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Performance of Beamforming in Correlated MISO
Systems with Estimation Error and Feedback Delay
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and Arumugam Nallanathan, Senior Member, IEEE

Abstract—This paper analyzes the exact average symbol error
rate (SER), outage probability and ergodic capacity performance
of beamforming in spatially correlated multiple-input single
output systems with channel estimation error and feedback
delay. We derive the joint distribution function of two correlated
quadratic forms and employ the result to obtain expressions for
the cumulative distribution function, probability density function,
moment generating function and moments of the signal-to-noise
ratio. Using these expressions, we investigate the exact SER
applicable for a large number of modulation schemes, outage
probability and the ergodic capacity of the system. The results
show that the average SER performance is sensitive to both
feedback delay, channel estimation and spatial correlation at the
transmitter. Furthermore, feedback delay causes an error floor
and has the most degrading impact on performance. We also
present Monte Carlo simulation results as verification of our
analytical results.

Index Terms—Beamforming, spatial correlation, channel esti-
mation error, feedback delay, symbol error rate, ergodic capacity.

I. INTRODUCTION

TRANSMIT beamforming systems have recently received
much attention due to capacity improvements and their

ability to mitigate the severe effects of fading through diversity
[1], [2]. In beamforming systems, the signal-to-noise ratio
(SNR) maximization is achieved by providing channel state
information (CSI) to the transmitter [3]. In frequency division
duplex (FDD) systems, such knowledge is provided by the
feedback of CSI from the receiver to the transmitter.

The performance of practical systems suffers from many
forms of CSI imperfections [4]. The most common sources of
imperfection are channel estimation errors and feedback delay.
An information theoretic approach to multiple-input single
output (MISO) transmit beamforming with imperfect feedback
has been presented in [5]. In [6], the effects of delayed and
limited feedback on the error performance of MISO systems
have been investigated. Analyzing the combined effects of
channel estimation errors and outdated feedback has been the
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subject of several recent publications [4], [7], [8]. The results
found in [4]-[7] have been based on spatially independent and
identically-distributed (i.i.d) channels.

Also, in a practical scenario, spatial constraints limit the
size of an antenna array. In such a situation, an increase
in the number of antenna elements introduces reductions in
inter-element spacing and correlation among antenna elements
arises [9]. The effect of antenna correlation on different
aspects of performance for various multi-antenna systems has
been addressed previously. The main performance measures
evaluated have been channel capacity [10], symbol error rate
(SER) and outage probability [11], [12]. In [13], an optimal
beamforming structure considering noisy channel estimates
has been proposed. Moreover, the error rate performance of
this system over correlated Rayleigh fading channels has been
analyzed.

Although there is a large body of existing results available
for MISO systems, only a few studies have investigated beam-
forming performance considering the joint effects of channel
estimation error and feedback delay under spatial correlation
(See for e.g. [14] and [15]). In [14], a simple codebook design
algorithm for the spatially correlated Rayleigh fading MISO
channels with channel estimation error has been presented.
In [15], the ergodic capacity of beamforming with spatial
correlation, channel estimation error and feedback delay has
been investigated. However, the authors of [15] have not
considered other important performance measures such as
the SER and the outage probability. In order to facilitate a
comprehensive performance analysis, the major challenge is to
evaluate the statistics of the SNR. In the literature, a statistical
characterization of the SNR has not been forthcoming and
therefore new results must be derived. In this paper we fill
this gap and present new performance results for spatially
correlated MISO systems with beamforming. In particular,
first we derive expressions for the probability density function
(pdf), the cumulative distribution function (cdf), the moment
generating function (MGF) and the moments of the SNR.
These expressions enable us to investigate the system’s out-
age probability and the average SER applicable for a large
number of modulation schemes. In addition, we also present
a tight upper bound expression for the ergodic capacity. The
analytical results are useful in several ways. The closed-form
performance results accelerate system level simulations and
may be used in adaptive systems and scheduling. They also
lead to simplified results in Sec. IV-B and the methodology in
Appendix A has applications to other communication systems.
One example is the upper bound calculation of the SINR
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in signal-to-leakage- and-noise ratio based systems [16]. Our
results show that the performance of the system is sensitive
to the three factors: feedback delay, channel estimation and
special correlation at the transmitter. Having higher correlation
at the transmitter and bigger channel estimation error reduces
the performance of the system, but does not change the
diversity order. However, the feedback delay causes an error
floor and has the most degrading impact on performance.
Monte Carlo simulation results are also presented to confirm
the validity of our analysis.

The rest of the paper is organized as follows. In section II
we introduce the system model. The SNR of the system is
statistically characterized in Section III. In Section IV, new
closed-form expressions for the outage probability, SER and
the ergodic capacity are presented. These results are confirmed
in Section V using Monto Carlo simulations. Finally, we
conclude this paper in Section VI.

II. SYSTEM MODEL

We consider a MISO system with 𝑁𝑡 transmit antennas at
the base station (BS) and one receive antenna at the mobile
station (MS) with transmit beamforming as shown in Fig. 1.
The received signal at the MS given by [4]

𝑦 = 𝒘†𝒉𝑠+ 𝑛, (1)

where 𝑠 is the transmitted symbol with 𝐸{∣𝑠∣2} = 𝑎2, 𝒘 is the
𝑁𝑡× 1 beamforming vector, 𝑛 is the noise modeled by a zero
mean circularly symmetric complex Gaussian (ZMCSCG)
random variable with variance 𝜎2

𝑛, and 𝒉 is the 𝑁𝑡×1 channel
gain vector. Here, 𝐸{⋅} denotes expectation. We assumed
that there is insufficient scattering around the BS, resulting
in spatial correlations at the BS. Therefore, assuming a flat
fading Rayleigh channel, the channel gain vector, 𝒉, for the
MISO system can be modeled as

𝒉 = 𝑹1/2𝒉0, (2)

where the 𝑁𝑡 × 1 vector, 𝒉0, has i.i.d ZMCSCG entries with
unit variance and 𝑹 is the 𝑁𝑡×𝑁𝑡 transmit antenna correlation
matrix. We assume that 𝑹 is a positive definite Hermitian
matrix and can be eigen-decomposed as 𝑹 = 𝑼Λ𝑼 †, where
Λ = diag[𝜆1, . . . , 𝜆𝑁𝑡 ] is a diagonal matrix with 𝜆𝑖 as the 𝑖th
eigenvalue of 𝑹. However, the results presented in this paper
can easily be extended to a positive semi-definite 𝑹.

For transmit beamforming, the BS requires CSI. In this pa-
per, we consider imperfect CSI due to both channel estimation
and feedback delay. In [17], the channel estimation process is
modeled as

𝒉[𝑘] = �̂�[𝑘] + 𝒆𝑒[𝑘], (3)

where �̂� is the channel estimate and 𝒆𝑒 is the estimation error.
Where convenient we omit the dependence on time and drop
the [𝑘] argument for ease of notation. Assuming the minimum
mean-square-error (MMSE) channel estimation method, the
covariance of the channel estimation error is given by [17],
[18] as

𝐸{𝒆𝑒𝒆†𝑒} = (𝑹−1 + 𝜂𝑒𝑰𝑁𝑡)
−1, (4)
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Fig. 1. System model of beamforming with channel estimation error and
feedback delay.

where 𝜂𝑒 is the average SNR at the receiver during the channel
estimation phase and 𝑰𝑁𝑡 is the 𝑁𝑡 × 𝑁𝑡 identity matrix.
From the properties of MMSE estimation, �̂�[𝑘] and 𝒆𝑒[𝑘] are
uncorrelated and, therefore, using (3), the covariance matrix,

𝐸{�̂��̂�†} = 𝑹 − (𝑹−1 + 𝜂𝑒𝑰𝑁𝑡)
−1. Now, considering delay

in the beamforming process we have an estimate �̂�[𝑘] fed
back to the transmitter and used at time 𝑘 + 𝐷. From [4] a
simple Markov chain model of the channel state evolution is
presented whereby the current channel is related to the past
channel as

𝒉[𝑘 +𝐷] = 𝜌𝑑𝒉[𝑘] +
√
1− 𝜌2𝑑𝒆𝑑[𝑘 +𝐷]. (5)

In (5), 𝜌𝑑 is the correlation between 𝒉[𝑘] and 𝒉[𝑘 +𝐷] and
𝒆𝑑 is an error term due to temporal changes in the channel.
As the error, 𝒆𝑑, is only due to delay, then both 𝒉[𝑘 + 𝐷]
and 𝒉[𝑘] have the same covariance matrix, 𝐸{𝒉𝒉†} = 𝑹.
Also, from the Markov chain model, 𝒆𝑑[𝑘 +𝐷] and 𝒉[𝑘] are
uncorrelated and, hence, 𝒆𝑑 has the covariance 𝐸{𝒆𝑑𝒆†𝑑} = 𝑹.
Now, substituting (3) into (5), we have

𝒉[𝑘 +𝐷] = 𝜌𝑑�̂�[𝑘] + 𝜌𝑑𝒆𝑒[𝑘] +
√
1− 𝜌2𝑑𝒆𝑑[𝑘 +𝐷]

≜ 𝜌𝑑�̂�[𝑘] + 𝒆[𝑘 +𝐷]. (6)

As 𝒆𝑑, �̂� and 𝒆𝑒 are uncorrelated, then from (6), the covariance
of the total error vector, 𝒆 can be found as

𝐸{𝒆𝒆†}=(1− 𝜌2𝑑)(𝑹−(𝑹−1+ 𝜂𝑒𝑰𝑁𝑡)
−1)+(𝑹−1+ 𝜂𝑒𝑰𝑁𝑡)

−1

= (1− 𝜌2𝑑)𝑹+ 𝜌2𝑑(𝑹
−1 + 𝜂𝑒𝑰𝑁𝑡)

−1. (7)

From [4], the optimal beamforming vector, 𝒘, for transmit
beamforming is 𝒘 = �̂�/∣�̂�∣. Hence, at time 𝑘+𝐷, the received
signal at the MS is given by

𝑦[𝑘 +𝐷] =
�̂�[𝑘]†

∣�̂�[𝑘]∣𝒉[𝑘 +𝐷]𝑠[𝑘 +𝐷] + 𝑛[𝑘 +𝐷]

=
𝜌𝑑 𝑠[𝑘+𝐷]

∣�̂�[𝑘]∣−1
+

�̂�[𝑘]†

∣�̂�[𝑘]∣
𝒆[𝑘+𝐷]𝑠[𝑘+𝐷] + 𝑛[𝑘+𝐷]. (8)

Treating the error term in (8) as additional noise, the received
signal (for simplicity all time indexes are ignored) can be
rewritten as

𝑦 = 𝜌𝑑∣�̂�∣𝑠+ �̃�, (9)
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where �̃� = �̂�
†

∣�̂�∣
𝒆𝑠+ 𝑛.

III. STATISTICAL CHARACTERIZATION OF THE SNR

In this section we derive a statististical characterization of
the SNR which is required for performance evaluation of the
system. For this we first derive the joint pdf of two correlated
quadratic forms, and from that exact closed-form results for
the cdf, pdf, MGF and moments of the SNR are obtained.

A. cdf of the SNR

In this section, we calculate the cdf of the SNR. From (9),
the overall SNR of the transmit beamforming system can be
given as

𝑆𝑁𝑅 =
𝜌2𝑑∣�̂�∣2𝑎2
𝐸{∣�̃�∣2} , (10)

where

𝐸{∣�̃�∣2} = 𝜎2
𝑛 + 𝑎2

�̂�
†
𝐸{𝒆𝒆†}�̂�
∣�̂�∣2 . (11)

As �̃� is a function of 𝑠, the SNR presented here is valid for
constant amplitude modulations such as BPSK, 4-QAM. For
other modulations, SNR and SER results may be computed
conditional on the signal amplitude and then averaged. Hence,
the analysis presented here is general and can be extended
to multi-level constellations. The channel estimate, �̂�, can be
expressed as �̂� = 𝑻 1/2𝒖, where 𝑻 = 𝑹− (𝑹−1 + 𝜂𝑒𝑰𝑁𝑡)

−1

and 𝒖 has i.i.d. ZMCSCG entries with unit variance. Using
the eigenvalue decomposition of 𝑹, 𝑹 = 𝑼Λ𝑼 †, 𝐸{𝒆𝒆†}
and 𝑻 can be expressed as

𝐸{𝒆𝒆†} = 𝑼𝑫1𝑼
† and 𝑻 = 𝑼𝑫2𝑼

†, (12)

where 𝑫1 = (1 − 𝜌2𝑑)Λ + 𝜌2𝑑(Λ
−1 + 𝜂𝑒𝑰𝑁𝑡)

−1 and 𝑫2 =
Λ−(Λ−1+𝜂𝑒𝑰𝑁𝑡)

−1 are diagonal matrices. Now, the overall
SNR can be given as

𝑆𝑁𝑅 =
𝜌2𝑑𝑎

2�̃�†𝑫2�̃�

𝜎2
𝑛 + 𝑎2 �̃�

†𝑫1𝑫2�̃�
�̃�†𝑫2�̃�

, (13)

where �̃� = 𝑼 †𝒖 has i.i.d. ZMCSCG entries with unit variance
and we have used the results �̂� = 𝑻 1/2𝒖 and 𝑻 1/2 =
𝑼𝑫

1/2
2 𝑼 †. Then, the cdf of the SNR can be calculated as

𝐹𝑆𝑁𝑅(𝑟) = P[𝑆𝑁𝑅 < 𝑟] = P

⎡⎣ 𝜌2𝑑�̃�
†𝑫2�̃�

𝜎2
𝑛

𝑎2 + �̃�†𝑫1𝑫2�̃�
�̃�†𝑫2�̃�

< 𝑟

⎤⎦. (14)

Defining 𝑋 ≜ �̃�†𝑫2�̃�, 𝑌 ≜ �̃�†𝑫1𝑫2�̃�, and 𝑏 = 𝜌2𝑑𝑎
2, the

cdf can be expressed as

𝐹𝑆𝑁𝑅(𝑟) = P
[
𝑏𝑋2 − 𝑟𝜎2

𝑛𝑋 < 𝑟𝑎2𝑌
]
. (15)

The random variables (RVs), 𝑋 and 𝑌 can also be written as

𝑋 =

𝑁𝑡∑
𝑖=1

𝜓𝑖∣�̃�𝑖∣2 and 𝑌 =

𝑁𝑡∑
𝑖=1

𝛽𝑖∣�̃�𝑖∣2, (16)

where 𝜓𝑖 = 𝜆𝑖 − (𝜆−1
𝑖 + 𝜂𝑒)

−1 and 𝛽𝑖 = (𝜆𝑖 − (𝜆−1
𝑖 +

𝜂𝑒)
−1)((1 − 𝜌2𝑑)𝜆𝑖 + 𝜌2𝑑(𝜆

−1
𝑖 + 𝜂𝑒)

−1). The RV, ∣�̃�𝑖∣2 has an

exponential distribution with a mean value of one, ie. ∣�̃�𝑖∣2 ∼
Exp(1) for 𝑖 = 1, 2, . . . , 𝑁𝑡. Now, the cdf in (15) can be
rewritten as

𝐹𝑆𝑁𝑅(𝑟) = P

⎡⎣( 𝑁𝑡∑
𝑖=1

𝜓𝑖∣�̃�𝑖∣2
)2

<

𝑁𝑡∑
𝑖=1

𝑟𝜙𝑖∣�̃�𝑖∣2
⎤⎦ , (17)

where 𝜙𝑖 =
𝜎2
𝑛𝜓𝑖+𝑎

2𝛽𝑖
𝑏 . To evaluate the probability in (17)

requires the joint pdf of 𝑋 and 𝑍 =
∑𝑁𝑡
𝑖=1 𝑟𝜙𝑖∣�̃�𝑖∣2, denoted

𝑓(𝑥, 𝑧), where 𝑋 and 𝑍 are two quadratic forms. The joint
pdf, 𝑓(𝑥, 𝑧), can be given as follows.

Theorem 1. The joint pdf of 𝑋 =
∑𝑁𝑡
𝑖=1 𝜓𝑖∣�̃�𝑖∣2 and 𝑍 =∑𝑁𝑡

𝑖=1 𝑟𝜙𝑖∣�̃�𝑖∣2 is given by

𝑓(𝑥, 𝑧) =

𝑁𝑡∑
𝑖=1

𝑁𝑡∑
𝑙=1,𝑙 ∕=𝑖

𝐴𝑖𝜓
𝑁𝑡−2
𝑖

𝑒
−𝑥
𝜓𝑖

𝑟
𝐶𝑙,𝑖𝑒

−1
𝑟𝐵𝑙,𝑖

(−𝑥𝑟𝜙𝑖
𝜓𝑖

+𝑧
)

×
⎧⎨⎩ 𝑢

(
−𝑥𝑟𝜙𝑖
𝜓𝑖

+ 𝑧
)
𝑢(𝑥) 𝐵𝑙,𝑖 > 0

−𝑢
(
𝑥𝑟𝜙𝑖
𝜓𝑖

− 𝑧
)
𝑢(𝑥) 𝐵𝑙,𝑖 < 0

, (18)

where 𝐵𝑙,𝑖 = 𝜙𝑙,𝑖/𝜓𝑖,𝑙, 𝐴𝑖 =
∏𝑁𝑡
𝑙=1,𝑙 ∕=𝑖 1/𝜓𝑖,𝑙 and

𝐶𝑙,𝑖 = 𝐵𝑁𝑡−3
𝑙,𝑖

𝑁𝑡∏
𝑚=1,𝑚 ∕=𝑙,𝑚 ∕=𝑖

(𝐵𝑙,𝑖 −𝐵𝑚,𝑖)
−1. (19)

In (18), 𝜓𝑖,𝑙 = 𝜓𝑖 − 𝜓𝑙 and 𝜙𝑙,𝑖 = 𝜓𝑖𝜙𝑙 − 𝜓𝑙𝜙𝑖.

Proof: See Appendix A.
To simplify the results presented here, we demonstrate that

𝐵𝑙,𝑖 is always negative by showing that it can be given as

𝐵𝑙,𝑖 = −𝜓𝑖𝜓𝑙
(
1 + (1− 𝜌2𝑑)𝜂𝑒(𝜆𝑖 + 𝜆𝑙 + 𝜂𝑒𝜆𝑖𝜆𝑙)

)
𝜌2𝑑 (𝜂𝑒(𝜆𝑖 + 𝜆𝑙) + 𝜂2𝑒𝜆𝑖𝜆𝑙)

. (20)

A proof is presented in Appendix B. Hence, from (20) and
considering the fact that 𝜌2𝑑 ⩽ 1, we can conclude that 𝐵𝑙,𝑖
is always negative for the scenario considered in this paper.
Hence, hereafter we only present the results for the case when
𝐵𝑙,𝑖 is negative. Now, using (18), the cdf of the SNR can be
given as follows.

Theorem 2. The cdf of the SNR in (13) is given by

𝐹𝑆𝑁𝑅(𝑟) =

𝑁𝑡∑
𝑖=1

𝑁𝑡∑
𝑙=1,𝑙 ∕=𝑖

𝐴𝑖𝜓
𝑁𝑡−2
𝑖 𝑟−1𝐶𝑙,𝑖

×
(
𝑟𝜙𝑖𝑒

−𝑟𝑞2𝑖 /𝜙𝑖 − 𝑟𝜙𝑖 + 𝐼2

)
/𝑄𝑙,𝑖, (21)

where 𝑄𝑙,𝑖 = 1/𝜓𝑖 − 𝜙𝑖/(𝜓𝑖𝐵𝑙,𝑖) and 𝐼2 can be evaluated as
shown in (22).

Proof: See Appendix C.

B. pdf of the SNR

The following theorem presents the pdf of the SNR. This
will be used to compute the moment generating function
(MGF) and moments of the SNR.
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𝐼2 = 𝑟𝐵𝑙,𝑖𝑒
𝑄2
𝑙,𝑖
𝑟𝐵𝑙,𝑖
4

(
−𝑒−

𝑟
𝐵𝑙,𝑖

(
𝑞𝑖+

𝑄𝑙,𝑖𝐵𝑙,𝑖
2

)2

+ 𝑒
− 𝑟
𝐵𝑙,𝑖

(
𝑄𝑙,𝑖𝐵𝑙,𝑖

2

)2
)

+ 𝑟𝐵𝑙,𝑖𝑒
𝑄2
𝑙,𝑖𝑟𝐵𝑙,𝑖

4

(
− 𝑄𝑙,𝑖

√
𝜋𝑟

2
√−1/𝐵𝑙,𝑖

(
erfi

(√
− 𝑟

𝐵𝑙,𝑖

(
𝑞𝑖 +

𝑄𝑙,𝑖𝐵𝑙,𝑖
2

))
− erfi

(√
− 𝑟

𝐵𝑙,𝑖

𝑄𝑙,𝑖𝐵𝑙,𝑖
2

)))
, (22)

where erfi(𝑥) = erf(𝑗𝑥)/𝑗 is the error function with complex argument defined in [19].

Theorem 3. The pdf of the SNR in (13) is given by

𝑓𝑆𝑁𝑅(𝑟) =

𝑁𝑡∑
𝑖=1

𝑁𝑡∑
𝑙=1,𝑙 ∕=𝑖

𝐴𝑖𝜓
𝑁𝑡−2
𝑖 𝐶𝑙,𝑖

×
(
−𝑞2𝑖 𝑒

−𝑟𝑞2𝑖 /𝜙𝑖 + 𝐼4

)
/𝑄𝑙,𝑖, (23)

where 𝐼4 is given in (24).

Proof: See Appendix D.

C. MGF

In this subsection we present a new exact closed-form
expression for the MGF of the SNR. The MGF can be
calculated as in the following theorem.

Theorem 4. The MGF of the SNR in (13) is given by

𝑀(𝑠) =

𝑁𝑡∑
𝑖=1

𝑁𝑡∑
𝑙=1,𝑙 ∕=𝑖

𝐴𝑖𝜓
𝑁𝑡−2
𝑖 𝐶𝑙,𝑖
𝑄𝑙,𝑖

(
− 𝑞2𝑖
𝑠+ 𝑞2𝑖 /𝜙𝑖

+ 𝐼5

)
(25)

where 𝐼5 = 𝐼51 + 𝐼52. 𝐼51 can be given as

𝐼51 =

(
𝑞2𝑖 +

𝑄𝑙,𝑖𝐵𝑙,𝑖𝑞𝑖
2

− 𝑄2
𝑙,𝑖𝐵

2
𝑙,𝑖

4

)
1

𝑠+ 𝑞2𝑖 /𝜙𝑖
, (26)

where we have assumed 𝑠 + 𝑞2𝑖 /𝜙𝑖 > 0 and finally, 𝐼52 is
given in (27).

Proof: See Appendix E.
Having the MGF in closed-form and employing the well

known MGF-based approach for the performance evaluation
of digital modulations over fading channels [20], the error
performance of a large number of modulation schemes can
be studied. Moreover, in the case of binary differential phase
shift keying (DPSK), the average BER is directly given by
1
2𝑀(1).

D. SNR Moments

In this section we derive the moments of the SNR. The
moments are used to compute the capacity results given in
Sec. IV.

Theorem 5. The moments of the SNR in (13) are given by

𝐸{𝑟𝑛} =

𝑁𝑡∑
𝑖=1

𝑁𝑡∑
𝑙=1,𝑙 ∕=𝑖

𝐴𝑖𝐶𝑙,𝑖

𝑄𝑙,𝑖 𝜓
2−𝑁𝑡
𝑖

(
−𝑞2𝑖 𝑛!

(
𝑞2𝑖
𝜙𝑖

)−𝑛−1

+ 𝐼7

)
,

(28)

where 𝑟 =SNR and 𝐼7 = 𝐼71 + 𝐼72. 𝐼71 can be given as

𝐼71 =

(
𝑞2𝑖 +

𝑄𝑙,𝑖𝐵𝑙,𝑖𝑞𝑖
2

− 𝑄2
𝑙,𝑖𝐵

2
𝑙,𝑖

4

)
𝑛!

(
𝑞2𝑖
𝜙𝑖

)−𝑛−1

, (29)

and 𝐼72 is given in (30).

Proof: See Appendix F.

IV. PERFORMANCE ANALYSIS

In this section, we use the statistical characterization of the
SNR to investigate important performance measures of the
system: outage probability, SER and ergodic capacity.

A. Outage Probability

The outage probability is the probability that the SNR falls
below a given SNR threshold value, 𝑟𝑡ℎ. The SNR threshold
value specifies the minimum SNR requires for acceptable
performance. The outage probability of the system can be
obtained directly from the cdf of the SNR as

𝑃𝑜𝑢𝑡(𝑟𝑡ℎ) = P[𝑆𝑁𝑅 < 𝑟𝑡ℎ] = 𝐹𝑆𝑁𝑅(𝑟𝑡ℎ), (31)

where 𝐹𝑆𝑁𝑅(⋅) is the cdf of the SNR given in (21).

B. Average SER

For many general modulations, the average SER at a certain
SNR can be expressed as [21]

𝑃𝑠 = 𝐸𝛾

{
𝑎𝑠𝑄

(√
𝑏𝑠𝛾
)}

, (32)

where 𝛾 is the SNR, parameters 𝑎𝑠 and 𝑏𝑠 are determined by
specific constellations, 𝑄 (⋅) is the Gaussian Q-function and
𝐸𝑋 {⋅} denotes the expectation over the distribution of 𝑋 . For
example, for BPSK modulation, 𝑎𝑠 = 1, and 𝑏𝑠 = 2; and for
QPSK modulation, 𝑎𝑠 = 1, and 𝑏𝑠 = 1. In [21], (32) is also
written as:

𝑃𝑠 = 𝑎𝑠𝐸𝑊

{
𝐹𝑆𝑁𝑅

(
𝑊 2

𝑏𝑠

)}
= 𝑎𝑠

∫ ∞

−∞

𝑒−
𝑤2

2√
2𝜋

𝐹𝑆𝑁𝑅

(
𝑤2

𝑏𝑠

)
𝑑𝑤, (33)

where 𝑊 is a ZMCSCG random variable with unit variance.
Substituting 𝐹𝑆𝑁𝑅(𝑟) in (21) into (33), we have

𝑃𝑠 =

𝑡∑
𝑖=1

𝑡∑
𝑙=1,𝑙 ∕=𝑖

𝐴𝑖𝜓
𝑡−2
𝑖 𝐶𝑙,𝑖/𝑄𝑙,𝑖𝑎𝑠

×
∫ ∞

−∞

𝑒−
𝑤2

2√
2𝜋

(
𝜙𝑖𝑒

−𝑤2𝑞2𝑖
𝑏𝑠𝜙𝑖 − 𝜙𝑖 +

𝑏𝑠
𝑤2

𝐼2

)
𝑑𝑤. (34)

Now the average SER can be calculated as

𝑃𝑠 =

𝑡∑
𝑖=1

𝑡∑
𝑙=1,𝑙 ∕=𝑖

𝐴𝑖𝜓
𝑡−2
𝑖 𝐶𝑙,𝑖/𝑄𝑙,𝑖𝑎𝑠

×
(
𝜙𝑖

(
1 +

2𝑞2𝑖
𝑏𝑠𝜙𝑖

)−1/2

− 𝜙𝑖 + 𝐼6

)
, (35)
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𝐼4 =

(
𝑞2𝑖 +

𝑄𝑙,𝑖𝐵𝑙,𝑖𝑞𝑖
2

− 𝐵2
𝑙,𝑖

4𝑄−2
𝑙,𝑖

)
𝑒
−𝑟 (𝑞

2
𝑖+𝑄𝑙,𝑖𝐵𝑙,𝑖𝑞𝑖)

𝐵𝑙,𝑖 −
(

1√
𝑟
+

√
𝑟𝐵𝑙,𝑖

2𝑄−2
𝑙,𝑖

)
𝐵𝑙,𝑖𝑄𝑙,𝑖

√
𝜋

4
√

1/𝐵𝑙,𝑖
𝑒
𝑄2
𝑙,𝑖𝑟𝐵𝑙,𝑖

4 erf

(√
𝑟

𝐵𝑙,𝑖

(
𝑞𝑖 +

𝑄𝑙,𝑖𝐵𝑙,𝑖
2

))
. (24)

𝐼52 = −𝐵𝑙,𝑖𝑄𝑙,𝑖
√
𝜋

4
√

1/𝐵𝑙,𝑖

(√
𝜋

−𝜇2 − 2√
𝜋𝛽𝑎

2𝐹1

(
1

2
, 1;

3

2
;
𝜇2𝑎
𝛽2
𝑎

)
+𝐵𝑙,𝑖𝑄

2
𝑙,𝑖

(
1

−4𝜇2

√
𝜋

−𝜇2 − 1

3
√
𝜋𝛽3

𝑎
2𝐹1

(
3

2
, 2;

5

2
;
𝜇2𝑎
𝛽2
𝑎

)))
, (27)

where 2𝐹1(𝑎, 𝑏; 𝑐; 𝑧) is the Gauss hypergeometric function, 𝜇2𝑎 = −𝑠+ 𝑄2
𝑙,𝑖𝐵𝑙,𝑖

4
and 𝛽𝑎 =

√
1

𝐵𝑙,𝑖

(
𝑞𝑖 +

𝑄𝑙,𝑖𝐵𝑙,𝑖
2

)
.

𝐼72 = −𝐵𝑙,𝑖𝑄𝑙,𝑖
√
𝜋

2
√

1/𝐵𝑙,𝑖

(
(𝑣1 − 2)!!

2(−2𝜇2)(𝑣1−1)/2

√
𝜋

−𝜇2 − Γ
(
𝑣1+1

2

)
√
𝜋𝑣1𝛽

𝑣1
𝑏

2𝐹1

(
𝑣1
2
,
𝑣1 + 1

2
;
𝑣1
2

+ 1;
𝜇2𝑏
𝛽2
𝑏

))

− 𝐵2
𝑙,𝑖𝑄

3
𝑙,𝑖

√
𝜋

4
√

1/𝐵𝑙,𝑖

(
(𝑣2 − 2)!!

2(−2𝜇2)(𝑣2−1)/2

√
𝜋

−𝜇2 − Γ
(
𝑣2+1

2

)
√
𝜋𝑣2𝛽

𝑣2
𝑏

2𝐹1

(
𝑣2
2
,
𝑣2 + 1

2
;
𝑣2
2

+ 1;
𝜇2𝑏
𝛽2
𝑏

))
, (30)

where 𝑣1 = 2𝑛+ 1, 𝑣2 = 2𝑛+ 3, 𝜇2𝑏 =
𝑄2
𝑙,𝑖𝐵𝑙,𝑖
4

and 𝛽𝑏 =
√

1
𝐵𝑙,𝑖

(
𝑞𝑖 +

𝑄𝑙,𝑖𝐵𝑙,𝑖
2

)
.

𝐼6 =

∫ ∞

−∞

𝑒−
𝑤2

2√
2𝜋
𝐵𝑙,𝑖𝑒

𝑄2
𝑙,𝑖𝑤

2𝐵𝑙,𝑖
4𝑏𝑠

(
−𝑒−

𝑤2

𝐵𝑙,𝑖𝑏𝑠

(
𝑞𝑖+

𝑄𝑙,𝑖𝐵𝑙,𝑖
2

)2

+ 𝑒
− 𝑤2

𝐵𝑙,𝑖𝑏𝑠

(
𝑄𝑙,𝑖𝐵𝑙,𝑖

2

)2
)
𝑑𝑤 +

∫ ∞

−∞

𝑒−
𝑤2

2√
2𝜋
𝑒
𝑄2
𝑙,𝑖𝑤

2𝐵𝑙,𝑖
4𝑏𝑠

×𝐵𝑙,𝑖
(
−𝑄𝑙,𝑖𝑤

√
𝜋/𝑏𝑠

2
√−1/𝐵𝑙,𝑖

(
erfi

(
𝑤

√
− 1

𝐵𝑙,𝑖𝑏𝑠

(
𝑞𝑖 +

𝑄𝑙,𝑖𝐵𝑙,𝑖
2

))
− erfi

(
𝑤

√
− 1

𝐵𝑙,𝑖𝑏𝑠

𝑄𝑙,𝑖𝐵𝑙,𝑖
2

)))
𝑑𝑤

= −𝐵𝑙,𝑖 1√
2
(

1
2
+

𝑞2𝑖
𝑏𝑠𝜙𝑖

) +𝐵𝑙,𝑖 − 𝑄𝑙,𝑖𝐵𝑙,𝑖

2
√
2𝑏𝑠

(
𝑞𝑖 +

𝑄𝑙,𝑖𝐵𝑙,𝑖
2

)
(

1
2
− 𝑄2

𝑙,𝑖
𝐵𝑙,𝑖

4𝑏𝑠

)
√√√⎷ 1(

1
2
+

𝑞2𝑖
𝐵𝑙,𝑖𝑏𝑠

+
𝑄𝑙,𝑖𝑞𝑖
𝑏𝑠

) +
𝑄2
𝑙,𝑖𝐵

2
𝑙,𝑖

4𝑏𝑠

(
1
2
− 𝑄2

𝑙,𝑖
𝐵𝑙,𝑖

4𝑏𝑠

) (36)

where 𝐼6 is given in (36).
Using the SNR expression in (13), simplified expressions

can found for the following special cases. With channel
correlation only, the SNR is given by

𝑆𝑁𝑅 =
𝑎2�̃�†Λ�̃�

𝜎2
𝑛

, (37)

and with feedback delay only or channel estimation error only:

𝑆𝑁𝑅 =
𝜛𝑎2�̃�†�̃�

𝜎2
𝑛 + 𝑎2(1−𝜛)

, (38)

where 𝜛 = 𝜌2𝑑 and 𝜛 = 𝜂𝑒
1+𝜂𝑒

for the feedback delay only
case and channel estimation error only case, respectively. From
these expressions, it is clear that correlation alone will not
cause an error floor and hence the system has maximum
diversity order, 𝑁𝑡. Feedback delay will cause an error floor,
giving a diversity order of 0, and estimation error will cause an
error floor if it does not reduce with an increase in transmit
SNR, 𝑎2. These comments follow from the presence of the
𝑎2 term in the denominator of (38) which means that SNR
converges to a finite limit as 𝑎2 → ∞. Also, we observe a
greater sensitivity to feedback delay than estimation error if
𝜌2𝑑 <

𝜂𝑒
1+𝜂𝑒

. This follows by equating 𝜂𝑒
1+𝜂𝑒

to 𝜌2𝑑 which makes
the two SNRs equal.

Simplified SER results can be obtained at high transmit
SNR. For example, as 𝑎2 → ∞, (38) becomes

𝑆𝑁𝑅 = 𝜛2�̃�
†�̃�, (39)

where 𝜛2 = 𝜛
1−𝜛 and we have assumed that 𝜛 does not vary

with SNR (as in the feedback delay case). Now the SNR is
a 𝜒2 random variable. Hence, using (33), a simplified SER
result can be obtained as

𝑃𝑠 = 𝑎𝑠

⎛⎝1− 1√
1 + 2

𝜛2𝑏𝑠

Σ𝑁−1
𝑘=0

(2𝑘 − 1)!!

𝑘!(𝜛2𝑏𝑠 + 2)𝑘

⎞⎠ , (40)

where (𝑘)!! is the double factorial [19].

C. Ergodic Capacity

This subsection considers the ergodic capacity of the beam-
forming system in correlated Rayleigh channels. The ergodic
capacity (in bits/s/Hz) of the system can be evaluated as [15]:

𝐶 = 𝐸𝑟 {log2(1 + 𝑟)}
=

∫ ∞

0

log2(1 + 𝑟)𝑓𝑆𝑁𝑅 (𝑟) 𝑑𝑟. (41)

A closed-form solution for the integral in (41) is difficult to
find but it can be evaluated numerically. However, an upper
bound for the ergodic capacity can be evaluated which has a
closed-form result. According to Jensen’s inequality [25], an
upper bound on the ergodic capacity in (41) is given by

𝐶 ≤ log2(1 + 𝐸 {𝑟}), (42)

where 𝐸 {𝑟} is the expected value of the SNR or the first
moment of the SNR. Therefore, an upper bound for the ergodic
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Fig. 2. Analytical and simulated cdfs of the SNR with parameters: 𝜌𝑑 =
0.95, 𝜂𝑒 = 20 dB, 𝜌𝑅 = 0.6, 𝑎2 = 10 dB.

capacity can be given as

𝐶𝑈 = log2(1 + 𝐸 {𝑟}), (43)

where 𝐸 {𝑟} can be obtained from (28) as

𝐸{𝑟} =

𝑁𝑡∑
𝑖=1

𝑁𝑡∑
𝑙=1,𝑙 ∕=𝑖

𝐴𝑖𝜓
𝑁𝑡−2
𝑖 𝐶𝑙,𝑖
𝑄𝑙,𝑖

×
(
−𝑞2𝑖

(
𝑞2𝑖
𝜙𝑖

)−2

+ 𝐼7𝑐1 + 𝐼7𝑐2

)
. (44)

In (44), 𝐼7𝑐1 can be given as

𝐼7𝑐1 =

(
𝑞2𝑖 +

𝑄𝑙,𝑖𝐵𝑙,𝑖𝑞𝑖
2

− 𝑄2
𝑙,𝑖𝐵

2
𝑙,𝑖

4

)(
𝑞2𝑖
𝜙𝑖

)−2

, (45)

and 𝐼7𝑐2 is given in (46).

V. NUMERICAL AND SIMULATION RESULTS

In all the results given, we have used the correlation
matrix, 𝑹, with elements given by, 𝑹(𝑖, 𝑗) = 𝜌

∣𝑖−𝑗∣
𝑅 , where

0 < 𝜌𝑅 < 1 is the transmit correlation coefficient. In this
exponential correlation model, bigger 𝜌𝑅 values represent
higher correlation among the transmit antennas. Also, we let
𝜎2
𝑛 = 1 and hence 𝑎2 represents the transmit SNR of the

system. The channel estimation parameter, 𝜂𝑒 is set to 10 dB
above the transmit SNR as, in general, the training phase has
higher energy than the data transmission [26]. First, in Figs. 2
and 3, we validate the theoretical cdf and pdf given in (21)
and (23), respectively, via simulation. The figures show the
cdf and pdf of the SNR with different numbers of transmit
antennas and it also shows that the theoretical results are in
good agreement with the simulations.

Figure 4 shows the system outage performance with 𝑁𝑡 =
2, 3, 4 for a threshold SNR value, 𝑟𝑡ℎ = 0 dB. The theoretical
outage probability was plotted using (31). It can be seen
that the theoretical results agree with the simulations in all
SNR regimes. From those curves, we can see that the outage
performance improves with an increase in the number of
antennas at the transmitter due to the diversity improvement.
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Fig. 3. Analytical and simulated pdfs of the SNR with parameters: 𝜌𝑑 =
0.95, 𝜂𝑒 = 20 dB, 𝜌𝑅 = 0.6, 𝑎2 = 10 dB.
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Fig. 4. Analytical and simulated outage probability of the system with
parameters: 𝜌𝑑 = 0.95, 𝜂𝑒 = 𝑎2 + 10 dB, 𝜌𝑅 = 0.6.

Figure 5 presents the simulated and analytical average SER
of QPSK modulation with 𝑁𝑡 = 2, 3, 4. Results in the figure
confirm the validity and accuracy of our analytical SER result
and show that the SER performance increases as 𝑁𝑡 increases.

Figure 6 shows the average SER of QPSK modulation with
different delay values, 𝜌𝑑 = 1.00, 0.995, 0.95, 0.900. In these
results, the channel estimation error is set to be negligible
(𝜂𝑒 = 100 dB) and the channel correlation effect is set to
be very small (𝜌𝑅 = 0.001), thus the results show the effect
of 𝜌𝑑 in the absence of the channel estimation error and the
channel correlation. Figure 6 shows that the average SER
performance is very sensitive to the feedback delay and the
SER performance decreases quite rapidly due to decreases
in 𝜌𝑑. Also note that the results show an error floor due to
feedback delay at high SNR which agrees with (40).

Figure 7 illustrates the simulated and analytical average
SER of QPSK modulation with different transmit correlations,
𝜌𝑅 = 0.9, 0.6, 0.1. In these results, the channel estimation
error is set to be negligible (𝜂𝑒 = 100 dB) and so is the channel
delay effect (𝜌𝑑 = 1). Thus, the results show the effect of the
channel correlation in the absence of the channel estimation
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𝐼7𝑐2 = −𝐵𝑙,𝑖𝑄𝑙,𝑖
√
𝜋

2
√

1/𝐵𝑙,𝑖

(
1

2(−2𝜇2)

√
𝜋

−𝜇2 − 1

3
√
𝜋𝛽3

𝑏

2𝐹1

(
3

2
, 2;

5

2
;
𝜇2𝑏
𝛽2
𝑏

))

− 𝐵2
𝑙,𝑖𝑄

3
𝑙,𝑖

√
𝜋

4
√

1/𝐵𝑙,𝑖

(
3

2(−2𝜇2)2

√
𝜋

−𝜇2 − 2

5
√
𝜋𝛽5

𝑏

2𝐹1

(
5

2
, 3;

7

2
;
𝜇2𝑏
𝛽2
𝑏

))
. (46)
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Fig. 5. Analytical and simulated SER with parameters: QPSK, 𝜌𝑑 = 0.995,
𝜂𝑒 = 𝑎2 + 10 dB, 𝜌𝑅 = 0.6.
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Fig. 6. Analytical and simulated SER for different feedback delays with
parameters: QPSK, 𝑁𝑡 = 3, 𝜂𝑒 = 100 dB, 𝜌𝑅 = 0.001.

error and the channel delay effect. We observe that the SER
performance gets better with lower transmit correlation as
expected and the effect of transmit correlations is not as severe
as the channel delay.

Figure 8 shows the average SER of QPSK modulation with
different channel estimation errors, 𝜂𝑒 = 𝑎2 + 10, 𝑎2, 𝑎2 −
10, 10 dB. In these results, the channel correlation effect is
set to be very small (𝜌𝑅 = 0.001) and so is the channel
delay effect (𝜌𝑑 = 1). Thus, the results present the effect
of the channel estimation error in the absence of the channel
correlation and the channel delay effects. As expected, we
observe that the SER performance gets better with lower
channel estimation error. Note also that when 𝜂𝑒 remains the
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Fig. 7. Analytical and simulated SER for different channel correlation values
with parameters: QPSK, 𝑁𝑡 = 3, 𝜂𝑒 = 100 dB, 𝜌𝑑 = 1.
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Fig. 8. Analytical and simulated SER for different channel estimation error
values with parameters: QPSK, 𝑁𝑡 = 3, 𝜌𝑅 = 0.001, 𝜌𝑑 = 1.

same with an increase in the transmit SNR, the results show
an error floor which agrees with (40).

Finally, Fig. 9 validates the ergodic capacity results given in
(41) and (42). The figure shows that the theoretical results are
in good agreement with the simulations. Note that the result
given in (41) does not have a closed-form and is evaluated
numerically. The upper bound results for the capacity gives a
good approximation for the actual capacity while allowing a
closed-form result.

VI. CONCLUSIONS

In this paper we investigated the beamforming performance
of MISO systems by considering the joint effects of channel
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Fig. 9. Analytical and simulated ergodic capacity with parameters:𝜌𝑅 = 0.1,
𝜌𝑑 = 0.995, 𝜂𝑒 = 𝑎2 + 10 dB.

estimation error and feedback delay under spatial correlation.
We derived new exact expressions for the statistics of the
SNR which were used to examine the average SER applicable
for a large number of modulation schemes. The statististical
characterization of the SNR presented in this paper was also
used to evaluate important system performance measures: the
outage probability and the ergodic capacity of the system. We
observed that the average SER performance is very sensitive to
feedback delay which causes an error floor. Furthermore, the
results showed that higher spatial correlation at the transmit
antennas and higher channel estimation error reduces the
performance of the system.

APPENDIX

A. Joint pdf of Two Quadratic Forms

Consider the two quadratic forms 𝑋 =
∑𝑁𝑡
𝑖=1 𝜓𝑖𝑋𝑖 and

𝑍 =
∑𝑁𝑡
𝑖=1 𝑟𝜙𝑖𝑋𝑖, where 𝑟𝜙𝑖, 𝜓𝑖 ⩾ 0, 𝑋𝑖 ∼ Exp(1) and

𝑋𝑖 are i.i.d. The characteristic function (CF) of 𝑋 and 𝑍 is
defined as [22]

Φ(𝑠, 𝑤) = 𝐸{𝑒𝑗𝑠𝑋+𝑗𝑤𝑍} = 𝐸{𝑒
∑𝑁𝑡
𝑖=1(𝑗𝑠𝜓𝑖+𝑗𝑤𝑟𝜙𝑖)𝑋𝑖}

=

𝑁𝑡∏
𝑖=1

𝐸{𝑒(𝑗𝑠𝜓𝑖+𝑗𝑤𝑟𝜙𝑖)𝑋𝑖}. (47)

Now, using the result in [23] for the CF of exponentially
distributed random variable, the expectation in (56) can be
calculated as

𝐸{𝑒(𝑗𝑠𝜓𝑖+𝑗𝑤𝑟𝜙𝑖)𝑋𝑖} =
1

1− 𝑗𝑠𝜓𝑖 − 𝑗𝑤𝑟𝜙𝑖
. (48)

Using the partial fraction expansion in [24, p.154], we have

Φ(𝑠, 𝑤) =

𝑁𝑡∏
𝑖=1

1

1− 𝑗𝑠𝜓𝑖 − 𝑗𝑤𝑟𝜙𝑖

=

𝑁𝑡∏
𝑖=1

1

1− 𝑗𝑤𝑟𝜙𝑖

𝑁𝑡∏
𝑖=1

(1 − 2𝑗𝑠𝛾𝑖)
−1

=

𝑁𝑡∏
𝑖=1

1

1− 𝑗𝑤𝑟𝜙𝑖

𝑁𝑡∑
𝑖=1

𝑐𝑖
1− 2𝑗𝑠𝛾𝑖

, (49)

where 𝛾𝑖 =
𝜓𝑖/2

1−𝑗𝑤𝑟𝜙𝑖 and

𝑐𝑖 = 𝛾𝑁𝑡−1
𝑖

𝑁𝑡∏
𝑙=1,𝑙 ∕=𝑖

(𝛾𝑖 − 𝛾𝑙)
−1. (50)

Inverting Φ(𝑠, 𝑤) with respect to 𝑠, we have

Φ(𝑤) =
1

2𝜋

∫ ∞

−∞
Φ(𝑠, 𝑤)𝑒−𝑗𝑥𝑠𝑑𝑠

=

𝑁𝑡∏
𝑘=1

1

1− 𝑗𝑤𝑟𝜙𝑘

𝑁𝑡∑
𝑖=1

𝑐𝑖𝑒
−𝑥/(2𝛾𝑖)

2𝛾𝑖
𝑢(𝑥), (51)

where 𝑢(𝑥) is the unit step function. The result in (51) is
obtained by using the following integral from [19]∫ ∞

−∞

𝑒−𝑗𝑝𝑥

𝛽 − 𝑗𝑥
𝑑𝑥 = 2𝜋𝑒−𝛽𝑝𝑢(𝑝). (52)

Now, substituting 𝑐𝑖 and 𝛾𝑖 into (51), the 𝑖th term of (51) can
be expressed as

Φ𝑖(𝑤) =

𝑁𝑡∏
𝑘=1

(
𝜓𝑖/2

1− 𝑗𝑤𝑟𝜙𝑖

)𝑁𝑡−1
𝑒

−𝑥
2𝛾𝑖 (1− 𝑗𝑤𝑟𝜙𝑖)
𝜓𝑖(1− 𝑗𝑤𝑟𝜙𝑘)

×
𝑁𝑡∏

𝑙=1,𝑙 ∕=𝑖

((
𝜓𝑖/2

1− 𝑗𝑤𝑟𝜙𝑖

)
−
(

𝜓𝑙/2

1− 𝑗𝑤𝑟𝜙𝑙

))−1

𝑢(𝑥)

= 𝜓𝑁𝑡−2
𝑖 𝑒−𝑥(1−𝑗𝑤𝑟𝜙𝑖)/𝜓𝑖

×
𝑁𝑡∏

𝑙=1,𝑙 ∕=𝑖
((𝜓𝑖 − 𝜓𝑙)− 𝑗𝑤(𝜓𝑖𝑟𝜙𝑙 − 𝜓𝑙𝑟𝜙𝑖))−1 𝑢(𝑥).

(53)

Defining 𝜓𝑖,𝑙 ≜ 𝜓𝑖 − 𝜓𝑙 and 𝜙𝑙,𝑖 ≜ 𝜓𝑖𝜙𝑙 − 𝜓𝑙𝜙𝑖, (53) can be
rewritten as

Φ𝑖(𝑤) = 𝜓𝑁𝑡−2
𝑖 𝑒−𝑥(1−𝑗𝑤𝑟𝜙𝑖)/𝜓𝑖

𝑁𝑡∏
𝑙=1,𝑙 ∕=𝑖

𝑢(𝑥)

𝜓𝑖,𝑙 − 𝑗𝑤𝑟𝜙𝑙,𝑖

= 𝐴𝑖𝜓
𝑁𝑡−2
𝑖 𝑒−𝑥/𝜓𝑖

𝑁𝑡∏
𝑙=1,𝑙 ∕=𝑖

𝑒𝑗𝑥𝑤𝑟𝜙𝑖/𝜓𝑖𝑢(𝑥)

1− 𝑗𝑤𝑟𝐵𝑙,𝑖
, (54)

where 𝐵𝑙,𝑖 = 𝜙𝑙,𝑖/𝜓𝑖,𝑙 and 𝐴𝑖 =
∏𝑁𝑡
𝑙=1,𝑙 ∕=𝑖 1/𝜓𝑖,𝑙.

Using the partial fraction expansion in [24, p.154] for the
product term in (54) gives

Φ𝑖(𝑤) = 𝐴𝑖𝜓
𝑁𝑡−2
𝑖 𝑒−𝑥/𝜓𝑖

𝑁𝑡∑
𝑙=1,𝑙 ∕=𝑖

𝑟−1𝐶𝑙,𝑖

𝑟−1𝐵−1
𝑙,𝑖 − 𝑗𝑤

𝑒
𝑗𝑥𝑤𝑟𝜙𝑖
𝜓𝑖 𝑢(𝑥),

(55)

where

𝐶𝑙,𝑖 = 𝐵𝑁𝑡−3
𝑙,𝑖

𝑁𝑡∏
𝑚=1,𝑚 ∕=𝑙,𝑚 ∕=𝑖

(𝐵𝑙,𝑖 −𝐵𝑚,𝑖)
−1. (56)

Now, using (55), Φ(𝑤) in (51) can be given as

Φ(𝑤) =

𝑁𝑡∑
𝑖=1

𝑁𝑡∑
𝑙=1,𝑙 ∕=𝑖

𝐴𝑖𝜓
𝑁𝑡−2
𝑖 𝑒−𝑥/𝜓𝑖

𝑟−1𝐶𝑙,𝑖𝑒
𝑗𝑥𝑤𝑟𝜙𝑖
𝜓𝑖

𝑟−1𝐵−1
𝑙,𝑖 − 𝑗𝑤

𝑢(𝑥).

(57)

To invert Φ(𝑤) with respect to 𝑤, we require the following
integrals from [19]∫ ∞

−∞

𝑒−𝑗𝑝𝑥

𝛽 + 𝑗𝑥
𝑑𝑥 =

{
0 𝑝 > 0
2𝜋𝑒𝛽𝑝 𝑝 < 0

(58)
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and ∫ ∞

−∞

𝑒−𝑗𝑝𝑥

𝛽 − 𝑗𝑥
𝑑𝑥 =

{
2𝜋𝑒−𝛽𝑝 𝑝 > 0
0 𝑝 < 0

, (59)

where the integrations are valid when the real part of 𝛽 is
greater than zero. Now, using these integrations, Φ(𝑤) can be
inverted with respect to 𝑤 to obtain the joint pdf of 𝑋 and 𝑍
given in Theorem 1 as

𝑓(𝑥, 𝑧) =
1

2𝜋

∫ ∞

−∞
Φ(𝑤)𝑒−𝑗𝑧𝑤𝑑𝑤

=

𝑁𝑡∑
𝑖=1

𝑁𝑡∑
𝑙=1,𝑙 ∕=𝑖

𝐴𝑖𝜓
𝑁𝑡−2
𝑖 𝑒−𝑥/𝜓𝑖𝑟−1𝐶𝑙,𝑖𝑒

−1
𝑟𝐵𝑙,𝑖

(−𝑥𝑟𝜙𝑖
𝜓𝑖

+𝑧
)

×
⎧⎨
⎩
𝑢
(

−𝑥𝑟𝜙𝑖
𝜓𝑖

+ 𝑧
)
𝑢(𝑥) 𝑟𝐵𝑙,𝑖 > 0

−𝑢
(
𝑥𝑟𝜙𝑖
𝜓𝑖

− 𝑧
)
𝑢(𝑥) 𝑟𝐵𝑙,𝑖 < 0

. (60)

Note that when 𝑟𝐵𝑙,𝑖 < 0, 𝑧 could have negative values, but
we observe that when 𝑧 takes negative values 𝑓(𝑥, 𝑧) = 0.

B. Proof of Eq. (20)

Firstly, it can easily be shown that 𝜓𝑖 = 𝜂𝑒𝜆
2
𝑖 /(1 + 𝜂𝑒𝜆𝑖)

and hence,

𝜓𝑖,𝑙 =
𝜂𝑒𝜆

2
𝑖

(1 + 𝜂𝑒𝜆𝑖)
− 𝜂𝑒𝜆

2
𝑙

(1 + 𝜂𝑒𝜆𝑙)

=
(𝜆𝑖 − 𝜆𝑙)

(
𝜂𝑒(𝜆𝑖 + 𝜆𝑙) + 𝜂2𝑒𝜆𝑖𝜆𝑙

)
(1 + 𝜂𝑒𝜆𝑖)(1 + 𝜂𝑒𝜆𝑙)

. (61)

Substituting 𝜓𝑖 = 𝜂𝑒𝜆
2
𝑖 /(1 + 𝜂𝑒𝜆𝑖) into 𝛽𝑖 and then 𝛽𝑖 into

𝜙𝑖, it can be shown that

𝜙𝑖 = 𝜓𝑖

[
𝜎2
𝑛

𝜌2𝑑𝑎
2
+

𝜆𝑖 + 𝜂𝑒𝜆
2
𝑖 (1− 𝜌2𝑑)

𝜌2𝑑(1 + 𝜂𝑒𝜆𝑖)

]
. (62)

Furthermore, substituting (62) into 𝜙𝑙,𝑖, we obtain

𝜙𝑙,𝑖 = −𝜓𝑖𝜓𝑙
(
1 + (1− 𝜌2𝑑)𝜂𝑒(𝜆𝑖 + 𝜆𝑙 + 𝜂𝑒𝜆𝑖𝜆𝑙)

)
𝜌2𝑑(1 + 𝜂𝑒𝜆𝑖)(1 + 𝜂𝑒𝜆𝑙)(𝜆𝑖 − 𝜆𝑙)−1

. (63)

Finally, substituting (63) and (61) into 𝐵𝑙,𝑖, we obtain (20).

C. Proof of Theorem 2

Let

𝑔(𝑥, 𝑧) ≜ 𝑒−𝑥/𝜓𝑖𝑒
−1
𝑟𝐵𝑙,𝑖

(−𝑥𝑟𝜙𝑖
𝜓𝑖

+𝑧
)
, (64)

then, using (18), 𝐹𝑆𝑁𝑅(𝑟) in (17) can be calculated by

𝐹𝑆𝑁𝑅(𝑟) = P
[
𝑋2 < 𝑍

]
=

𝑁𝑡∑
𝑖=1

𝑁𝑡∑
𝑙=1,𝑙 ∕=𝑖

𝐴𝑖𝜓
𝑁𝑡−2
𝑖

𝐶𝑙,𝑖
𝑟

∫ (𝑟𝑞𝑖)
2

0

∫ √
𝑧

𝑧/(𝑟𝑞𝑖)

−𝑔(𝑥, 𝑧)𝑑𝑥𝑑𝑧, (65)

where 𝑞𝑖 = 𝜙𝑖/𝜓𝑖. After evaluating the integrals in (65), the
cdf can be given as in (21). In (21), 𝐼2 is an integral given by,

𝐼2 =

∫ 𝑟2𝑞2𝑖
0

𝑒
−𝑄𝑙,𝑖

√
𝑧− 𝑧

𝑟𝐵𝑙,𝑖 𝑑𝑧. (66)

Using the substitution 𝑦 =
√
𝑧 in (66) gives

𝐼2 =

∫ 𝑟𝑞𝑖
0

2𝑦𝑒−𝑄𝑙,𝑖𝑦−𝑦
2/(𝑟𝐵𝑙,𝑖)𝑑𝑦

=

∫ 𝑟𝑞𝑖
0

2𝑦𝑒−𝑟𝐵𝑙,𝑖(𝑦+𝑄𝑙,𝑖𝑟𝐵𝑙,𝑖/2)
2

𝑒𝑄
2
𝑙,𝑖𝑟𝐵𝑙,𝑖/4𝑑𝑦. (67)

Again, changing the variable to 𝑥 = 𝑦 +𝑄𝑙,𝑖𝑟𝐵𝑙,𝑖/2, gives

𝐼2= 2𝑒
𝑄2
𝑙,𝑖𝑟𝐵𝑙,𝑖

4

∫ 𝑟𝑞𝑖+𝑄𝑙,𝑖𝑟𝐵𝑙,𝑖
2

𝑄𝑙,𝑖𝑟𝐵𝑙,𝑖
2

(
𝑥− 𝑄𝑙,𝑖𝑟𝐵𝑙,𝑖

2

)
𝑒
− 𝑥2

𝑟𝐵𝑙,𝑖 𝑑𝑥.

(68)

Then, using the following integrals from [19]∫
𝑒𝑎𝑥

2

𝑑𝑥 =
1

2

√
𝜋

𝑎
erfi
(√

𝑎𝑥
)

(69)

and ∫
𝑥 𝑒𝑎𝑥

2

𝑑𝑥 =
𝑒𝑎𝑥

2

2𝑎
, (70)

𝐼2 in (21) can be evaluated as shown in (22).

D. Proof of Theorem 3

The pdf of the SNR can be obtained by differentiating the
cdf in (21) as

𝑓𝑆𝑁𝑅(𝑟) =

𝑁𝑡∑
𝑖=1

𝑁𝑡∑
𝑙=1,𝑙 ∕=𝑖

𝐴𝑖𝜓
𝑁𝑡−2
𝑖

𝐶𝑙,𝑖
𝑄𝑙,𝑖

(
−𝑞2𝑖 𝑒

−𝑟𝑞2𝑖 /𝜙𝑖 + 𝐼41

)
,

(71)

where

𝐼41 =
𝑑(𝑟−1𝐼2)

𝑑𝑟
, (72)

can be calculated as in (73). It is found that with the summa-
tions in (71), the contribution of the third and the fourth term
of 𝐼41 in (73) is equal to zero. Hence, 𝐼41 can be simplified
to 𝐼4 in (24) and this gives the desired result.

E. Proof of Theorem 4

The MGF of the SNR can be expressed as

𝑀(𝑠) =

∫ ∞

0

𝑒−𝑠𝑟𝑓𝑆𝑁𝑅(𝑟) 𝑑𝑟

=

𝑁𝑡∑
𝑖=1

𝑁𝑡∑
𝑙=1,𝑙 ∕=𝑖

𝐴𝑖𝜓
𝑁𝑡−2
𝑖 𝐶𝑙,𝑖
𝑄𝑙,𝑖

(
− 𝑞2𝑖
𝑠+ 𝑞2𝑖 /𝜙𝑖

+ 𝐼5

)
,

(74)

where 𝐼5 =
∫∞
0

𝑒−𝑠𝑟𝐼4 𝑑𝑟 and we assumed 𝑠 + 𝑞2𝑖 /𝜙𝑖 > 0.
The integral 𝐼5 in (74) can be evaluated in parts such that
𝐼5 = 𝐼51 + 𝐼52, where

𝐼51 =

(
𝑞2𝑖 +

𝑄𝑙,𝑖𝐵𝑙,𝑖𝑞𝑖
2

− 𝑄2
𝑙,𝑖𝐵

2
𝑙,𝑖

4

)

×
∫ ∞

0

𝑒−𝑠𝑟𝑒
−𝑟 (𝑞

2
𝑖+𝑄𝑙,𝑖𝐵𝑙,𝑖𝑞𝑖)

𝐵𝑙,𝑖 𝑑𝑟. (75)

Note that 𝑞
2
𝑖+𝑄𝑙,𝑖𝐵𝑙,𝑖𝑞𝑖

𝐵𝑙,𝑖
= 𝑞2𝑖 /𝜙𝑖 so that 𝐼51 can be calculated

as

𝐼51 =

(
𝑞2𝑖 +

𝑄𝑙,𝑖𝐵𝑙,𝑖𝑞𝑖
2

− 𝑄2
𝑙,𝑖𝐵

2
𝑙,𝑖

4

)∫ ∞

0

𝑒−𝑠𝑟𝑒−𝑟(𝑞
2
𝑖 /𝜙𝑖)𝑑𝑟

=

(
𝑞2𝑖 +

𝑄𝑙,𝑖𝐵𝑙,𝑖𝑞𝑖
2

− 𝑄2
𝑙,𝑖𝐵

2
𝑙,𝑖

4

)
1

𝑠+ 𝑞2𝑖 /𝜙𝑖
. (76)



FIRAG et al.: PERFORMANCE OF BEAMFORMING IN CORRELATED MISO SYSTEMS WITH ESTIMATION ERROR AND FEEDBACK DELAY 2601

𝐼41 =

(
𝑞2𝑖 +

𝑄𝑙,𝑖𝐵𝑙,𝑖𝑞𝑖
2

− 𝑄2
𝑙,𝑖𝐵

2
𝑙,𝑖

4

)
𝑒
−𝑟 (𝑞

2
𝑖+𝑄𝑙,𝑖𝐵𝑙,𝑖𝑞𝑖)

𝐵𝑙,𝑖 −
(

1√
𝑟
+

√
𝑟𝐵𝑙,𝑖𝑄

2
𝑙,𝑖

2

)
𝐵𝑙,𝑖𝑄𝑙,𝑖

√
𝜋

4
√

1/𝐵𝑙,𝑖
𝑒
𝑄2
𝑙,𝑖𝑟𝐵𝑙,𝑖

4 erf

(√
𝑟

𝐵𝑙,𝑖

(
𝑞𝑖 +

𝑄𝑙,𝑖𝐵𝑙,𝑖
2

))

+

(
1√
𝑟
+

√
𝑟𝐵𝑙,𝑖𝑄

2
𝑙,𝑖

2

)
𝐵𝑙,𝑖𝑄𝑙,𝑖

√
𝜋

4
√

1/𝐵𝑙,𝑖
𝑒
𝑄2
𝑙,𝑖𝑟𝐵𝑙,𝑖

4 erf

(√
𝑟

𝐵𝑙,𝑖

𝑄𝑙,𝑖𝐵𝑙,𝑖
2

)
+
𝑄2
𝑙,𝑖𝐵

2
𝑙,𝑖

4
. (73)

𝐼52 = −𝐵𝑙,𝑖𝑄𝑙,𝑖
√
𝜋

4
√

1/𝐵𝑙,𝑖

∫ ∞

0

𝑒−𝑠𝑟
(

1√
𝑟
+

√
𝑟𝐵𝑙,𝑖𝑄

2
𝑙,𝑖

2

)
𝑒
𝑄2
𝑙,𝑖𝑟𝐵𝑙,𝑖

4 erf

(√
𝑟

𝐵𝑙,𝑖

(
𝑞𝑖 +

𝑄𝑙,𝑖𝐵𝑙,𝑖
2

))
𝑑𝑟. (77)

𝐼52 = −𝐵𝑙,𝑖𝑄𝑙,𝑖
√
𝜋

4
√

1/𝐵𝑙,𝑖

∫ ∞

0

𝑒−𝑠𝑦
2 (

2 + 𝑦2𝐵𝑙,𝑖𝑄
2
𝑙,𝑖

)
𝑒
𝑄2
𝑙,𝑖𝑦

2𝐵𝑙,𝑖
4 erf

(
𝑦

√
1

𝐵𝑙,𝑖

(
𝑞𝑖 +

𝑄𝑙,𝑖𝐵𝑙,𝑖
2

))
𝑑𝑦. (78)

𝐼72 = −𝐵𝑙,𝑖𝑄𝑙,𝑖
√
𝜋

4
√

1/𝐵𝑙,𝑖

∫ ∞

0

𝑟𝑛
(

1√
𝑟
+

√
𝑟𝐵𝑙,𝑖𝑄

2
𝑙,𝑖

2

)
𝑒
𝑄2
𝑙,𝑖𝑟𝐵𝑙,𝑖

4 erf

(√
𝑟

𝐵𝑙,𝑖

(
𝑞𝑖 +

𝑄𝑙,𝑖𝐵𝑙,𝑖
2

))
𝑑𝑟. (79)

𝐼72 = −𝐵𝑙,𝑖𝑄𝑙,𝑖
√
𝜋

4
√

1/𝐵𝑙,𝑖

∫ ∞

0

(
2𝑦2𝑛 + 𝑦2𝑛+2𝐵𝑙,𝑖𝑄

2
𝑙,𝑖

)
𝑒
𝑄2
𝑙,𝑖
𝑦2𝐵𝑙,𝑖
4 erf

(
𝑦

√
1

𝐵𝑙,𝑖

(
𝑞𝑖 +

𝑄𝑙,𝑖𝐵𝑙,𝑖
2

))
𝑑𝑦. (80)

The integral 𝐼52 is given in (77). Substituting 𝑦 =
√
𝑟, we

can rewrite 𝐼52 in (77) as in (78). Now using the following
integrals from [19] for −𝜇2 > 0, 𝑣 > 0 and ℜ(𝛽2) > ℜ(𝜇2),∫ ∞

0

(1− erf(𝛽𝑥))𝑒𝜇
2𝑥2𝑥𝑣−1𝑑𝑥

=
Γ
(
𝑣+1
2

)
√
𝜋𝑣𝛽𝑣

2𝐹1

(
𝑣

2
,
𝑣 + 1

2
;
𝑣

2
+ 1;

𝜇2

𝛽2

)
(81)

∫ ∞

0

𝑒𝜇
2𝑥2𝑥𝑣−1𝑑𝑥 =

(𝑣 − 2)!!

2(−2𝜇2)(𝑣−1)/2

√
𝜋

−𝜇2
, (82)

we have∫ ∞

0

erf(𝛽𝑥)𝑒𝜇
2𝑥2𝑥𝑣−1𝑑𝑥 =

(𝑣 − 2)!!

2(−2𝜇2)
(𝑣−1)

2

√
𝜋

−𝜇2

− Γ
(
𝑣+1
2

)
√
𝜋𝑣𝛽𝑣

2𝐹1

(
𝑣

2
,
𝑣 + 1

2
;
𝑣

2
+ 1;

𝜇2

𝛽2

)
. (83)

Using the integral (83), 𝐼52 can be calculated as in Theorem
3.

F. Proof of Theorem 5

The moments of the SNR can be calculated as

𝐸{𝑟𝑛} =

∫ ∞

0

𝑟𝑛𝑓𝑆𝑁𝑅(𝑟)𝑑𝑟

=

𝑁𝑡∑
𝑖=1

𝑁𝑡∑
𝑙=1,𝑙 ∕=𝑖

𝐴𝑖𝜓
𝑁𝑡−2
𝑖 𝐶𝑙,𝑖
𝑄𝑙,𝑖

×
(
−
∫ ∞

0

𝑟𝑛𝑞2𝑖 𝑒
−𝑟𝑞2𝑖 /𝜙𝑖𝑑𝑟 +

∫ ∞

0

𝑟𝑛𝐼4𝑑𝑟

)
=

𝑁𝑡∑
𝑖=1

𝑁𝑡∑
𝑙=1,𝑙 ∕=𝑖

𝐴𝑖𝜓
𝑁𝑡−2
𝑖 𝐶𝑙,𝑖
𝑄𝑙,𝑖

(
−𝑞2𝑖 𝑛!

(
𝑞2𝑖
𝜙𝑖

)−𝑛−1

+ 𝐼7

)
.

(84)

where 𝐼7 =
∫∞
0

𝑟𝑛𝐼4𝑑𝑟. The integral 𝐼7 in (84) can be
evaluated in parts such that 𝐼7 = 𝐼71 + 𝐼72, where

𝐼71 =

(
𝑞2𝑖 +

𝑄𝑙,𝑖𝐵𝑙,𝑖𝑞𝑖
2

− 𝑄2
𝑙,𝑖𝐵

2
𝑙,𝑖

4

)

×
∫ ∞

0

𝑟𝑛𝑒
−𝑟 (𝑞

2
𝑖+𝑄𝑙,𝑖𝐵𝑙,𝑖𝑞𝑖)

𝐵𝑙,𝑖 𝑑𝑟. (85)

Note that 𝑞
2
𝑖+𝑄𝑙,𝑖𝐵𝑙,𝑖𝑞𝑖

𝐵𝑙,𝑖
= 𝑞2𝑖 /𝜙𝑖 so that 𝐼71 can be calculated

as

𝐼71 =

(
𝑞2𝑖 +

𝑄𝑙,𝑖𝐵𝑙,𝑖𝑞𝑖
2

− 𝑄2
𝑙,𝑖𝐵

2
𝑙,𝑖

4

)∫ ∞

0

𝑟𝑛𝑒−𝑟(𝑞
2
𝑖 /𝜙𝑖)𝑑𝑟

=

(
𝑞2𝑖 +

𝑄𝑙,𝑖𝐵𝑙,𝑖𝑞𝑖
2

− 𝑄2
𝑙,𝑖𝐵

2
𝑙,𝑖

4

)
𝑛!

(
𝑞2𝑖
𝜙𝑖

)−𝑛−1

. (86)

The integral 𝐼72 is given in (79). Substituting 𝑦 =
√
𝑟, we can

rewrite 𝐼72 in (79) as in (80). Now using the integral (83), 𝐼72
in (80) can be calculated as in Theorem 4.
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