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Resolving Multidimensional Ambiguity in Blind
Channel Estimation of MIMO-FIR

Systems via Block Precoding
Feifei Gao, Student Member, IEEE, and Arumugam Nallanathan, Senior Member, IEEE

Abstract—In this paper, we consider the identification problem
of multiinput–multioutput (MIMO) finite-impulse-response sys-
tems via second-order statistics only. By assigning different block
precoders to different transmitters, we develop a new technique
that allows blind MIMO channel identification up to a scalar
ambiguity for each transmitter. We provide sufficient conditions
for removal of the matrix ambiguity for a specific set of precoding
matrices and derive a general theorem for other kinds of precoding
matrices based on a reasonable conjecture. This theorem is firmly
tested via numerical examples. Two potential precoding schemes
are proposed, considering different ways of eliminating interblock
interference. Finally, numerical results are provided to verify our
analysis.

Index Terms—Ambiguity, blind channel estimation, block
transmissions, multiinput multioutput (MIMO), precoding,
subspace (SS) method.

I. INTRODUCTION

MULTIANTENNA transmission over multiinput–
multioutput (MIMO) channels has recently been proven

effective in combating fading, as well as enhancing data rates
[1], [2]. Since coherent detection requires accurate channel
state information, channel estimation has become a critical
component in a variety of modern wireless communication
systems. Many communication systems identify the channel
coefficients by transmitting pilot symbols that are known to
both transmitters and receivers. These pilot-aided schemes,
however, reduce the transmission-bandwidth efficiency [3].
Therefore, blind-channel-estimation algorithm has received
considerable attention during the past few decades.

The subspace (SS)-based blind-channel-estimation algo-
rithm has been developed in [4]–[7] for either single-input–
single-output systems (SISO) or single-input–multioutput sys-
tems, where the channel coefficients between the transmitter,
and all the receivers could be identified within a complex scalar
ambiguity. This scalar ambiguity could easily be removed by
further transmission of one or a few amount of pilot sym-
bols. However, when the SS method is directly applied to the
MIMO system [8]–[10], the channels could only be estimated
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up to an unknown matrix ambiguity. This matrix ambiguity
is a multidimensional problem and is not acceptable in most
applications. In [11], this matrix ambiguity is resolved under
the assumption that sources from different transmitters are non-
Gaussian and statistically independent. The property of cyclo-
stationary is exploited in [12] and [13]. Other works discussing
linear prefiltering via z-domain polynomial analysis can be
found in [14]–[16] and the references therein. In a recent work
[17], a linear-precoding technique is applied at the inputs for
MIMO orthogonal frequency-division multiplexing (OFDM)-
modulation transmissions. This method needs the transmit-
ted symbols to be strictly white and is mainly proposed for
blind channel estimation in a multiinput–single-output (MISO)
scenario.

In this paper, we propose a new way of resisting the matrix
ambiguity when the SS algorithm is applied to the MIMO
systems. We find that by dividing the data sequences into
blocks and assigning different block precoders to different
transmitters, it is possible to reduce the matrix ambiguity to a
scalar ambiguity for each transmitter. Note that block precoding
is a well-studied topic through the literatures [18], [19] to
improve the performance of the detection. However, few works
on block precoding have been proposed regarding the resistance
of the channel-estimation ambiguity in the MIMO frequency-
selective channels. We provide strict conditions on removing
the matrix ambiguity for a specific set of precoding matrices,
namely, zero-padding matrix. Then, a more general conclusion
on resisting the matrix ambiguity is derived based on a reason-
able conjecture. Various numerical examples are provided to
demonstrate the effectiveness of our proposed algorithms.

This paper is organized as follows. Section II presents the
system model of MIMO transmissions. Section III presents
our proposed precoding schemes. Section IV discusses the
ambiguity and the identifiability issues. Numerical examples
are provided in Section V to exhibit the effectiveness of our
algorithms. Finally, conclusion is presented in Section VI, and
the proof for the theorem is given in the Appendix.

The following notations are used in this paper. Transpose,
complex conjugate, Hermitian, inverse, and pseudoinverse of
matrix A are denoted by AT, A∗, AH, A−1, and A†, re-
spectively. [A]ij stands for the (i, j)th entry of the matrix A,
tr(A) denotes the trace operation, ⊗ represents the Kronecker
product, I is the identity matrix, and E{·} is the statistical
expectation. The MATLAB notations for rows and columns
are used in this paper. For example, A(:, p) represents the
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pth column of the matrix A, and A(:, p1 : p2) represents the
submatrix obtained by extracting columns p1 to p2 from the
matrix A, respectively.

II. SYSTEM MODEL

Let us consider an Nt-input Nr-output linear finite-impulse-
response (FIR) MIMO system. The data streams from trans-
mit antennas are denoted as {biτ}, i = 1, . . . , Nt, and τ =
0, 1, . . . ,M − 1, where i and τ are the transmitter and time
indexes, respectively. The data sequences are then divided into
consecutive blocks with the length of K, namely

si(m) =
[
bi(mK), bi(mK+1), . . . , bi(mK+K−1)

]T
m = 0, 1, . . . ,M/K − 1 (1)

where m is the block index. Without loss of generality, M
is taken as an integer multiple of K. Assume that perfect
synchronization is achieved at the receivers. The data stream
obtained from the jth receive antenna is denoted as {djτ},
j = 1, . . . , Nr, which could be divided into blocks as

rj(m) =
[
dj(mK), dj(mK+1), . . . , dj(mK+K−1)

]T
. (2)

For convenience, we assume that all channel responses be-
tween different pairs of transmitters and receivers have the same
channel order L. Let

hij = [hij,0, hij,1, . . . , hij,L]T (3)

MK(hij) =




hij,L · · · hij,0 · · · 0
...

. . .
. . .

. . .
...

0 · · · hij,L · · · hij,0


 (4)

represent the (L + 1) × 1 equivalent discrete channel vector
and the K × (K + L) channel matrix from the ith transmitter
to the jth receiver, respectively. The subscript K denotes the
number of rows in MK(hij). The combined channel matrix
from the ith transmitter to all the receivers can be represented
by the KNr × (K + L) matrix

T K(hi) =
[
MK(hi1)T,MK(hi2)T, . . . ,MK(hiNr)

T
]T
(5)

where

hi =
[
hT

i1,h
T
i2, . . . ,h

T
iNr

]T
(6)

is the combination of channel vectors from the ith transmitter
to all the receivers. The overall KNr × (K + L)Nt channel
matrix for the MIMO system is

ΠK(hij) = [T K(h1),T K(h2), . . . ,T K(hNt)] . (7)

The overall received signal block is then modeled as

r(m) =
[
r1(m)T, . . . , rNr(m)T

]T

=
Nt∑
i=1

T K(hi)s̄i(m) + n(m)

=ΠK(hij)s̃(m) + n(m) (8)

with

s̄i(m) =
[
siL(m − 1)T, si(m)T

]T
(9)

s̃i(m) =
[
s̄1(m)T, . . . , s̄Nt(m)T

]T
(10)

where n(m) is the KNr × 1 vector whose entry represents
the independent identically distributed white Gaussian noise
with variance σ2. siL(m − 1) denotes the last L entries of the
vector si(m − 1), s̄i(m) is the (K + L) × 1 vector denoting
the combination of siL(m − 1) and si(m) due to the interblock
interference (IBI), and s̃(m) is the (K + L)Nt × 1 vector
representing the effective transmitted symbol vector for the mth
received block r(m).

An alternative representation of the channel matrix is also
provided for later use. Let Hl denote the Nr × Nt matrix with
its (j, i)th entry given by hij,l. After properly permutating the
rows and columns of ΠK(hij), the channel matrix can be
expressed as

ΓK(Hl)=




HL HL−1 · · · H0 0 · · · 0
0 HL HL−1 · · · H0 · · · 0
...

. . .
. . .

. . .
. . .

. . .
...

0 · · · 0 HL HL−1 · · · H0


 .

(11)

Remark 1: The algorithms in this paper are presented based
on the channel model ΠK(hij). However, theorems or lemmas
are provided based on the second channel model ΓK(Hi).
One can easily establish the equivalence between ΠK(hij) and
ΓK(Hl).

Lemma 1 [20], [21]: The channel identifiability up to an am-
biguity matrix by using only the second-order statistics (SOS)
of the received signals is ensured if the following conditions are
satisfied.

1) ΠK(hij) and ΓK(Hl) are tall matrices.

2) H(z)
�
=

∑L
l=0 Hlz−l is irreducible and column-reduced.

3) HL is of full column rank.

Since different channel vectors are random vectors, these
conditions can be satisfied for most of the practical MIMO
systems [16]. Therefore, the MIMO channel discussed in this
paper is always considered to satisfy the conditions previously
listed, which also indicates that ΠK(hij) and ΓK(Hl) are full-
column-rank matrices.

III. PROPOSED PRECODING TECHNIQUES

We found that, by applying different precoders to different
transmitters, it is possible to reduce the matrix ambiguity to one
scalar ambiguity for each transmitter. The intuitive explanation
is that, since we artificially introduce certain “differences”
among different transmitters, the channel can be discriminated
from each other by exploiting these “differences.”

A. Normal Precoding

An illustration of normal precoding scheme at the ith trans-
mitter is shown in Fig. 1, where the original data sequence is
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Fig. 1. Normal precoding.

first divided into continuous block si(m) and is then precoded
by a (K + 1) × K matrix Fi, resulting in a new data block
ui(m) with the length K + 1, namely

ui(m) = Fisi(m). (12)

At the receiver, the received data stream {djτ}, τ =
0, . . . ,M(1 + 1/K) − 1 is divided into blocks of length K +
1, namely

rj(m) =
[
dj(m(K+1)), . . . , dj(m(K+1)+K)

]T
m = 0, . . . , M/K − 1 (13)

as shown in Fig. 1. The overall received signal vector r(m) can
be written as

r(m) =
Nt∑
i=1

T K+1(hi)ūi(m) + n(m) (14)

where ūi(m) = [uT
iL(m − 1), uT

i (m)]T, and uiL(m − 1) de-
notes the last L entries of the block vector ui(m − 1). Note
that T K+1(hi) is of dimension Nr(K + 1) × (K + L + 1)
but possesses a similar structure as (5). By denoting FiL =
F(K + 2 − L : K + 1, :) as the last L rows of the matrix Fi,
the received signals can be rewritten as

r(m) =
Nt∑
i=1

T K+1(hi)
[
FiL 0
0 Fi

] [
si(m − 1)

si(m)

]
+ n(m)

=
Nt∑
i=1

T K+1(hi)F̆is̆i(m) + n(m) (15)

where F̆i is the corresponding (K + 1 + L) × 2K matrix,
and s̆i(m) is constructed by two consecutive blocks of source

vectors. In order to guarantee the recoverability of s̆i(m), F̆i has
to be either a full-rank tall or a square matrix. We then design
matrix Fi such that all the first K − L columns of FiL are zero,
namely

FiL = [0 FLL
i ] (16)

where FLL
i = F(K + 2 − L : K + 1,K + 1 − L : K) is con-

structed by the last L rows and the last L columns of Fi. The

signal vector r(m) can be reexpressed as

r(m) =
Nt∑
i=1

T K+1(hi)
[
FLL

i 0
0 Fi

] [
siL(m − 1)

si(m)

]
+ n(m)

=
Nt∑
i=1

T K+1(hi)F̄is̄i(m) + n(m) (17)

where F̄i is the corresponding (K + L + 1) × (K + L)
matrix. Define

F̃ = diag{F̄1, F̄2, . . . , F̄Nt} (18)

as the (K + 1)Nt × KNt block diagonal matrix representing
the overall precoding matrix. The received signal covariance
matrix is given by

R = E
{
r(m)rH(m)

}
=ΠK+1(hij)F̃RsF̃HΠK+1(hij)H + σ2INr(K+1) (19)

where Rs = E{s̃(m)s̃H(m)} is the (K + L) × (K + L)
source covariance matrix. Since, normally, no two sources are
fully correlated with each other,1 Rs can always be considered
as a nonsingular matrix. Thus, ΠK+1(hij)F̃ is a full-column-
rank matrix, and the covariance matrix R can be eigen-
decomposed as

R = EΛEH + σ2GGH (20)

where the (K + L)Nt × (K + L)Nt diagonal matrix Λ con-
tains the signal-SS eigenvalues of R. In turn, the columns of
the (K + 1)Nr × (K + L)Nt matrix E contain the signal-SS
eigenvectors of R, whereas the (K + 1)Nr × ((K + 1)Nr −
(K + L)Nt) matrix G is composed of the noise-SS eigenvec-
tors of R.

From the SS detection theory [4], we know that the noise
SS spanned by G is the orthogonal complement space spanned
by ΠK(hij)F̃. Hence, for different T K+1(hi), the following
equation holds:

GHT K+1(hi)F̄i(:, p) = 0, p = 1, . . . ,K + L

⇒ (Gip)Hhi = 0

⇒ hH
i Gip(Gip)Hhi = 0 (21)

where Gip can straightforwardly be calculated from GH and
F̄i(:, p).

Let

Φi =
K+L∑
p=1

Gip(Gip)H. (22)

The estimate of hi, which is denoted as ĥi, can be obtained
from the eigenvector of Φi that corresponds to the smallest
eigenvalue; therefore, different hi can be determined from its
corresponding Φi.

1Partly correlated sources do not affect the rank of Rs.
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Fig. 2. Simplified precoding.

Remark 2: To resolve the matrix ambiguity, it is necessary
that Φi has only one zero eigenvalue for each i. The related
discussion is provided in Section IV. A necessary condition is
quoted here, which states that different F̄i should span different
SSs from each other.

B. Simplified Precoding

Due to the existence of IBI, the proposed algorithm forces
an L × (K − L) submatrix of Fi to be zero, thus reducing the
flexibility of precoder design. An alternative way of eliminating
the IBI can simply be implemented by deleting the first L
elements in each received block rj(m). The remaining symbol
vector at the jth receive antenna can be expressed as

yj(m) =
[
dj(m(K+1)+L), . . . , dj(m(K+1)+K)

]T
. (23)

Then, the additional constraint (16) is removed. The trans-
mission scheme is shown in Fig. 2, and the overall signal vector
y(m) can be written as

y(m) =
[
y1(m)T,y2(m)T, . . . ,yNr(m)T

]T
=ΠK+1−L(hij)F̃s̃(m) + n(m) (24)

where we still use F̃ to represent the overall precoding matrix
and s̃(m) to represent the overall source vectors, namely

F̃ = diag{F1,F2, . . . ,FNt} (25)

s̃(m) =
[
sT
1 (m), . . . , sT

Nt
(m)

]T
. (26)

The new noise SS matrix Gy is obtained from the eigen
decomposition of

Ry = E
{
y(m)yH(m)

}
(27)

and is of dimension (K + 1 − L)Nr × ((K + 1 − L)Nr −
KNt). Define

Φiy =
K∑

p=1

Gy,ip(Gy,ip)H (28)

where Gy,ip is obtained from

(Gy,ip)Hhi = GH
yTK+1−L(hi)Fi(:, p), p = 1, . . . , K.

(29)

Similar to normal precoding, the channel vector hi can be
estimated from the eigenvector of Φiy that corresponds to the
smallest eigenvalue.
Remark 3: Note that the way of generating precoders now

becomes much easier. We can randomly generate a full-rank
(K + 1) × (K + 1) matrix F and then select K different
columns to form Fi, by which means we can guarantee that dif-
ferent Fi is a full rank and spans different SS from each other.
However, since the simplified algorithm does not consider the
contribution of the first L symbols in the received block for each
receiver, it cannot make full use of the received symbol blocks.
Remark 4: Let us take a look at the maximum value of

Nt. If the precoders of dimension (K + 1) × K are used,
as previously assumed, the maximum value of Nt is K + 1
since we can at most construct the K + 1 precoders that span
different SSs from each other. Moreover, we can also use a taller
precoding matrix. If the precoders of dimension (K + q) × K
are used, the maximum value of Nt can be calculated as Cq

k+1,
where C is the notation of combination.

IV. AMBIGUITY RESISTANCE AND

CHANNEL IDENTIFIABILITY

It is known that the channel matrices Πζ(hij) and Γζ(Hl)
that satisfy Lemma 1 are full-rank-tall matrices, where the
value of ζ takes K + 1 for normal precoding or K + 1 − L
for simplified precoding. If Fi and F̄i are full ranks for all
i’s, then Πζ(hij)F̃ is also a full column rank. Therefore, the
SS-based detection [4] could be applied. Denote the estimates
of channel matrices as Πζ(ĥij) and Γζ(Ĥl), respectively.
From the SS detection theory, we know that span(Πζ(ĥij)F̃ ∈
span(Πζ(hij)F̃). Therefore

Πζ(ĥij)F̃ = Πζ(hij)F̃A (30)

where A is an unknown Nt(ζ + L − 1) × Nt(ζ + L − 1)
matrix.

A. Ambiguity Resistance

Theorem 1: Suppose that the estimate of H(z) is achieved
within an ambiguity matrix, namely, Ĥ(z) = H(z)B, where B
is an Nt × Nt unknown matrix. If F̄i (for normal precoding) or
Fi (for simplified precoding) is a full rank and spans different
spaces from each other, then B must be a diagonal matrix,
which indicates a scalar ambiguity for each transmit antenna.

Proof: Denote Hc = [h1,h2, . . . ,hNt ]. The condition
Ĥ(z) = H(z)B can equivalently be expressed as

Ĥc = HcB or Ĥl = HlB (31)

where Ĥc = [ĥ1, ĥ2, . . . , ĥNt ] is the estimate of Hc, and Ĥl is
the estimate of Hl. We only need to prove that B is a diagonal
matrix.
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If (31) holds, Πζ(ĥij) can be rewritten as

Πζ(ĥij) = Πζ(hij)B (32)

where

B =




[B]11Iζ+L · · · [B]1NtIζ+L

...
. . .

...
[B]Nt1Iζ+L · · · [B]NtNtIζ+L


 (33)

where [B]pq is the (p, q)th entry of B. By substituting (32) into
(30), we obtain

Πζ(hij)BF̃ = Πζ(hij)F̃A. (34)

From Lemma 1, we know that Πζ(hij) is a full-rank-tall
matrix. Then, (34) indicates that

BF̃ = F̃A. (35)

Divide A into blocks as

A =




A11 · · · A1Nt

...
. . .

...
ANt1 · · · ANtNt


 . (36)

From (35) and (36), we obtain




[B]11F1 · · · [B]1NtFNt

...
. . .

...
[B]Nt1F1 · · · [B]NtNtFNt




=




F1A11 · · · F1A1Nt

...
. . .

...
FNtANt1 · · · FNtANtNt


 (37)

where Fi should be changed to F̄i for normal precoding.
Therefore

[B]ijFj = FiAij (38)

for all pairs of (i, j). Since Fi is a full rank and spans different
SSs from each other, it can easily be known that

{
Aii = [B]iiIζ+L−1, for i = j
[B]ij = 0, Aij = 0, for i �= j

. (39)

Therefore, B must be a diagonal matrix, and the multidimen-
sional ambiguity is converted to a scalar ambiguity for each
transmit antenna. �

B. Identifiability

Now, the question is whether (31) holds, which is normally
categorized as the identifiability problem. Usually, the proof

resorts to the z-domain polynomial analysis [20]. However,
since the convolution property of the system is broken by block
precoding, it is quite hard to implement the polynomial anal-
ysis here.
Conjecture 1: Suppose that the conditions listed in Lemma 1

are satisfied. If Fi (for simplified precoding) or F̄i (for normal
precoding) is a full-rank matrix, then the channel identifiability
Ĥ(z) = H(z)B for the proposed algorithms can be guaranteed.

An intuition explanation is obtained from [5], [22]–[24],
where the redundant precoding is applied to guarantee the chan-
nel identifiability, even if the overall channel matrix may not be
a full rank. Therefore, it makes no sense that the application of
full-rank redundant precoders may destroy the identification of
the system whose identifiability is originally guaranteed (under
Lemma 1).

We now provide a firm study on channel-estimation identi-
fiability for a specific set of precoders, namely, zero-padding
precoders introduced in [25, ch. 10]. Discussion on more gen-
eral precoders is still an open problem and is currently under
investigation.
Theorem 2: For simplified precoding algorithm, if Fi is

obtained by deleting one column from IK+1 (zero-padding
precoders), then sufficient conditions for (31) to hold are the
following.

1) �(K − 1)/2� > L + 1, where �·� denotes the largest in-
teger that is no bigger than the specified value.

2) Nr > �(Nt(�(K−1)/2�−1)/(�(K−1)/2�−L−1))�.

Proof: See the Appendix.
If Nr and K are sufficiently large, then the conditions

listed in Theorem 2 could always be satisfied. However, since
Theorem 2 is proved based only on several columns in Γζ(H),
the sufficient conditions obtained are rather loose. Normally,
even for smaller values of Nr and K that do not satisfy
the condition in Theorem 2, the identification could still be
achieved.
Remark 5: Although Theorem 2 only considers a simplified

precoding algorithm, a similar proof can straightforwardly be
applied for zero-padding precoders in the normal precoding
algorithm. Note that the size and the structure of F̄i will vary if
zeros are inserted into the different positions. The proof is rather
tedious, and therefore, it is omitted here. However, similar
conclusion can be made that, if Nr and K are sufficiently large
or are larger than the certain values, the channel identifiability
can be guaranteed.

V. SIMULATION RESULTS

In this section, we provide numerical examples to verify the
theorems/algorithms developed in previous sections. As pre-
viously claimed, the sufficient conditions listed in Theorem 2
are quite loose; therefore, we will not restrict ourselves in
testing only those big K and Nr. For simplicity, the parameters
are chosen as K = 7, Nt = 2, Nr = 3, and L = 2. One can
see through the simulations that channel identification can still
be guaranteed within an unknown complex scalar for each
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Fig. 3. Detected constellation diagram for zero-padding precoders under noise-free case.

transmit antenna. The channel coefficients are randomly gen-
erated, which, in this simulation, are

h11 =[0.4608+1.8903i, 0.4574+0.2622i, 0.4507−0.8794i]T

h12 =[0.4122−0.0678i, 0.9016−1.4460i, 0.0056+0.6126i]T

h13 =[0.2974+1.3720i, 0.0492−0.4288i, 0.6932+0.1289i]T

h21 =[0.6501−0.5702i, 0.9830+0.5521i, 0.5527−0.4084i]T

h22 =[0.4001−1.1703i, 0.1988−0.5576i, 0.6252−0.2016i]T

h23 =[0.7334−2.5679i, 0.3759−0.2724i, 0.0099−0.0160i]T

unless otherwise mentioned. The normalized-estimation mean-
square-error (NMSE) of hi is defined as [21]

NMSE =
1

Nq

Nq∑
i=1

‖ĥiαi − hi‖2

‖h‖2
i

(40)

where αi is chosen such that ‖ĥiαi − hi‖2 is minimized,
and Nq = 100 is the number of Monte Carlo runs. The sym-
bols from each transmitters are independently generated from
16-quadratic-amplitude modulation (16-QAM). The signal-to-
noise ratio (SNR) is defined as the ratio between the symbol
power at the transmitter and the noise power at the receiver,
which does not take the channel effect into account.

A. Capability of Ambiguity Resistance

We adopt the way in [16] to demonstrate the capability
of the ambiguity resistance here. We first consider the zero-
padding precoding matrix with F1 = I8×8(:, 1 : 7) and F2 =
I8×8(:, 2 : 8). Totally, 30 blocks of signals are assumed to be
sent from each transmit antenna, and the channel estimation
is purely conducted based on the correspondingly received
30 blocks. For the noise-free case, the data patterns detected
for each transmitter applying both algorithms are shown in
Fig. 3. The constellations are drawn by placing the real parts
of all the received 7 × 30 symbols onto the x-coordinate,
whereas the corresponding imaginary parts are placed onto the
y-coordinate. Clearly, the shape of the 16-QAM constellation
is kept, but it is rotated and scaled compared with the standard
16-QAM constellation. Therefore, the matrix ambiguity re-
duces to one scalar ambiguity for each transmitter. Then, we
consider the noisy case. Since we only wish to demonstrate the
capability of ambiguity resistance of the proposed algorithms,
the SNR is taken relatively higher as 25 dB. The detected
data patterns are shown in Fig. 4. It can be seen that the pro-
posed algorithms are still able to resolve the multidimensional
ambiguity.

It is also important to numerically test the capability of
the ambiguity resistance for more general precoding matrices.
We consider 103 simulation runs and assume the noiseless
environment for test purposes only. In each simulation run, the
precoding matrices are randomly generated.2 In this specific

2The randomly generated matrix has a full rank with a probability of one.
Since the SNR is infinite, we could even adopt an ill-conditioned precoding
matrix without affecting the detection results.
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Fig. 4. Detected constellation diagram for zero-padding precoders under noisy case SNR = 25 dB.

Fig. 5. Detected constellation diagram for random precoders under noise-free case.

example, we also allow the channel to randomly change for
different simulation runs. It is found that the detected symbol
points exactly form the true 16-QAM constellation, except that
the constellation patterns have different scaling factors and
rotation angles for different simulation runs. Therefore, we only
show the data pattern for the specific channel realization (40) in
Fig. 5. By this example, we numerically prove that the matrix
ambiguity could be resolved by using more general precoders.

B. Performance of the Proposed Algorithms

In this example, we demonstrate the performance compari-
son between the normal- and simplified-precoding techniques.
The precoders for the two transmitters are taken as F1 = I8×8

(:, 1 : 7) and F2 = I8×8(:, 2 : 8). Each precoder is then scaled
to keep the power of the precoded signal unchanged. We
choose to compare with the algorithm in [17], where the block
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Fig. 6. Channel-estimation nmses versus the SNR: Comparing two algorithms
and the existing work [17].

transmissions are also adopted for fair comparisons. In Fig. 6,
the NMSEs of individual channel estimation versus the SNRs
of these two estimators, as well as the algorithm in [17], are
shown. The number of the transmitted symbol blocks is taken as
200 for all algorithms. From Fig. 6, we see that the performance
of the normal blind algorithm is better than the simplified
algorithm. The reason lies in that it exploits more information
from the received signal. It is also seen that both the proposed
algorithms outperform the one in [17] at relatively higher SNR
region. The reason is that the latter method, although it is
applied to block transmissions and possesses scalar ambigu-
ity, is mainly targeted for blind channel estimation in MISO
system.

C. Different Precoder Design for Normal Precoding

The precoder Fi can be generated by extracting different
columns from an arbitrary full-rank square matrix. In order to
apply both algorithms, Fi could be modified according to the
following two ways.

1) Type 1: Force the first K entries of the last L rows in Fi

to be zero, and then, scale to keep the power of signals
unchanged, as indicated in (16).

2) Type 2: In addition to the operation in type 1), force the
last L entries of the first K + 1 − L rows to be zero, and
then, scale to keep the power of signals unchanged. In this
case, Fi becomes a block diagonal matrix.

Fig. 7 shows the NMSEs for the channel estimation versus
the SNR of both algorithms. It can be seen that normal pre-
coding, as well as simplified precoding by type 2) precoders,
gives a satisfactory performance. However, both algorithms by
type 1) precoders perform much worse than the other two cases.
The reason is that forcing one corner in Fi to be zero only
makes it “imbalanced” and ill-conditioned. Therefore, type
2) construction of linear precoders is preferred for the normal
precoding algorithm.

Fig. 7. Performance comparison for different ways of generating F̄i.

Fig. 8. Performance comparison for different linear precoders.

D. Performance for Different Types of Precoders

We compare the performance of different types of precoders
in this example. The performances of the NMSEs versus the
SNR for zero-padding precoders, the type 2) precoders ex-
tracted from the fast-Fourier-transformation (FFT) matrix, and
the type 2) randomly generated precoders are shown in Fig. 8.
For simplicity, only the curves for h1 are plotted. It is seen
that the zero-padding precoders perform better than the other
linear precoders. This phenomenon was also observed in [25],
where the precoding is applied purely for SISO transmissions.
Several possible reasons are provided in [25]. Intuitively, the
zero-padding precoders do not introduce intersymbol interfer-
ence, and the followed data detection undergoes less noise
enhancement.

VI. CONCLUSION

We have investigated a new way to identify blind chan-
nel estimation for MIMO-FIR systems based on the SOS.
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By assigning different precoders to different transmitters, the
proposed algorithms can eliminate the higher dimensional
ambiguity and are able to estimate the channel coefficient
for different transmitters within a complex scalar ambigu-
ity only. Strict conditions on identifiability are provided for
zero-padding precoders, whereas identification for other pre-
coding matrices is numerically tested. Other numerical ex-
amples on the performance of the proposed algorithms, as
well as the comparison with the existing works, are also
provided.

APPENDIX

PROOF OF THEOREM 2

An equivalent expression for (30) is

ΓK+1−L(Ĥl)F = ΓK+1−L(Hl)FA (41)

where F is a row permutation matrix from F̃. For convenience,
we first provide the proof for Nt = 2. Then, we assume that
Fi is obtained by deleting the vith column from a (K +
1) × (K + 1) identity matrix, with v1 �= v2, and we divide the
discussion into two cases.

Case 1

v1 ≤ �K/2� + 1, and v2 > �K/2� + 1. The matrices
ΓK+1−L(Ĥl)F and ΓK+1−L(Hl)F can be partitioned as

ΓK+1−L(Ĥl)F =


 P̂1 0 0

P̂2 Ĥ P̂3

0 0 P̂4


 (42)

ΓK+1−L(Hl)F =


P1 0 0

P2 H P3

0 0 P4


 (43)

where P̂1 and P1 are the Nr(�K/2� − L) × (2�K/2� − 1)
matrices, whereas P̂4 and P4 are the Nr(�(K − 1)/2� − L) ×
(2�(K − 1)/2� − 1) matrices. Define hl

i as the ith column
of Hl, namely, hl

i = [hi1,l, hi2,l, . . . , hiNr,l]
T. Then, Ĥ and

H can be expressed as two Nr(L + 2) × 4 matrices with
the form

Ĥ =




ĥ0
1 0 ĥ0

2 0
ĥ1

1 ĥ0
1 ĥ1

2 ĥ0
2

...
...

...
...

ĥL
1 ĥL−1

1 ĥL
2 ĥL−1

2

0 ĥL
1 0 ĥL

2




(44)

H =




h0
1 0 h0

2 0
h1

1 h0
1 h1

2 h0
2

...
...

...
...

hL
1 hL−1

1 hL
2 hL−1

2

0 hL
1 0 hL

2


 . (45)

The 2�K/2�th to the (2�K/2� + 3)th column of (41) could
be rewritten as


 0

Ĥ
0


 =


P1 0 0

P2 H P3

0 0 P4





 Ã1

Ã2

Ã3


 . (46)

Note that P1 is obtained from the columns of
Γ(�K/2�−L)(Hl) and that P4 is obtained from the columns
of Γ(�(K−1)/2�−L)(Hl). From Lemma 1, we know that P1

and P4 are of full column rank if Γ(�K/2�−L)(Hl) and
Γ(�(K−1)/2�−L)(Hl) are tall matrices, namely, Nr(�K/2� −
L) > 2�K/2� and Nr(�(K − 1)/2� − L) > 2�(K − 1)/2�.
Then, Ã1 and Ã3 can be calculated as zero matrices. Therefore

Ĥ = HÃ2. (47)

By properly rearranging the columns of Ĥ, we obtain




0 Ĥ0

Ĥ0 Ĥ1

...
...

ĤL−1 ĤL

ĤL 0


 =




0 H0

H0 H1

...
...

HL−1 HL

HL 0




[
C1 C2

C3 C4

]
. (48)

From the last block row, we can get

HLC2 = 0. (49)

Since Hl is, by assumption, a full-column-rank matrix, then
C2 is a zero matrix. By substituting this result into (48), it can
be further derived that

C1 = C4, C3 = 0. (50)

Taking B = C1 gives (31).

Case 2

v1 ≤ �K/2� + 1, and v2 ≤ �K/2� + 1. Matrices Γ(Ĥl)F
and Γ(Hl)F can be divided as

ˆ̃HF =


 Q̂1 0 0

Q̂2 Ĥ Q̂3

0 0 Q̂4


 (51)

H̃F =


Q1 0 0

Q2 H Q3

0 0 Q4


 (52)

where Q̂1 and Q1 are taken as the Nr(�K/2� − L + 2) ×
2�K/2� matrices, and Q̂4 and Q4 are taken as the
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Nr(�(K − 1)/2� − L − 1) × (2�(K − 1)/2� − 2) matrices.
Ĥ and H are now Nr(L + 1) × 2 matrices, with the form

Ĥ =




Ĥ0

Ĥ1

...
ĤL


 , H =




H0

H1

...
HL


 . (53)

The (2�K/2� + 1)th and the (2�K/2� + 2)th columns of
(41) could be rewritten as


 0

Ĥ
0


 =


Q1 0 0

Q2 H Q3

0 0 Q4





 Ā1

Ā2

Ā3


 . (54)

Note that Q1 is obtained from the columns of
Γ(�K/2�−L+2)(Hl) and that Q4 is obtained from the
columns of Γ(�(K−1)/2�−L−1)(Hl). From Lemma 1, we
know that Q1 and Q4 are of full column rank if Nr(�K/2� −
L + 2) > 2�K/2� + 4 and Nr(�(K − 1)/2� − L − 1) >
2�(K − 1)/2� − 2. Similar to case 1, we could arrive at (31).

For cases {v1 ≤ �K/2� + 1, v2 > �K/2� + 1} and {v1 >
�K/2� + 1, v2 > �K/2� + 1}, a similar discussion can be
made. By combining all cases, Nr should satisfy

Nr >

⌊
2 �(K − 1)/2� − 2

(�(K − 1)/2� − L − 1)

⌋
. (55)

For Nt > 2, basically, the proof can be divided into two
cases.

1) All vi’s are smaller than �K/2� + 1, or all vi’s are bigger
than �K/2� + 1. Then, similar equations as (52) and (53)
can be obtained.

2) Otherwise, similar equations as (43) and (48) can be
obtained.

The remaining discussion is the same as that for Nt = 2.
Note that P1 and P4 are still obtained from the columns of
Γ(�K/2�−L)(Hl) and Γ(�(K−1)/2�−L)(Hl) by keeping in mind
that column selection of P1 and P4 from Γ(�K/2�−L)(Hl) and
Γ(�(K−1)/2�−L)(Hl) varies for different combinations of
vi. Meanwhile, Q1 is still obtained from the columns
of Γ(�K/2�−L+2)(Hl), and Q4 is from the columns of
Γ(�(K−1)/2�−L−1)(Hl). Therefore, Nr should satisfy

Nr >

⌊
Nt (�(K − 1)/2� − 1)
(�(K − 1)/2� − L − 1)

⌋
. (56)

A detailed discussion for Nt > 2 is omitted because it is
quite straightforward.
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