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[3] Z. Cvelković and M. Vetterli, “Oversampled filter banks,” IEEE Trans.
Signal Process., vol. 46, no. 5, pp. 1245–1255, May 1998.

[4] H. G. Feichtinger and T. Strohmer, Gabor Analysis and Algorithms:
Theory and Applications. Cambridge, MA: Birkhäuser, 1998.

[5] T. Strohmer, “Finite and infinite-dimensional models for oversampled
filter banks,” in Modern Sampling Theory: Mathematics and Applica-
tions, J. J. Benedetto and P. J. S. G. Ferreira, Eds. Cambridge, MA:
Birkhäuser, 2001, pp. 297–320.

[6] K. Gröchenig, “Acceleration of the frame algorithm,” IEEE Trans. Inf.
Theory, vol. 41, no. 12, pp. 3331–3340, Dec. 1993.

[7] R. Bernardini and R. Rinaldo, “Bounds on error amplification in
oversampled filter banks for robust transmission,” IEEE Trans. Signal
Process., vol. 54, no. 4, pp. 1399–1411, Apr. 2006.

[8] A. Mertins, “Frame analysis for biorthogonal cosine-modulated filter-
banks,” IEEE Trans. Signal Process., vol. 51, no. 1, pp. 172–181, Jan.
2003.

[9] I. Daubechies, Ten Lectures on Wavelets. Philadelphia, PA: SIAM,
1992.

[10] L. Chai, J. Zhang, C. Zhang, and E. Mosca, “On frames with stable
oversample filter banks,” in Proc. IEEE Int. Symp. Info. Theory, Ade-
laide, Australia, 2005, pp. 961–965.

[11] L. Chai, J. Zhang, C. Zhang, and E. Mosca, “Frame theory based
analysis and design of oversampled filter banks: Direct computational
method,” IEEE Trans. Signal Process., vol. 55, no. 2, pp. 507–519,
Feb. 2007.

[12] Z. Chen, J. Zhang, and L. Chai, “FB analysis of of PMRI and its appli-
cation to H SENSE reconstruction,” in Proc. 14th IEEE Int. Conf.
Image Processing (ICIP 07), San Antonio, TX, Sep. 2007, pp. III-
129–132.

[13] A. Rantzer, “On the Kalman–Yakubovich–Popov lemma,” Syst. Con-
trol Lett., vol. 28, pp. 7–10, 1995.

[14] S. P. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix
Inequalities in Systems and Control Theory. Philadelphia, PA: SIAM,
1994.

[15] G. Balas, R. Chiang, A. Packard, and M. Safonov, Robust
Control Toolbox 3 User’s Guide The Mathworks Inc., Natick,
MA, 2008 [Online]. Available: http://www.mathworks.com/ac-
cess/helpdesk/help/pdf_doc/robust/robust.pdf

[16] P. Vaidyanathan, Multirate Systems and Filter Banks. Englewood
Cliffs, NJ: Prentice-Hall, 1993.
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Abstract—In array signal processing, the inner structure of the signals
could possibly be exploited to improve the performance of the direc-
tion-of-arrival (DOA) estimations. One typical scenario has been discussed
in [P. Chage, Y. Wang, and J. Saillard, “A Root-MUSIC Algorithm
for Non-Circular Sources,” Proc. Int. Conf. Acoustics, Speech, Signal
Processing (ICASSP), Salt Lake City, UT, May 2001, pp. 7–11], where all
the incoming signals are supposed to be sent by noncircular PAM/BPSK
sources. A modified MUSIC algorithm was then developed to improve the
DOA estimation accuracy, as well as to increase the maximum number
of detectable signals. However, it is more realistic that some users send
noncircular symbols while other users still send circular symbols. In
this correspondence, we develop an algorithm to cope with this more
general scenario. By exploiting the redundancy existing in the noncircular
signals, the proposed algorithm can still increase the maximum number
of detectable signals and improve the performance accuracy compared to
the conventional MUSIC algorithm. Simulation results clearly show the
effectiveness of our proposed algorithm.

Index Terms—Array signal processing, direction-of-arrival estimation,
MUSIC, noncircular sources.

I. INTRODUCTION

Direction-of-arrival (DOA) estimation of narrowband planewave
signals has been intensively studied in the past few decades. Many
high-resolution algorithms have been developed for this problem
[2]–[5]. However, the structure of incoming signals has not been
considered in these traditional algorithms.

Only recently have some works been proposed to take into account
the available information about the incoming signals. For example, in
[6], a method was derived for signals with known waveforms. Constant
modulus (CM) signals have been studied in [7], where some algorithms
were developed to the case of phase-modulated signals. Noncircular
signals have been considered in [1] and [8], and modified MUSIC al-
gorithms were developed by exploiting the complex conjugate counter-
part of the received signals. Although the algorithms in [1] and [8] can
increase the number of detectable directions as well as to improve the
performance accuracy, it is more realistic that some users send non-
circular signals while others still send circular signals. In this corre-
spondence, we study this more general scenario and develop a new
MUSIC-based DOA estimation algorithm. The proposed algorithm can
improve the DOA estimation accuracy compared to the conventional
MUSIC algorithm. Meanwhile, it also allows to increase the maximum
number of detectable signals beyond the conventional MUSIC limit.
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II. PROBLEM FORMULATION

A. Array Model

Assume that L narrowband plane wave signals from ��� =
[�1; . . . ; �L] are impinging on an array of M sensors. The data
snapshots from M sensors can be described by the signal model

x(t) = A(���)~s(t) + n(t); t = 1; 2; . . . ; N (1)

where ~s(t) is the L�1 vector representing the signal waveforms at the
reference sensor; n(t) is the M � 1 vector of white circular complex
Gaussian noise with zero-mean and variance �2; N is the number of
available snapshots; matrix A(���), with the form

A(���) = [a(�1);a(�2); . . . ; a(�L)] (2)

is the M�L directional matrix, and a(�l); l = 1; . . . ; L is the steering
vector corresponding to the lth signal. Let the first sensor be the refer-
ence sensor with coordinates (0,0) and assume the remaining sensors
stay at positions (xm; ym), m = 2; . . . ;M . Then, a(�l) can be ex-
pressed as

a(�l) = 1; ej (x sin � +y cos � )
; . . . ; ej (x sin � +y cos � )

T

(3)

where � denotes the signal wave length. We assume that all the sources
are in the far field. In this case, the signal vector ~s(t) can be further
modeled as

~s(t) = _B _s(t) (4)

where _B is a constant L� L diagonal matrix, whose lth diagonal ele-
ment represents the effect of the channel on the lth signal (the channel
is assumed to be fixed during the estimation period), and _s(t) is the
L�1 vector representing the signals sent out from sources. Hence, the
data model can be rewritten as

x(t) = A(���) _B _s(t) + n(t); t = 1; . . . ; N: (5)

Remark: The matrix A(���) is in general a full-column-rank matrix
when L �M [2] and the ambiguity study, whereA(���) may not be full
rank, is treated as an independent issue from the DOA estimation [9],
[10]. In fact, most DOA estimation algorithms [2]–[5] are developed
by assuming that the ambiguity arises with zero probability.1

B. Noncircular Signals

Circularity is an important property of random variables [11]. The
concept of circularity directly comes from the geometrical interpre-
tation of complex random variables. Here, we use only the first and
the second orders statistical properties of the signals. For a complex
random variable y, the only moments to be considered are the mean
Efyg, the covariance Efyy�g, and the elliptic covariance Efyyg. A
complex random variable is said to be circular at the order 2, if both
the mean and the elliptic covariance equal zero. The second order sta-
tistical characteristics of y are so contained in its covariance Efyy�g.
Circularity is a common hypothesis for narrowband signals analysis,
but we can easily find numerous noncircular signals, like PAM or BPSK
signals.

Similar to [1], we only consider the case where noncircular sources
emit PAM/BPSK signals. Denote the number of the noncircular sources

1The ambiguity, especially the high-rank ambiguity, usually exists for arbi-
trary array shape. However, the probability of the ambiguity are normally con-
sidered as zero.

and the circular sources by LR and LC , respectively, with L = LR +
LC . Without loss of generality, let the first LR elements in _s(t) repre-
sent noncircular sources as _sr (t), i = 1; . . . ; LR, and the remaining
LC elements represent the circular sources as _sc (t), j = 1; . . . ; LC ,
respectively. Each _sr (t) can be further expressed as the multiplication
of a constant complex number �br and a real signal sr (t), where sr (t)
is a valid symbol in the PAM/BPSK constellation and �br represents a
constant phase rotation; namely

_sr (t) = �br sr (t): (6)

However, this property does not hold for the circular sources _sc (t).
Define

s(t) = sr (t); . . . ; sr (t); _sc (t); . . . ; _sc (t)
T

: (7)

The vector _s(t) can be rewritten as

_s(t) = �Bs(t) (8)

where �B is a diagonal matrix

�B = diag �br ; . . . ;�br ; 1; . . . ; 1 : (9)

Substituting (8) into (4) and then into (1) yields

x(t) = A(���)Bs(t) + n(t); t = 1; . . . ; N (10)

where B = _B �B, and the first LR entries in s(t) are all real.

III. IMPROVED MUSIC ALGORITHM

A. Modified Array Model

Similar to [2], LR and LC are assumed to be known a priori. If
LR = L, the array model (10) is the one studied in [1]. Here, however,
the vector s(t) contains both real and complex entries. For simplicity in
notations, we omit ��� and t in the following study unless otherwise men-
tioned. The matricesA andB and the vector s in (10) can be rewritten
as

A = a (�r ) ; . . . ; a �r ; a (�c ) . . . ; a �c

= ar ; . . . ; ar ; ac ; . . . ; ac (11)

B =diag br ; . . . ; br ; bc ; . . . ; bc (12)

s = sr ; . . . ; sr ; sc ; . . . ; sc
T

(13)

where ar and ac denote the steering vectors in A corresponding to
the ith PAM/BPSK signal and the jth circular signal, respectively. For
future use, we define new notations as

A1 = ar ; . . . ; ar (14)

A2 = ac ; . . . ; ac (15)

B1 =diag br ; . . . ; br (16)

B2 =diag bc ; . . . ; bc : (17)

We can combine the observed signal vector and its complex conju-
gate counterpart into a new vector

�x =
x

x�
=

ABs

A�B�s�
+

n

n�
= �A�s+ �n; (18)
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where

�A = �ar ; . . . ; �ar ; �Ac ; . . . ; �Ac (19)

�ari =
br ar

b�r a
�

r

(20)

�Ac =
bc ac 0

0 b�cja
�

cj

(21)

�s = sr ; . . . ; sr ; sc ; s
�

c ; . . . ; sc ; s
�

c

T

(22)

�n = [nT ;nH ]T (23)

and 0 represents the M � 1 zero vector. For �A to be a tall matrix,
LR+2LC < 2M is required. The ambiguity of �A can be analyzed by
following the same procedure presented in [9], [10], which is beyond
the scope of this correspondence. Therefore, similar to conventional
DOA estimation works, we will directly make the following important
assumption for the time being.

Assumption 1: When,LR+2LC � 2M , matrix �A is of full column
rank for any LC , LR, �r , �c with probability one.

B. Main Algorithm

The covariance matrix �R of the newly defined vector �x is given by

�R
�
= Ef�x�xHg = �AEf�s�sHg �AH + �

2
I = �A �Rs

�AH + �
2
I (24)

where �Rs = Ef �ssHg is the covariance matrix for �s. If sources are not
fully correlated, �Rs is a full rank matrix, and the eigendecomposition
of �R can be written as

�R = U���UH + �
2
GG

H (25)

where the (LR+2LC)� (LR+2LC) diagonal matrix ��� contains the
(LR+2LC) signal-subspace eigenvalues of �R and the columns of the
2M�(LR+2LC)matrixU contains the signal-subspace eigenvectors
of �R. In turn, the 2M � (2M � LR � 2LC) matrix G contains the
noise-subspace eigenvectors of �R.

Since both �A andU span the signal subspace, which are orthogonal
to the noise subspace spanned by the matrix G, we derive the criteria
for estimating the DOAs as follows.

DOAs for Noncircular Sources: For any direction from
f�r ; . . . ; �r g, the following equation holds:

G
H�ar = G

H
V (�r )

br

b�r
= 0 (26)

where the 2M � 2 matrix V(�) is defined as

V(�)
�
=

a(�) 0

0 a�(�)
: (27)

Let us define

Q(�) = V
H(�)GGH

V(�): (28)

Then Q(�) is rank deficient at �r (This does not mean that Q(�) is
rank deficient only at �r ). The following estimator can be used to es-
timate DOAs for noncircular sources:

fr(�) =
1

det fQ(�)g
=

1

det VH(�)GGHV(�)
: (29)

If searched over the region � 2 (�90�;+90�], the DOAs for noncir-
cular sources can be obtained from peaks in fr(�). It should be men-
tioned that the number of the columns of G should be no less than 2.

Otherwise, Q(�) is rank deficient regardless of the value of �. There-
fore, the prerequisite to use (29) is 2M � LR � 2LC � 2.

DOAs for Circular Sources: For any direction from
f�c ; . . . ; �c g, there are

G
H bc ac

0
= 0; and G

H 0

b�c a
�
c

= 0: (30)

Divide G as G = [GT
1 ;G

T
2 ]
T where G1 and G2 are two matrices

with equal dimensions. Equation (30) can be rewritten as

a
H
c G1G

H
1 ac = 0 (31)

and

a
H
c G2G

H
2

�

ac = 0: (32)

Lemma 1: Two (31) and (32) are equivalent.
Proof: The orthogonality of G and �A can be written as

G
H
1 ;G

H
2

A1 A2 0M�L

A�

1 0M�L A�

2

=0;

) G
T
2 ;G

T
1

A1 A2 0M�L

A�

1 0M�L A�

2

=0) ~GH �A = 0:

(33)

Obviously, ~G = [GT
2 ;G

T
1 ]
H is an orthonormal matrix. Since �A is

a full-column-rank matrix, ~G will also span the noise subspace. From
the uniqueness of the projection matrix onto a subspace, one can readily
conclude that

PG = GG
H = ~G ~GH

: (34)

Therefore, G1G
H
1 = (G2G

H
2 )� holds.

Hence, we can use the following estimator to estimate DOAs for
circular sources:

fc(�) =
1

aH(�)G1G
H
1
a(�)

(35)

where � is, again, searched over the region � 2 (�90�;+90�]. Note
that, the estimator (35) is quite similar to the one in conventional
MUSIC except that G1, the half of the noise subspace matrix G, is
used in the estimator.

We find that the following results can be obtained from (30):

0 =GH bc ac 0

0 b�c a
�

c

= G
H ac 0

0 a�c

bc 0

0 b�c

=GH
V �c

bc 0

0 b�c
: (36)

Hence, the following equation holds for circular sources:

det V
H

�c GG
H
V �c = 0: (37)

Therefore, peaks will also appear in the estimator (29) at � = �c .
Note that this conclusion is made under the ideal case when the true
covariance �R is obtained. Practically, we can only approximate �R by
averaging over the finite samples. Therefore, the two estimators may
not necessarily give the same results of �c . By noting that (29) can be
deduced from (35) but not vice versa,2 we prefer to use the estimator
(35) to obtain DOAs of circular sources. Furthermore, the noncircular
directions �r cannot be detected from (35) since (30) cannot be de-
duced from (26)–(29).

2Since the orthogonality between G and �A indicates the rank deficiency
of Q(� ) but not vice versa, we may think (35) as a “stronger” or a better
estimator to � than (29).
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Remarks:
• The uniqueness of DOA estimation from (29) and (35) need to be

studied. We show in the Appendix that the following statements
hold true with probability one:
— f�r ; �c ji = 1; . . . ; LR; j = 1; . . . ; LCg are the only DOAs

that make Q(�) drop rank;
— only �c ; j = 1; . . . ; LC can be found from (35).

• The proposed estimators (29) and (35) can be used to discriminate
noncircular sources from circular sources.

• As mentioned before, LR + 2LC � 2M � 2 must be satisfied
to ensure thatQ(�) does not trivially drop rank. Hence, our pro-
posed method can estimate the directions of more thanM�1 sig-
nals when the transmitted signals contain at least two noncircular
PAM/BPSK signals. Furthermore, if LC is zero, the proposed al-
gorithm reduces to exactly the same algorithm in [1].

• When the uniform linear array (ULA) is used, namely xm = (m�
1)d and ym = 0, m = 1; . . . ;M , the highly efficient polynomial
rooting method [12] can be applied for the proposed estimator (29)
and (35).

IV. SIMULATION RESULTS

In this section, we examine the performance of the proposed estima-
tors under various scenarios. For all examples, a six-sensor ULA with
interelement spacing d = �=2 is employed.

A. Example 1

In the first example, we compare the performance of the proposed
method and the traditional MUSIC algorithm under the coexistence of
both circular and noncircular sources. The number of snapshots is taken
as N = 300, and all the results are averaged over Nk = 100 Monte
Carlo runs. The root mean-square error (RMSE) is defined as

RMSE =
1

LNk

N

k=1

k�̂��k � ���k2 (38)

where the subscript k refers to the kth simulation run.
We assume that four uncorrelated signals come from 0�, 10�, 30�,

50�, respectively, and consider three cases where there are one, two,
and three noncircular sources, respectively. For the case with one non-
circular source, the source coming from 0� is supposed to send BPSK
symbols, while other sources send QPSK symbols; for the case with
two noncircular sources, the sources from 0� and 10� send BPSK sym-
bols; for the case with three noncircular sources, the sources from 0�,
10�, and 30� send BPSK symbols.

The performance RMSEs versus the signal-to-noise ratio (SNR)
of the two algorithms are shown in Fig. 1. We see that the proposed
method performs better than the traditional MUSIC algorithm when-
ever there exist noncircular sources. Moreover, it is noticed that
the performance of the proposed method becomes better when the
number of noncircular sources increases. This is a direct result from
the increment in the dimension of the noise subspace. However, this
phenomenon is not observed for traditional MUSIC method, whose
performance is almost unaffected by changing the number of the
noncircular sources.

We also investigate the performance of both algorithms by changing
the number of the snapshots. It is expected that as the number of the
snapshots increases, the performance of both algorithms becomes
better. Fig. 2 shows the performance RMSEs versus the number of the
snapshots. Clearly, the proposed algorithm outperforms the traditional
MUSIC over all snapshot regions.

One interesting observation through the simulations is that the im-
provement in the estimation accuracy is achieved not only for DOAs

Fig. 1. RMSE versus SNR.

Fig. 2. RMSE versus number of snapshots.

of noncircular sources, but also for DOAs of circular sources. This is
seen from Fig. 3.

B. Example 2

The second example studies the case where the number of incoming
signals goes beyond the traditional MUSIC limit. We consider L =
6 uncorrelated signals coming from �40�, �20�, 0�, 10�, 30�, and
50�, respectively, whereas the symbols from the first four directions are
obtained from BPSK modulation and others from QPSK modulation.
The SNR of each source is taken as 20 dB. The dimension of the signal
subspace can be computed as LR + 2LC = 8, which is smaller than
the proposed limit 2M � 2 = 10. Therefore, all six DOAs can be
detected by the proposed method. The array patterns for both estimators
(29) and (35) are shown in Fig. 4. One thing to be emphasized is that
the traditional MUSIC algorithm fails to work under this case, since it
cannot estimate more than M � 1 = 5 different directions.

Another interesting phenomenon is that the estimator (35) is not able
to estimate the directions for noncircular sources, whereas the estimator
(29) can detect both noncircular and circular sources. This is compat-
ible with the theoretical analysis in Section III, where the complex esti-
mator (35) is claimed only able to estimate DOAs for circular sources.
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Fig. 3. Estimation of 0 and 50 under all three scenarios.

Fig. 4. Array pattern when the number of signals is beyond the traditional limit.

This property may be used to discriminate noncircular sources from
circular sources under certain applications.

V. CONCLUSION

The problem of DOA estimation in the case of purely noncircular
signals has been studied in [1], [8]. In this correspondence, we pro-
pose a MUSIC-based algorithm to cope with a more general scenario
where both the circular and noncircular sources coexist. The proposed
algorithm can achieve two important goals. First, it gives a more accu-
rate estimate of DOAs in the situations where the number of sources is
within the traditional limit of high resolution methods. Second, DOAs
can still be estimated even when the number of sources is beyond the
traditional limit. Finally, the computer simulations are provided to val-
idate all the theoretical analysis clearly.

APPENDIX

UNIQUENESS OF PROPOSED ESTIMATORS

A. Uniqueness of Estimator (29)

We first provide a prerequisite lemma.

Lemma 2: For arbitrary nonzero scalars g1, g2 with jg1j = jg2j,
there exist another two scalars �, b, such that

g1

g2
= �

b

b�
: (39)

Proof: The scalars g1, g2, �, and b can be rewritten in the fol-
lowing forms:

g1 = jg1je
j"

; g2 = jg2je
j"

; � = j�jej" ; b = jbjej" :

Scalars �, b can be calculated from (39) as

j�jjbj = jg1j = jg2j (40)

"� + "b = "1 (41)

"� � "b = "2: (42)

Obviously, there always exist nonempty sets of �, b.
Lemma 3: IfQ(�) drops rank at �� 6= �l, l = 1; . . . ; L (here we use

�l instead of �r because all �l can make Q(�) rank deficient), then
this �� also satisfies (26); namely, there exists a scalar b, such that

G
H�a(��) = GH

V(��)
b

b�
= 0: (43)

Proof: If Q(��) drops rank, then GHV(��), and consequently,
GGHV(��) are also column rank deficient. As a result, there exist
scalars g1 and g2 with

GG
H
V(��)

g1

g2
= 0: (44)

From Lemma 1, we know

G1G
H
1 = G2G

H
2

�

; G1G
H
2 = G2G

H
1

�

: (45)

Substituting (45) into (44), we obtain

G1G
H
1 a(��)g1 +G1G

H
2 a

�(��)g2 =0 (46)

G1G
H
2

�

a(��)g1 + G1G
H
1

�

a
�(��)g2 =0: (47)

The complex conjugate of (47) is written as

G1G
H
1 a(��)g

�

2 +G1G
H
2 a

�(��)g�1 = 0: (48)

From (46) and (48), we know the following:
• if [G1G

H
1 a(��);G1G

H
2 a

�(��)] is a zero matrix, then there must
exist a pair of g1; g2 with jg1j = jg2j;

• if [G1G
H
1 a(��);G1G

H
2 a

�(��)] is not a zero matrix, then, the di-
mension of its null space can only be one. Therefore

g1

g2
= �

g�2

g�
1

: (49)

It can be easily obtained from (49) that g1 = j�j2g1, and then j�j =
1. Therefore, jg1j = jg2j can be concluded.

From Lemma 2, we know that, there exists b, such that

GG
H
V(��)

b

b�
= 0: (50)
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From (50)

[b; b�]HVH(��)GGH
GG

H
V(��)

b

b�
=0

) [b; b�]HVH(��)GGH
V(��)

b

b�
=0 (51)

where the property that PG = GGH is the projection matrix is used.
Note that (51) is in a quadrature form. We then conclude that

G
H
V(��)

b

b�
= 0: (52)

Lemma 3 actually shows an equivalence between (26) and the esti-
mator fr(�).

Let �a(��) = [ba(��); b�a(��)�]. From Lemma 3 we know that ifQ(�)
drops rank at �� 6= �l, then GH�a(��) = 0. Since �A is a full-column-
rank matrix that is orthogonal to G, the following statement can be
equivalently made:

• there exists a �� 6= �l, such that �a(��) is a linear combination of
columns of �A(:; q), q = 1; . . . ; LR + 2LC .

From Assumption 1, we know the probability for the existence of �� can
be reasonably assumed to be zero.

Uniqueness of Estimator (35)

If there exists a �� 6= �c and aH(��)G1G
H

1 a(��) = 0. Then the
following equations hold:

G
H a(��)

0
= 0; G

H 0

a(��)�
= 0: (53)

An equivalent statement is made as follows:
• there exists a �� 6= �c , such that [aT (��);0T ]T , and [0T ; aH(��)]T

is a linear combination of columns of �A(:; q), q = 1; . . . ; LR +
2LC .

Similarly, the probability for the existence of �� is considered as zero,
and the uniqueness for (35) can be guaranteed with probability one.
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Stochastic Maximum-Likelihood DOA Estimation in the
Presence of Unknown Nonuniform Noise
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Abstract—This correspondence investigates the direction-of-arrival
(DOA) estimation of multiple narrowband sources in the presence of
nonuniform white noise with an arbitrary diagonal covariance matrix.
While both the deterministic and stochastic Cramér-Rao bound (CRB)
and the deterministic maximum-likelihood (ML) DOA estimator under
this model have been derived by Pesavento and Gershman, the stochastic
ML DOA estimator under the same setting is still not available in the
literature. In this correspondence, a new stochastic ML DOA estimator
is derived. Its implementation is based on an iterative procedure which
concentrates the log-likelihood function with respect to the signal and noise
nuisance parameters in a stepwise fashion. A modified inverse iteration
algorithm is also presented for the estimation of the noise parameters.
Simulation results have shown that the proposed algorithm is able to pro-
vide significant performance improvement over the conventional uniform
ML estimator in nonuniform noise environments and require only a few
iterations to converge to the nonuniform stochastic CRB.

Index Terms—Direction-of-arrival (DOA) estimation , nonuniform noise,
sensor array processing, stochastic maximum likelihood (ML) algorithm.

I. INTRODUCTION

Direction–of-arrival (DOA) estimation has been one of the central
problems in radar, sonar, navigation, geophysics, and acoustic tracking.
A wide variety of high-resolution narrowband DOA estimators have
been proposed and analyzed in the past few decades [2]–[5]. The max-
imum likelihood (ML) estimator, which shows excellent asymptotic
performance, plays an important role among these techniques. Many of
the proposed ML estimators are derived from the uniform white noise
assumption [5]–[7], in which the noise process of each sensor is as-
sumed to be spatially uncorrelated white Gaussian with identical un-
known variance. It is shown that under this assumption the estimates of
the nuisance parameters (source waveforms and noise variance) can be
expressed as a function of DOAs [8]–[10], and, therefore, the number of
independent parameters to be estimated is substantially reduced. This
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