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Abstract—Based on the assumption that the transmitted symbols are
independent and identically distributed (i.i.d.), we develop a simple
subspace-based blind channel estimation technique for orthogonal fre-
quency-division multiplexing (OFDM) systems by utilizing nonredundant
linear block precoding. A novel contribution is that the proposed method
can be applied for scenarios, where the number of receive antennas is less
than the number of transmit antennas, e.g., multiple-input single-output
(MISO) transmissions, in which case the traditional subspace-based
methods could not be applied. Further consideration that can eliminate
the multidimensional ambiguity in channel estimation under multiple
transmitter scenarios is also proposed. The numerical results clearly show
the effectiveness of our proposed algorithm.

Index Terms—Blind channel estimation, block precoding, multiple-input
multiple-output (MIMO), multiple-input single-output (MISO), orthog-
onal frequency-division multiplexing (OFDM), subspace, wireless
communications.

I. INTRODUCTION

Orthogonal frequency-division multiplexing (OFDM) [1] is a
promising candidate for next-generation high-speed wireless multi-
media communication systems due to its high data rate, high spectral
efficiency, and robustness to frequency-selective channels. On the
other hand, an OFDM system combined with multiple antennas at both
the transmitter side and the receiver side has attracted considerable
attention for its promising capability to combat the multipath fading
and increase the system capacity [2].

Since coherent detection in OFDM systems requires reliable channel
state information (CSI), channel estimation becomes a critical compo-
nent for most OFDM systems. A promising family of blind channel
estimation method, so called the subspace-based algorithm, has been
developed in [3]. For OFDM transmissions, however, the traditional
subspace-based method cannot be applied if the number of receive an-
tennas is less than or equal to the number of transmit antennas, since
no noise subspace is available.

Based on the assumption that the transmitted symbols are inde-
pendent and identically distributed to each other, a new type of blind
channel estimation method for single-input single-output (SISO)
OFDM systems has been proposed in [4]–[6], where a nonredundant
linear precoder is used at the transmitter, and the CSI is possessed in
all entries of the signal covariance matrix.

In this correspondence, we generalize the precoding method in [4]
to multiple-input multiple-output (MIMO) OFDM systems and pro-
pose a subspace based approach to increase the performance accuracy.
A novel contribution of this generalization is that the channel could be
estimated successfully even if the number of transmit antennas goes
beyond the traditional limits.We also propose an approach to eliminate
the multidimensional ambiguity that is known to exist for channel esti-
mation under multi-transmitter scenarios [7]. Finally, the numerical re-
sults are provided to show the effectiveness of our proposed algorithm.
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MATLAB notations for rows and columns are used here. For
example, A(m; :) represents the mth row of the matrix A, and
A(m1 : m2; :) represents the submatrix obtained by extracting rows
m1 through m2 from the matrix A, respectively.

II. PROBLEM FORMULATION

A. System Model

Let us consider a baseband MIMO OFDM system with Nt transmit
antennas andNr receive antennas. Specifically, ifNr = 1, it reduces to
a MISO OFDM system. Suppose all theNt�Nr channel paths have the
memory upper bounded byL, and let hij = [hij;0; . . . ; hij;L]

T denote
the equivalent discrete channel response from the ith transmitter to the
jth receiver. In each OFDM block, M symbols are transmitted. The
cyclic prefix (CP) is added at the front of each transmitted block and
is discarded at each received block. As long as the length of the CP is
greater than or equal to L, the remaining signal at the jth receiver for
the kth block can be represented as [8]

xj(k) =

N

i=1

�HijF
H
si(k) + �nj(k) (1)

where si(k) is the M� 1 vector of transmitted symbols; �nj(k) is
the M� 1 vector of the unknown white Gaussian noise at the jth
receiver with equivalent variance �2n at each sampling time; F is the
M � M normalized discrete Fourier transform (DFT) matrix with
its (m; q)th entry given by (1=

p
M)e�j2�(m�1)(q�1)=M , and �Hij is

the M �M circulant channel matrix with its (m; q)th entry given by
hoij;((m�q) mod M), where the M� 1 vector hoij is obtained by adding
M � L � 1 zeros at the end of hij .

Let

Hij = DFT(hij) = [Hij;0; Hij;1; . . . ; Hij;M�1]
T (2)

denote the M points DFT of the channel vector hij . The normalized
DFT of the received signal vector from the jth receiver is then repre-
sented as

yj(k) =Fxj(k) =

N

i=1

F�HijF
H
si(k) + F�nj(k)

=

N

i=1

~Hijsi(k) + nj(k) (3)

where ~Hij = diagfHijg is a diagonal matrix with the diagonal
elements obtained from Hij [9]. It can be easily shown that the new
random noise vector nj(k) has the same statistical distribution as
�nj(k).

Let

HHHy =

~H11 . . . ~HN 1

...
. . .

...
~H1N . . . ~HN N

(4)

denote the overall frequency-domain channel matrix with its (j; i)th
partitioned block given by ~Hij . The combined received symbol vector
y(k) can be expressed as

y(k) = [y1(k)
T ;y2(k)

T ; . . . ;yN (k)T ]T = HHHys(k) + n(k) (5)

where

s(k) = [s1(k)
T ; s2(k)

T ; . . . ; sN (k)T ]T (6)

n(k) = [n1(k)
T ;n2(k)

T ; . . . ;nN (k)T ]T : (7)

1053-587X/$25.00 © 2007 IEEE



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 55, NO. 2, FEBRUARY 2007 785

The source covariance matrix is expressed as

Rs = Efs(k)s(k)Hg = �
2
sIMN (8)

and �2s is the transmitted signal power.

B. Nonredundant Precoding

Suppose the symbol from the ith transmitter is precoded, separately,
by theM�M matrixWi before the inverse discrete Fourier transform
(IDFT) operation. The normalized DFT of the received signal vector
from the jth receiver should be rewritten as

yj(k) =

N

i=1

~HijWisi(k) + nj(k): (9)

III. MIMO CHANNEL ESTIMATION WITH MATRIX AMBIGUITY

Let PPP be the block diagonal matrix with the form

PPP = diagfP1;P2; . . . ;PN g (10)

where

Pi =WiW
H
i : (11)

The signal covariance matrix Ry is then obtained as

Ry =Efy(k)y(k)Hg = �
2
sHHHyPPPHHH

H
y + �

2
nIMN

=

Ry;11 . . . Ry;1N

...
. . .

...
Ry;N 1 . . . Ry;N N

(12)

with its (b; d)th subblock given by

Ry;bd =�
2
s

N

i=1

~HibPi
~HH
id + �(b� d)�2nIM

=�
2
s

N

i=1

(HibH
H
id)�Pi + �(b� d)�2nIM (13)

where � represents the Hardmard product, and �(�) is the Kronecker
Delta function.

To proceed, we introduce a clever way by letting allPi be the same;
namely

P = P1 = � � � = PN =WW
H
: (14)

With this effort, Ry;bd can be rewritten as

Ry;bd = �
2
s

N

i=1

HibH
H
id �P+ �(b� d)�2nIM : (15)

Consider the following two cases.
1) Case 1: b 6= d. In this case, Ry;bd simply has the form of

Ry;bd = �
2
s

N

i=1

HibH
H
id �P: (16)

Dividing each entry of Ry;bd by the corresponding entry of P, we
obtain

Qbd = Ry;bd P = �
2
s

N

i=1

HibH
H
id (17)

where denotes the elementwise division. Practically,Qbd is obtained
from

Qbd = F(:; 1 : L+ 1)FH(Ry;bd P): (18)

The effect of the item F(:; 1 : L + 1)FH is to enforce the channel
length L+ 1 on the time domain. This process is known as denoising
[10] which is capable of increasing the estimation accuracy.

2) Case 2: b = d. For this case, Ry;bd is written as

Ry;bd = �
2
s

N

i=1

HibH
H
id �P+ �

2
nIM : (19)

On the qth column of Ry;bd, except the diagonal element [Ry;bd]qq,
all the other M � 1 elements are of the form

[Ry;bd]mq = �
2
s

N

i=1

Hib;m�1H
�

id;q�1; m 6= q (20)

where [�]mq denotes the (m; q)th entry of the matrix. SinceP is known
as a prior, �2s

N

i=1Hib;m�1H
�

id;q�1 can be calculated as

�
2
s

N

i=1

Hib;m�1H
�

id;q�1 =
[Ry;bd]mq
[P]mq

; m 6= q: (21)

However, �2s
N

i=1Hib;q�1H
�

id;q�1 cannot be obtained, since the
(q; q)th entry of Ry;bd is corrupted by the unknown noise variance.
As long as M �1 � L+1, as usually the case, the following equation
holds:

�
2
s

N

i=1

HibH
�

id;q�1 = F(:; 1 : L+ 1)Fyqrbd;q (22)

where y denotes the pseudoinverse, and

rbd;q =
[Ry;bd]1q
[P]1q

; . . . ;
[Ry;bd](q�1)q

[P](q�1)q
;
[Ry;bd](q+1)q

[P](q+1)q
;

. . . ;
[Ry;bd]Mq

[P]Mq

T

; (23)

Fq =
F(1 : q � 1; 1 : L+ 1)

F(q + 1 : M; 1 : L+ 1)
: (24)

Therefore

Qbd = �
2
s

N

i=1

HibH
�

id;0; . . . ; �
2
s

N

i=1

HibH
�

id;M�1

=�
2
s

N

i=1

HibH
H
id (25)

can also be obtained for the case b = d.
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Let

QQQ =

Q11 . . . Q1N

...
. . .

...
QN 1 . . . QN N

(26)

and define

U =

H11 . . . HN 1

...
. . .

...
H1N . . . HN N

(27)

as the NrM � Nt matrix containing frequency-domain channel re-
sponse. It can be verified that

QQQ = �
2

sUU
H = (�sU)(�sU)H: (28)

Let Û denote the matrix that contains the Nt eigenvectors of QQQ that
correspond to the largest Nt eigenvalues. From the subspace detection
theory [3], span(Û) = span(U) when Nt < NrM . Therefore, Û
can be considered as the estimate ofU but with a matrix ambiguity as

Û = UT (29)

where T is an Nt � Nt unknown matrix. This matrix ambiguity is
well known for the blind channel estimation when multiple transmit
antennas are used [7].

Since M is greater than 1 for all OFDM systems, the proposed al-
gorithm is applicable to the systems with Nt > Nr , e.g., MISO sys-
tems. Therefore, a novel contribution is formed by providing a blind
channel estimation algorithm for the system where the transmit an-
tennas is greater than the receive antennas.

IV. MIMO CHANNEL ESTIMATION WITH SCALAR AMBIGUITY

Suppose at the (kNt+� )th time interval, � = 1; . . . ; Nt, the symbol
block from the ith transmitter is precoded by Wi� . Then, the corre-
sponding Pi� is expressed as

Pi� =Wi�W
H
i� ; i; � = 1; . . . ; Nt: (30)

Define Nt covariance matrices

Ry� = Efy(kNt + � )y(kNt + � )Hg; � = 1; . . . ; Nt: (31)

We know from (12) and (13) that the (b; d)th block of Ry� has the
form of

Ry�;bd =�
2

s

N

i=1

~HibPi�
~HH
id + �(b� d)�2nIM

=�
2

s

N

i=1

(HibH
H
id)�Pi� + �(b� d)�2nIM : (32)

Similar steps to estimate the channel response can be carried on as
follows.

1) Case 1: b 6= d. For this case, the (m; q)th entry of Ry�;bd can
be expressed as

[Ry�;bd]mq = �
2

s

N

i=1

[Pi� ]mqHib;m�1H
�

id;q�1; � = 1; . . . ; Nt: (33)

Note that (33) contains Nt equations of Nt unknown parameters
�2sHib;m�1H

�

id;q�1, i = 1; . . . ; Nt. Therefore, the unknown parame-
ters can be obtained as

�2sH1b;m�1H
�

1d;q�1

...
�2sHN b;m�1H

�

N d;q�1

=

[P11]mq
. . . [PN 1]mq

...
. . .

...
[P1N ]

mq
. . . [PN N ]

mq

�1 [Ry1;bd]mq

...
[RyN ;bd]mq

: (34)

Note that (34) holds if and only if the inverse term exists. There-
fore, we should no longer take the same value for all Pi� , as did in
Section III. Instead, Pi� should be designed such that the square ma-
trix in (34) is non-singular. By considering all pairs of (m; q) and prop-
erly reorganizing the results coming from (34), we can obtain Nt new
matrices

Qi;bd = �
2

sHibH
H
id for i = 1; . . . ; Nt: (35)

2) Case 2: b = d. For this case, the diagonal entries ofRy�;bd are
corrupted by the unknown noise power. Therefore, we may consider
only the entries with m 6= q. There is

[Ry�;bd]mq = �
2

s

N

i=1

[Pi� ]mqHib;m�1H
�

id;q�1 (36)

for

� = 1; . . . ; Nt; b = d; m 6= q:

With a similar step as in Case 1, we can obtain the value of
�2sHib;m�1H

�

id;q�1, i = 1; . . . ; Nt from (34) for all pairs of (m; q)
with m 6= q. Then, a new vector can be formed as

~rbd;iq=[�2sHib;0H
�

id;q�1; . . . ; �
2

sHib;q�2H
�

id;q�1;

�
2

sHib;qH
�

id;q�1; . . . ; �
2

sHib;M�1H
�

id;q�1]
T (37)

for each q = 1; . . . ;M , i = 1; . . . ; Nt. Note that, if the element
�2sHib;q�1H

�

id;q�1 (not available since m 6= q) is inserted into the
qth position of (37), then ~rbd;iq becomes �2sHibH

�

id;q�1, which is
the M-point DFT of �2shibH

�

id;q�1. Nevertheless, �2shibH
�

id;q�1 and
�2sHibH

�

id;q�1 can still be obtained from

�
2

shibH
�

id;q�1 =F
y
q~rbd;iq; (38)

�
2

sHibH
�

id;q�1 =�
2

sF(:; 1 : L+ 1)hibH
�

id;q�1

=F(:; 1 : L+ 1)Fyq~rbd;iq: (39)

Equation (38) holds as long as M � 1 � L+ 1, since L+ 1 elements
in DFT vector is enough to recover the time domain vector of length
L+ 1. Combining all �2sHibH

�

id;q�1; q = 1; . . . ;M , we can obtain

Qi;bd = [�2sHibH
�

id;0; . . . ; �
2

sHibH
�

id;M�1]

=�2sHibH
H
id; i = 1; . . . ; Nt (40)

for the case b = d.
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Define new matrices

QQQi =

Qi;11 . . . Qi;1N

...
. . .

...
Qi;N 1 . . . Qi;N N

; i = 1; . . . ; Nt: (41)

It can be seen that

QQQi = �2sUiU
H
i (42)

where

Ui = [HT
i1;H

T
i2; . . . ;H

T
iN ]T (43)

is the ith column ofU and represents the NrM � 1 channel response
vector from the ith transmitter to all the receivers. Again, Ui can be
obtained from the eigenvector ofQQQi corresponding to its largest eigen-
value. Therefore, by assigning different precoding matrix to different
transmitter and takingNt covariance matrices from different time slots,
the multidimensional ambiguity reduces to one scalar ambiguity for
each Ui; namely

Ûi = �iUi (44)

where �i is an unknown complex scalar. Note that, since Nt covari-
ance matrices need to be constructed, the number of the available snap-
shots seems to be critical to the performance of the algorithm. Roughly
speaking, in order to build the reliable covariance matrix comparable
to the one in ambiguity-existing case, Nt times more snapshots need
to be obtained.

V. NUMERICAL RESULTS

In this section, we examine the performance of the proposed esti-
mator under various scenarios. The three-ray channel model with ex-
ponential power delay profile [11]

Efjhij;lj
2g = exp

�l

10
; l = 0; . . . ; 2 (45)

is used. The phase of each channel ray is uniformly distributed over
[0; 2�). For all numerical examples, the QPSK symbols are considered,
andM = 64. All the results are averaged overNw = 100 Monte Carlo
runs.

For simulation purpose, we do not use pilot symbols to remove the
ambiguity. Instead, the matrix ambiguity is resolved by [12]

T = min
T

kU� ÛT�1k2F (46)

where k � k2F denotes the Frobenius norm. The final channel estimate
Uf for data detection is obtained from

Uf = ÛT�1 = ÛÛH
U: (47)

Similar process is carried on to remove the scalar ambiguity.

A. MIMO OFDM Systems

In the first example, we examine the performance of the proposed
algorithm for MIMO OFDM system with two transmit antennas and
two receive antennas.

1) Channel Estimation With Matrix Ambiguity: Firstly, we consider
the algorithm with matrix ambiguity. The precoders in [6], although
proposed for SISO OFDM systems, will be used here. Specifically

[P]mq =
1 m = q

p m 6= q
m; q = 1; . . .M; (48)

where p is a nonzero value belonging to the region (�(1=M � 1); 1).

Fig. 1. Channel estimation NMSE for MIMO OFDM versus number of OFDM
blocks: with matrix ambiguity.

Because of our assumption on source statistics, the number of re-
ceived blocks is critical to the performance of the algorithm. We illus-
trate how the normalized mean-square errors (NMSEs) of the channel
estimation vary with different data length in Fig. 1. The signal-to-noise
ratio (SNR) is fixed at 10 dB. We see that the value of p is critical to the
performance of the proposed algorithm. The larger the p is, the smaller
the error will be. However, since a larger p may give an ill-conditioned
P, the data detection reliability will be reduced. Therefore, the best
value of p cannot be predicted straightforwardly. Moreover, a contin-
uing improvement in estimation accuracy is observed for all p when
the number of received OFDM blocks increases. This is quite different
from the traditional subspace based method [3], where an error floor
is usually met for a fixed SNR even if the number of received OFDM
blocks increases.

At the receiver, the minimum mean-square error (MMSE) detection
[6] is applied, and the bit error rate (BER) performance of the pro-
posed method for MIMO systems is shown in Fig. 2. The number of
the OFDM blocks in this example is taken as 150. It can be seen that
p = 0:2 performs better at low SNR but is outperformed by p = 0:4,
p = 0:5, p = 0:6 at high SNR. However, p = 0:8 always gives the
worst performance, although it could provide the best channel estima-
tion, as seen from Fig. 1.

2) Channel Estimation With Scalar Ambiguity: We then show the
performance results of the proposed method with scalar ambiguity. The
total number of received OFDM blocks is taken as 300 such that each
covariance matrix is still constructed with 150 samples. The precoding
matrices are taken as

[P11]mq = [P22]mq =

1:2; m = q = 1; . . . ; M
2

0:8; m = q = M

2
+ 1; . . . ;M

2

3
; otherwise

;

[P12]mq = [P21]mq =

0:8; m = q = 1; . . . ; M
2

1:2; m = q = M

2
+ 1; . . . ;M

1

3
; otherwise

:

The NMSEs versus SNR for H11, H12, H21, and H22 are shown in
Fig. 3, separately. We see that the proposed method still works well for
estimation with scalar ambiguity.

B. MISO OFDM Systems

In this example, we consider the performance results of the pro-
posed algorithm for MISO OFDM system with two transmit and one re-
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Fig. 2. BER for MIMO OFDM under different p.

Fig. 3. Channel estimation NMSE for MIMO OFDM versus SNR: with scalar
ambiguity.

ceive antennas. Alamouti code [13] is applied at the transmitter and the
channel estimation with matrix ambiguity is applied. One hundred and
fifty OFDM blocks are received, and the BER performance curves cor-
responding to different values of p are shown in Fig. 4. We see that the
proposed method works well for the MISO case and the data detection
is guaranteed. Comparing with those in Fig. 2, where the diversity order
for the simulated scenario could be approximated asNr�Nt+1 = 1

[14], the BER curves in Fig. 4 drop in a much faster rate, since the di-
versity order with the application of Alamouti code is well known to
be 2.

C. Comparison With Existing Methods

The proposed algorithm is shown to outperform the method in [4]
when applying to SISO OFDM systems. Due to the space limit, we are
unable to provide the comparison here. Interested readers are advised
to refer [15].

Fig. 4. BER for MISO OFDM with Alamouti code under different p.

VI. CONCLUSION

In this paper, we developed a subspace-based blind channel estima-
tion technique for MIMO OFDM systems using the second order sta-
tistical analysis. One novel contribution of the newly proposed method
is that it is capable to implement channel estimation even if the number
of the transmit antennas is greater than or equal to the number of the re-
ceive antennas, where the traditional subspace-based algorithms could
not be applied. Both channel estimations with matrix ambiguity and
with only scalar ambiguity are considered. Simulation results clearly
show the effectiveness of the proposed algorithm under various sce-
narios.
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