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Abstract  The compressed spectrum sensing technique
substantially reduces the hardware requirements for wide-
band sensing by utilizing reconstruction algorithms to re-
construct the spectrum from the sub-Nyquist sampling se-
quence. This paper introduces a basic framework of sub-
Nyquist sampling, outlines the reconstruction techniques of
compressed sensing theory, and contrasts the pros and cons
of optimization, greedy, sparse Bayesian learning, and non-
sparse approximation algorithms. In light of the results of
the GBSense Challenge 2021, four spectrum reconstruction
algorithms are chosen for numerical evaluation, and their re-
construction accuracy and computational efficiency are ex-
amined. The results of this paper have reference significance
for the practice of wideband compressed spectrum sensing.
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1 Introduction

1.1 Background

The increasing number of users and the demand for improved
quality of service (QoS) have been the driving forces be-
hind the rapid growth of the wireless industry. In the mean-
time, the increase in the number of users and their through-
put places more demands on wireless spectrum resources. A
substantial amount of the available spectrum is reserved for
licensed primary users (PUs). However, the rate of licensed
spectrum occupancy in time and space remains low. Spec-
trum monitoring data collected on a global basis indicates
that the licensed spectrum is utilized by the PU for just 5 to
10 percent of the time [1].

When the licensed frequency range is not fully utilized
by PUs, a significant number of spectrum holes appear. The
emergence of cognitive radio (CR) technology enables unli-
censed secondary users (SUs) to temporarily occupy the fre-
quency holes for communication, hence facilitating the in-
telligent, optimum, and equitable utilization and sharing of
spectrum resources [2].

Spectrum sensing, as a crucial technique for CR devices,
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enables SUs constantly monitor all nearby spectrum bands
to detect the emergence of PU signals and spectrum holes.
As the working bandwidth of CR equipment continues to
expand, spectrum sensing encounters tough hardware lim-
itations, necessitating the use of very high-speed analog to
digital converters (ADCs), which can be more expensive and
energy-intensive.

Benefiting from the sparse character of the wideband spec-
trum, compressed sensing (CS) theory has been applied to
the wideband spectrum sensing task, spawning the interdis-
ciplinary area of compressed spectrum sensing (CSS). CSS
is anticipated to overcome the hardware limits of spectrum
sensing by employing sub-Nyquist rate sampling units and
CS reconstruction algorithms, whilst avoiding high power
consumption and high cost.

Researches on CSS can be primarily subdivided into 1)
sub-Nyquist sampling methods, 2) signal recovery algo-
rithms, and 3) channel detection techniques. Some well-
known sampling architectures, such as the random demodu-
lator [3,4], the modulated wideband converter MWC) [5-7],
and the multicoset sampler [8, 9], have been extensively stud-
ied and proven to be efficient and hardware-friendly. On
the other hand, the performance of channel detection meth-
ods is highly dependent on the spectrum reconstruction re-
sults [10-13]. Consequently, spectrum reconstruction meth-
ods play a significant role in the successful access of SUs to
spectrum holes.

Three types of reconstruction algorithms, namely greedy
matching pursuit, optimization, and Bayesian-based meth-
ods [14-17], have already been introduced and widely used
in CSS. However, shortcomings usually come along with the
advantages for every type of algorithm. Greedy algorithms
are computationally efficient, but provide no guarantee for
successful support recovery and require prior knowledge on
the signal [18-20]. Optimization methods, especially convex
relaxations, usually provide theoretical guarantees for exact
recovery given the sensing matrix satisfying certain restricted
isometry property (RIP), but are featured by high computa-
tional complexity [21]. The Bayesian-based techniques ap-
proach the sparse reconstruction problem as a maximum like-
lihood approximation problem based on assumptions about
signal and noise distributions. When the assumptions are met,
accurate findings are achievable, and vice versa.

Nonetheless, there is a significant opportunity for further
development of reconstruction algorithms. First, there is still
a significant gap between the sample resources required by
existing algorithms and the theoretical lower bound [22], in-
dicating that not all of the information contained in the sub-
sampling sequence has been mined. In addition, when the
signal-to-noise ratio deteriorates, the performance of the ma-
jority of reconstruction algorithms decreases substantially.
Moreover, the complexity of existing algorithms is still con-
siderable. Even greedy algorithms fall short of the requisite
efficiency for real-time spectrum sensing [23,24].

Firstname LASTNAME: please insert running head here

1.2 GBSense project and the affiliated challenge

The EPSRC fellowship project “GHz Bandwidth Sensing”
(GBSense) proposes a novel method for designing GHz band-
width sensing systems to overcome the Nyquist-rate sam-
pling bottleneck by developing sub-Nyquist sampling algo-
rithms and reusing the existing knowledge of smart antennas
and reconfigurable transmission lines [25]. Without neces-
sitating Nyquist-rate sampling, the GBSense provides new
innovative and implementable options on a real-time experi-
mental platform. The GBSense provides users with a hard-
ware platform and application software that enables real-
time over-the-air GHz bandwidth signal sensing, process-
ing, and transmission at both sub-6GHz and mm-wave fre-
quency bands. It will also interface with a low-cost comput-
ing unit, such as Raspberry PI, where sub-Nyquist algorithms
are hosted in order to improve human-computer interaction,
increase the current understanding of sub-Nyquist sampling
theory, and present new challenges to software and hardware
engineers.

The GBSense Challenge 2021, affiliated with the GBSense
project, was held in March 2021 [25], focusing on the de-
velopment of sub-Nyquist reconstruction algorithms. The
GBsense Challenge 2021 was issued with open datasets and
a reference sub-Nyquist data-processing framework. Sev-
eral entries were selected and evaluated by a panel com-
posed of leading experts in the field. Four algorithms were
shortlisted for the GBSense awards, namely the “Slow Kill”
(SK) method [26-28], subspace-augmented simultaneous or-
thogonal matching pursuit (SA-SOMP) [29], multiple sparse
Bayesian learning (MSBL) [30] and fast compressed power
spectrum estimation (FCPSE) [31]. The selected four algo-
rithms are innovative and representative in their respective
categories.

1.3 Outline

The rest of the paper is composed as follows. In section 2,
the fundamental multiband signal model and sampling ar-
chitecture are introduced. In section 3, the algorithms pre-
sented by the GBSense Challenge 2021 finalists are classi-
fied and described, along with two benchmarks representing
typical greedy algorithms, namely simultaneous orthogonal
matching pursuit (SOMP) and joint-block hard threshold pur-
suit (JB-HTP). The platform utilized for generating the test
datasets and evaluating the algorithms is introduced in sec-
tion 4. Using the shortlisted algorithms, numerical experi-
ments are undertaken in section 5. The paper concludes with
the experimental assessment outcome and its conclusion.
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Fig.1 The diagram of the basic implementation of multicoset sampler.

2 Signal and System Models

2.1 Signal Model

We adopt the widely-known multiband signal model which
describes Ng;, complex transmissions located in the baseband
of interest ¥ = [~ fyq/2, fyq/2], where fyyq correspond to
the baseband Nyquist frequency. Each transmission is as-
sumed to be of bandwidth no larger than B and not overlap-
ping with other transmissions without loss of generality.

Consider a wideband cognitive receiver that is passively
sensing the spectrum upon ¥ . At the receiver baseband, the
received signal is modeled in temporal domain as

x(t) = ) sit) +n(t) (M

i€Ngig

where s;(f) denotes the i" transmission signal containing all
the channel effects, and n(f) denotes additive Gaussian noise.
In this work, the baseband signal is assumed to be sparse in
the frequency domain, i.e., NgjgB < fuyq-

2.2 Multicoset Sampling

The cognitive receiver is assumed to be equipped with a well-
known periodic non-uniform sampling architecture, known
as the multicoset sampler [8], to acquire the baseband signal
samples at a sub-Nyquist rate. The basic structure of a multi-
coset sampler is shown in Fig. 1. A power splitter divide the
analog signal into p ways (referred as “cosets” afterwards)
and impose different analog delays 7; = ¢;/ fnyq specified by
the delay pattern C = {c; € Z | 0 < ¢; < L,i = 1,2,...,p}
to each coset of the signal. Then each coset of the signal
is digitized by a low-rate ADC working at a sampling rate
fs = fnyq/L, where integer L satisfies L > p to ensure com-
pressed sampling. The sample sequence acquired in the i"

coset is expressed as
xln] =x(£+i), nez. ©)

fNyq fNyq

It makes sense that the samples we obtain from each coset
are a downsampled version of the Nyquist samples with a
downsampling coefficient L, and the overall average sam-
pling rate of the multicoset sampler is p fnyq/L. By denoting
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3
the i measurement as
L . o
Yi(f) = ——e /27iTval X, (o7 L va 3)
Nyq
where X; (eﬂ”f”f”m) = Y2 . xinle e s the

discrete-time Fourier transform (DTFT), we can establish a
linkage between the compressed measurement and the origi-
nal spectrum X(f), given as

+15]-1 A
Y= X[f+nfzyq)exp[j27r%). 4)
n=—L%]

Equation (4) indicates that the measurement Y;(f) in the i
coset can be represented by a linear combination of L sepa-
rate samples on the signal’s original spectrum X(f). By stack-
ing the p single-coset measurements columnwise we get the
matrix form the linkage

y(f) = Ax(f) 3)

where y(f) = [Yi(f) Ya(f) Y, (/)] and x(f) is a col-
umn vector of length L composed of {X(f + nfnyq/D)ln =
0,1,...,L — 1}. The coefficient matrix A is a p X L matrix
whose il element is given by

Ay = 2r2LH=DIL, (6)
In practice, a finite window is usually employed and discrete
Fourier transform (DFT) is actually used instead of DTFT.

Denoting the window length as N per coset, a multiple mea-
surement vectors (MMYV) model

Y = AX @)

can be derived, where Y is a px N measurement matrix whose
(i, n)M element is

Yin = Yi((n = Dfayq/NL), ®)
and X is a L X N matrix whose (/, )" element is

¥ - (—L/2+l—1+(n—1)/N)
e L/ fuyq '

©

2.3 Problem Formulation

The problem of solving equation (7) can be regarded as a
decomposition problem, where A is a p X L dictionary matrix
, Y is a p X N measurement matrix composed of N individual
p-dimensional measurement vectors, and the L X N matrix
X contains the coefficients of columns (atoms) in A to be
estimated.

In the case P < L, A is an overcomplete dictionary, and (7)
is undetermined with infinite solutions of X. With the block-
sparse nature of the spectrum, X is usually regarded as a joint-
sparse coefficient matrix where each of its column shares a
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same support [15]. Thus, solving (7) is transformed into a
lp-norm minimization problem

min |X]lp s.t. Y =AX. (10)
XeCLxN

In practice the measurement Y is unavoidably perturbed by
noise. Thus a common relaxation on (10) is to give a /,-norm-
bounded error tolerance €:

argmin [|X]|p s.t. [Y - AX], <e. (11)
XECLXN

Solving both (10) and (11) is NP-hard because the discon-
tinuity of lp-norm [32]. Nevertheless, several computation-
ally tractable algorithms have been proposed to approximate
sparse approximation problems, and most of them have been
widely applied in practice with reliable output [9, | 5]. In the
next section, we briefly introduce three main types of sparse
approximation methods and one type of non-sparse approx-
imation method from sub-Nyquist samples, with a detailed
inspection of the symbolic algorithms submitted by the GB-
Sense Challenge participants.

3 Algorithms

3.1 Greedy Algorithms

The greedy iterative algorithm is proposed for solving com-
binatorial optimization problems. This type of algorithm
mainly uses the connection between the signal and the atomic
dictionary as a way to measure whether the atom is more ef-
fective or its coefficient is non-zero. The basic principle is to
iteratively find the support set of the sparse vector, and use the
constrained support least squares estimation to reconstruct
the signal. Such algorithms include matching pursuit (MP),
orthogonal matching pursuit (OMP), stagewise orthogonal
matching pursuit (StOMP), compressive sampling matching
pursuit (CoSaMP), iterative hard thresholding (IHT), and gra-
dient descent with sparsification (GraDeS), etc [15, 18-20].
The complexity of the algorithm is mainly determined by the
number of iterations required to find the correct support set.
The algorithm is fast in calculation but has relatively low pre-
cision.

Greedy algorithms can be easily transformed to solve
MMV problems from the single measurement vector (SMV)
form. SOMP treats each column of X and Y as sharing the
same structure, thus accelerating the convergence when deal-
ing with joint-sparse signals [19]. In each iteration, the most
relevant atom in A to the residual is selected, then the residual
is updated according to all the selected atoms to ensure or-
thogonality and to accelerate fast convergence. The JB-HTP
algorithm [15] achieves fewer iterations than SOMP when
processing large-size problems where k is not that small.
Compared to SOMP, which selects one atom in one iteration

Firstname LASTNAME: please insert running head here

cycle, JB-HTP selects the k most relevant atoms simultane-
ously in each iteration and converges when the selected en-
tries are identified in two consecutive iterations. JB-HTP usu-
ally converges in very few iterations depending on the noise
level. As a consequence of selecting multiple atoms at one
time, its precision is lower than that of SOMP.

Based on the SOMP algorithm, the SA-SOMP [29] further
relieves the computational burden without losing detection
performance. The major update is to strip the noise compo-
nents from the correlation matrix before the matching itera-
tions, then the dimension of the problem can be largely re-
duced. SA-SOMP requires a good knowledge of signal spar-
sity & or the noise variance to achieve ideal performance. The
detailed procedures of SA-SOMP are shown in algorithm 1,
where RREVD(R, k) refers to rank-revealing eigenvalue de-
composition of R by rank &.

Algorithm 1 SA-SOMP algorithm [29]
Input: Y; A e C™Lk
QOutput: S, 0

1: R« E[Y(HY()]

2: [Uy, A;] < RREVD(R, ), x5 « Us VA,
3t 1;Rg (_XS;SO — DAy « O,

4. while t <k do

5; &, <—argmlax||A3R,_1||2,i:O,l,--~ ,L—1
6: St — S[_l U &,

7: A; « AS‘,

8: é), «— arg mvin ||Y - A,(:),”2

99 R «Y-A0

10: te—t+1

11: end while

12: S — St

13: fill the rows of @ indexed by S with O,

3.2 Optimization Algorithms

The ly optimization problem (10) can be relaxed as convex
optimization problems to find the approximate solution. The
most commonly used method is the basic pursuit (BP) strat-
egy [33]. The strategy proposes to use the /;-norm instead of
the /p-norm to solve the optimization problem so that it can
be performed using a linear programming method. For MMV
problems, if joint sparsity or block sparsity is applied, the
group /; norm optimization strategy is usually adopted by BP.
Another approach is the FOCUSS algorithm, which uses the
I,-norm (p <= 1) instead of the /p-norm [34]. This type of al-
gorithm is computationally slow (computational complexity
is N?), but requires fewer measurement data (O(K +log(N/K))
and has high accuracy. The other two more common convex
relaxation algorithms include gradient projection for sparse
reconstruction (GPSR) algorithm [35] and sparse reconstruc-
tion by separable approximation (SpaRSA) algorithm [36].
The GPSR algorithm solves a bounded constrained optimiza-
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tion problem by using gradient descent, and the algorithm
requires projection in the feasible region to ensure the feasi-
bility of the iterative process.

Proposed by She et al., the “slow kill” (SK) algorithm con-
siders an “/y-constrained, /,-penalized” optimization problem
to estimate the coeflicient matrix X:

argmin |[Y — AX|[% + %HXH% st Xl <& (12)
XeCLxN

To tackle the computational and statistical challenges
of the non-convex and discrete nature of problem 12, the
SK algorithm adopt iteration-varying learning rate, adap-
tive lr-shrinkage and progressive strategies base on an ly-
optimization approach [26-28]. The SK algorithm follows a
“bottom-up” design to grow up a model from null and iterate
updates the model based on a sound criterion.

3.3 Bayesian Framework

The third type of algorithm is the reconstruction algorithm
based on the Bayesian framework. This type of algorithm
takes into account the time correlation of the signal, espe-
cially when the signal has a strong time correlation, it can
provide better than other reconstruction algorithms. Re-
construction accuracy. At present, such algorithms include:
Expectation-Maximization (EM) algorithm, Bayesian com-
pressive sensing (BCS) algorithm, sparse Bayesian learning
(SBL) algorithm based on SMV model, and multiple mea-
surement vectors (MMV) model proposed MSBL algorithm
[30,37-39]. SBL is a very important class of algorithms in
Bayesian learning. The difference between MSBL algorithm
and group /;-norm convex optimization algorithm is that the
latter global minimization is usually not the most sparse so-
lution, while the former’s global minima are the most sparse
solution. The detailed procedure of MSBL is given in algo-
rithm 2.

Algorithm 2 MSBL algorithm [37]
Input: Y; A € CP*L; 025 0, maxIter
Output: S, 0

I: y « 1, T « diag(y); o?

2. while ¢t < maxlIter do

3 p e TAYATAY + 2I)7'Y

4

5

Y « I'-TAYAT A" + 521)' AT
L 52
P fori=1,2, L

L 2

y Lir-aup
6: 0"« inL+Tr(F’1F):)
7: I « diag(y)
8
9

: end while
: Let S be the set of all index i such that y; > % Z,—L:, Vi
0: OS,0) — p(S,), O(5,:) 0
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3.4 Non-sparse reconstruction

The fast compressed power spectrum estimation (FCPSE)
seeks for another approach to estimating the power spectrum
from an incomplete sampling sequence [3 1], sh shown in al-
gorithm 3. FCPSE acquires an approximation of the covari-
ance matrix directly from the zero-filling upsampled version
of the multicoset sampling sequence. To avoid vacant ele-
ments in the covariance, the multicoset sampling delay pat-
tern must be specifically designed, and the minimum average
sampling rate should be above half the Nyquist rate. The
output sequence 6 can be regard as an unbiased estimation
of the real power spectrum 6. The reconstruction process by
FCPSE is relatively straightforward compared with the iter-
ative CS-based coefficient estimation process by greedy al-
gorithms or optimization algorithms, thus can realize lower
computational costs.

Algorithm 3 Fast compressed power spectrum estimation
[31]
Input: Y; C;
Output: 6
) Y@, j),n=jN+c; 1,n=jN +¢;
t: hinl {0, otherwise ’ Tinl 0, otherwise
= hln], 0<n<LN-1
x h[”]{o, “IN+1<N<0’
T I[n], 0<n<LN-1
"0, -IN+1<N<0
3 ry = F'(F(h)P), ¢ = F'(FA)P)
4: rolk] = rplkl/qlkl, k= —LN + 1,-LN +2,--- ,LN — 1
5: 0 =F(r,)

4 Test Setup

GBSense Challenge 2021, as well as GBSense project itself,
are distinguished by the combination of algorithm and hard-
ware platform. In this section, we introduce a self-developed
experimental platform for testing algorithms and generating
test datasets. The test datasets utilized to evaluate the algo-
rithms are then introduced briefly.

4.1 Data Collection Platform

The test datasets for GBSense Challenge 2021 were gener-
ated by a self-developed sub-Nyquist data processing plat-
form. The platform was developed on the hardware basis of
NI millimeter-wave transceiver system and LabVIEW soft-
ware environment [9]. A general overview of the platform
is shown in Figure 2. The platform is composed of a pair of
chassis serving as the transmitter and the receiver. The trans-
mitter has a baseband of [-1,1]JGHz. Up to 8 transmissions
with a maximum of 100MHz bandwidth can be generated si-
multaneously upon customized central frequencies over the
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baseband. The baseband signal is upconverted to 28.5GHz
millimeter-wave band and emitted via a horn antenna. On the
receiver side, the signal is first downconverted to baseband
then demodulated in quadrature mode. A dual-channel high-
speed ADC of 3.072GSPS sampling rate is utilized to digi-
tize the signal in both in-phase and quadrature channels. The
snapshots of the sample stream are captured and processed
by the host CPU.

At software level, the sampling sequences is first interpo-
lated to 2GSPS by Whittaker—Shannon method, then a mul-
ticoset sampler is simulated by discarding Nyquist samples
according to the delay patterns. The simulated muticoset
parameters (L, P and C)can be configured arbitrarily. Two
greedy algorithms, SOMP and JB-HTP, are implemented for
spectrum reconstruction, and the reconstruction results are
plotted on the monitor in real time. At meantime, a reserved
developer interface is provided for fast evaluation of other
CSS algorithms.

Fig. 2 Sub-Nyquist data collection and processing platform developed on
the basis of NI millimeter-wave transceiver system.

4.2 Test datasets

Depending on the user’s preference, the data storage function
can operate prior to or after the multicoset sampler. For the
GBSense Challenge 2021, Nyquist sample sequences at the
input of the multicoset sampler are directly collected and re-
leased, allowing for greater parameter setting flexibility. For
reference, both MATLAB and LabVIEW demo programs for
multicoset sampling and SOMP/JP-HTP algorithms are made
available alongside the datasets. Following is a brief descrip-
tion of the test datasets used during testing.

Test set 1 Test dataset published with the announcement of
GBSense Challenge 2021 (24 pieces of data in to-
tal).

Test set 2 Gaussian-distributed spectrum, with SNR of 10dB
and sparsity of 7.5% ~ 20% (100 pieces of data in
total).

Firstname LASTNAME: please insert running head here

Test set 3 Gaussian-distributed spectrum, with SNR of 5dB
and sparsity of 7.5% ~ 20% (100 pieces of data in
total).

Test set 4 Gaussian-distributed spectrum, with SNR of 2dB
and sparsity of 7.5% ~ 20% (100 pieces of data in
total).

Test set 5 OFDM signal, with SNR of 10dB and sparsity
of 7.5% ~ 15%. The original data is pseudo-
random integer arrays, and the modulation method
is QPSK (100 pieces of data in total).

Test set 6 OFDM signal, with SNR of 5dB and sparsity
of 7.5% ~ 15%. The original data is pseudo-
random integer arrays, and the modulation method
is QPSK (100 pieces of data in total).

Test set 7 OFDM signal, with SNR of 2dB and sparsity
of 7.5% ~ 15%. The original data is pseudo-
random integer arrays, and the modulation method
is QPSK (100 pieces of data in total) .

5 Numerical Results

The algorithms shortlisted for the GBSense Challenge 2021
have undergone various numerical tests for a thorough eval-
uation based on the competition’s criteria. In this section,
typical detection performance and time complexity data are
shown.

Using a simulated 16-channel multicoset sampler(p = 16),
each piece of data in the aforementioned datasets is sam-
pled. Each channel’s sampling rate is 1/40 of the Nyquist
rate (L = 40). The codes of the shortlisted entries are em-
bedded to reconstruct the spectrum and of each piece of data.
To avoid the reconstruction errors imposed by the delay pat-
tern ,which are not the subject of this evaluation work, a large
number of randomly generated delay patterns are utilized in
the simulation, and their correspondintg results are averaged.
Specifically, the test result on each piece of data is aver-
aged using 100 random sampling delay patterns (except for
FCPSE, which has a uniquely developed delay pattern cre-
ation module).

For each dataset, the reconstruction accuracies of the
shortlisted algorithms are measured by the average Area
Under Curve (AUC) of the receiver operating characteristic
curve (ROC).

To reveal comprehensive features of the shortlisted algo-
rithms, additional simulations are conducted. Typical ROC
curves for the shortlisted algorithms under the aforemen-
tioned settings and 10dB SNR are shown in Figure 3. For
the k = 6 case in Figure 3(a), the SBL and SK methods gen-
erally outperform the other greedy algorithms and non-sparse
FCPSE algorithm. That is because the strong time correlation
of the signal is utilized by SBL, and the global minimum is
better approached by optimization problems. For the k = 8
case in Figure 3(b), a significant performance drop occurs for
the SK algorithm. Note that k = 8 is the theoretical upper
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Fig. 3 Typical ROCs for the GBSense shortlisted algorithms compared with traditional SOMP and JB-HTP (L = 40, p = 16) on signal with sparsity (a)
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26 bound for ensuring a unique solution with p = 16, which
27 means this direct /op-minimization strategy is vulnerable to
28 sparsity change. It is also worth noting that JB-HTP tends
29 to have better detection performance than SOMP when k in-
30 creases because the misselected atoms can be fixed as the iter-
31 ation of JB-HTP goes on, while a mismatch in SOMP cannot
32 be excluded in the following iterations and will lead to slow
33 convergence. SA-SOMP achieves exactly the same results
34 as SOMP does because they share the same reconstruction
35 strategy, and their only difference is the choice of the mea-
36 surement matrix.
37 The shortlisted algorithms are tested for their detection
38 probabilities defined by
39 total # correctly detected channels
40 q= . , —. (13
41 # total active channels in all recovery trials
42 under multiple SNR levels with L = 40, p = 16 and signal
43 sparsity of k = 6, and the results are shown in Figure 4. Note
44 that because FCPSE provides a non-sparse recovery, an addi-
45 tional screening of the £ channels with the highest energy are
46 kept as the recovered support. Among the curves in Figure 4,
47 SK is the most sensitive method to noise which only achieve
48 detection probability over 0.9 when SNR > 10dB. On the
49 contrary, FCPSE is more resilient to noise level changes be-
50 cause Gaussian noise can be effectively damped by its sta-
51 tistical nature. However, detection probability above 0.9 is
52 difficult to be achieved by FCPSE because the unbiased esti-
53 mation is not always a good approximation, especially with
54 sub-Nyquist samples and narrow sampling windows. SBL
55 algorithm can achieve nearly 0.95 detection probability when
56 SNR > 5dB and 100% when SNR > 10dB, which outper-
57 forms the other algorithms within the simulation data.
58 For signal with different sparsity k from 1 to 16, simula-
23 tions are conducted with L = 40, p = 16 and S NR = 20dB,

and the results are shown in Figure 5. Taking advantage of
the strong time correlation of the testing data, SBL outper-
forms the other algorithms on detection probability. The SK

;
4
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Fig. 4 Detection probability versus signal SNR for the four shortlisted al-
gorithms compared with traditional SOMP and JB-HTP

algorithm performs well under k& < 6 but quickly deteriorates
when k gets larger. SOMP and SA-SOMP provide better re-
sults than JB-HTP when k£ < 8 but get worse when k > 8
because the atomwise matching is more accurate when fewer
atoms are contributing to the signal but unreliable when a
large number of weighted atoms are mixed. FCPSE gives a
relatively detection probability for k > 8 than the greedy al-
gorithms and SK.
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Fig. 5 Detection probability versus coset number p for the four shortlisted
algorithms compared with traditional SOMP and JB-HTP
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Table1l Average AUC & running time on the GBSense test sets

Algorithm AUC  Time (ms)
SBL 0.9771 3.5103
SA-SOMP 0.8190 1.3999
SK 0.6277 23.9034
FCPSE 0.8631 1.3734

As spectrum sensing is a task of high real-time require-
ment, the time complexity of a reconstruction algorithm is of
great significance to be considered taking into practice. The
time efficiency of the algorithms is measured by the average
running time of the codes in MATLAB simulation. The test
results for the four shortlisted algorithms are provided in Ta-
ble 1.

By varying the length N of the sub-Nyquist sampling win-
dow, the real running time of each shortlisted algorithm on
the CPU is tested by MATLAB, and the results are shown in
Figure 6 in logarithmic coordinates, which in general agrees
with Table 1. SK, as a [yp-optimization method, has naturally
computational complexity orders higher than the other candi-
dates. The SA-SOMP method achieves exactly the same de-
tection results as SOMP but only costs running time compara-
ble with JB-HTP, thus can be regarded as a promising method
to be applied in very sparse conditions to achieve both high
detection rates and high real-time performance. SBL costs
moderate calculation time among the tested algorithms. The
running time of three greedy algorithms and SBL is not sen-
sitive to the increase of sampling window length N because
they process the columns in the coefficient matrix X as joint-
sparse. By contrast, the running time of FCPSE increases
nearly exponentially with N because of the large amount of
convolution included.
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Fig. 6 Average running time versus the length N of the sampling window.

6 Conclusion

Utilizing the sparsity of the wideband spectrum, CSS offers a
more effective method for reducing cognitive device reliance
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on energy-intensive, costly hardware. This study provides a
brief introduction of the CSS framework based on multicoset
sampling and introduces several widely used CS reconstruc-
tion techniques, including the greedy algorithm, optimiza-
tion algorithm, sparse Bayesian learning algorithm, and non-
sparse reconstruction algorithm. Four shortlisted algorithms
for the GBSense Challenge 2021 are presented in detail and
evaluated numerically.

Among the selected algorithms, SK gets a high detection
rate under high SNR conditions, but has the lowest compu-
tational efficiency. SA-SOMP achieves satisfactory detec-
tion rates while maintaining a low computational complex-
ity. FCPSE is capable of non-sparse spectrum reconstruction,
but its precision is dependent on time frames that are longer.
MSBL is capable of achieving precise spectral reconstruction
under the Gaussian assumption and has acceptable computa-
tional efficiency. The numerical results are instructive for the
practice of wideband compressed spectrum sensing.

From the perspective of real-world application, the fu-
ture improvement of the spectrum reconstruction algorithm
will primarily concentrate on the following: designing more
stable reconstruction algorithms with lower computational
complexity and lower average sampling rate requirements;
designing effective reconstruction algorithms to accurately
reconstruct the spectrum under Gaussian or non-Gaussian
noise; designing targeted and feasible reconstruction algo-
rithms.
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