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Abstract—Recently, the advantages of the discrete cosine
transform (DCT) based orthogonal frequency-division multiplex-
ing (OFDM) have come to the light. We thus consider DCT-
OFDM with non-circular transmission (our results cover circular
transmission as well) and present two blind joint maximum-
likelihood frequency offset and phase offset estimators. Both
our theoretical analysis and numerical comparisons reveal new
advantages of DCT-OFDM over the traditional discrete Fourier
transform (DFT) based OFDM. These advantages, as well as
those already uncovered in the early works on DCT-OFDM,
support the belief that DCT-OFDM is a promising multi-carrier
modulation scheme.

Index Terms—Non-circular, carrier frequency offset, phase
offset, DCT-OFDM, maximum likelihood.

I. INTRODUCTION

ALTHOUGH traditional discrete Fourier transform (DFT)
based orthogonal frequency-division multiplexing

(OFDM) [1] has succeeded in many applications and
standards, another promising multi-carrier modulation known
as discrete cosine transform (DCT) based OFDM has been
proposed recently [2], where it is shown that DCT-OFDM
can, sometimes, offer certain advantages over DFT-OFDM.

In multi-carrier modulation, a frequency offset, caused by
oscillator mismatch or Doppler effects, destroys the subcar-
rier orthogonality and results in a substantial bit error rate
(BER) degradation [3]. In the pioneering work [4], maximum-
likelihood frequency offset estimation is developed for DFT-
OFDM. The algorithm exploits the cyclic prefix and is mainly
proposed for additive white Gaussian noise (AWGN) channels.
However, this method fails to provide phase offset estimation,
a failure which is particularly significant when the channel is
assumed to be AWGN, and the reason for which is that the
transmitted symbols are complex circular random variables.
Maximum-likelihood frequency offset estimation under non-
circular transmission in DFT-OFDM has recently been studied
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in [5], where it is shown that the estimator in [4] cannot
provide the maximum-likelihood frequency offset estimate
under non-circular transmission.

In this letter, we derive two blind joint maximum-likelihood
frequency offset and phase offset estimators for DCT-OFDM
for non-circular transmission. The anti-symmetry introduced
in DCT-OFDM enables the full range of frequency offset
estimation. As well, DCT-OFDM enables more accurate and
more robust estimation than DFT-OFDM.

II. DISCRETE COSINE TRANSFORM BASED OFDM
SYSTEM

A. System Model

The mth OFDM block in the frequency domain is repre-
sented as

sm = [sm,0, sm,1, ..., sm,N−1]T , m = 0, 1, 2, ..., (1)

where N is the number of subcarriers. The complex random
variable sm,i is said to be non-circular at the order 2, if
E{sm,i1s

∗
m,i2

} = Esδi1i2 , and E{sm,i1sm,i2} = Ecδi1i2 ,
where δab is the Kronecker delta function, Es is the aver-
age signal power, and Ec may be a complex number with
|Ec| ≤ Es. Here, symbols transmitted on different subcarriers
are reasonably assumed independent from each other. The
inverse DCT (IDCT) is performed on the sm, resulting in

um = [um,0, um,1, ..., um,N−1]T = DT sm, (2)

where D is the DCT matrix with the (a, b)th entry

[D]ab = βa

�
2
N

cos
�

π(a − 1)(2b − 1)
2N

�
, a, b = 1, ..., N.

(3)
and

βa =
�

1/
√

2, a = 1
1, otherwise

. (4)

If the number of subcarriers is sufficiently large, um,i, i =
0, . . . , N − 1 can be well approximated with a Gaussian
distribution1 [6]. It can be easily verified that,

E{umuH
m} = EsIN , E{umuT

m} = EcIN .

Suppose that the maximum channel delay is smaller than
LTs, where Ts is the sampling period. From [2], we know that
in order to diagonalize the channel matrix for DCT-OFDM,

1It is not the true Gaussian. By normal approach, N > 4 can well provide
approximately Gaussian distributed variables.
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both the prefix and the suffix of length μ ≥
�

L
2

�
must be

inserted into um. Therefore, the effective OFDM block length
is (N + 2μ)Ts, and the transmitted symbols are represented
by

xm = [xm,0, xm,1, ..., xm,N+2μ−1]T = Tpsum, (5)

where

Tps =

�
� Vμ 0μ×(N−μ)

IN

0μ×(N−μ) Vμ

	

 , (6)

and Vμ is the μ×μ anti-identity matrix. As in [4], we consider
only the AWGN channel for the time being but still keep both
the prefix and the suffix for estimation purposes. The baseband
received signal can be expressed as

rm = [rm,0, rm,1, ..., rm,N+2μ−1]T

= ej2πm(N+2μ)ε0+jφ0Γ(ε0)xm + nm, (7)

where ε0 = f0Ts is the frequency offset normalized by the
sampling rate, and φ0 is the phase offset. Each element in nm

is an independent AWGN term with variance En, and Γ(ε0)
is the diagonal frequency offset matrix of the form

Γ(ε0) = diag
�
1, ej2πε0 , ..., ej2π(N+2μ−1)ε0

�
. (8)

B. Joint frequency offset and phase offset Estimation

We first consider the OFDM block with index number m =
0, and the index m will be dropped for notational brevity.
Define

A = EsTpsTT
ps + EnIN+2μ, (9)

B = EcTpsTT
ps. (10)

The covariance and the elliptic covariance of r are then
Γ(ε0)AΓ(ε0)H and ej2φ0Γ(ε0)BΓ(ε0), respectively. There-
fore, r is a non-circular Gaussian random vector and is
characterized by the joint probability density function (PDF)
[7]:

f(r, r∗|ε0, φ0) =
1

πN+L(det{R})1/2

× exp
�
−1

2
[rH , rT ]R−1



r
r∗

��
, (11)

where R is the covariance matrix of [rT , rH ]T , defined as

R = E
�


r
r∗

�
[rH , rT ]

�
=



ejφ0Γ(ε0) 0

0 e−jφ0Γ(ε0)∗

�
� �� �

Γ̃



A B
B∗ A∗

�
� �� �

Rs

×



e−jφ0Γ(ε0)∗ 0
0 ejφ0Γ(ε0)

�
� �� �

Γ̃
H

. (12)

Using the inverse of a partitioned matrix [8], we obtain

R−1
s =



P −Q

−Q∗ P∗

�
, (13)

where P = (A − BHA−1B)−∗, Q = A−1BP∗, and (·)−∗

denotes ((·)∗)−1. Then R−1 = Γ̃R−1
s Γ̃

H
. From (12), we

know that det{R} = det{Rs}. Therefore, det{R} is a
constant; it is sufficient to consider the log-likelihood function
only. We hereby provides two different maximum-likelihood
joint frequency offset and phase offset estimators.

1)#MLE1 When frequency offset and phase offset are both
considered as deterministic values, their maximum-likelihood
estimates are

{ε̂0, φ̂0} = argmax
ε, φ

log f(r, r∗|ε, φ)

= argmax
ε, φ

−[rH , rT ]R−1



r
r∗

�
, (14)

where ε and φ are the dummy variables. Upon simplifying
(14), we get the maximum-likelihood estimates of the fre-
quency offset and phase offset as

{ε̂0, φ̂0} = argmax
ε, φ

−rHYr + �{e−j2φrT Ur}, (15)

where Y = Γ(ε)PΓ(ε)∗, and U = Γ(ε)∗Q∗Γ(ε)∗. Due to
the special structure of A and B, when 2μ < N , −rHYr can
be rewritten as (16), where η is some unimportant parameters
unspecified for the concise of the paper, and rT Ur can be
expressed as in (17). Note that only the second term in (15)
relates to the phase offset φ. The phase offset can then be
estimated via

φ̂0 = arg max
φ

�{e−j2φrT Ur} =
1
2
∠ rT Ur, (18)

η +
2(2E2

s + EsEn − 2|Ec|2)
En(4E2

s + 4EsEn + E2
n − 4|Ec|2)

μ−1�
i=0

�
�
(r∗i r2μ−i−1 + r∗i+N rN+2μ−i−1)ej2π(2i−2μ+1)ε

�
. (16)

2E∗
c

4E2
s + 4EsEn + E2

n − 4|Ec|2
�

μ−1�
i=0

r∗i r∗2μ−i−1e
−j2π(2μ−1)ε +

2μ−1�
i=0

r∗i+N r∗N+2μ−i−1e
−j2π(2N+2μ−1)ε

�

+
E∗

c

4E2
s + 4EsEn + E2

n − 4|Ec|2
�

2μ−1�
i=0

r∗i r∗i e−j2π(2i)ε +
N+2μ−1�

i=N

r∗i r∗i e−j2π(2i)ε

�

+
E∗

c

E2
s + 2EsEn + E2

n − |Ec|2
N−1�
i=2μ

r∗i r∗i e−j2π(2i)ε. (17)
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where ∠ is the angle operation. Clearly, the estimation range
of phase offset is [−π/2, π/2). Substituting (18) back into
(15), we find the frequency offset estimate to be

ε̂0 = argmax
ε

−rHYr + |rT Ur|� �� �
g(ε)

. (19)

2)#MLE2 When the statistics of either phase offset or
frequency offset are known, maximum-likelihood estimation
may be modified by using the marginal likelihood function. It
is natural to assume that phase offset is a uniformly distributed
random variable. From (18), we know that f(r, r∗|ε, φ) is a
periodic function of φ with the period π. Therefore we assume
that the phase offset φ0 is uniformly distributed over the region
[−π/2, π/2)2. The average of f(r, r∗|ε, φ) over φ gives the
marginal likelihood function f(r, r∗|ε) [9], which removes the
likelihood dependence on φ. This marginal likelihood function
can thus be expressed as

f(r, r∗|ε) = Eφ{f(r, r∗|ε, φ)}
= K exp

�
−rHYr

�
Eφ

�
exp(�{e−j2φrT Ur})

�
=

K

π
exp

�
−rHYr

�� π/2

−π/2

exp
�
�{e−j2φrT Ur}

�
dφ

= K exp
�
−rHYr

�
I0

�
|rT Ur|

�
. (20)

where K = (πN+L(det{R})1/2)−1 is a constant factor, and
I0(·) is the zeroth order modified Bessel function of the first
kind. Then, the frequency offset ε0 should be estimated from

ε̂0 = arg max
ε

f(r, r∗|ε)
= arg max

ε
exp

�
−rHYr

�
I0

�
|rT Ur|

�
. (21)

For large |rT Ur|, the zeroth order modified Bessel function

approximates as I0(|rT Ur|) ≈ e|rT Ur|√
2π|rT Ur| . Thus for high

signal-to-noise ratio (SNR), f(r, r∗|ε) can be rewritten as

f(r, r∗|ε) ≈ K
exp

�−rHYr + |rT Ur|�√
2π|rT Ur|1/2

. (22)

Unfortunately, a reasonable assumption on the distribution
of the frequency offset ε0 is not available in the literature3.
Therefore, we are unable to average f(r, r∗|ε, φ) over ε to
obtain f(r, r∗|φ). However, since the PDF of φ is known, we
may consider the maximum a posteriori (MAP) approach to
detect φ0. From the Bayes rule, we have

f(φ|r, r∗, ε̂0) =
f(r, r∗|ε̂0, φ)f(ε̂0, φ)

f(r, r∗|ε̂0)f(ε̂0)
=

f(r, r∗|ε̂0, φ)
πf(r, r∗|ε̂0)

. (23)

Note that the denominator is independent from φ. Then φ0 is
estimated from

φ̂0 = arg max
φ

f(r, r∗|ε̂0, φ), (24)

This gives exactly the same result as (18).

2Normally the phase offset should be uniformly distributed over the region
[−π, π). However, if |φ0| > π/2, then only (φ0 mod π) − π/2 can
be found by the proposed estimator. Therefore the effective phase offset
can reasonably be assumed to be uniformly distributed over the region
[−π/2, π/2).

3If frequency offset is assumed to be uniformly distributed in [−0.5, 0.5],
then similar process can be conducted.

C. Discussion

Since MLE2 includes a complicated Bessel function, our
discussion mainly focuses on MLE1. Nevertheless, as shown
by the simulations, both these two estimators perform identi-
cally within the regular SNR region.

1) Estimation Range: Thanks to the anti-symmetric prop-
erty of the prefix and the suffix introduced in [2], −rHYr
contains the term ej2πε; hence, MLE1 provides full-range
frequency offset estimation (ε0 ∈ [−0.5, 0.5]) as long as a)
μ > 0; b) r∗μ−1rμ +r∗μ−1+N rμ+N �= 0. Note that condition b)
is equivalent to (|u0|2+|uN−1|2+n∗

μ−1nμ+n∗
μ−1+Nnμ+N ) �=

0. Since ni are continuous Gaussian random variables, con-
dition b) holds with probability one in the noisy case. If
the prefix and suffix length μ = 0, then, the estimator g(ε)
contains only the third term in rT Ur, see (17):

g(ε) ⇐ E∗
c

E2
s + 2EsEn + E2

n − |Ec|2
�����
N−1�
i=0

r∗i r∗i e−j2π(2i)ε

����� .
(25)

As long as r∗1r1 �= 0, the exponential with the smallest order
is r∗1r∗1e−j4πε, the period on ε decreases to 1/2. Hence, the
frequency offset estimation range reduces to [−0.25, 0.25]. By
the same reason, this half frequency offset estimation range
holds with probability one. Note that, even when the prefix and
suffix lengths are zero (μ = 0), the frequency offset estimation
range is still N/2 times larger than that allowed by DFT-
OFDM [4], [5].

2) Circular Transmissions: Maximum-likelihood
frequency offset estimates for circular transmissions can
be obtained by simply setting the elliptic variance of si as
zero. In this case, B and U become zero matrices. Hence, the
phase offset cannot be estimated4. However, the frequency
offset would still be estimated from

ε̂0 = argmax
ε

−rHYr

= argmax
ε

μ−1�
i=0

��(r∗i r2μ−i−1 + r∗i+N rN+2μ−i−1)

× ej2π(2i−2μ+1)ε
�

. (26)

Note that, μ > 0 is required, otherwise −rHYr is independent
of ε, as explained previously.

3) frequency offset Tracking: Tracking the residual fre-
quency offset and phase offset is also possible by consid-
ering the subsequent blocks (m > 0). Namely, for each
new received block with m > 0, we can estimate new
frequency offset and phase offset corresponding to this specific
block. If the mth OFDM block is considered, we may regard
2πm(N +2μ)ε0 +φ0 as the equivalent phase offset and carry
on the similar steps to estimate frequency offset and phase
offset. The phase offset estimator (18) could then be rewritten
as

φ̂0 = argmax
φ

�{e−j2(2πm(N+2μ)ε+φ)rT Ur}

=
1
2
∠
�
e−j4πm(N+2μ)εrT Ur

�
. (27)

4The phase offset could be estimated if some pilots are inserted into each
OFDM block. Since we are considering the estimations in a blind way, we
do not assume any pilot here.
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Fig. 1. Performance comparison between the MLE1 and MLE2 in DCT-
OFDM.

Nevertheless, the maximum-likelihood frequency offset esti-
mator (19) remains unchanged.

III. SIMULATION RESULTS

In this section, we examine the proposed estimators under
various scenarios. We consider N = 64 subcarriers and apply
Mq =500 Monte Carlo runs are conducted to average the
simulation results. All symbols are assumed to be obtained
from a BPSK constellation, namely, Es = Ec.

1) Performance comparison between the MLE1 and MLE2.
The normalized frequency offset is chosen as large as ε0 = 0.2
(more than 12 subcarrier spacings) and phase offset is set as
π/3. We first compare our two estimators when the length of
both the prefix and suffix is 8. The frequency offset and phase
offset NMSEs versus SNR performances are shown in Fig. 1.
The Cramér-Rao bounds (CRB) [10] for frequency offset and
phase offset estimations are displayed as well. Not only do
both the estimators provide the same performance, but they
also agree well with the CRB.

2). Performance comparison for different μ. We now ex-
amine the performance as a function of the length of the
prefix and the suffix. Since the previous experiment shows
that both proposed estimators perform identically, we only
consider MLE1. The frequency offset and phase offset NMSEs
versus SNR, for μ = 0, 2, 4, 8 are drawn in Fig. 2 with their
corresponding CRBs. Clearly, the frequency offset estimation
accuracy improves when the length μ is increased, about 4dB
when μ is increased from 0 to 8. However, the phase offset
estimation accuracy is not sensitive to the length of the prefix
and suffix.

3) Comparing frequency offset estimation of circular and
non-circular estimators. We now illustrate the performance
of the estimator (26) for BPSK. Since μ in (26) must be
greater than zero, we select three values as μ = 2, 4, 8. Fig.
3 shows frequency offset NMSEs versus SNR for both the
estimator (26) and the maximum-likelihood estimator (19).
The performance loss is significant if one ignores the non-
circularity of the transmitted symbols and applies the circular
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Fig. 2. Performance comparison of the frequency offset/phase offset
estimations for different μ in DCT-OFDM.
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Fig. 3. Comparing frequency offset estimation of circular and non-circular
estimators in DCT OFDM system.

estimator (26) directly. Especially when the length of the prefix
and suffix is small, the performance loss is significantly large.
Therefore, the DCT-OFDM performance depends on whether
the transmission is circular or non-circular, and ignoring
the non-circularity, if any, greatly degrades the performance.
Consequently, it is quite important to develop DCT-OFDM
estimators that takes the non-circularity into consideration.

4) Comparison Between DCT-OFDM and DFT-OFDM. We
now illustrate how the performance of these two OFDM
systems differs for the non-circular transmission considered.
Since DFT-OFDM is also considered, the parameters change
to ε0 = 0.15/N , and φ0 = π/3. For a fair comparison, the
total amount of redundancy added to one OFDM block is
fixed, namely, L = 2μ. The frequency offset NMSEs versus
SNR are shown in Fig. 4. In each figure, the solid lines from
up to down represent DCT-OFDM with μ = 2, 4, 8, whereas
the dashed lines from up to down represent DFT-OFDM with
L = 4, 8, 16. Two phenomena are observed. 1) DCT-OFDM
performs better than DFT-OFDM, especially when the amount
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Fig. 4. Comparison between DCT-OFDM and DFT-OFDM under non-
circular transmission, frequency offset estimation.

of the redundancy added to one OFDM block is small. 2) The
performance of DCT-OFDM varies slightly when the prefix
and suffix length μ changes. However, the performance of
DFT-OFDM is highly sensitive to the suffix length L. Thus
frequency offset estimation in DCT-OFDM is more robust
to the amount of the redundancy than that in DFT-OFDM.
Similar phenomenon was observed for phase offset estimation.
However, due to the page limit, we omit the discussion here.

IV. CONCLUSIONS

In this letter, we considered non-circular transmission of
DCT-OFDM and proposed two maximum-likelihood joint
frequency offset and phase offset estimators. The phase offset
can be estimated only if the transmitted symbols are non-
circular. In addition to those mentioned in [2], we found

several new advantages of DCT-OFDM over DFT-OFDM.
First, with DCT-OFDM, the frequency offset estimation range
increases from only one subcarrier spacing to its maximum.
Second, the frequency offset and phase offset estimation is not
only more accurate, but also more robust to the amount of the
redundancy per block.
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