp(-) denote the nonlinear fixed-point iteration map
of the MM algorithm of F in (34), i.e., F""! = Mg(F"),
and M, () of e in (46), i.e., e 1 = M,(e"). Ps(-) is project
operation to force wayward points to satisfy their nonlinear
constraints. For the power constraint in Problem (32), the
projection can be done by using the function T |'| ||F2||F

to the solution matrix, e.g., Ps(X ||F2\| r. For the
unit-modulus constraints in Problem (4§) it can be obtained
by using function exp {j/(-)} element-wise to the solution
vector. Steps 10 to 13 and steps 21 to 24 are to maintain the
ascent property of the proposed algorithm.

Algorithm 2 Low-complexity MM algorithm

Initialize: Initialize F° and e, and n = 0.
1: repeat
2:  Sete=-¢e";
32 Fy =Mp(F");
4 Fo=Mp(Fy);
5: Ji=F; —F7
6: JQZFQJ— F,—-J;
W= g
8 Frtl = —Ps (Fn — 2w + wng)
9:  while F (F"*l) < F(F™) do
10: w=(w—-1)/2
11: Frtl = —fPS(Fn — 2wdy +w2J2);
12:  end while
13:  Set F = Fntl;
14 e = M.(e");
15: ey = M, (61)

16: Jl—el—e

17 jo=exy—e; —ji;
18 w=— e,
[lizllr
19: et = —Pg(e" — 2wji + wjz);
20 while F (e"*!) < F (e") do
21 w=(w—1)/2;
22: el = —Pg(e" — 2wji + wijs);

23:  end while
24: n<<n+1;
25: until The value of function F' (F,e) in (8) converges.

D. Complexity Analysis

The computational complexity of Algorithm 2 is com-
posed of the nonlinear fixed-point iteration maps Mg(-) and
Mc(-). In Mp(-), the computational complexity of Uy in
(30) mainly comes from gx(F™) in (28) and a4 in (29).
Firstly, the computational complexity of gy (F™) is of order
O(|Xy|(2MNG + 3NG)) since there are |K,| Ry (F™) in
(9) of order O(2M NG + 3NG). Then each tp; in (30) is
of complexity O(4N3 + 2N2K — NK + 4M N) neglecting
the lower-order terms, thus ay is of order O(|K,|(4N3 +
2N2K + 4MN)). Therefore, the approximate complexity
of Mp(-) is O(4N3K + 2N2K? + 2MNGK) neglecting
the lower-order terms. In M,.(-), the computational com-
plexity of gi(e™) in (41) is the same as gi(F™), which
is of complexity O(|X,|(2M NG + 3NG)). Furthermore,
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the eigenvalue operations Amax(Ay) and Amax(ArALl) of
order O((M + 1)3) contribute to the main complexity of
calculating (3, in (42), which is of order O(|K,|(M + 1)3).
Neglecting the lower-order terms, the approximate complex-
ity of M.(-) is O2MNGK + K(M + 1)3). Eventually,
the approximate complexity of Algorithm 2 per iteration is
O(4N3K 4+ 2N%K? + 3BMNGK + K(M + 1)3), neglecting
the lower-order terms.

The computational complexity of the proposed two algo-
rithms are summarized and compared in Table I. Comparing
with Algorithm 1 based on SOCP, Algorithm 2 has a lower
computational complexity and requires less CPU time, which
will be shown in the following section.

E. Convergence Analysis

In each iteration, we adopt the MM algorithm to update
each set of variables. The monotonicity of the MM algorithm
has been proved in [23] and [33]. In the following, we claim
the monotonicity of Algorithm 2. At the n'" iteration, with
given e”, we have

fg(Fn7en) _ E(Fn7Fn) < f;(Fn+17Fn) < fg(F"+17e”)7

where the first equality follows from (A1), the first inequality
follows from (32), and the second one follows from (A2).
Subsequently, with given F**1 it is straightforward to have

fg(FnJrl’en) — fg(en7en) S fg(en+1’en) S fg(anLl’enqu).

Therefore, the objective function values {f,(F"™! e"*1)}
generated during the procedure of the AO algorithm are
monotonically increasing.

Let {F"} be the sequence generated by the proposed
algorithm. Since 8 is a convex set, every limit point of {F"}
is a d-stationary point of Problem (8), and the limit point F*°
satisfies

£,(F¥:d) < 0,vd with F* +d € 8p.

The proof of converging to a d-stationary point can be found
in [34].

Let {e"} be the sequence generated by the proposed algo-
rithm. Since 8. is a non-convex set, every limit point of {e"}
is a B-stationary point of Problem (8), and the limit point e*°
satisfies

fy(e;d) <0,vd € Ts, (e).

The proof of converging to a B-stationary point can be found
in [30] and [31].

The property of the converged solution of Algorithm 2 is
shown in the following Theorem.

Theorem 5 The optimal solution converges to a KKT point
of Problem (24).

Proof: Please refer to Appendix E.

y (m) Users
//@/E N
o = o Tl
\‘l/
I
BS IRS :
0 100 120 x (m)

Fig. 2: The simulated system setup.

V. SIMULATION RESULTS AND DISCUSSIONS
A. Simulation Setup

In this section, extensive simulation results are provided to
evaluate the performance of our proposed algorithms for an
IRS-aided multigroup multicast MISO communication system.
All experiments are performed on a PC with a 1.99 GHz i7-
8550U CPU and 16 GB RAM. Each point in the following
figures is obtained by averaging over 100 independent trials.
The simulated model in Fig. 2 is as follows: The BS locating
at (0 m, 0 m) employs a uniform linear array (ULA) with
N antennas and the IRS locating at (100 m, 0 m) is equipped
with a uniform planar array (UPA) with M reflecting elements,
where the width of the UPA is fixed at 4 and the length is M /4.
All users are randomly distributed in a circle centered at (120
m, 20 m) with radius 10 m.

The large-scale path loss is PL = —30—10« log(d) dB, in
which d is the link length in meters and the path loss exponents
for the BS-IRS link, the IRS-user link, and the BS-user link
are set as apy = oy = 2 and agy = 4, respectively [35]. The
small-scale fading in [Hg,, {hq r }wkex] is assumed to follow
Rayleigh distribution with zero-mean and unit variance due to
the fact of the large lengths of the BS-IRS link and the BS-user
link, while the small-scale fading in {h, ; }viex is assumed to
be Rican fading with Ricean factor 1y = 10. The line-of-sight
(LoS) components are modeled as the product of the steering
vectors of the transceivers and the non-LoS components are
drawn from a Rayleigh distribution. Unless otherwise stated,
the other parameters are set as: Transmission bandwidth of
10 MHz, noise power density of —174 dBm/Hz, convergence
accuracy of e = 1079, smoothing parameter of 1, = 100 [28],
N=4,N=16, G=|X4|=2.

We use IRS-Alg. 1 to represent Algorithm 1 and IRS-
Alg. 2 to represent Algorithm 2. For comparison purposes,
we show the performance of the scheme without IRS, in
which the precoding matrix is also obtained by our proposed
two algorithms, denoted as NIRS-Alg. 1 and NIRS-Alg. 2,
respectively.

B. Baseline Schemes

Due to the hardware limitation, it is practically difficult to
realize the continuous phase shifts at each reflection element
considered in this work. Hence, two baseline schemes with 2
bit resolution are considered in the simulations to investigate
the performance loss of using finite resolution reflection ele-
ments. Specifically, with optimal e® generated by Algorithm 1
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TABLE I: Complexity analysis of the proposed MM algorithms

Algorithm SOCP-based MM algorithm

Low-complexity MM algorithm

Complexity

O(N3K3+NK4'5 +N3K5'5 +MK3‘5 +M3K2‘5)

O(4N3K +2N?K? + 3MNGK + K(M + 1)3)

or Algorithm 2, the m!" discrete phase shift can be obtained
by
0y, = i i/0} — el
m = arg minexp {j L0} — e,

where Fy = {0,27/B,....,2n(B — 1)/B} and B = 22
Therefore, we call the two baseline schemes as IRS-Alg. 1, 2
bit and IRS-Alg. 2, 2 bit.

Besides, IRS is advocated as an energy-efficient device for
assisting wireless communication. Hence, it is necessary to
compare the performance of the IRS-based and the full-duplex
amplify-and-forward (AF) relay-based multigroup multicast
systems. To ensure a fair comparison with our proposed IRS-
aided system, the Relay benchmark scheme, in which the relay
is located at the same place of the IRS, has considered the
same users’ locations and channel realizations. Then, the sum
rate maximization problem for the joint design of the precoder
F and the relay beamforming W is given by

G
max min R

FW keX
) P (SN,

st. ||F||2< Pr
|IWH,F|[5+]|W||%07 < Prelay,

relay

(47)

\(hg{,C + hEkVVHdr)fg\2

where R;ezay is given by
G

log, (1 +
Zi;ﬁg

Here, P,clay is the maximum available transmit power at the
relay, o2 is the noise power received by the relay, and the
digital relay beamforming W is assumed to be a diagonal
matrix.

The AO method is adopted to solve the above problem.
Basically, we extend the SCA method in [36] to alternately

update each variable in Problem (47).

|(hy ), + by, WHa)fi |2 +[[hy], W[307 + of

C. Convergence of the Proposed Algorithms

Consider the fact of the nonconvexity of Problem (8),
different initial points may result in different locally optimal
solutions obtained by the our proposed algorithms. By testing
30 randomly channel realizations, Fig. 3 illustrates the impact
of the initializations on the performance of the proposed
algorithms. The initializations of IRS-Alg. 1 and IRS-Alg. 2
are: F is initialized by uniformly allocating maximum transmit
power, e is initialized by setting each entry to 1. IRS-Alg. 1-
EXH (IRS-Alg. 2-EXH) refers to the best initial point of 1000
random initial points for each channel realization. It can be
seen that the sum rate of IRS-Alg. 1 (IRS-Alg. 2) is almost the
same as that of IRS-Alg. 1-EXH (IRS-Alg. 2-EXH), implying
that the simple uniform power allocation of F and all-one e
is a good option for the initialization.

In Fig. 4 investigates the convergence behaviour of various
algorithms in terms of the iteration number and the CPU time

)
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Fig. 3: The performance comparison of different initialization,
when N =4, N =16, G = |X4|=2 and Pr = 15 dBm.
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Fig. 4: The convergence behaviour of different algorithms,
when N =4, N =16, G = |X4|=2 and Pr = 20 dBm.

when Pr = 20 dBm. Fig. 4(a) compares convergence speed
in terms of the number of iterations. Only a small number of
iterations are sufficient for Algorithm 1 to converge for both
IRS and NIRS schemes. The reason is that the lower bound
of the original objective function in (9) used in Algorithm
1 is tighter than those in (26) and (39) used in Algorithm 2.
Although Algorithm 2 needs more iterations to converge, it has
a fast convergence speed in terms of CPU time shown in Fig.
4(b). This is because in each iteration of Algorithm 2, there
always exists closed-form solutions when designing precoding
matrix and reflection coefficient vector. In addition, the optimal
objective function values generated by both algorithms for IRS
case and NIRS case are the same. Therefore, Algorithm 2
outperforms Algorithm 1 due to the fact that the former can
generate the same gain with the latter while costing much less
CPU running time
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D. IRS vs AF relay Performance Comparison

Fig. 5 shows the sum rate, the energy efficiency, and the
corresponding CPU running time under different maximum
transmit power. The energy efficiency (bit/Hz/J) is defined as
the ratio of the sum rate to the power consumption, i.e.,

Sum Rate

EFE =
Power

In the relay-aided system, we set Pr = Play. The linear
power consumption model is Power = n(p1+prelay) +N P+
2M P,., where pt and prelay are the practical transmit power
of the BS and the relay, respectively. Following [37], we set
the reciprocal of the power amplifier efficiency as n = 1.2
and the circuit power consumption of the active antennas at
the BS and the relay as P, = P, = 200 mW. In the IRS-aided
system, we adopt Power = n(pr + Drelay) + NP, + M Pirg,
where the circuit power consumption of the passive reflection
elements is set as Prrg = 5 mW [38].

It can be seen in Fig. 5(a) that the IRS structure can
obviously enhance the sum rate performance of the system
without consuming additional transmit power, comparing with
the system without the IRS structure. The performance loss
of the ‘2 bit’ phase shifter generated by the proposed two
algorithms is much small compared with the continuous phase
shifter cases. However, the relay-aided system outperforms
the IRS-aided one, which is reasonable due the fact that the
relay can amplify and forward the received signals by using
the relay transmit power Pelay. The EE of the IRS-aided
system shown in Fig. 5(b) is higher than the relay-aided one
at high transmit power. The reason behind this is twofold. On
the one hand, as Pr increases, the contribution of the relay
transmit power P,y to the system sum rate gain becomes
less. On the other hand, the circuit power consumption of
the relay is relatively high. Another observation from Fig.
5(b) is that the EE of the relay system decreases with the
number of the active antennas deployed at the relay. From Fig.
5(c), we observe that Algorithm 1 is time-consuming and the
time required is unacceptable when Pr increases. In addition,
the computational complexity of the joint optimization of the
precoder and the relay beamforming is much higher than the
IRS case when Pr is less than 20 dBm due to the fact that relay
power constraint is complex. Finally, all the results obtained
from Fig. 5 verify the performance gains of the IRS-aided
system in terms of the EE and complexity.

E. IRS Performance Analysis

It is of practical significance to compare the communica-
tion performance of conventional large-scale antenna arrays
deployed at the BS and large-scale passive elements deployed
at the IRS, since IRS is regarded as an extension of massive
MIMO antenna array. Fig. 6 illustrates the sum rate and the
EE performance versus the numbers of antenna elements at
the BS and reflection elements at the IRS when Py = 20
dBm. It is observed from Fig. 6(a) that significant gains
can be achieved by the IRS scheme over that without an
IRS even when M is as small as 4, and also that the
spectral efficiency performance gains achieved by increasing
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Fig. 5: The sum rate, energy efficiency, and CPU time versus
the transmit power, when N =4, N =16 and G = |K |= 2.
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Fig. 6: The sum rate versus the numbers of reflection elements
at the IRS M or transmit antennas at the BS N, when G =
|K4|=2 and Pr = 20 dBm.

the number of reflection elements are much higher than those
achieved by increasing the number of transmit antennas. In
addition, in Fig. 6(b), it is more energy-efficient to deploy an
IRS with passive elements than installing active large-scale
antenna array with energy-consuming radio frequency chains
and power amplifiers. The trend of EE decreasing with the
number of transmit antennas comes from the fact that the circut
energy consumption of more antennas outweighs the system
sum rate gain introduced by deploying more antennas. These
simulation results demonstrate that IRS technology is superior
to traditional massive MIMO in terms of spectral efficiency
and energy efficiency.

The above simulation results show that Algorithm 2 requires
less CPU time than Algorithm 1. Hence, we adopt Algorithm
2 to investigate the effect of an IRS on the performance of
a multicast communication system. Fig. 7 illustrates the sum
rate versus the number of users per group for various numbers

il

~N O =

Sum rate (bps)

1 2 3 4 5 6 7 8 9
Number of users per group

Fig. 7: The sum rate versus the number of users per group,
when N =4, N = 16, and Pt = 20 dBm.

16, M =4,

[ SO R

Sum rate (bps/Hz)

Number of groups

Fig. 8: The sum rate versus the number of groups, when Py =
20 dBm.

of groups. It can be observed from this figure that the sum rate
for all values of GG decreases with the increase of the number
of users per group. The reason is that the data rate for each
group is limited by the user with the worst channel condition.
With the increase of the number of users per group, the channel
gain for the worst user becomes smaller.

Fig. 7 compares the effects of two improvements on the
performance limit, namely, increasing the number of antennas
at the BS and the number of reflection elements at the
IRS, respectively. When |X,|= 1, the multicasting system
reduces to a unitcasting system, in which the transmit antennas
outperform the reflection elements in the aspect of suppressing
multi-user interference. While when |X,|= 3, the sum rate
of the system increases slowly and tends to be stable with
the increase of the number of multicasting groups for a given
number of antenna/reflection elements.
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VI. CONCLUSIONS

In this work, we have shown the performance benefits
of introducing an IRS to the multigroup multicast systems.
By carefully adjusting the reflection coefficients at the IRS,
the signal reflected by the IRS can enhance the strength of
the signal received by the user. We investigate the sum rate
maximization problem by joint optimization of the precoding
matrix at the BS and reflection coefficient vector at the IRS,
while guaranteeing the transmit power constraint and the asso-
ciated non-convex unit-modulus constraint at the IRS. Under
the MM algorithm framework, we derive the concave lower
bound of the original non-concave objective function, and
then adopt alternating optimization method to update variables
in an alternating manner. Furthermore, we proposed a low-
complexity algorithm under the MM algorithm framework in
which there exists closed-form solutions at each iteration. Our
simulation results have demonstrated the significant spectral
and energy efficiency enhancement of the IRS in multigroup
multicast systems and that the proposed algorithm converges
rapidly in terms of CPU time.

APPENDIX A
THE PROOF OF THEOREM 1

We perform some equivalent transformations of the rate
expression (6) to show its hidden convexity, as follows

e H, £, |° )
PO s R ALNr

= log, (1 + r,;l_g|eHkag|2)

= —log, (1 — (rp_g + ML 2) \eHkagP)
= —log, (1 — rkfl|tk|2) , (48)

Ry (F,e) = log, (1 +

where t, = eUH.f,, r, = Th—g + |tk 2 and Th—g =
S0, [ H [ +07.

Denoting Ry(tr,rr) as the last equation expression of
Ry (F,e) in (48), Ry (tx, rk) is jointly convex in {t, 7} [39],
thus its lower bound surrogate function could be obtained by
the first-order approximation, e.g.,

Ry, (tr, )
n nn . ORg n
> R (tg,rg) + Ttkhk:t;?(tk —ty)

+ Tt};hZ:tZ’* (tr—tp") + Trkhk:r;; (rk —7%)

ty” (te — t) } _RPee =)

= Ry ( Z,TZ)JrZRe{

P S )
tn,*
e — 7]
|tel? [th ]
— TR — . (49)
i (e = [tR1?) i — [t
Undo t, = e"Hif,, 7 = (e")"HL}, r =

Ziczl\eHkaiFJro,%, and rj} = Z?:J(e”)Hka{l\era,%, and

substitute them into the right hand side of the last equation in

(49), we have

tn 2

Rk (F, e) > Rk (Fn, en) + 2Re {akeHHk.fg} — ’r‘n|k||tn|2
E 1%

G
— bk Z|6HH;€fi|2—bk0’z
i=1
G
= const; + 2Re {akeHkag} — by, z:|eHH;€fi|2
i=1

= Ry, (F,e). (50)

Hence, the proof is complete.

APPENDIX B
THE PROOF OF THEOREM 1

The monotonic property of the objective function value
sequence {F(F",e")} of Algorithm 1 can be guaranteed
by (18). In addition, the sequence {F™,e"} generated at
each iteration of Algorithm 1 converges to a stable point as
n — oo because F” and e™ are bounded in their feasible
sets Sp and 8., respectively [40]. Denote by {F° e’} the
converged solution. In the following, we prove that {F°, e°}
is the KKT point based on the fact that all the locally
optimal solutions (including the globally optimal solution) of
a nonconvex optimization problem should satisfy the KKT
optimality conditions [29].

Firstly, the Lagrangian of Problem (13) is given by

£(F,'y,)\(1),)\(2))
G G B
=3 =30 3 A (g — Bi (F,e%[F°, )
g=1 g=1keX,
— A (v [F'F] - Pr)

where A = AV ADY] and A® are the dual variables.
Since F¢ is the globally optimal solution of Problem (13),
there must exist a A(1):° and A\(2):° satisfying the following
partial KKT conditions:

G
33 AV Ry (F, e°[F°, ¢%) [p_p— AP F° = 0,
g=1keX,

1)

)\5@1)70(7‘] - Ek (FO,QOIF()’ eo)) = O?Vk € j{q’v'g € 97 (52)

A@-o(Ty [F1eF°] — Pr) = 0. (53)
According to the conditions (A1) and (A3), we have
Ry, (F°,°[F°,e°) = Ry, (F°,e°), (54)

V- Ry, (F,e°|F°,e°) [p_po = V- Ry, (F,€°) [p_po. (55

By substituting (55) and (54) into (51) and (52) respectively,
we arrive at
G
SN AOVE R (FLe°) [p_po—APOF° = 0, (56)
g=1lkeX,

M0y — Ry (F°,€%)) = 0,¥k € Ky, ¥g €5 (5T)
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Then, e? is the locally optimal solution of Problem (16) and
satisfies the following KKT conditions:

G

3% 6V Ry (F°,e|F°, €°) |omer —

g=1keX,

M
Z 67(3)70(ve*

m=1

2),0
em‘)'e:eo _51(\4)+’1 (Ve* eMJrl) ‘e:e": 07

(58)
&7 (kg — Ry (F%, e°[F°, e%)) = 0,V € Ky, ¥g € G, (59)

£€@20(le0 |=1) = 0,1 < m < M, (541 — 1) =0,
(60)

where ¢(1)0 = [5%1)’0,...@%)’0] and £2)° are the optimal
Lagrange multipliers.
Furthermore, it can be readily checked that

Ve By (F°,e[F°,€°) |e—eo = Ve- Ry, (F,€) [o—eo.  (61)
By substituting (61) into (58), we arrive at

G

S Ve Ry (F°, @) lomer—€571 (Ver €ar 1) lome

g=lkeX,

M
= DO (Ver
m=1

€m |) |e:e°: 07 (62)

Now, we move to Problem (8). The general equivalent
problem of the max-min Problem (8) is given by

G

D7

g=1

st. FeESp,e €S,

Ry (F,e) > r,,Vk € K,,Vg € G.

max
F.er

(63)

where v = [rq,...,7g]" are auxiliary variables. It can be
readily verified that the set of equations (56), (62), (57), (53),
and (60) constitute exactly the KKT conditions of Problem
(63).

Hence, the proof is complete.

APPENDIX C
THE PROOF OF THEOREM 3

Since f, (F) is twice differentiable and concave, we propose
a quadratic surrogate function to minorize f, (F), as follows

fo(F) = fo(F") + 2Re {Tr [DY{(F — F")] }

+Tr [(F — F*)"™M,(F — F")] (64)

where matrices D, € CN*N and M, € CN*V are deter-
mined to satisfy conditions (A1)-(A4).

Note that (A1) and (A4) are already satisfied. Then we prove
that condition (A3) also holds. Let F be a matrix belonging
to 8. The directional derivative of the right hand side of (64)
at F" with direction F — F" is given by:

9Re {Tr {Dgl(f _ F”)} } . (65)

The directional derivative of f,(F) is

2Re{ Tr | > ge(F")(C}f — (F")"By)(F —F")| ¢,
keX,
(66)
where g (F") is defined in (28).
In order to satisfy condition (A3), the two directional
derivatives (65) and (66) must be equal, which means

D, = Y gu(F")(C — BJ'F").
kex,

(67)

Now we proceed to prove that condition (A2) also holds. If
surrogate function f,(F|F™) is a lower bound for each linear
cut in any direction, condition (A2) could be satisfied. Let
F =F" +~(F — F"),Vy € [0,1]. Then, it suffices to show

S +4(F ~ F™) > ,(F") + 29Re { Tr [DI(F — F")| }

+92Tr [(F — F7)HM, (F — F”)} . (68)
_ Let us define Ly(v) = f,(F" + ~(F — F")),and I;(y) =
Ri(F™ + ~(F — F™)). Now, a sufficient condition for (68)
to hold is that the second derivative of the right hand side of
(68) is lower than or equal to the second derivative of the left
hand side of (68) for Vv € [0, 1] and VF,VF" € 8, which is
formulated as follows

aZL (’Y) ™ n ™ n
a2 [(F—F YIM, (F — F7)| .
In order to calculate the left hand side of (69), we first
calculate the first-order derivative, as follows

20— 5 o),

keX,

(69)

(70)

where

B exp {—pglx(7)}
g () = Zkeng exp {—pgli(7)}

Vo lk(y) = 2Re{ Tr [CH(F — F")|

ke Xy,

— Te [(F" +5(F — F") "By (F - F")| }
= 9Re {Tr [QE(F‘ - F")} }

=2Re {q; f},
Qi =Cll - (F" +(F - F"))"B,,
qi = vec(Qy),

f =vec(F —F"),

Then, the second-order derivative is derived as

82[’9(7)
Oy?
= > (92 = 99N Vo1 (3) (V1))
kEX, .
g | D gV | | D eV |
keX, keX,
(71)
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where

V204 (7) = —2Tr [(ﬁ _FY)HIB,(F - Fn)]
= —2f 1T ® By)f.
Lg(

We reformulate 6272"’) in (71) into a quadratic form of f,
as follows

where ® is given in (72).
We also manipulate the right hand side of (69) into

a quadratic form of f by using vectorization operation
Tr[ATBC] = vecT(A)(I ® B)vec(C) [41], as follows

2Tr [(1? — FEM,(F — F")}

Cem er 1| IOM 0
e e[ TR S

Then, (69) is equivalent to

[ o fT]@g[ff*}

IoM 0
SR

where we need to find an M, that satisfies

IoM, 0
q)gt{ 0 I®M"gf}

For convenience, we choose M, = a,I = Apin (®,) L
Finally, (64) is equivalent to

Jo(F) 2 f5(F") + 2Re {Tr [Dy (F — F")]}
+ ayTr [(F — F")(F — F")]
= 2Re {Tr [U}F]} + o Tr [F"'F] + consF, (73)

where U, and consF, are given in (27) and (31), respectively.
oy in (29) is difficult to obtain for the complex expression of
®,. In the following, we proceed to obtain the value of a.

The following inequalities and equalities will be used later:

(B1): [41] A and B are Hermitian matrices: A\pin(A) +
)\min(B) < )\min(A + B)

(B2): [41] A is rank one: Apax(A) = Tr[A], Amin(A) =
0.

(B3): (Theorem 30 in [42]) ar and by are positive:
Zszl arby < max | {by}, if Eszl ap = 1.

(B4): [41] A is positive semidifinite with maximum eigen-
value A\pax(A) and B is positive semidifinite: Tr [AB] <
Amax(A)Tr [B].

P, is complex and cannot be determined by a constant, thus
we use (Al)-(A4) to find its lower bound shown in (74).

Recall that F = F" + ~(F — F"),Vy € [0,1], therefore
||[F" +~(F —F")||%< Pr. By using (A4), the last term in the

right hand side of the last equation of (74) satisfies inequality
(75) as
1QklI% = [|Cr — B (F" +~(F — F"))| |3
= [|(F" +~(F = F"))"By|[+]|Crl &
— 2Re {Tr [CEBI,;I(F” +y(F - F”))} }

(B4) H n - ny\||2 2
< Amax(BeBy)[[F" +y(F — F")||5+||Ck |7
— 2Re {Tr [CEB};‘(F” +y(F - F”))} }
< PrAmax(BeBY) + [|Ckl|5+2v/ Pr||BiCk||
= Prv|e"H HY e|*+||Cy||2+2v/ Pr||BrCy| -
(75)

The third term in the right hand side of the last inequality of
(75) is the optimal objective value of the following Problem
(76) which has a closed-form solution.

min 2Re {Tr [C}'ByX]}

s.t. Tr [X"X] < Pr. (76)

Finally, combining (74) with (75), we arrive at (29). Hence,
the proof is complete.

APPENDIX D
THE PROOF OF THEOREM 4

Since f, (e) is twice differentiable and concave, we mi-
norize f, (e) at e with a quadratic function, as follows

fole) =fy(e") + 2Re {d (e — ")}

+ (e — e”)HNg(e —e"), (77)

where vectors d, € CM*! and matrices N, € CM*M

determined to satisfy conditions (A1)-(A4).

Obviously, (A1) and (A4) are already satisfied. In order to
satisfy condition (A3), the directional derivatives of f,(e) and
the right hand side of (77) must be equal, yielding

dy = > gr(e™)(ar — Afle™),
kEK,

are

(78)

where gi(e™) is defined in (41).
Let e = " + y(e — e"),Vy € [0,1]. In order to satisfy
condition (A2), it suffices to show

fole™ +~(@—e") > fy(e") +2yRe {d, (€ —e")}
+72(E—e")INy(e—em). (79
Then, we need to calculate the second-order derivatives of the
left hand side and the right hand side of (79), and make the
latter one lower than or equal to the former for Vv € [0, 1]
and Ve, Ve" € 8..
The second-order derivative of the left hand side of (79) is
given by

Pl o e[ ],

e M (80)

with t =€ —e™. ¥, is shown in (81) where
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5

H
—-1I® By 0 ] { qr } { qk } Zkex gr(7)ak Zkeﬂ( gr(7)dk
é, = : - * * + ’ * ! *
g k;g (9"(7) [ 0 ~I®BY Ha9e(7) q; | | a; Pl e, oMai | | Shex, ox(ai
(72)
(B1) I©B, 0 a ][ an "
)\min (Qg) Z - Z gk(’y)Amax <|: 0 I®BE :|) — Mg Z gk(")/))\max <|: qz q;:
keX keX,
H
I Dorexc, (M | | Prex, 9r(7)ak
AT Xken, oM | | ke, 96(V)dk
(B2)
= = > 0N Amax(Br) — 215 Y gr(v)a} a
keX, keX,
(B2)
=" = > bege(y)e"HyHe — 21, > gi(y)ap a
kex, kEX,
(B3) H H 2
Z 7manej<g {bke Hka e} — 2,ugmaxk€g<g {||Qk||2}
= —maxpex, {bkeHHkHI,;Ie} — 2pgmaxgeq, {HQ;CH%} . (74)
A 0 " Siere, 5sMan | [ S, sear |
- 9e\7)dk 9e\7Y)dk
U — k ] . { QI: ] [ QI: ] + keX, § kEeX, " :
g kezx (9’“(7) [ o —a7 | M| g || g Hol Svese, okt | | Shex, 96(1)a
(31)

ar = ap — Ajl(e" + (6 —e™))
__ ep{-pl(v)}
Zkexg exp {—pgli(7)}

(82)

9x(7) ke X, (83)

The second-order derivative of the right hand side of (79)
2(e — e")HNg(E —e™)

is
I®N t
_ [ ¢H 4T g
-t e[t e
Combining (80) with (84), N, must satisfy

E

For simplicity, we choose Ny = 8,1 = Apmin(¥,4)I. Eventu-
ally, (77) is equivalent to

0

15 N7 (6

I®N,
0

0

‘I’gi{ 1o NI

fo(e) = fy(e") +2Re {dy(e — €")} + fy(e — e") (e —e")
= 2Re {uge} + consEg, (85)

where ug, 84, and consE, are given in (40), (42), and (44),
respectively. The last equation of (85) is from the unit-modulus
constraints, i.e., ele = (e")"e™ = M + 1. The method to get
the value of 3, is similar as a4, so we omit it here. Hence,
the proof is complete.

APPENDIX E
THE PROOF OF THEOREM 5

Let us denote the converged solution of Problem (24) by
{F°,e°}. In the following, we prove that {F°, e°} satisfies
the KKT conditions of Problem (24).

Firstly, since F° is the globally optimal solution of Problem
(32), the KKT conditions of the Lagrangian in (33) of Problem
(32) is given by

G
3" Vi Jy (FIF™)[p—po—7F* = 0, (86)
g=1
7°(Tr [FH’OF"] — Pr) =0, (87)

where 7¢ is the optimal Lagrange multiplier. According to the
condition (A3), we have

Vi fy(FIF™)|p—po = Vi fy (F.€°) [p—po.  (88)
By substituting (88) into (86), we arrive at
G
> Ve fy (F,e) [p_po—7°F° = 0, (89)
g=1
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Then, since e€° is the locally optimal solution of Problem

45

G
D Ve by (F,) lomeo— 3 22(Ver
g=1

), it is readily to obtain the following KKT conditions:

M

€m |) |e:e°
m=1

(2),0

- 7'M-H(Ve*eM—H”e:e": 0, (90)

720(|e0 | -1) = 0,1 <m < M, 755 (€541 — 1) = 0,

where 720 = [7'1(2

mu

oD

(2),0

Je -y Tarsq) are the optimal Lagrange

Itipliers.

Then, the set of equations (89), (87), (90), and (91) consti-
tute exactly the KKT conditions of Problem (24).
Hence, the proof is complete.
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