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On Channel Estimation and Optimal Training
Design for Amplify and Forward Relay Networks
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Abstract—In this paper, we provide a complete study on the
training based channel estimation issues for relay networks that
employ the amplify-and-forward (AF) transmission scheme. We
first point out that separately estimating the channel from source
to relay and relay to destination suffers from many drawbacks.
Then we provide a new estimation scheme that directly estimates
the overall channels from the source to the destination. The
proposed channel estimation well serves the AF based space time
coding (STC) that was recently developed. There exists many
differences between the proposed channel estimation and that in
the traditional single input single out (SISO) and multiple input
single output (MISO) systems. For example, a relay must linearly
precode its received training sequence by a sophisticatedly
designed matrix in order to minimize the channel estimation
error. Besides, each relay node is individually constrained by
a different power requirement because of the non-cooperation
among all relay nodes. We study both the linear least-square
(LS) estimator and the minimum mean-square-error (MMSE)
estimator. The corresponding optimal training sequences, as well
as the optimal precoding matrices are derived from an efficient
convex optimization process.

Index Terms— Channel estimation, amplify and forward relay
networks, cooperative communications, optimal training, optimal
precoding.

I. INTRODUCTION

T IS WELL known that in wireless communication sys-

tems, employing multiple antennas can boost the trans-
mission capacity which, in turn, increases the overall data
throughput [1], [2]. On the other hand, diversity techniques
that apply the space time coding (STC) on multiple trans-
mit antennas could combat the detrimental effects of the
multiplicative time selective fading and thus enhances the
transmission reliability [3], [4]. Unfortunately, packing many
antennas onto a small mobile terminal normally faces the
practical difficulty of the size limit. In order to overcome this
limitation, one would refer to the relay network, where the
space diversity could be exploited from relay nodes existing in
the network [5]- [13]. These relay nodes can either be provided
by the telecommunication agency or could be obtained from
cooperating terminals of other users. The latter scenario is
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sometimes referred to as “cooperative communication” since
each user, although acted as a relay for a certain period, still
has its own information to transmit.

The relay based transmission is usually divided into two
phases. During Phase I, the source broadcasts its own infor-
mation bits to all relays. During Phase II, the relays would
either choose to purely amplify and retransmit the information
to the destination, or to decode the information first and then
transmit these information bits to the destination. The former
process is referred as amplify-and-forward (AF) and the latter
is referred as decode-and-forward (DF). Various cooperative
diversity schemes and space time coding (STC) techniques
have been developed in [7]- [13] for either AF or DF approach.

Before enjoying all those benefits brought by the relay net-
work, an accurate channel state information (CSI) is required
at the destination (for AF) or at both relay and destination
(for DF). However, almost all the existing works assume that
the perfect channel knowledge is available, and no attempt
on channel estimation for the relay networks has yet been
reported. One major reason of the lack of the literature is the
common belief that the channel estimation for relay network
could be built upon following the same approach between the
individual transmitters and receivers [8], [9]. However, this
belief is only valid for the DF scheme where Phase I and Phase
I are conducted independently. For AF based transmission,
separating the channel estimation from two phases will meet
several drawbacks. For example, the relay must inform the
destination the CSI of Phase I, which not only reduces the
bandwidth efficiency but also consumes additional transmit-
ting power. Besides, transmitting the estimated channel will
suffer from further distortions.

In this work, we propose a novel training based channel
estimation scheme, where the overall channel from source to
destination is estimated at the destination only. Specifically,
a unique training sequence will be broadcasted to all relays
during Phase I, and the relays forward the received signals,
after performing a linear transformation, to the destination
during Phase II. Both the least square (LS) and the minimum
mean square error (MMSE) channel estimation algorithms
are derived. Since the relay networks conduct the distributed
transmissions, each relay will have its own power constraint.
This is a major difference from the traditional single-user
multi-antenna transmission, where there is a total power con-
sumption constraint for all transmit antennas. Consequently,
the optimal training design may not have closed form solution
all the time. The optimal training design includes designing
both the training sequence sent from the source and the
linear precoding matrix at each relay. It is shown that the
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Wireless relay networks with one source, one destination and M

optimal design is in fact a convex optimization problem, which
could be efficiently solved by modern interior point method
based convex optimization software [14], and the resulting
complexity is bounded by the polynomial O(M5®log(1/€)),
where M is the number of the relays and € > 0 is the solution
accuracy [15]. Nevertheless, the closed form optimization has
been obtained for two special cases; namely, when channel
to or from different relays are mutually uncorrelated, and
when the signal-to-noise ratio (SNR) is higher than a certain
threshold. To simplify the relay design, we also study some
popular STCs in the AF based relay network and propose
uniform linear precoding matrices that could be applied over
both the training and the data transmitting periods.

The rest of the paper is organized as follows. Section II
presents the system model of AF based relay networks and
illustrates our main purpose of developing a new channel
estimation technique. Section III provides the proposed LS and
MMSE channel estimation algorithm, as well as the optimal
training and the design of precoding matrices. In section 1V,
we study some popular STCs for the AF based relay networks.
Section V displays simulation results to validate the proposed
studies. Finally conclusions are drawn in Section VI and
related proofs are provided in the Appendix.

Notations: Vectors and matrices are boldface small and
capital letters; the transpose, complex conjugate, Hermitian,
inverse, and pseudo-inverse of the matrix A are denoted by
AT, A*, AT, A~! and AT, respectively; tr(A) and ||A|
are the trace and the Frobenius norm of A; [Al];; is the (7, j)th
entry of A and diag{a} denotes a diagonal matrix with the
diagonal element constructed from a; I is the identity matrix;
E{-} denotes the statistical expectation.

II. SPACE TIME CODING IN AF RELAY NETWORKS

Consider a wireless network with M randomly placed relay
nodes R;, 7 = 1, ..., M, one source node S, and one destination
node D, as shown in Fig. 1. Every node has only a single
antenna that cannot transmit and receive simultaneously. The
channel between each node pair is assumed quasi-stationary
Rayleigh flat fading which is constant within one frame but
may vary from frame to frame. Denote the channel from
S to D as f, from S to R; as g;, from R; to D as h;,
respectively; namely f € CN(0,07), gi € CN(0,07,), and
h; € CN(0,0%,). Throughout this paper, we assume perfect

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 7, NO. 5, MAY 2008

synchronization among all terminals as in [13]. Assume that S
wishes to send signal block s = [sy, ..., s7]7 to D via the AF
mode. The transmission is accomplished by the following two
phases, each containing 7" consecutive time slots. For Phase
I, the transmitter broadcasts the signal s to relays and the
destination. The received signals at R; and ID could then be
expressed as

r; = giS+ Ny, (D
d; = fs+nq, 2

where n,; and ng; are the independent white complex
Gaussian noise at the relays and the destination, respectively.
For convenience, all noise variances are assumed as NV,
namely, n,;,ng; € CN(0, NoI). The power constraint of the
transmission is E{s’’s} = TP,, where P, is the average
transmitting power of the source. To exploit the diversity of
the relay system, a linear transformation of r;, denoted as
t;, should be transmitted from each relay. A linear dispersion
(LD) based STC has been proposed in [13], where r; is first
precoded by a unitary matrix P; and is then scaled by a real
factor «y; to keep the average power of R; as P,;. To enable
complex STC, we here modify the precoding scheme in [13]
to
ti = i Pir(”, 3)
where (-)(*) represents the item itself if the ith relay operates
on r; whereas represents the conjugate of the item if the
ith relay operates on r;. Note that this type of STC, where
one relay operates on either r; or rj, exclusively, has been
proposed and analyzed in [13] and [16] for AF relay networks.
Basically, there are two different choices of «;, which are
listed as follows:

= Fri (4a)
v |9i|>Ps + No’
Pri
P (. ¥ — 4b
a 2P (4b)

The second choice of «; is recommended since it is not a
random value while keeps the power constraint from the long
term point of view. Besides, g; in (4a) could only be replaced
by its estimate ¢g; which may not keep the average relay
power exactly as P,;. In this work, we will adopt «; in (4b).
Nevertheless, the provided studies could be easily extended
for «; in (4a). The destination D in Phase II then receives

M
dy =) hiti +ng

i=1

M M (5)
= Z ’LUZOZZPZSE*) + Z hlazPanj) + ngo

i=1 i=1
=BAw + ny,

where ngo € CN(0, NoI) represents the complex white
Gaussian noise vector at I in the second phase, and s; £ s for
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all i € {1,..., M}'. Other variables are defined as follows:

W= [wla"'awM]Tv w; = hlgz(*)a 1= ]-7"'7M7

A= diag{ozl, ....,Ot]u},

B = [Pys”), Pysi™ . Pysty), (©6)
M

ng = Z hlalPlnS) + ngo.
=1

Furthermore, it could easily be checked that the covariance of
ny conditioned on a specific realization of h; is

M
Cov(nglhi,i=1,.., M) = (3 [hi|*af + NI, (7)

i=1

where the property P;P = T is utilized. Therefore, the
overall noise, under a specific realization of h;, is still white
Gaussian but with a scaled covariance of Nyl. It has been
shown in [13] that for well designed P;, the maximum
possible diversity order can be approximated by min{7T, M}
at high SNR. Therefore, similar to the multi-antenna case,
there is no point in having more relays than the coherence
interval [3], [17]. In the following discussions, we will assume
T> M.

III. TRAINING BASED CHANNEL ESTIMATION

For coherent detection in the AF mode [8]- [13], the des-
tination ID performs the maximum likelihood (ML) detection
based only on a specific channel realization w; while treating
ng as the overall white Gaussian noise. This is reasonable
since considering the statistics of hinffi) is not convenient.
Besides, g;, h;, and w; vary little in a frame based commu-
nication system. Therefore, the task of the channel estimation
focuses only on estimating w; at [D.

Based on this fact, two different channel estimation schemes
could be considered. One is to separately estimate g;, h; and
then construct w; from gg*)hi. This approach is not as trivial
as it seems to be. For example, each relay should spend at
least M additional time slots to send the estimated g; to the
destination after h; was estimated. In practical transmissions,
the power in one frame® is usually constant. Therefore,
additional energy will be consumed when transmitting over
additional time slots. Moreover, transmitting the estimated g;
will suffer from further distortion because of both the noise
at the destination and the error in the estimated channel h;.
Sometimes, transmitting a real value is not convenient for relay
nodes. Then g; has to be quantized before the transmission
[18]. The quantization error must also be counted.

The other way is to directly estimate the overall channel
w; at D. We assume that the length of the training sequence
sent from S is N, which may be different from the data
block size T'. The training sequence, denoted as z, will be
broadcasted from S at Phase I, and a linear transformation
will be performed at each relay nodes before they forward the

'Note that only one signal block s is transmitted. By a slight abuse of
notation, we introduce the notation s; to discriminate the training forwarded
from the <th relay, as will be seen later.

2A frame contains both the training block and a number of data blocks.
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training to the destination during Phase II. Denote the N x N
unitary precoding matrix at the ith relay as A; and define

C=[Az{" Azl Az (8)

The transmitting model with other equations from (1) to
(7) could be applied straightforwardly. With slight abuse of
notations, we will keep all other notations unchanged from
the previous section. During the training period, the power
constraint is replaced by zHz < NP, = E,.

A. Channel Estimation of w

1) LS Estimation. The LS estimation assumes a specific re-
alization of g;,h;, namely, the deterministic channel scenario.
From (5), the optimal estimate of w should be obtained from

wrs =A'Cldy = w+ Aw )
with error
Aw = A~'C'n,. (10)
The covariance of Aw is then
Cov(Aw|g™), h) = N, hil?lag|? + 1
(Awlg®), ) <Z| o] o

x A~ (CHC)IAT,
where g = g% g% g7 and b =
[h1,ha, ..., har]T are defined for convenience. Meanwhile,
we would like to define g = [g1, g2, ..., gas|” for future use.
Since A is a constant matrix, the optimization is conducted by
varying the value of C. Noted that the diagonal elements of C
must all be no greater than E. Therefore, the optimal C can
be found by solving the following constrained optimization
problem:

min tr (A_l(CHC)_lA_l)
Aiz (12)

subject to  [CHC]; < Ey, i=1,..M.

Note that, the above optimization problem is different from
that of traditional MISO system, where there is a total power
constraint over all transmit antennas and the solution follows
a water-filling like structure [19]. In the relay networks, since
different relays could not share a common power pool, each
relay will have its own power constraint P,.;, which is reflected
by M individual constraints in (12).
Theorem 1: The optimal C*C in (12) must be F,I.

Proof: We first prove that C C must be a diagonal
matrix. The following inequality for an arbitrary N x N
positive definite matrix F could be utilized [20]:

N

tr (F1) > ([Fla) ™,

i=1

(13)

and the equality holds if and only if F is diagonal.

Suppose C; is the optimal solution and define Dy, =
CH Cy. Meanwhile, we suppose Dg is not diagonal. Let
Dy = diag{Dy}. Then [Dg];; must be smaller than or equal
to F,, and therefore Dy is also in the feasible set of (12). Let
F = ADyA whose diagonal part is given by

F = diag{F} = AD(A. (14)
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Using the inequality (13), we obtain tr(A™'Dj'A™") =
tr(F~1) < tr(F~!) = tr(A"'Dy'A™"). This contradicts the
assertion that the non-diagonal matrix D, was optimal. Hence
the optimal C* C must be diagonal.

From the constraint in (12), we know that the optimal choice
is CC = E,IL ]

Theorem 1 says that each relay should transmit orthogonal
training whereas should meet their own power constraint.
Then, we only need to design z and A,; such that all off-
diagonal elements of C C are zero, namely

(2 AATZY =0 fori # . (15)

There exists a number of such z and unitary matrices A;. For
example, we could take z as /P;1 and A; as diag(a;), where
1 is an all one vector and a; is the ith column of an N x N
normalized discrete Fourier transform (DFT) matrix. We will
provide a more general design in the later discussions. It needs
to be mentioned that choosing z = /P,1 is preferable since
it releases the peak to average power ratio (PAPR) problem
for the transmitter.

Then the mean square error (MSE) on w;, separately, can
be obtained as

No(32; 1hj[Plegl* +1)

Var(wi|h7 g) = |Oé'|2E ) (16)
and
Noo2,  No(Xo.zionilogl?/levl?)
var(w;) = OEhl—i— iz hEJ d :
s s 17
Tt w (17)
Eri EsEri7

where E,; = NP,; is defined for notation simplicity. It can
be seen that the second term is the cross distortion since other
relays also forward a noisy version of the training sequence
to the destination.

2) MMSE Estimation. The MMSE estimation assumes that
the statistics of g;, h; are known at D, namely, the statistical
channel scenario. Denote the covariance of h and g(*) as Ry,
and Rg(*> respectively. Then, the covariance matrix of w,
assuming channels of Phase I are independent from channels

of Phase II, is
R, = E{ww’} =R ., O Ry, (18)

where ® denotes the Hadamard product. The linear MMSE
estimator of w is expressed as

Warmse = BE{wdi }(E{dd}'}) ' d.. (19)
With straightforward calculations,
E{wdj'} = R, AC", (20a)

E{dd}'} = CAR,ACH + Ny ) “(07;|es|” + 1)L (20b)
Then
Warnrse = RyACH (CARwACH

-1
+N0 Z(O'}Q”|Ozz|2 + 1)1) d2.

2y

2
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The error covariance of the MMSE estimator is

1
No > (opleu]® +1)

-1
Cov(Aw) = (R;l + ACHCA> .
(22)

The optimal training should be obtained from
glin tr(Cov(Aw)), subject to [C”C);; < Ey, i =1,..., M.
. (23)
The problem (23) can be reformulated as a convex optimiza-
tion problem. Let us define D = CYC and proceed the
optimization under the unknown variable D. As will be shown
in Section III-B, there exist a number of feasible sets {A;, z}
for any positive semi-definite D, which validates our direct

optimization with respect to D. The optimization problem then
becomes

1 —1
min tr R '+ ADA) 24
D (( “ No 3 i(o7lei]® +1) 9
s.t. [D]L,z S E‘S7

D = 0,

where M = N means that (M — ) is a positive semi-definite
matrix. This is precisely a convex optimization problem. Using
an auxiliary matrix T, we can rewrite (24) in the following
equivalent form:

min tr(T) (25)
1 -1
st.  Tx= (R + ADA) ,
( Y No 32, (o;lail* +1)
[D]i,i S Es>
D=0

The equivalence of (25) and (24) can be established by
observing that the optimal T must be equal to (R ' +
WADA)*. The reason is seen from the sim-
ple linear algebra that tr(M) > tr(IN) for all M > N.
Moreover, note that the constraint

1
No Y (0}2”.|04i|2 +1)
can be rewritten, via Schur’s complement [21], into the
following linear matrix inequality (LMI):

g :

—1
T = (Rwl + ADA> (26)

27

I R;'+ ADA] 7 0.

No Zi(ﬂﬁlilai\z-*-l)
Therefore, (25) lies in the so called semi-definite programming
(SDP) formulation. Since both the cost function and the
constraints are convex, the SDP formulation could be solved
efficiently by interior point methods [15]. The convexity
of (25) ensures that its global minimum can be found in
polynomial time without the usual headaches of step size
selection, algorithm initialization, or the risk of local minima.
The arithmetic complexity of the interior point methods for
solving the SDP (25) is O(M®5log(1/€)), where € > 0 is the
solution accuracy [15].

Although, the efficient polynomial time searching can be
applied to (25), there exist closed form solutions for several
important scenarios. First let us ignore the condition D > 0
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and represent D back to CH C. For simplicity, let us further
represent No >, (07;|ai|* + 1) by (. Then the Lagrange
function with the diagonal constraint can be written as

-1
L(C, ;) = tr <(R;1 + ;ACHCA) )

+ Z ui(tr(efCHCei) — Es),

(28)
where e; is the ith column of an N x N identity matrix.
Since (28) is in quadratic form, it is sufficient to consider
only OL(C, p;)/0C [22].

Lemma 1: If a square matrix F is a function of another

square matrix G = A + MZXH XM, then the following
chain rule is valid:

otr{F} otr{F}_  r
=X"M"——M
0X 0G ’
where M is a constant matrix and A is a constant positive
semi-definite matrix.

Proof: See Appendix.
Furthermore, the following matrix derivatives will be used

(29)

Dr{XXT}
—ox (00
r{X} o reT o

X =-X"'X"=-X . (30b)

Inserting X = C, F = tr((R,' + 3JAC"CA)™"), M =
A/+/f into (29) and applying (30b), we obtain

dtr ((R;l + éACHCA)_l)
aC
dtr ((R;l + ;,ACHCA)1>
C*A

1
2 o (R;1 + %ACHCA)

(€19

A

1 1 -2
= —EC*A (R;U1+ﬁACHCA> A (32

Using (30a) to compute the second term in (28), we have

tr (el CHCe;) — E

5 = C*ejel. (33)
Then, (28) can be rewritten as
—5c = C Xi:uieief
1 1 —oT
— AR+ ACHCA> A
B ( B
(34

Therefore, any C can be the optimal solution if (34) is zero.
Since C is a tall and full rank matrix, (34) is equivalent to

2
(Rwl + ;ACHCA> =BA"! (Z ,ul-el-eiT>

=0

-1

A71

)

(35)

where

(36)

Q—diag{ b s p }

i " Bgrint
To get the explicit form of R," + 5 AC CA, we can eigen-
decompose it as

1
R+ BACHCA =U,x, U, (37)

Then
Q=U,3U/, (38)

which also represents the eigen-decomposition of €2. Since 2
is itself a diagonal matrix with non-negative diagonal entries,
37 must be €. Therefore,

1
R+ BACHCA = Q2

Let f{w,inv denote the diagonal matrix obtained from the
diagonal of R,*. Then

QY2 —diag{QY/*}

(39)

- 1
=Ry iy + BAdiag{CHC}A

(40)
- £,
:Rw.inv + iA2-
’ B
Then, the optimal C* C should be obtained from,
CHC :ﬂAfl(Ql/Z _ R;l)A71
4D

=B, BA 'Ry, opp A,

where prf ¢ represents the remaining matrix after setting
all diagonal elements of R;l to be zero. However, we
need to further consider the positive semi-definite constraint
D = CHC = 0 in order to arrive at a true optimal
solution. Therefore, (41) is the optimal solution only when
EJd — ﬁAflﬁwjoffAfl % 0. This positive semi-definite
requirement is satisfied under two important scenarios:

a) When channel w; are uncorrelated with each other;
namely, R,, is only a diagonal matrix. From (18), we know
when either Rg<*) or Ry, is diagonal, R, becomes a diagonal
matrix. In other words, if the channels from source to all
relays are uncorrelated or if the channels from all relays to
destination are uncorrelated, then R, is a diagonal matrix.
Note that the uncorrelated channel condition for either g; or h;
is normally satisfied since relays are randomly distributed over
a certain region such that the channels from either branches are
uncorrelated. In this case, the optimal solution of CHCis E.I,
which coincides with the optimal training in the LS channel
estimation. Therefore, the orthogonal training sequence is,
again, employed. Then the error covariance matrix is

42
3 (42)

and the estimation error for each w; could be separately
obtained as

> -1
Cov(Aw) = <R1—U1 + SA2> ,

B No(3; opjloyl* +1)

o[ Es + No Zj g}%j|aj|2/0’120i'
Compared to the MSE of the LS estimation (17), the MSE in
(43) is smaller, as expected.

(43)

var(w;)
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b) When the transmit SNR is high enough such that £,I —
BRy.0ff = 0 could be satisfied. The error covariance matrix
is

- E, -1
COV(AW) = <Rw,inv + 5A2> s (44)
and the MSE on w; can be separately obtained as
N o2 o+ 1
o) (3, 93l 2 +1) )

ewPEs + No 32 o7 slag 2 /o5,

we

where 2, is the ith diagonal element of R;'. Similarly, the
MSE in (45) is also smaller than (17).

B. Design of z and A;

Assume that the optimal D has been derived from either
(25) or (41). Then, the remaining task is to find the training
sequence z as well as the unitary linear precoding matrices A .
The following equations should be considered simultaneously:

(46a)
(46b)

(zE*))HAf’Ajz§*) = [Dlyj, 4,j=1,..., M,
A’L}‘,AZ ::[7 1= 17"'7M'

The standard procedure to achieve an approximate solution
of a set of nonlinear equations using either the method of
steepest descent [23] or the technique suggested by Newton
and Raphson [24], requires the evaluation of partial derivative
to each unknown variables. This involves considerably time
consuming computation. Due to the speciality observed in
(46), the following way could be proceeded to achieve the
closed form solutions of z and A;. Since D is a positive
semi-definite matrix, we can decompose D as

D = FIF, 47)

where F is an N x M matrix. Denote the ith column of F
by f;. Then,

Az =f, i=1,.,M, (48)
or equivalently

AWz =)

: i=1,.., M. (49)

The problem now becomes to find M unitary matrices AE*)

and z, such that all M non-linear equations (49) are satisfied.

Since the diagonal elements of the optimal D is F, the
norm of fi(*) is then the same as the normal of z. Hence,
the unitary matrix AE*) is the N dimensional rotation matrix
which rotates the vector z to the vector fi(*). For any fixed
z, there could exist many different AE*) that satisfy (49)
because the rotation can be performed from any direction in
the N-dimensional space. Based on this fact, we can assign
an arbitrary value to z while keep its norm /E;. Any other
vector z would only be a rotated version from z, which could
be represented as z = Uz, where U is some unitary matrix.
To this end, we could simply take AE*)U as the new rotation
matrix while keep z unchanged.

Once z and fi(*) are fixed, we need to find matrix Al(-*)

from (49). It is noted that a direct derivation for Al(-*) would
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be difficult. We will first rotate z by a unitary matrix U to a
simple reference vector, say v/ Isep, such that

Uz =/ FE,e;.

Obviously, the first row of U is the normalized vector z'? /||z||,
and the remaining N — 1 rows of U is just basis vectors that
span the orthogonal complement space of z. These N —1 rows
could be easily obtained from the left singular vectors of z.

Similarly, we will rotate f,i(*) to v E,eq, and there is

Vit = /Eser,

where V; is the corresponding unitary matrix. After obtaining
both U and V;, AE*) can be derived from

(50)

(1)

AY =VHIU o A; = (VEU)™. (52)
As mentioned before, the choice of z as v/ Ps1 is preferred in
order to alleviate the PAPR problem.

IV. CONSISTENCY WITH SPACE TIME CODING

Generally, the A; designed for the channel estimation in
the previous section is not the same as the LD codes P;
even if N = T'. Therefore, each relay needs to store both P;,
A, and should perform different precoding at different stage.
Although this is not a big deal with perfect synchronization,
using unique precoding during the whole transmission is still
preferred due to its reduction on complexity.

To make consistency between precoding at training and at
data transmission, we will consider a special yet very popular
transmission scenario, where R, is diagonal and orthogonal
space time coding (OSTC), or quasi-orthogonal space time
coding (QOSTC) is applied. The OSTC and QOSTC are
chosen because they could maximize the diversity gain while
achieves a higher coding gain [16], but the proposed discussion
is also applicable if other types of STC are adopted.

A. Real and Complex OSTC

From [25], [4], we know that the dimension of real OSTC
could only be M = 2,4,8 and the dimension of complex
OSTC could only be M = 2. Without loss of generality,
we suppose the training block has the length N = KM
for some positive integer K. Let us partition z in to z =
[z(Tl),z(Tz), - z(TK)}T with each z(;) an M x 1 vector. We use
(-) in the subscript in order to discriminate z from zy. If P;
is also applied over the training period, the linear precoding
matrix A; is in fact

—_——
K blocks
Since P; is obtained from OSTC design, CcHC = NPI =

E,I for any vector z that meets z7z = E,. With a diagonal
matrix R,,, any z is a kind of optimal training sequence.
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B. Complex QOSTC

The 4 x4 and 8 x 8 QOSTC have been proposed in [26] and
[27], respectively, where certain constellation rotation should
be conducted to ensure the transmission with full-rate and full
diversity. The matrix B for 4 x 4 QOSTC is given by

51 —s5 —s3% S4
B_ | % si _Si —83 (54)
S3 _84 51 —S89
S4 53 55 S1
Then
[0 -1 0 0]
1 0 0 0
Pl_:[7 P2_ O O 0 -1 9
_0 0 1 0_
0 0 -1 0 0 0 0 1
0 0 0 -1 0 0 -1 0
Ps=110 o ol P01 00l
0 1 0 0 |1 0 0 0 |

where relays R, and R3 operate on r3 and r3 respectively.
From (46), the optimal z should be found from

K
Z z(tyPazy =0, (55a)
k=1
K
> 2P Psz, =0. (55b)
k=1

The solutions to (55) are not unique. Considering the PAPR
problem, we can simply take z = \/P,1. Similar argument
could be conducted for 8 x 8 QOSTC [27]. The detailed
discussion is omitted here. Nevertheless, z = /P,1 is still
one of the optimal solutions.

V. SIMULATION RESULTS

In this section, we numerically study the performance of our
proposed channel estimation algorithms as well as the optimal
training designs under various scenarios. The channels g;, h;
and the noise at the relays and destination are assumed as
circularly symmetric complex Gaussian random variables with
unit variances. The channel covariance matrices R}, and R,
have the following structures [19]:

—b
RiJapy =",

Rglap = 5‘1{1_})',
where €1 and €5 are two real scalars. Since g; is circularly
symmetric, it is known that E{g;g;} = 0. Therefore, R )
can be found from R, by setting the appropriate entries to be
zero and interchanging some symmetric entries, depending on
which relays operate on r;. For convenience, we set 1 = €3 =
¢ in all the examples. The signal to noise ratio is defined as
SNR= (P x 1)/Ny = P;. The convex optimization involved
in MMSE estimation is conducted by the SDP tool SeDuMi
v1.1 [14] running under MATLAB environment.
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Fig. 2. Channel estimation MSEs versus SNR for both optimal training and
random training.

A. Channel Estimation

The performance of channel estimation mean square error
(MSE) is tested here. For all examples in this subsection, 1000
independent Monte-Carlo runs are performed for averaging.

1) Optimal Precoding vs Random Precoding. In Fig. 2, we
display the MSEs versus SNR of both the LS estimator (9) and
the MMSE estimator (21) for M = 4 relay nodes. The relay
powers are chosen as {0.8Ps, Ps,0.8Ps, P}, respectively. It
is assumed that the QOSTC will be applied for the later data
transmission so that R, and R3 operate on the conjugate of
their received signals. The parameter € is set as 0.1 which
represents a very low correlation between different relays.
We show the performance of both the optimal precoding and
the random precoding where A; are drawn randomly in the
latter case. From Fig. 2, we see that when N = 8 and with
optimal precoding, the MMSE estimator outperforms the LS
estimator at lower SNR region, whereas the two estimators
have nearly the same performance at higher SNR range. This
is a consistent phenomenon as in the traditional SISO or
MISO channel estimation [19]. Moreover, the performance
with optimal precoding is about 2 dB better than that with
random precoding. For the extreme case where N is as small
as 4, the performance of both LS estimator and MMSE
estimator with optimal precoding degrade somewhat around
2.5 dB. However, the channel estimation with random precod-
ing degrades significantly. This clearly shows the importance
of the optimal training design in our study.

2) Different Parameters M, N. We then provide three simu-
lations figures considering three different simulation scenarios,
e.g. same N different M in Fig. 3, same M different N in
Fig. 4, different M and N with M = N in Fig. 5. The ¢ is still
set as 0.1. For each M, half of the relays have the power 0.8 P
and the other half have the power Ps. From Fig. 3, it is seen
that the relay number affects the channel estimation even when
the same power of source and same average power of relays
are applied. This is a direct reflection from (17) and (43) where
it says that the channel estimation MSE increases with M for
each w;. Note that, in the traditional MISO system, the channel
estimation MSE is only related with the transmit power but is
not related with the number of antennas. The reason for the
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Fig. 4. Channel estimation MSEs versus SNR: different IV, same M.

degrading performance in AF relay networks is because the
relays forward additional noise to the destination too. From
Fig. 4, it is seen that the channel estimation MSE decreases
when N increases. This is expected since the transmitting
energy F;, F,.; are linear functions of N. From Fig. 3 and Fig.
4, the performance of the channel estimation degrades when
M increases while improves when N increases. Therefore, one
may be curious to what happens when both /N and M increase.
The performances for different M, N but with M = N are
shown in Fig. 5, where it can be seen that lager M = N gives
better performance. This validates the simultaneous training
for all relay channels instead of trivially training each relay
channel individually.

3) Unbalanced Relay Power. In practical transmissions,
it often happens that different relays have different powers
according to their protocols, category, longevity, etc. We
then characterize the effect of these unbalanced power dis-
tributions on the channel estimation. To be fair, we study
the four relays case with three types of power distribu-
tion, e.g. {0.8P;,0.8Ps, Ps, Ps}, {0.4Ps,0.8P5, Ps,1.4P;},
{0.2P;,0.4Ps, Ps,2P;} with each type possessing the same
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Fig. 5. Channel estimation MSEs versus SNR: different pairs of N = M.
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Fig. 6. Channel estimation MSEs versus SNR: unbalanced relay power
distribution.

amount of total power. The average channel estimation MSEs
versus SNR are show in Fig. 6. It is seen from this figure that
the unbalanced power distribution will deteriorate the accuracy
of the channel estimation. Meanwhile, the gaps between the
MMSE estimator and the LS estimator at lower SNR range
are enlarged.

B. Performance of Space Time Coding

We apply the proposed channel estimation in Section IV
here. The parameter ¢ is, thus, set as 0. The performance of
the data transmission will be evaluated by the bit-error rate
(BER). Each point in the figures is determined after 1000 bit
errors are made.

We study two different cases where the number of relays
are chosen as M = 2 and M = 4 respectively. The simulation
results are shown in Fig. 7 and Fig. 8, respectively. For 2-relay
networks, the Alamouti code is applied whereas for 4-relay
networks, the QOSTC is applied. During the training period,
the precoding matrix at each relay is constructed according
to (53) such that the precoding scheme for both the training
period and the data transmission are exactly the same. For each
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Fig. 8. BER performance for four relays with QOSTC applied.

scenario, we also choose different training length to show how
the BER is affected by the channel estimation errors. To make
a further comparison, the BER curve under perfect channel
knowledge is also plotted for both scenarios. It can be seen
that the length of the training affects the BER in a range of
0 to 3 dB, namely, the performance with minimum training
length N = M is about 3 dB worse than the performance from
perfect channel knowledge. On the other hand, increasing the
length NV could not improve the BER over 3 dB. In addition, it
is seen that 4-relay network possesses a higher diversity order
than the 2-relay network.

VI. CONCLUSIONS

In this paper, we study the training based channel estimation
for AF based relay networks. The popular LS and MMSE
approaches have both been considered. We show that the
optimal training can be achieved from an arbitrary sequence
and a set of well designed precoding matrices for all relay
nodes. The whole design process is efficiently conducted by
dividing it into a convex optimization problem plus a matrix
calculation problem. We also consider several practical AF
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STCs and develop the optimal training that could simplify
the relay design. Numerical examples have been provided to
validate the proposed studies.

APPENDIX
PROOF FOR LEMMA 1

First of all, consider a particular case when G = NXM,
where N is some constant matrix. Expand the (¢, j)th element

of G as [G]ij = 32, >, [N]ip[X]pg[M]g;. Therefore
0[GJy;
——— = [NJ]ip[M];- (56)
8[X}pq [ } P[ ]q]
Applying the extended derivative chain rule [28] results in
otr(F) 8tr E)tr I[Glij
{ 0X } Z Z 9X]pq
otr(
- Z Z 2 N M (57)
B otr(F)
= |M { 3G } N (58)
ap
Equivalently, we derive that
otr(F) 7 0tr(F) T
X - =N G —XM (59)

Substitute N = M7 X*# into (59) and bearing in the mind
that Otr(MHAXH) /09X = 0 yield the desired rule in (29).
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