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1 Introduction
The fact that the spectrum resource is underutilised in cer-
tain bands has motivated the dynamic spectrum access (DSA)
approach, which enables unlicensed secondary users (SUs)
equipped with cognitive radio (CR) devices to access the spec-
trum without causing significant interference to primary users
(PUs). Nowadays, the increasing bandwidth for wireless com-
munication in millimetre-wave and Terahertz frequency bands
puts higher requirements on the performance of spectrum
sensing technique, the primary enabler of DSA. Traditional
Nyquist-rate sampling and processing tend to be impractical
due to high power consumption, high-cost, and hardware com-
plexity of high-speed analogue to digital converters (ADCs).
To overcome the sampling rate bottleneck, several sub-Nyquist
sampling methods [1–9], recovery algorithms [10–18] and
channel detection methods [19–23] have been proposed. More-
over, the recent advancements in machine-learning-based spec-
trum sensing have been characterised, which has provided fur-
ther intelligence to CR devices with better adaptivity and higher
flexibility under complex radio environments [24–30].

Still, the performance demands placed on sub-Nyquist spec-
trum sensing creates many different challenges, which com-
prise, but are not limited to, the following:

• For compressive samplers, the necessary sampling rate to
successfully reconstruct a sparse signal is determined by
the actual sparsity order (the ratio of the occupied channel
to the total sensing bandwidth) of the signal. On the other
hand, spectrum reconstruction based on a greedy algo-
rithm requires prior knowledge of spectrum sparsity as
an input. However, due to the uncertainty in the environ-
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ment, the spectrum sparsity is always unknown and un-
predictable. In practice, the sampling rate has to be chosen
conservatively, according to the upper bound of the actual
sparsity order instead of the real sparsity, which can be un-
necessarily high, causing waste of sampling resources and
computational burden, while the existing cross-validation
algorithms are still compute-intensive [12, 31].
• The spectrum dynamically changes over time. In practice,

long-time statistical method should be avoided during the
sensing stage to improve robustness, while the compres-
sive recovery performance tends to deteriorate as the sam-
pling window being shortened [32]. How to choose the
suitable sampling windows is another challenge.
• Algorithms to recover the spectrum from sub-Nyquist

samples are often computationally intensive. It is desir-
able to spend as little time as possible on spectrum sensing
to improve transmission efficiency and to reduce interfer-
ence to PUs.
• The transmission of the existing SUs should also be de-

tected by the subsequent accessors. The coexistence of
a large number of SUs can influence the spectrum spar-
sity, even beyond the capacity of the sub-Nyquist spec-
trum sensing device.

For stimulating novel approaches and designs on sub-
Nyquist spectrum sensing and learning task. A challenge is is-
sued with a reference sub-Nyquist algorithm, open data sets and
awards up to 10,000 USD. It is hoped to promote relative re-
search and facilitate the theory-to-practice process of promising
ideas.

2 The challenge
Several Nyquist-rate time-domain data sets on baseband with
GHz bandwidth are provided. In the meantime, basic MATLAB
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and LabVIEW codes of a sub-Nyquist sampling scheme with
fundamental recovery algorithms are released for reference on
the challenge website. The participants will be required to sense
the spectrum from the given data sets as accurately as possible
with a relatively lower average sampling rate at smaller compu-
tational cost. The participants will be judged on

• The sensing ability and reconstruction accuracy of
proposing approaches with the given data sets;
• The robustness, complexity and real-time performance of

proposing approaches working on real-world signal with
our software-defined radio (SDR) test platform as shown
in Section 6.

Team entrants are encouraged. Extra credits will be allocated
to innovative methods.

3 Submission requirements
An overall sub-Nyquist spectrum sensing solution is requested,
including the following two parts in general, with innovation or
improvement in both or individual part.

• Sub-Nyquist Sampling architecture (include but not lim-
ited to analog-to-digital converter, modulated wideband
converter and multicoset sampler, etc.);
• Recovery & detection algorithms.

The documents for submission include

• MATLAB or Python code for processing the given data
sets;
• LabVIEW code for processing real-time data on the NI

SDR test platform;
• Algorithm and software design manual;
• A concept paper demonstrating the sampling architecture

and recovery & detection algorithms.

4 Challenge criteria
The submitted entries will be evaluated by the authors team and
a few other experts in the field according to the criteria shown
in Table 1.

5 The data sets
We provide data sets composed of digital samples of real wide-
band signal for participants to test their algorithms, the prop-
erties of the data sets are shown in Table 2. The data sets
are composed of 500∼60000pts raw continuous baseband I/Q

Table 1 Criteria for evaluating the entries

Criteria Weight

Approach ingenuity 15%

Sensing / detecting performance 25%

Sampling cost 10%

Collection,
Performance

&
Analysis Computational cost 10%

Source code1)

(MATLAB/Python
and LabVIEW)

25%
Code

&
Documentation

Hardware & software design manual 15%

Table 2 Properties of the data sets provided for test

Signal Symbols Pseudorandom symbols
Modulation type 64-QAM

Multiplexing Verizon 5G OFDM
Channel bandwidth 100MHz

Active channel number
1∼3 channels without

knowledge on positions
Spanning Up to 2GHz

Receiver Baseband bandwidth 2GHz (complex)
Sampling frequency 3.072GHz

Data Data type Raw continuous samples
from baseband IQ channels

Window lengths 500∼60000pts

Fig. 1 NI Millimetre-wave transceiver system

samples sampled with 3.072GHz rate. 1∼3 100MHz active
channels may exists among the –1GHz∼1GHz baseband. For
the receiver, the positions of the active carriers are previously
unknown. The data sets are available to be downloaded on the
challenge website.

6 Test platform
The submitted approaches will be tested on a hardware plat-
form comprised of the NI mmWave SDR systems, used as the
transmitter and receiver, respectively (Fig. 1). The transmit-
ter and receiver have modular configurable hardware working
at mmWave radio frequency centred at 28.5GHz with 2GHz
bandwidth. The baseband signal consists of in-phase (I) and
quadrature (Q) components with a frequency range of –1GHz
to 1GHz. A single Nyquist ADC samples the baseband signal
at a 3.072GSps rate at the receiver.

Using NI LabVIEW development tools, the behaviour of
the sub-Nyquist sampler can be simulated by pretreatments on
Nyquist samples. The recovery algorithms implemented on the
host controller process the real-time signal captured through
the PCIe bus from the data acquisition card. An example im-
plementation for reference is shown in [9]. Sample codes in
MATLAB and data sets can be downloaded on the challenge
website.

7 Challenge registration
The entrance for signing up for the challenge and submitting
entries can be found at the Gbsense website. After registration,
the data sets and the sample codes can be downloaded freely.
The time nodes, awards and copyright rules are also announced

1) Participants may choose between MATLAB and Python, but LabVIEW code is necessary.
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on the website. Participants will win 10,000 USD for the first
prize, 5,000 USD for the second prize, and 3,000 USD for the
third prize.
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