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Abstract—In this paper, we consider blind channel estimation
for cyclic-prefixed single-carrier (CP-SC) systems via second-
order statistics only. By exploiting the existence of real symbols
in the transmitted data block, we develop a simple technique for
blind channel estimation that does not need redundant precoding
or virtual carriers. Hence, the proposed algorithm provides band-
width efficiency. A side benefit of the proposed algorithm is that
the phase ambiguity, which is an inherent problem in traditional
blind channel estimation, is reduced to sign ambiguity only. This
side benefit facilitates signal detection in digital communications
where symbols are usually taken from a finite alphabet. Although
the proposed method is mainly developed for channel estimation
in single-input–single-output CP-SC systems, it can also be applied
straightforwardly to single-input–multiple-output systems (either
with CP-SC or other kinds) and multiple-input–multiple-output
systems whenever real symbols exist or are deliberately inserted
in the transmission.

Index Terms—Blind channel estimation, cyclic prefixed single
carrier (CP-SC), IEEE 802.11a, orthogonal frequency-division
multiplexing (OFDM), subspace methods, wireless communica-
tions, Cramér–Rao bound (CRB).

I. INTRODUCTION

CYCLIC-PREFIXED single-carrier (CP-SC) communi-
cation with frequency-domain equalization (SC-FDE)

[1]–[4] has recently received more attention since it has nearly
all the advantages of orthogonal frequency-division multi-
plexing (OFDM)1 but offers significant performance improve-
ments over OFDM in certain environments. SC-FDE delivers
performance similar to OFDM with essentially the same over-
all complexity [1]. In addition, since the peak-to-average
power ratio (PAPR) in SC-FDE is much smaller, more power-
efficient transmitters can be used. Several training-sequence-
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1OFDM [5], [6] is a promising candidate for next-generation high-speed
wireless multimedia communication systems. It has been used in European dig-
ital audio/video broadcasting [7], [8] and high-performance local-area network
[9] and 802.11a wireless LAN standards [10].

based channel-estimation algorithms for CP-SC systems are
developed in [3] and [4].

A promising blind-channel-estimation method, known as the
subspace-based method, has been developed in [11]. In this
method, the observation space is separated into signal and
noise subspaces by applying eigenvalue decomposition on the
covariance matrix of the received signals. By exploiting the
inherent structure of the channel matrix, the channel vector
can be estimated via the noise subspace up to a complex
scalar ambiguity. For OFDM or CP-SC transmission, however,
the subspace-based method cannot be applied directly since
the channel matrix is square, and no dimension of the noise
subspace exists.

In order to solve this problem, some redundancy must be
introduced in each data block. For example, a linear-block-
precoding technique is carried on in [12], and virtual carriers
are exploited in [13]. However, both these techniques sacrifice
at least one symbol in each block in order to construct a tall
channel matrix. A nonredundant linear-precoding method is
developed in [14]. However, this method requires transmitted
symbols on all time slots to be independent and have equal
power, which may not be fulfilled in practical applications.

In this paper, we propose a real-symbol-combined blind-
channel-estimation method for CP-SC transmissions, aiming
to cope with the square channel matrix, to improve estimate
accuracy, as well as to increase the bandwidth efficiency. The
proposed method needs only one symbol in each data block to
be real; thus, it loses only “half” of a symbol when a complex
constellation is employed. Compared to [12] and [13], the
proposed method provides higher bandwidth efficiency. Despite
this “half” symbol sacrifice being an overhead, the following
advantages encourage a study of the proposed method:

1) successful application of a subspace-based algorithm to
the square channel matrix and a reduction on the data
rate loss;

2) performance improvement by a thorough exploitation of
the inner structure of the transmitted symbols;

3) reduction of the phase ambiguity to sign ambiguity;
4) easy extension to other systems.

This paper is organized as follows. Section II presents the
system model of CP-SC transmission. Section III provides our
proposed algorithm and several related theorems. Section IV
presents the Cramér–Rao bound (CRB) of the proposed estima-
tor. In Section V, we provide the simulation results illustrating

0018-9545/$25.00 © 2007 IEEE



2488 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 56, NO. 5, SEPTEMBER 2007

Fig. 1. Equivalent discrete baseband CP-SC system model.

the effectiveness of our algorithm. Finally, conclusions are
made in Section VI, and proofs of theorems are given in the
Appendices.

Notation: vectors and matrices are boldface small and capital
letters; the transpose, complex conjugate, Hermitian, inverse,
and pseudoinverse of matrix A are denoted by AT, A∗, AH,
A−1, and A†, respectively; tr(A) and ‖A‖F are the trace
and the Frobenius norm of A; diag{a} denotes a diagonal
matrix with the diagonal element constructed from a; Re{A}
and Im{A} represent the real and imaginary part of a matrix;
⊗ stands for the Kronecker product; I is the identity matrix;
and E{·} denotes the statistical expectation. The MATLAB
notations for rows and columns are used. For example,A(m, :)
represents the mth row of the matrix A, and A(m1 : m2, :)
represents the submatrix obtained by extracting rows m1

through m2 from matrixA, respectively.

II. SYSTEM MODEL FOR CP-SC TRANSMISSION

Fig. 1 shows the baseband CP-SC system that we consider.
The discrete channel response is represented by the (L + 1)× 1
complex vector h = [h0, . . . , hL]T. The CP is added in front of
each transmitted block and is discarded at each received block.
As long as the length of the CP is greater than or equal to L,
the remaining signal at the receiver for the kth block can be
represented as

x(k) = Hs(k) + n(k) (1)

where s(k) is the M × 1 time-domain transmitted symbol vec-
tor, n(k) is the M × 1 vector of the white Gaussian noise terms
with equivalent variance σ2, H is the circulant channel matrix
with its (i, j)th entry, which is given by hM ((i − j) mod M),
and the M × 1 vector hM is obtained by inserting M − L − 1
zeros at the end of h.

Define the M × M normalized discrete Fourier transform
(DFT) matrix F with its (q, p)th entry, which is given by
e−j2π(q−1)(p−1)/M/

√
M . The normalized DFT of the received

signal vector is

y(k) = Fx(k) = H̄Fs(k) + Fn(k) (2)

where H̄ is a diagonal matrix with the form H̄ =
diag{DFT(hM )}. Therefore, a one-tap equalization can be
performed in the frequency domain and the symbols can be
recovered by

s(k) = FHH̄−1y(k) = FHH̄−1Fx(k). (3)

This is the so-called SC-FDE approach. As stated in [1], the
SC-FDE approach has essentially the same performance and
low complexity as an OFDM system but does not suffer from
the PAPR problem. Therefore, the CP-SC system is a potential
candidate for broadband wireless communications.

III. BLIND CHANNEL ESTIMATION BY EXPLOITING

REAL SYMBOLS

A. Model for Real-Symbol-Combined Systems

For subspace-based blind channel estimation, the channel
matrix in (1) and (2) must be a full-rank tall matrix, i.e.,
the number of rows is greater than the number of columns.
Unfortunately, both H and H̄F are square matrices, and the
subspace-based method cannot be applied directly. However,
a tall channel matrix can be realized by assigning redundancy
into s(k). Normally, at least one symbol redundancy should
be added into each data block, as done in [12] and [13]. In
this paper, we propose a new subspace-based blind channel
estimation that requires only one real symbol in each data
block. This real symbol can either be obtained by deliberate
transmission, or it may already exist for certain systems, e.g.,
BPSK/pulse amplitude modulation (PAM) systems [15], [16].

For a generic discussion, we assume that there exist m real
symbols at fixed positions in each data block and that all other
symbols are taken from arbitrary signal constellations. Without
loss of generality, we assume that the first m symbols of each
block are BPSK/PAM symbols. After stacking the received
signal and its complex conjugate in one vector, we get

x̆(k) = H̆s̆(k) + n̆(k) (4)

where

x̆(k) =
[
x(k)T,x(k)H

]T
(5a)

H̆(:, 1:m) =
[
H(:, 1:m)T,H(:, 1:m)H

]T
(5b)

s̆(k) =
[
s(k)T, s(k)(m+1:M)H

]T
(5c)

H̆(:,m+1:M) =
[
H(:,m+1:M)T,0

]T
(5d)

n̆(k) =
[
n(k)T,n(k)H

]T
(5e)

H̆(:,M+1:2M−m) =
[
0,H(:,m+1:M)H

]T
(5f)

and 0 is the (M − m)× M zero matrix.
Theorem 1: If there exists only one real symbol in each

block, namely, m = 1, the matrix H̆would be a 2M×(2M−1)
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full-rank matrix if and only if the channel frequency response

h(ejω) ∆=
∑L

l=0 hle
−jlω has no nulls at ωM = (2πm/M), m =

0, . . . ,M − 1.
Proof: Let

H̃ =
[
H 0
0 H∗

]
, ˜̄H =

[
H̄ 0
0 H̄∗

]
, F̃ =

[
F 0
0 F∗

]
.

(6)

Matrix H̆ in (4) can be expressed as

H̆ = H̃T = F̃H ˜̄HF̃T (7)

where

T =


 IM×M 0M×(M−1)

1 01×(2M−2)

0(M−1)×M I(M−1)×(M−1)


 (8)

is a 2M × (2M − 1) full-rank matrix. It follows that

rank{H̆} = rank{F̃H̆} = rank{ ˜̄HF̃T} (9)

and

rank{F̃T} = rank{T} = 2M − 1. (10)

Sufficient Condition: If no channel null exists on the M fast
Fourier transform frequency points of h, then

rank{ ˜̄HF̃T} = rank{F̃T} = 2M − 1. (11)

Therefore, H̆ is a full-rank matrix. The sufficient condition is
proved.

Necessary Condition: This condition is proved by contra-
diction. Suppose there exists a channel null at ω = ej(2πp/M),
p ∈ {0, . . . , M − 1}, while rank{H̆} still keeps 2M − 1. Since
H̄(p + 1, p + 1) = 0, it follows that H̄(p + 1, p + 1)∗ = 0.

Hence, two diagonal entries of ˜̄H are zeros. Therefore

rank{H̆} = rank{ ˜̄HF̃T} ≤ 2M − 2. (12)

By contradiction, the necessary condition is proved. �
Theorem 2: If there exists more than one real symbol in each

block, namely, m ≥ 2, a sufficient condition for matrix H̆ to be
full-column rank is that the channel frequency response should
have no nulls at ωm, m = 0, . . . , M − 1.

The proof can be easily seen from the proof for Theorem 1.
However, for more than one real symbol, the necessary con-
dition is affected by many factors, e.g., M , m, the position
of real symbols, and the position of null carriers. Therefore,
it is difficult to arrive at a general conclusion. Normally, the
more the real symbols exist per block, the looser the necessary
condition will be. One can see this from the full real-symbol
case, where the necessary condition can be readily shown to
be that the channel frequency response has no more than M/2
zeros at ωm, m = 0, . . . , M − 1.

Furthermore, since each element of n(k) is assumed to be
a zero-mean white Gaussian complex circular variable with

variance σ2, the new noise vector n̆(k) has the covariance

E
{
n̆(k)n̆(k)H

}
= σ2I2M . (13)

Therefore, by letting m ≥ 1 symbols in each block be real, the
new model (4) results in a tall channel matrix, such that the
problem of channel estimation can be solved by subspace-based
methods.

B. Algorithm

The signal covariance matrix can be expressed as

R ∆= E
{
x̆(k)x̆(k)H

}
= H̆RsH̆H + σ2I2M (14)

where Rs = E{s̆(k)s̆(k)H} is the source covariance matrix.
If H̆ is of full column rank and the sources are not fully
correlated, then Rs is a nonsingular matrix, and R can be
eigendecomposed as

R = EΛEH + σ2GGH (15)

where the (2M − m)× (2M − m) diagonal matrix Λ con-
tains the 2M − m signal-subspace eigenvalues of R, and the
columns of the 2M × (2M − m) matrix E contain the signal-
subspace eigenvectors of R. The 2M × m matrix G contains
the noise-subspace eigenvectors ofR. We can show that

GHH̆(:, i) = 0 i = 1, . . . , 2M − m. (16)

Define the 2M × 2(L + 1) selection matrix

J i =




[
Ji 0
0 Ji

]
, for 1 ≤ i ≤ m[

Ji 0
0 0

]
, for m + 1 ≤ i ≤ m[

0 0
0 Ji−M+m

]
, for M + 1 ≤ i ≤ 2M − m

(17)

where Ji is the M × (L + 1) selection matrix, with its (p, q)th
entry given by

Ji(p, q) =
{
1, if (p − q) mod M = i − 1
0, otherwise

(18)

and let h̆ = [hT,hH]T denote the combination of both h and
its conjugate. By proper rearrangement of the matrix and vector
entries, it follows from (16) that

GHJ ih̆ = 0. (19)

From (19), the following equation can be obtained:

h̆HJ H
i GG

HJ ih̆ = 0. (20)

Let us define the matrix

Φ =
2M−m∑

i=1

J H
i GG

HJ i =
2M−m∑

i=1

J H
i PGJ i (21)
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with PG = GGH representing the projection matrix onto the
noise subspace. We can readily show that h̆ is in the null space
of Φ. Therefore, the estimate of h̆, which is denoted as h′,
becomes

h′ =arg min
‖w‖=1

wHΦw

=arg min
‖w‖=1

wH

(
2M−m∑

i=1

J H
i PGJ i

)
w. (22)

The unit–norm constraint on w ensures the generation of a
nontrivial solution of h′.

An inherent problem of the subspace-based algorithm is that
h̆ can only be estimated up to a complex scalar ambiguity,
namely

h′ =
[
h′1
h′2

]
= αh̆ = α

[
h
h∗

]
(23)

where α is an unknown complex scalar. By further combining
h′1 and h′2, we obtain

ḧ = h′1 + h
′∗
2 = αh+ α∗h = Re{α}h. (24)

Note that the estimate ḧ is a scale of h by a real factor.
Therefore, the proposed conjugate-combined algorithm forms
an important contribution by resolving “most” phase ambiguity.
However, the sign ambiguity still exists since the real scalar
α can be negative. Yet, this alleviation of phase ambiguity
offers benefits in specific cases. For example, 1) if 3-PSK
constellation [17] or another nonsymmetrical constellation with
respect to origin is used, then no further training is needed, and
2) for other constellations symmetric about origin, e.g., QPSK,
QAM, we can transmit unknown sequence of symbols that are
obtained from constellations nonsymmetric about origin, e.g.,
all-positive unknown-symbol sequence, to resolve the ambigu-
ity. Compared to the traditional way to resolve the ambiguity
where training symbols must be sent, our method would save
at least half of the information during the ambiguity-resolving
process.

Some remarks are made here in order to help readers to
distinguish the proposed method with the traditional subspace-
based methods.

1) Traditionally, additional training symbols are sent to
resolve channel-estimation ambiguity. The methods in
[12] and [13] not only lose one symbol in each data
block but also send additional training symbols to resolve
this ambiguity. The number of training symbols should
exceed a certain value to achieve sufficient accuracy. In
comparison, our proposed method not only saves half
symbol in each data block but also reduce this ambiguity
to sign ambiguity only. Thus, it is an attractive blind-
channel-estimation method.

2) For channel estimation in single-input–single-
output, single-input–multiple-output, and multiple-input–
multiple-output transmissions, where the channel matrix
is already tall, our proposed method can nevertheless
be applied whenever there are real symbols. Since

the proposed method factors in the real-symbol charac-
teristics when estimating the channel response, it further
improves the estimation performance. As the simulations
show below, our proposed method outperforms the
traditional subspace-based methods in this case.

3) For channel estimation where the channel matrix is al-
ready tall, the traditional subspace-based method can be
successfully applied even when the transmitted symbols
are all complex. However, the phase ambiguity cannot be
removed even if we combine the received signals and its
conjugate part.

4) Adding more real symbols in one data block is not
recommended since this would increase the data rate loss.
One real symbol is enough for applying the proposed
subspace-based channel estimation. However, we suggest
using the proposed method for the cases where real
symbols already exist in transmissions [15], [16].

C. Identifiability

Identifiability is critical in assuring the correctness and the
uniqueness of the estimation result for an algorithm. Traditional
identifiability problem is discussed in [11], [13], [18], etc.
However, it is also known that identifiability is a tough problem
which may not be fully addressed occasionally. For most cases,
only the sufficient conditions on the channel identification are
provided.

Since we are developing a new way of channel estimation, we
currently provide only the sufficient condition on identifiability
when all the transmitted symbols are real.

Theorem 3: Assume that all symbols transmitted in one
block are real. The sufficient conditions for channel identifia-
bility are as follows:

1) Polynomial h(z) =
∑L

l=0 hlz
−1 does not have a

real root.
2) Polynomial h(z) does not have conjugate roots.
3) M is greater than 2L + 1.

Proof: See Appendix A.
Note that the first two conditions would be satisfied with

probability one since h is continuous random vector. The third
condition is satisfied by many transmission schemes, e.g., in
IEEE 802.11a [10], M = 4L = 64.

Although we can only provide a partial answer to the iden-
tifiability issue, we will, in the later simulations, numerically
check the channel identifiability. It will be seen that h can be
uniquely obtained with high probability.

D. Reduction of Memory Requirements

Due to the special structure of matrix H̆, the noise subspace
matrixG exhibits the following property.

Theorem 4: Divide G as G = [GT
1 ,GT

2 ]
T, where G1 and

G2 are two M × m matrices, and let G̃ = [GH
2 ,GH

1 ]
T. It

follows that

PG = GGH = G̃G̃H. (25)

See the proof in Appendix B.
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Consequently, the following property holds:

G1GH
1 =

(
G2GH

2

)∗
(26a)

G1GH
2 =

(
G2GH

1

)∗
. (26b)

Since bothG and G̃ are orthonormal matrices, there must exist
an m × m unitary matrixU, such that

G = G̃U. (27)

One can further obtain from (27) that ‖G1‖2
F = ‖G2‖2

F =
m/2.

To get Φ from (21), we need to calculate J H
i PGJ i. With

(17) and (27) in mind, one can find that, for i ≤ m, J H
i PGJ i

has the following structure:

J H
i PGJ i =

[
A B
B∗ A∗

]
(28)

where A, B are the corresponding subblock matrices in
J H

i PGJ i. Therefore, only the first M rows need to be
calculated and stored in memory. Similarly, we know that,
for i > M , the last M rows of J H

i PGJ i can also be di-
rectly obtained from the conjugate of the first M rows of
J H

i−M+mPGJ i−M+m. Therefore, these special properties can
be utilized to reduce the storage burden and computational
complexity of the proposed algorithm.

E. Complexity Discussion

It is well known that the dominant complexity component
of subspace-based channel estimation lies in the singular-
value decomposition, which can be approximated by O(N3),
where N is the number of rows in the covariance matrix.
Since our proposed method stacks the signal vector and its
complex conjugate, the dimension of the covariance matrix is
2M , and the singular value decomposition (SVD) complex-
ity is approximately O((2M)3), which is twice as that for
linear redundant-precoding algorithm [12] or the nonredun-
dant precoding [14]. Therefore, the complexity of the pro-
posed method is around eight times higher than these two
algorithms. Nevertheless, since the block size of the CP-SC
or OFDM is practically very large, e.g., M = 64 in IEEE
802.11a [10], this factor eight does not appear to be a critical
difference. Moreover, the complexity of the proposed method
is much lower than that of virtual carrier-based method [13]
since the latter must combine many consecutive blocks, which
may form a covariance matrix with even higher dimension, as
will be seen in the later simulations.

IV. PERFORMANCE ANALYSIS

The deterministic CRB of the proposed estimator for real
symbols with number 1 ≤ m ≤ M − 1 is derived next. The
case when m = M can similarly be obtained and will be
omitted for brevity.

Clearly, the received snapshots satisfy the following deter-
ministic model:

x(k) ∼ N
{
Hs(k), σ2I

}
. (29)

By suitably interchanging entries, the system model (4) can
be rewritten as

x(k) = S(k)h+ n(k). (30)

where S(k) is an M × (L + 1) Toepoliz matrix with the first
column s(k) and the first row [s(k)(1), s(k)(M), s(k)(M− 1),
. . . , s(k)(M − L+ 2), s(k)(M − L + 1)]. Here, s(k)(i) rep-
resents the ith entry of s(k). Define

Π =H(:, 1 : m) (31a)

A =H(:,m + 1 : M) (31b)

P⊥
A = I−A(AHA)−1AH (31c)

Υ =Re
{
ΠHP⊥

AΠ
}

(31d)

∆(k) =S(k)HP⊥
AS(k) (31e)

Ξ(k) =S(k)HP⊥
AΠ (31f)

∆̂(k) =
[
Re {∆(k)} −Im {∆(k)}
Im {∆(k)} Re {∆(k)}

]
. (31g)

Suppose Nk data blocks are received. The deterministic CRB

of ĥ ∆= [Re{h}T, Im{h}T]T is given as follows:

CRBĥ =
σ2

2

(
Nk∑
k=1

(
∆̂(k)−

[
Re {Ξ(k)}
Im {Ξ(k)}

]
Υ−1

×
[
Re {Ξ(k)}T Im {Ξ(k)}T

]))†

. (32)

Proof for (32): See Appendix C.

V. SIMULATION RESULTS

In this section, we examine the performance of the proposed
estimator under various scenarios. The exponential power-delay
profile

E
{
|hl|2

}
= exp(−l/10), l = 0, . . . , L (33)

is used for each channel tap. The phase of each channel ray is
uniformly distributed over [0, 2π). For all numerical examples,
the parameters are taken as M = 16 and L = 4 and 200 data
blocks are taken to obtain the channel matrix unless otherwise
mentioned. Note that 200 data blocks are commonly used in
subspace-based channel estimation [11]–[13]. Moreover, all
the results are averaged over Nd = 100 Monte Carlo runs.
The root-normalized estimation mean-square error (RNMSE)
is defined as

RNMSE =

√√√√ 1
Nd

Nd∑
d=1

‖ḧd − h‖2

‖h‖2
(34)

where the subscript d refers to the dth simulation run.
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TABLE I
NUMERICAL STUDY ON condi FOR DIFFERENT VALUES OF m

A. Example 1: Channel Ambiguity

In this example, we numerically study the channel-estimation
ambiguity of the proposed algorithm as a function of the
number of the real symbols m. The process is described as
follows. We randomly generate 106 different channel vectors h
and construct the corresponding channel matrices H̆ by using
different values of m. Applying SVD on these channel matrices,
we obtain the exact noise subspace that is orthogonal to H̆ and
the matrix Φ, following (21). The smallest singular value of Φ
is zero; if the second smallest singular value of Φ is also zero,
then ambiguity occurs. However, due to computer rounding-
off errors, the second smallest singular value of Φ would not
be zero even when ambiguity happens. We now choose a new
criterion in judging the channel ambiguity. Define

condi =
largest singular value of Φ

second smallest singular value of Φ
. (35)

The numerical study on condi for different values of m is
provided in Table I. We see that condi is quite big for some
cases in m = 1, m = 2, and, particularly, m = 16. However,
we cannot say whether the ambiguity will definitely occur even
for these large condi because, as long as the second smallest
singular value is nonzero,2 the channel ambiguity should not
occur under noise-free case. What we can conclude by observ-
ing Table I are the following.

1) The value of m that can give the smallest chance for
channel ambiguity belongs to {8, . . . , 15}.

2) The chances for channel ambiguity increases when m
decreases from eight. Nevertheless, the probability of the
channel ambiguity, if any, is quite small.

3) The full real transmission is more vulnerable to noise and
has the highest chance of channel-estimation ambiguity if
noise is involved, particularly at the lower signal-to-noise
ratio (SNR) region.

B. Example 2: Comparing With the Existing Methods

In this example, we compare the proposed method with
the redundant-precoding method [12], the virtual-carrier-based
method [13], the nonredundant-precoding method [14], and the
training-based method. For a fair comparison, symbols on dif-
ferent time slots are independently generated, and their power
is adjusted such that the covariance of s(k) is a multiple of an
identity matrix. For the proposed method and the training-based

2May be due to computer rounding-off errors.

Fig. 2. RNMSE of the proposed method and of existing methods as a function
of SNR.

method, the data block is transmitted in the time domain; the
first symbol in each block is 4-PAM, and others are 16-QAM.
For the methods in [12]–[14], the data block is transmitted in
the frequency domain. As suggested in [12], an M × (M − 1)
precoding matrix, with entries randomly taken from {+1,−1},
is used for the redundant-precoding method. Therefore, in each
OFDM block, one data symbol is lost to provide redundancy.
For the method in [13], we also adopt the smallest redundancy
and transmit only on M − 1 subcarriers. From [13], we know
that five consecutive OFDM blocks need to be combined to
form the covariance matrix that has a dimension of 5M × 5M .
Since, in each transmission block, the proposed method adds
a half symbol of redundancy, we take 100 symbols for the
training-based method. In Fig. 2, the RNMSEs of channel
estimation versus the SNR of these four different algorithms
are displayed. The deterministic CRB for the proposed method
is also displayed.

Fig. 2 shows that the proposed method outperforms
the redundant-precoding method and the virtual-carrier-based
method, although the latter two methods have twice the re-
dundancy as that in the proposed method. Moreover, the pro-
posed method performs better than the nonredundant-precoding
method at relatively high SNR. The training-based method
performs better than the proposed method. However, for cases
where a training sequence is not applicable, e.g., noncooper-
ative transmission, blind methods would be the only choice.
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Fig. 3. BER of the proposed method and of existing methods as a function
of SNR.

Moreover, the performance difference between the proposed
method and the training-based method is quite small. The
performance of the proposed algorithm matches well with the
CRB, a phenomenon that is quite important because it says that,
for the considered real combined system, our blind algorithm
gives the best performance as compared to all other blind-
channel-estimation methods, if any.

MMSE detection is applied at the receiver, and the bit-error-
rate (BER) performance of these five methods is shown in
Fig. 3. The proposed method not only performs comparably
to the training-based one but also significantly outperforms
the other two precoding methods. The performance curve for
perfect channel knowledge is also plotted for a comparison.
Both the proposed method and the training-based method match
with the perfect curve well. From the simulations, we find that
the channel matrix of the virtual-carrier-based method is ill
conditioned.3 This is the reason why the virtual-carrier-based
method gives the worst BER performance.

C. Example 3: Different Numbers of Real Symbols

In this example, we examine the performance of the pro-
posed method for m = 1, 2, 4, 8, and 16, respectively. It
is expected that, as the number of real symbols increases,
channel-estimation accuracy should increase. Fig. 4 shows
the RNMSEs of channel estimation versus the SNR of these
five different cases, along with the deterministic CRBs. The
corresponding BER performances are shown in Fig. 5. From
Fig. 4, we see that, as the number of the real symbols in-
creases from one to eight, the RNMSE performance becomes
better. It should be mentioned that the performance for m ∈
{9, 10, . . . , 15} is similar to that for m = 8. However, these
performance lines are not shown. It is also noted that the
algorithm under m = 16, surprisingly, gives the worst per-
formance. In fact, the phenomenon shown in Fig. 4 is quite
consistent with that in Table I, which implicitly indicates the

3Condition number is around 106.

Fig. 4. RNMSE versus SNR for different numbers of real symbols.

Fig. 5. BER versus SNR for different numbers of real symbols.

bad performance for m = 16, the similar performance for
m ∈ {8, . . . , 15}, and the gradually decreasing performance
for m from eight to one. From Fig. 5, larger m yields
better performance. This is because of the assumption of
the same symbol energy for both real and complex constel-
lations. Namely, the Euclidean distance between points in
4-PAM constellation is greater than that in 16-QAM constel-
lation. However, m = 16 appears as a special case, where the
BER performance only becomes better at high SNR. This is
a direct result from the fact that channel estimation becomes
better only at high SNR, as shown in Fig. 4. Moreover, we see
that one real symbol is already enough to yield reliable channel
estimation and, consequently, reliable symbol detection. There-
fore, if the original channel matrix is square, then we suggest to
deliberately introduce only one real symbol. A side conclusion
from these two numerical results is that full real transmissions
in SC-CP systems are not recommended at low SNR for the
proposed method.
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Fig. 6. RNMSE versus number of data blocks for different numbers of real
symbols.

We examine next how the proposed estimator performs under
different numbers of received-signal blocks. The SNR, in this
example, is fixed at 10 dB. It is expected that, as the number
of the signal blocks increases, the estimate of the covariance
matrix R′ becomes accurate, which results in better estimation
of h. Fig. 6 shows the RNMSEs of channel estimation versus
the number of blocks of four curves for m = 1, 2, 4, 8, and 16.
The CRBs are displayed as well. The estimates with more than
200 blocks give satisfactory performance.

D. Example 4: Real Symbol at Different Position

It is also interesting to examine the impact of the position
of real symbols on the performance of the proposed estimator.
In this example, one real symbol is assumed at the positions
1, 2, 4, 8, and 16, respectively. The RNMSEs versus the SNR
performance of the proposed estimator is shown in Fig. 7 for
the five different cases; the five curves almost overlap with each
other, and the difference is quite small. In conclusion, while the
location of the real symbols does affect the performance, the
impact is small.

E. Example 5: Comparison With Traditional Blind Method

In this example, we apply our proposed algorithm to the zero-
padding SISO SC transmission and examine the performance
comparison between the direct channel-estimation method [19]
and our proposed method. Similar block size and channel
vectors are used as in the previous examples. Therefore, four
zeros are added at the end of each block. In this case, the
channel matrix is already tall, and no real symbols are needed
to construct a tall matrix. However, our interest lies in the case
where there already exist real symbols for certain demands and
how the real symbols will affect the channel-estimation results.
We assume that m = 2, 4, 8, and 16 real symbols exist in each
data block, which are obtained from the 4-PAM constellation
and the other symbols are taken from 16-QAM. The traditional
subspace-based method in [19] directly operates on the covari-
ance matrix of the received data block, while the proposed

Fig. 7. RNMSE versus SNR for different positions of real symbols.

Fig. 8. Comparison of the proposed method with traditional subspace-based
method.

algorithm considers the effect of both the received signals and
its conjugate part. The RNMSEs versus the SNR performance
is shown in Fig. 8. It can be seen that our proposed method
is better than the traditional subspace method at relatively
higher SNR region. In particular, when m = 16, there is nearly
4-dB SNR gain by using the proposed method. This is because
we fully exploit the inherent properties in the transmitted data.
Note that the case m = 16 does not give the worst performance
here since the channel-matrix structure is totally different from
that in CP-SC system. This more or less supports our previous
conjecture that the bad performance for m = 16 in CP-SC may
come from the bad condition of the channel matrix (see Table I).
We reemphasize that, when real symbols exist, we should avoid
direct estimation but combine the signal characteristic into the
channel-estimation algorithm.

F. Example 6: Performance With Large Block Size

In this example, we evaluate the proposed algorithm un-
der more practical parameters taken from IEEE 802.11a [10],
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Fig. 9. RNMSE versus SNR for different numbers of real symbols—large
block size.

Fig. 10. BER versus SNR for different numbers of real symbols—large
block size.

where M and L are selected as 64 and 16, respectively. We
also consider the worst case that the channel taps are as long as
L+ 1 = 17 while still following the model (33). The channel-
estimation RNMSEs and the BER performance for m = 1, 2, 4,
8, 16, 32, 63, and 64 are shown, respectively, in Figs. 9 and 10. It
is shown that the proposed algorithm is also effective for trans-
missions with larger block size. This is to be expected since
there is no specific size limitation in the proposed algorithm.
Similar behaviors are observed from Figs. 4 and 5 in that both
the RNMSE and BER decrease with the increase of the number
of the real symbols, except for the special full real case. This
example validates the proposed algorithm for parameters under
practical transmissions.

VI. CONCLUSION

In this paper, the characteristics of real symbols are fully
exploited in the subspace-based blind channel estimation for

CP-SC transmissions. The proposed method not only requires
less redundancy as compared to the previous techniques in [12]
and [13] but also increases the channel-estimation accuracy as
compared to the traditional subspace-based method since the
latter does not fully exploit the signal-structure information.
The proposed method also reduces the phase ambiguity in the
channel estimation to sign ambiguity only, which facilitates the
detection of symbols. Several mathematical studies, including
the channel-ambiguity discussions, ways to reduce the storage
burden, and the deterministic CRB, are provided to support this
paper. Simulations clearly demonstrate the effectiveness of the
proposed real-symbol combined method, as well as its many
advantages over the exiting methods.

APPENDIX A
PROOF OF THEOREM 3

If all the transmitted symbols are real, matrix H̆ can be
written as

H̆ = [HT,HH]T. (36)

Let ρ be an arbitrary vector and let A be constructed from ρ
the same way as H̆ is constructed from h. Suppose matrices A
and H̆ span the same space, namely

A = H̆B (37)

where B is an unknown matrix. Then, we only need to prove
that ρ = γh for some scalar γ.

The first column of A satisfies

A(:, 1) = H̆B(:, 1) = H̆b (38)

where b is the first column of matrix B. By properly rearrang-
ing the elements in (38), it follows that




ρ
ρ∗

0(M−L−1)×1

0(M−L−1)×1


=




h D1

h∗ D2

0(M−L−1)×1 H
0(M−L−1)×1 H∗



[
b(1)

b(2 : M)

]
(39)

where the (M − 1− L)× (M − 1) matrix H has the form

H =


hL · · · h0 · · · 0

...
. . .

. . .
. . .

...
0 · · · hL · · · h0


 . (40)

It is readily known from [11] that if
∑L

l=0 hlz
−l and∑L

l=0 h∗
l z

−l has no common zero and 2(M − 1− L) ≥ M −
1, then the matrix

H̃ ∆=
[

H
H∗

]
(41)

is a full column rank matrix. The first condition equivalently
says that no root of h(z) =

∑L
l=0 hlz

−l is real valued and
no two roots are conjugate of each other. If these conditions
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are satisfied, H̃ is assured to be a full column rank matrix.
Then, from [

0(M−L−1)×1

0(M−L−1)×1

]
=
[

H
H∗

]
b(2 : M) (42)

we know that b(2 : M) is a zero vector. Consequently

[
ρ
ρ∗

]
=
[
h
h∗

]
b(1) (43)

and ρ = γh with γ = b(1) is a real scalar.

APPENDIX B
PROOF OF THEOREM 4

From the previous discussion, we know that

[
GH

1 ,GH
2

]
H̆ = 0. (44)

Let

H̆′ =
[
H̆(M + 1 : 2M, :)T, H̆(1 : M, :)T

]T
(45)

represent the interchange of the first and the last M rows of H̆.
From (44), we know that

[
GH

2 ,GH
1

]
H̆′ = 0. (46)

By taking the complex conjugate of both side of (46), we obtain

[
GT

2 ,GT
1

]
H̆ = G̃H̆ = 0. (47)

Obviously, G̃ is a 2M × m orthonormal matrix. Since matrix
H̆ is of full column rank, matrix G̃ will also span the noise
subspace. From the uniqueness of the projection matrix onto a
subspace, one can readily conclude that

PG = GGH = G̃G̃H. (48)

APPENDIX C
PROOF OF DETERMINISTIC CRB

We omit the index k in this part for a clear demonstration. It
is well known that, for the single-vector observation

x = Hs+ n = Sh+ n (49)

the Fisher’s Information Matrix (FIM) for the signal parameter
vector

θ =
[
Re{h}T, Im{h}T, s(1 : m)T

Re{s(m + 1 : M)}T , Im{s(m + 1 : M)}T
]T

(50)

is given by [20]

J =
2
σ2

Re{ΣHΣ} (51)

where

Σ ∆=
[
∂Hs
∂θT

]

=

[
∂Hs

∂Re{h}T
,

∂Hs
∂Im{h}T

,
∂Hs

∂s(1 : m)T
,

∂Hs

∂Re{s(m+1 : M)}T
,

∂Hs

∂Im{s(m+1 : M)}T

]
. (52)

It can be obtained straightforwardly that

∂Hs
∂Re{h}T

=S (53a)

∂Hs
∂Im{h}T

= jS (53b)

∂Hs
∂s(1 : m)T

=Π (53c)

∂Hs

∂Re{s(m + 1 : M)}T
=A (53d)

∂Hs

∂Im{s(m + 1 : M)}T
= jA. (53e)

Then, the structure of the FIM is given in (54), shown at the
bottom of the page.

From [20], we know that, for blind channel estimation, the
FIM is singular, such that, its inverse does not exist. Then, some
constraints should be utilized to make J a nonsingular matrix.
Instead of taking any specific constraint, we use the minimal
constrained CRB, which is defined as in [20].

Lemma 1 [20]: Suppose that the FIM for θ = [θT
1 ,θT

2 ]
T is

J =
2
σ2

[
Jθ1θ1 Jθ1θ2

Jθ2θ1 Jθ2θ2

]
(55)

J =
2
σ2

Re{ΣHΣ} = 2
σ2



Re{SHS} −Im{SHS} Re{SHΠ} Re{SHA} −Im{SHA}
Im{SHS} Re{SHS} Im{SHΠ} Im{SHA} Re{SHA}
Re{ΠHS} −Im{ΠHS} Re{ΠHΠ} Re{ΠHA} −Im{ΠHA}
Re{AHS} −Im{AHS} Re{AHΠ} Re{AHA} −Im{AHA}
Im{AHS} Re{AHS} Im{AHΠ} Im{AHA} Re{AHA}


 (54)
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and assume J is singular but Jθ2θ2 is nonsingular. Then, the
minimal constrained CRB for θ1 separately is

CRBθ1 =
σ2

2
[
Jθ1θ1 − Jθ1θ2J

−1
θ2θ2

Jθ2θ1

]†
. (56)

Letting θ1 = [Re{h}T, Im{h}T]T = ĥ, it follows that

Jθ1θ1 =
[
Re{SHS} −Im{SHS}
Im{SHS} Re{SHS}

]
(57a)

Jθ1θ2 =
[
Re{SHΠ} Re{SHA} −Im{SHA}
Im{SHΠ} Im{SHA} Re{SHA}

]
(57b)

Jθ2θ2 =


Re{ΠHΠ} Re{ΠHA} −Im{ΠHA}
Re{AHΠ} Re{AHA} −Im{AHA}
Im{AHΠ} Im{AHA} Re{AHA}


 (57c)

Jθ2θ1 =


Re{ΠHS} −Im{ΠHS}
Re{AHS} −Im{AHS}
Im{AHS} Re{AHS}


 . (57d)

From the inverse lemma of the partitioned matrix [21], we know
that if

Jθ2θ2 =
[
W11 WT

21

W21 W22

]
(58)

where

W11 =Re{ΠHΠ} (59a)

W21 =
[
Re{AHΠ}
Im{AHΠ}

]
(59b)

W22 =
[
Re
{
(AHA)

}
−Im

{
(AHA)

}
Im
{
(AHA)

}
Re
{
(AHA)

} ] . (59c)

Then, the inverse of Jθ2θ2 can be written as

J−1
θ2θ2

=
[
0 0T

0 W−1
22

]
+
[

I
−W−1

22W21
v

]

×
(
W11−WT

21W
−1
22W21

)−1[
I,−WT

21W
−1
22

]
. (60)

It can be calculated that

W11 −WT
21W

−1
22W21 = Υ (61a)

W−1
22 =

[
Re
{
(AHA)−1

}
−Im

{
(AHA)−1

}
Im
{
(AHA)−1

}
Re
{
(AHA)−1

} ] (61b)

W−1
22W21 =

[
Re
{
(AHA)−1AHΠ

}
Im
{
(AHA)−1AHΠ

} ] (61c)

Jθ1θ2

[
I

−W−1
22W21

]
=
[
Re{Ξ}
Im{Ξ}

]
(61d)

Jθ1θ2

[
0 0T

0 W−1
22

]
Jθ2θ1

=
[
Re
{
SHPAS

}
−Im

{
SHPAS

}
Im
{
(SHPAS

}
Re
{
SHPAS

} ] (61e)

where PA = A(AHA)−1AH is the projection matrix onto the
subspace spanned byA.

After some algebraic manipulations, the minimal CRB for θ1

can be obtained as

CRBθ1 =
σ2

2

(
∆̂−

[
Re{Ξ}
Im{Ξ}

]
Υ−1

[
Re{Ξ}T Im{Ξ}T

])†
.

(62)

The following equations are useful to derive (62):

Re{X}Re{Y} − Im{X}Im{Y} =Re{XY} (63a)

Re{X}Im{Y}+ Im{X}Re{Y} =Im{XY} (63b)

Re{XH} =Re{XT} (63c)

Im{XH} = −Im{XT}. (63d)

For more than one data blocks, the CRBθ1 can be similarly
derived as

CRBθ1=
σ2

2

(∑
Nk

(
∆̂−

[
Re{Ξ}
Im{Ξ}

]
Υ−1

[
Re{Ξ}T Im{Ξ}T

]))†

(64)

where Nk is the total number of data blocks.
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