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Scattered Pilots and Virtual Carriers Based
Frequency Offset Tracking for OFDM Systems:
Algorithms, Identifiability, and
Performance Analysis
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Abstract—In this paper, we propose a novel carrier frequency
offset (CFO) tracking algorithm for orthogonal frequency di-
vision multiplexing (OFDM) systems by exploiting scattered
pilot carriers and virtual carriers embedded in the existing
OFDM standards. Assuming that the channel remains constant
during two consecutive OFDM blocks and perfect timing, a CFO
tracking algorithm is proposed using the limited number of pilot
carriers in each OFDM block. Identifiability of this pilot based
algorithm is fully discussed under the noise free environment,
and a constellation rotation strategy is proposed to eliminate the
c-ambiguity for arbitrary constellations. A weighted algorithm is
then proposed by considering both scattered pilots and virtual
carriers. We find that, the pilots increase the performance
accuracy of the algorithm, while the virtual carriers reduce
the chance of CFO outlier. Therefore, the proposed tracking
algorithm is able to achieve full range CFO estimation, can
be used before channel estimation, and could provide improved
performance compared to existing algorithms. The asymptotic
mean square error (MSE) of the proposed algorithm is derived
and simulation results agree with the theoretical analysis.

Index Terms—Carrier frequency offset, OFDM, CFO ambigu-
ity, constellation rotation, IEEE 802.11a.

I. INTRODUCTION

RTHOGONAL frequency-division multiplexing [1], [2]

is a promising candidate for next generation high-speed
wireless communication systems due to its high data rate and
robustness to frequency selective channels. It has been used in
European digital audio/video broadcasting (DAB, DVB) [3],
[4], high performance local area network (HIPERLAN) [5]
and IEEE 802.11a wireless LAN standards [6]. In OFDM
systems, it is well known that a CFO, caused by oscilla-
tors’ mismatch or Doppler effects, destroys the subcarriers
orthogonality, and results in a substantial bit error rate (BER)
degradation [9]. Therefore, frequency synchronization should
be performed before the channel estimation [7], [8] and the
subsequent data detection.
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Frequency synchronization usually contains two stages: the
acquisition stage (coarse estimation) and the tracking stage
(fine estimation). Several CFO acquisition methods have been
proposed in [10]- [19]. In [10], the cyclic prefix (CP) in
front of each OFDM block is exploited for an additive white
Gaussian noise (AWGN) channel, and it is later extended for
multi-path channel in [11]. Repeated training sequences are
used in [12]- [14], and several improvements are made in [15]-
[18]. Optimal training sequence design for CFO estimation
over frequency selective channel has recently been proposed
in [19], where the periodic structures are, again, exploited.
Hence, almost all the methods in [10]- [19] use the periodic
nature of the time domain signal, either by utilizing CP or by
designing training sequences with repeated parts. However,
using the periodic nature greatly reduces the CFO estimation
range. Furthermore, all these methods, except [10], [11], are
only applicable in CFO acquisition stage because consecutive
training blocks are required, which are only available when
transmission starts.

After the acquisition stage, there may exist a residue CFO,
either because of the insufficient accuracy during the coarse
estimation, or because of the time varying nature of the
surrounding environment. The residue CFO, if not compen-
sated, may still lead to performance degradation. Hence,
many existing standards reserve a limited number of scattered
pilot symbols' in each OFDM blocks to improve the system
robustness in different aspects. For example, in IEEE 802.11a
WLAN standards [6], four pilots are placed at the subcarriers
with indices {7,21,43,57} for the purpose of combating the
residue CFO and the phase noise.

In the tracking stage, the CP based method [11], the
modification of [10], can still be used for residue CFO
estimation. This method will be referred as Beek’s method
in this paper. However, the performance of Beek’s method
depends critically on the difference between the length of the
CP and the channel length. Note that, in mobile environments,
the channel length may not be a fixed value. Meanwhile, to
achieve a high spectral efficiency, the CP length is not much
greater than the channel length. Both these factors limit the
performance of the CP based method. As a result, a better way

I The term “scattered pilot symbol” means that only limited number of pilots
are inserted in each OFDM block. However, we do not assume a specific
pattern on pilot positions.
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is to implement CFO tracking with the aid of scattered pilots
available in existing OFDM standards. However, almost all
the above mentioned CFO estimation methods [10]- [19] were
developed based on preamble but not on data-pilot multiplexed
symbols. To the best of the authors’ knowledge, only the
algorithms in [20]- [23] consider the scattered pilot tones. The
method in [20] is referred as Classen&Meyr’s method in this
paper. It is assumed that the channel impulse response (CIR)
remains constant for two consecutive OFDM blocks over a
slow fading channel. For a small CFO (much less than one
subcarrier spacing) and a low signal-to-noise ratio (SNR), the
inter carrier interference (ICI) induced by the CFO can be
ignored as opposed to the large additive noise. Therefore, the
CFO can be estimated by comparing the received symbols
on the pilot carriers from the two consecutive OFDM blocks.
However, this method fails to give good estimation when
the residue CFO is large, and an error floor appears at high
SNR. The methods in [21], [22] derive the best data-pilot-
multiplexed scheme in terms of minimizing data-interference
on pilot tones. Since the interference is minimized rather
than being removed, these methods also meet error floors at
high SNR. The method in [23] considers the statistic channel
where the knowledge of the exact channel covariance matrix
is required. However this requirement is not always fulfilled
in the practical transmission if the environment is changing
from time to time.

In this paper, we consider the deterministic channel and
propose a novel CFO tracking algorithm that overcomes all
the drawbacks in [20]- [22]. Assuming perfect timing, an algo-
rithm, called p-algorithm, is developed using the scattered pilot
carriers embedded in each OFDM block. Identifiability of p-
algorithm is studied for the noise free case, and a constellation
rotation strategy is proposed to eliminate one major type of
the CFO ambiguity for widely used constellations. To further
improve the performance of the CFO estimation and enhance
the robustness to the CFO ambiguity, we consider using the
virtual carriers existing in practical OFDM standards. For ex-
ample, in IEEE 802.11a standards, the subcarriers with indices
{0,27,...,37} are set as virtual carriers, either to avoid the
aliasing effect [24] or to be reserved for future use. The CFO
estimation algorithm by exploiting virtual carriers, named v-
algorithm in this paper, has been developed in [25]- [27].
A weighted algorithm, called pv-algorithm, is then proposed
by exploiting both scattered pilots and virtual carriers. We
show that in the pv-algorithm, the p-algorithm part increases
the estimation accuracy, while the v-algorithm part reduces
the outlier probability. Moreover, we derive the asymptotic
mean square error (MSE) of our proposed algorithm, and
the optimal weight in the pv-algorithm is given in a closed-
form. Besides tracking, the proposed algorithm can also be
applied for CFO acquisition stage since it both provides full
range CFO estimation and does not require the exact channel
knowledge.

This paper is organized as follows. Section II presents the
OFDM system model. Section III provides the proposed CFO
tracking algorithm and discusses the ambiguity issues. Section
IV gives the performance analysis of our proposed algorithm.
Section V shows the simulation results, and conclusions are
drawn in Section VI
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Fig. 1. Structure of an OFDM block.

Notations: The transpose, Hermitian, and inverse of a matrix
A are denoted by AT, A and A~!, respectively; *{a} and
S{a} denote the real and the imaginary parts of a complex
scalar a, respectively; |a| is the amplitude of a, and |.A]| is the
cardinality of the set A; ¢r(A) is the trace of the matrix A;
E{-} denotes the statistical expectation, and Z is the integer
set.

II. PROBLEM FORMULATION

Let K denote the number of subcarriers in one OFDM
block. The index sets for pilot carriers and virtual carriers
are denoted as P and V), respectively. The transmitted symbol
on the kth subcarrier in the mth OFDM block is

pr(m) € Cp keP
sg(m)=4¢ 0 keV , k=0,...,K-1,
di(m) € Cq otherwise
(h

where dg(m) is the information symbol from the signal
constellation C4, and pg (m) is the pilot symbol from the signal
constellation C,. The power of the pilot symbols is normalized
to unity, i.e., |pr(m)| = 1. Let

s(m) = [so(m), s1(m), ..., s5c_1(m)]" 2)

denote the mth OFDM block in the frequency domain. After
applying the inverse discrete Fourier transform (IDFT) to (2),
the resulting time domain signal for the mth OFDM block is
given by

z(m) = Fs(m) = [z0(m), 21(m), ...,ZK,l(m)}T, 3)

where F is the K x K normalized IDFT matrix with the
(a,b)th entry F,p = %e%. Each channel path is
considered as a complex Gaussian random process, and the
path delay is assumed to be integer multiple of the sampling
interval T. Meanwhile, the maximum channel delay is upper
bounded by LT,, where L is a positive integer. Note that
no leakage is considered in this paper. The equivalent discrete
channel vector can be represented as h = [ho, ..., hz]”, where
h; denotes the [-th path of the channel, [ = 0, ..., L. For DFT-
based OFDM, the CP [zx_p(m),...,zKx—1(m)] is added in
the front of z(m). The length of the CP, P, is chosen to be
greater than or equal to L to avoid the inter-block interference
(IBI). The overall OFDM block of length Ky = K + P is
then transmitted with period 7 K. The structure of the whole
OFDM block is shown in Fig. 1, where it is divided into
three regions: A, B, C. Symbols in region A are corrupted by
IBI from the previous block. Region B represents the part in
CP that is IBI free. Region C denotes information symbols
z(m). All the OFDM blocks are placed sequentially in a data
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sequence {z:},t = 0,1, ...
channel.

At the receiver, there usually exist both CFO and timing
offset (TO), which must be estimated and compensated before
the subsequent channel estimation and data detection. For
simplicity we assume perfect timing synchronization. The
received baseband signal can be expressed as

and is sent through a multi-path

L
ry = 2T Z hixe—i + i, 4)
1=0
where n, is the sample of zero-mean white complex Gaussian

noise with variance o2, and ¢ is the CFO normalized by the
whole bandwidth 1/7%.

III. FREQUENCY OFFSET TRACKING METHOD
At the receiver, the mth received block after the removal of
the CP is given by
y(m) = [T(mfl)Kﬁ»Py -~-77"mKs—1]T
= /2m(m=DEAPIQ($)FHs(m) + n(m), (5)

where Q(¢) has the form of
Q(0) = diag {1,277, . 20D}, ©6)

and H is the diagonal matrix with its (k, k)th element given

by
L

H(k,k) = Hyoy 23 e % 7
=0

A. Pilot Based Tracking: p-Algorithm.

Let §(m) = [30(m),31(m), ..., 5x—1(m)]T denote the K-
point normalized DFT of y(m). Then,

gk(m)e—j27r¢((m—1)Ks+P)

1 = (K —Dm(v+ K p—k)
J — (v — KR
e E Hys,(m)e K
v=0

" sin(m(v + K¢ — k))

+ N (m)

sin (7”(1&?1)7’“))
sx(m) Hyed (K=179 gin (7 K ¢) ~
= ICI 8

K en(nd) +ICI(m) + 7 (m), (8)

where
K_lesv(m)ew sinm(v+ K¢ — k))
1CI(m) = s o ,
v=0,ut K sin (F55=2)

©))
and 7;(m) has the same distribution as n;. For noise free
case, Sp(m) = Hpsg(m) if ¢ = 0. A non-zero ¢ both

introduces ICI and reduces the effective SNR to a factor of
el (K—1)7o sin(w K ¢)
K sin(wK ¢) '

For a slow fading channel?, the CIR in v = 2 con-
secutive blocks can be assumed static. Based on this fact,
the Classen&Meyr’s method is developed by using a few
number of pilots. In fact, Classen&Meyr’s method assumes
a sufficiently small ¢ and a not high SNR, so that the ICI
is much smaller than the noise and can thus be ignored. The
CFO is then estimated as

-1
0= 2K
 tane S S+ 1)/ (st m)sum + D)} |

> kep R85 (m)dr(m + 1)/(sz(m)sk(m + 1))}

Obviously, (10) is valid only when ¢ < % Therefore the
accuracy of the coarse estimation during the CFO acquisition
stage is crucial to the performance of (10) and even a small
CFO variation in the tracking stage may cause the failure
of the algorithm. There also exist other problems: 1) the
estimation accuracy of (10) is limited by ignoring the ICI
term. 2) At high SNR, since the ICI term is comparable to or
even larger than the noise, the approximation in (10) is not
valid any more.

In order to overcome all these drawbacks, we propose a new
CFO tracking algorithm, still using several pilots but with an
improved performance. Let ¢ be the searching variable for
the unknown CFO. After compensating y(m) by a diagonal
matrix 2(—¢), the symbol on the kth subcarrier can be written
as

3 (m)eijmﬁ((mfl)Kﬁ»P)

 sp(m)Hyped KD gin(n K (¢ — €))
K sin (7(¢ — ¢))

+ICI(m) + g (m), (11)

where 7i;;(m) is the noise variable that distributes the
same as ni(m). In the absence of noise, if ¢ = o,
§p(m)e72me((m=DK+P) reduces to sy,(m)Hy, and 5(m +
1)e=32me(mE+P) s s (m + 1) Hy. Since Hy is same in two
consecutive OFDM blocks, the metric

3 [tmpes2reCn 0t oy
keP

) 2
—Gr(m 4 1)e72memEAP) /g, (m 4 1)H (12)
is zero at ¢ = ¢. Note that, at least one of Hy, k € P

should not be zero, which is also assumed by Classen&Meyr’s
method. Therefore, a CFO estimator (p-algorithm) at the noisy

2Most frame based transmissions assume a slow fading channel, e.g. IEEE
802.11a [6].

¢ = argmin g, (¢)
g

= arg min g
g

keP

= arg rnEin HS(m)FfQ(—E)y(m) —S(m + 1)Ffﬂ(—

)y (m + 1)e 72T

. . 2
¢ 2 DEARIEHQ o)y () sp(m) — e 2T EAPIHQ—e)y(m -+ 1) /s(m + 1)

2

13)
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case is proposed as (13) shown at the bottom of this page,
where fj, is the kth column of F; F,, is the K x |P| matrix
whose columns are obtained from f, £ € P; and S(m),
S(m + 1) are |P| x |P| diagonal matrices with the diagonal
elements given by 1/sx(m),1/six(m~+1),k € P, respectively.
If the channel is constant over v > 2 blocks, the estimator (13)
can be modified to

R v—2

¢ = arg rnEin ZO |S(m + u)FfQ(—e)y(m +u)

—-S(m+u+ l)FfQ(—E)y(m +u+ 1)e 927K 2 (14)

In the following discussion, we only focus on the case v = 2
since v is preferred to be smaller in order to track a varying
CFO. An example for the case v > 2 will be given in the
simulation part.

In addition, it is interesting to find that (10) is equivalent to

¢ = arg main |S(m)F L y(m)

—S(m + )Fy(m + 1)e 927K ||* (15)

Obviously, (13) possesses a much more reasonable structure
than (15), since it firstly rotates y (m), y(m+1) by Q(—¢) and
then estimate CFO by comparing the values on pilot carriers.
On the contrary, the estimator (15) compares the values on
pilot carriers from the direct DFT of y(m), y(m + 1), which
may only give an acceptable approximation under certain
conditions. A further benefit of (13) is that, it could possibly
provide a full rage estimation of frequency offset. A first look
on this point is from the fact that (13) contains the term
e~927¢ then ¢ € (—0.5,0.5] is allowed. However, (15) only
contains the term e~727Ks¢ 5o the estimation range is limited
to (—0.5/K,0.5/ K.

Remarks:

o Estimator (13) is actually derived from observation, and
it cannot be claimed as a maximum likelihood (ML)
estimator. However, we may treat (13) as a suboptimal
estimator since it gives an exact estimate under the noise
free environment. Note that this property is not possessed
by either (10) or (15).

o The exact knowledge of the channel model is critical
for the channel statistics based algorithms [23], and the
channel length plays a critical role for channel length
based algorithm, e.g. Beek’s method [10], [11]. Unfortu-
nately, in practical communications, channel model may
change for different environments, whose exact form is
hard to obtain. Moreover, the exact channel length is
difficult to estimate, either. In contrast, neither of these
two factors is important for the proposed p-algorithm.
The only assumption is that the CIR is constant for two
consecutive OFDM blocks, which is relatively easier to
be satisfied, especially in a slow fading channel.

B. Identifiability For p-Algorithm

Similar to [28], [29], we study the uniqueness of the
estimator (13) under the noise free environment. The unknown
CFO is assumed to be within the full region (-0.5, 0.5], and
the trivial ambiguity = ¢+b, beTis excluded from the
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consideration (corresponding to a very large CFO). For the
noise free case, (13) reduces to

¢ = {elg(e) = 0}.

Obviously, the true CFO ¢ is a solution to (16). The ambiguity
appears if 3 ¢ # ¢ such that g,(¢) = 0, which is equivalent
to

(16)

0= KiH TR sin(r(v+ KAG — )
= K sin (Zo5220)
Ayk
X (sv(m)/sk(m) — sy(m +1)/sp(m + 1)6j27rA¢Ks)
Bk
K—1
= HyoprBoks a7
v=0

for all k € P and A¢ # 0, where Ap £ ¢ — ¢.

Case 1: KA¢ ¢ T: In this case, a,r # 0 for all v. The
discussion is further divided into two subcases.

1) Not all B, = 0: The ambiguity happens when
ZU H,aui By = 0. This type of ambiguity will be referred as
h-ambiguity in this paper. Since H, is a linear combination
of continuous complex random variables h;, the probability
for h-ambiguity is zero. Therefore, the h-ambiguity can be
ignored.

2) All By = 0: We call this kind of ambiguity as d-
ambiguity. In order to avoid this type of ambiguity, the value
on pilots can be properly designed such ([, is not zero
for some k € P. For example, we can take si,(m) = 1,
Sk, (m+1) = 1, while choose sg, (m) =1, s, (m+1) = —1.
Then, Bk, k> Prik, cannot be zero, simultaneously.

Case 2: KA¢ € T or more specifically, KA¢ € I 1 =
{1,..,K =1}’ Let o), = ((k— KA¢) mod K). Obviously,
O, # k when A¢ # 0. In this case, g, = 1, and oy, = 0,
Vv # 0. The ambiguity happens if 3;,x = 0 or Hz, = 0.
Since the latter can be equivalently considered as if the vyth
carrier is a virtual carrier, we incorporate the discussion on
Hj, = 0 into the discussion on (5,1 = 0, i.e.

5, (M) /sk(m) — 55, (m 4 1)/sp(m + 1)ed?™2¢Ks =0 (18)
for all k € P.

The discussion is divided into three subcases.

1) All v3, € P: The ambiguity under this subcase is called
p-ambiguity. Two different methods can be used to avoid the
p-ambiguity. One is to choose the pilot index in a way that
all pilot carriers are not equi-spaced. Then, the p-ambiguity
cannot happen since any KA¢ € Zx_1 could not make all
v € P. However, since equi-spaced pilots can be used for
optimal training in some OFDM systems [30] (if the number
of the pilot carriers is greater than L), this approach to avoid
p-ambiguity is not always recommended. The other way is to
design the pilot symbols such that equation (18) does not hold
for all v, € P. If the pilot values are allowed to be arbitrary,

3We only need to consider this subset since K A¢/ = KA¢ + bK only
provides a trivial ambiguity in A¢’ = A¢ + b.
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then the design is quite easier. However, we will restrict our
special attention on pilot values belonging to {+1,—1} as
adopted in IEEE 802.11a standards [6]. The p-ambiguity can
be avoided by properly consider at least three pilot carriers, say
{k1, ko, ks}. We can set sg, (m) = sk, (m+ 1) = sp,(m) =
Sks(m+1) = 1, while taking sy, (m) = 1, sg,(m—+1) = —1.
Then, (18) does not hold simultaneously for k;, ke and ks.

2) All 9, ¢ P: This subcase can be further divided into two
sub-subcases.

a) At least one v, k € P does not belong to V UN where
N denotes the subcarrier index set for channel nulls.
Without loss of generality, we denote this specific £ and
Uy as kp and vy, , respectively. The ambiguity under this
sub-subcase is called c-ambiguity. Since the values of
S5y, (M), 85, (m+1) are selected from a finite alphabet,
all the possible values of A¢ in (18) should belong to
the set

1 S1 w L
21 i I
{Qﬂ'KS e <52) TRR

1 1
w__arg<w)_
s

Sky (m)

1
peEA= {—arg<8—1>
2 S9

represent all the possible phase differences for a certain
signal constellation C,4. The c-ambiguity can be excluded
if

(19)
Vs1,89 € Cq,t € I} ,

(20)

Let

Vs1, So ECd} 201

+w+ o) K
% ¢Ix 1, YpeA

Note that, if pilots sg, (m) and s, (m + 1) could be
chosen arbitrarily, (22) can be easily satisfied. However,
this is not the case in practical transmissions, where the
values of pilots are usually obtained from a constellation
Cp. We will, again, focus on the discussions when pilots
can only be chosen from as {+1,—1} as adopted in
IEEE 802.11a standards. Similar discussions can be
conducted for other pilot patterns by the interested
readers themselves. Since the symmetric signal constel-
lations are normally adopted, e.g., BPSK, QPSK, QAM,

both % arg Z—;) and % arg j—;) + 7'(') belongs to A.
Therefore, it is sufficient to consider only the case when
Sk, (m) = s, (m + 1) = 1, which means w is 0. Then,
the c-ambiguity can be excluded if

K
% ¢Ix1, YpeA

Instead of designing the pilots values, we need to
properly choose the signal constellation Cq4, and set the
values of K, K. Note that, one value of p must be
zero, then }f ¢ Tx_1 is required. Therefore, K and
K should at least be coprime numbers.

We give an example to illustrate the relationship between
c-ambiguity and system parameters. For simplicity, we

consider K = 16, P = 5 and the QPSK constellation.

(22)

(23)

Then, A is {0,0.25,0.5,0.75}, and the only solutions
to KA¢ € Ti_1 are

025 p=025:=5
A =105 n=05,0=10 24)
0.75  p=0.75,0=15

Meanwhile, if the symbol at the vyth carrier satisfies
s5,.(m) = s5,(m + 1)e??™2%Ks for any Ag in (24),
then (5., = 0. In order to remove the ambiguity, we
need to carefully reassign other values to K, K such
that (23) is satisfied. One thing to be mentioned is that, if
the CFO can be restricted to the region (-0.125, 0.125],
c-ambiguity is directly avoided, because the smallest A¢
in (24) is 0.25. Note that, this ambiguity free region is
five times wider than that of Classen&Meyr’s or Beek’s
method, which is only (-0.5/21,0.5/21] (less than one
subcarrier spacing).

b) All 9%,k € P belong to VJN, where A/ denotes the
subcarrier index set for channel nulls. We call this type
of ambiguity as n-ambiguity. Since the index set for vy,
is actually a K'A¢ cyclic shift from the set P, we can
properly design the number and the positions of pilot
carriers such that at least one of v, does not belong to
VJN for any cyclic integer shift KA¢ € Z. A simple
way is to choose |P| > |V| + |[N|. However, one may
find better choices, if the CIR or at least the positions
of channel nulls are known. It need to be mentioned
that, the OFDM structure provided in IEEE 802.11a is
almost n-ambiguity free, since the v,k € P cannot
simultaneously belong to V, and " is an empty set with
probability one.

3) Otherwise: The ambiguity for this subcase can be avoided
by the methods in either of the previous two subcases.

Conclusion: Under the noise free condition, the CFO in

the region (-0.5, 0.5] can be uniquely determined* from the
estimator (13) by properly designing system parameters, i.e.,
P, pr(m), K, Ky and C4. However, it is hard to arrive at
an explicit design for guaranteeing the absolute ambiguity
avoidance for arbitrary systems because whether all types
of ambiguities can be avoided, simultaneously, depends on
quite a number of factors. Nevertheless, since we know the
guidelines for each type of ambiguity free design, we could
easily derive an ambiguity free solution for an explicit system.
Remark: The p-algorithm can be applied not only for CFO
tracking but also for CFO acquisition because: 1) It could
provide full range estimation; 2) It can be applied before
channel estimation.

C. Constellation Rotation: A Case Study for 802.11a WLAN

From the previous discussion, it is known that system
parameters should be properly designed to eliminate the CFO
estimation ambiguity. However, there exist several constraints
that may bring inflexibility when designing some of these
parameters. For example, K is generally taken as 2P so
that the fast Fourier transform (FFT) operation can be im-
plemented. Meanwhile, symmetric signal constellations are
normally adopted, e.g., PSK, QAM.

4h-ambiguity that happens with probability zero is ignored here.
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An example here follows the IEEE 802.11a standards,
where the parameters are chosen as K = 64, P = 16, K, =
80, V = {0,27,...,37}, and P = {7,21,43,57}. Every pilot
takes the value of +1 or —1. Obviously, the d-ambiguity
can be readily removed by assigning £1 to different pilots.
Meanwhile p-ambiguity and n-ambiguity do not exist due to
the position of pilot carriers’. We only need to deal with the
c-ambiguity that happens when

64

ga(ﬁ‘*‘b):: %(;¢4—¢) € {1,...,63}.

It is readily seen that 1 € {0,0.25,0.5,0.75} or equivalently
arg (j—;) € {0,7/2,m,3w/2} are the only cases that may
introduce c-ambiguity. Moreover, since K, K¢ are not coprime
numbers, any signal constellation C4 could cause c-ambiguity.
A way to resolve the c-ambiguity is to take double sets of
modulations; namely, for OFDM block with odd index, we
use signal constellation C4;, whereas for OFDM blocks with
even index, we use signal constellation Cyo. Let §; be an
arbitrary symbol in C4; and 52 be an arbitrary symbol in
Cg2. Then, C41, C42 should be designed such that arg (g—;) ¢
{0,7/2,m,3m/2}.

To keep the system BER performance unaffected, we sug-
gest a constellation rotation scheme, i.e., Cgo is a rotation
from C4; by a proper angle 6. For example, C4; is taken
as QPSK, while Cg4o is taken as 7/4-QPSK. As shown in
Fig. 2, arg (2—;) only belongs to {m/4,3r /4,57 /4, Tr/4}.
Hence, the c-ambiguity can be totally removed for noise-free
case. Actually, C4o can be rotated from Cy4; by an arbitrary
0 € (0,7/2) for a QPSK constellation under noise free
conditions. An optimal selection of # for noisy environment is
not strictly derived yet. However, due to the symmetry between
the two constellations, a good choice may be § = 7 /4 because

(25)

the minimum arg (g—; is maximized, which may result in a
larger distance between s;, (m) and s5, (m+1)e/27A¢K: We
can also show that if § = 7/4, c-ambiguity in noise free case
is also removed for higher order constellations, e.g. 16-QAM
or 64-QAM.

Remark: The above discussion is established in the noise
free environment. The ambiguity, or more properly called the
outlier, may happen in the presence of noise. An example is

given in the simulation part.

D. Virtual Carriers Based Tracking: v-Algorithm

The algorithms purely relying on virtual carriers have been
studied in [25]- [27]. In this paper, we only quote their results
and provide some necessary modifications. Under the perfect
timing synchronization, the CFO estimator based on virtual
carriers is written as

m—+1 5
¢ = arg mgin gv(e) = arg mgin Z |FIQ(—e)y ()], 26)

q=m

where F,, is the K x|V| matrix whose columns are constructed
from i, k € V. In (26) we consider both the mth and the (m+
1)th received blocks to be consistent with the p-algorithm.

5Channel nulls on subcarriers are not considered here.
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Fig. 2. Constellation Rotation for QPSK.

The identifiability study of CFO estimation in the presence
of virtual carriers has been fully exploited in [31]. Interested
readers are referred to [31] for detailed discussions.

E. Co-Consideration: pv-Algorithm

From previous subsections, we know that p-algorithm con-
siders only pilot carriers, while wv-algorithm considers only
virtual carriers. Therefore the two algorithms work “inde-
pendently” from each other. It is noted that, exploiting both
pilot carriers and virtual carriers may offer several additional
benefits:

1) Improve the estimation accuracy.
2) Reduce the probability of the ambiguity.

A reasonable combination of both p-algorithm and v-algorithm
can be expressed as the weighted sum of the two correspond-
ing cost functions. The combined cost function is given by

Ipu(€) = gp(€) +7g0(e). (27)

The first benefit by using (27) is because we exploit more
information in gy, (¢) than purely relying on either g,(¢) or
gv(€). The second benefit can be explained in the absence
of noise. Suppose 3¢ # ¢ such that g,(¢) = 0. From
intuition, since g, (¢) and g, (¢) are obtained through different
approaches and possess different structures, the probability for
é to be also the null point for g,(g) is small. However, the
true CFO ¢ must be the null point for both g,(¢) and g,(¢).
Therefore, after the addition, the false null in either estimator
will be compensated by the other estimator, leaving only the
true ¢ being the null of gp,(c). Note that, the ambiguity is
still possible to happen once ¢ is the common null of both
gp(e) and g,(c). However, the probability may be greatly
reduced compared with using either estimator. Furthermore,
to eliminate the ambiguity for pv-algorithm, we only need
to eliminate the ambiguity for p-algorithm (as in subsection
ITI-B), or to eliminate the ambiguity for v-algorithm [31].

An example regarding the second benefit is shown here.
For simplicity, the parameters are taken as L = 3, K = 16,
P =5 ¢ =025~v=1 P = {11}, V = {13,14,15}.
Symbols are generated from QPSK constellations and pilots
are selected as p11(m) = p1i(m + 1) = +1. We also set
Hy5 = 0. From [31], the ambiguity for v-algorithm takes place
at the point ¢ = 0.1875. For p-algorithm, the c-ambiguity
may happen at the point ¢ € {0,—0.25,0.5} as shown in
(24). The p-ambiguity does not exist since there is only one
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Fig. 3. CFO pattern for p-algorithm, v-algorithm and pv-algorithm.

pilot carrier. The d-ambiguity only happens when the two
OFDM blocks are exactly the same and can be ignored in
this example. Meanwhile, the n-ambiguity takes on place at
e € {0.3750,0.4375, 0.5} because of the virtual carriers, and
at ¢ = 0.3125 because of the channel null. It is seen that
the n-ambiguity, caused by the channel null, in p algorithm
shifts to the opposite direction as that in wv-algorithm, i.e.,
0.1875 = 0.25 — 1/16 while 0.3125 = 0.25 + 1/16. Hence,
there is no common null for both p-algorithm and v-algorithm.

The cost function (13), (26), (27) of p-algorithm, wv-
algorithm, and pv-algorithm in the absence of noise are shown
in both Fig. 3 and Fig. 4. From these two figures, although
both p-algorithm and v-algorithm suffer from their respective
ambiguity, the pv-algorithm has a unique null at the true
CFO value, because the false null of either algorithm is
compensated by the other algorithm.

E. Ways to Obtain ¢ from g,() and gy, ()

The direct way to estimate ¢ from either g,(¢) or gp,(¢)
is the one dimensional searching. However, the complexity
of such kind of searching, although acceptable in some ap-
plications, e.g., direction of arrival (DOA) estimation [32], is
too high to be implemented in other real time applications.
To avoid computationally expensive searching, several alter-
natives are considered. We will illustrate these methods for
pv-algorithm whereas the extensions to p-algorithm would be
an easier job.

1) FFT based method: The estimator (27) can be expanded

K+K;
9po(€) = po + 2R { > pie‘-’z’““} :
i=1

where p; can be obtained from (27) straightforwardly. From
[14], we know that the minimization of the cost function can
be achieved through the fast Fourier transform (FFT).

2) Polynomial Rooting: Polynomial rooting for a single &
has been proposed in [27]. This method is able to guarantee
the global minimum of g,,(e), and its complexity can be
approximated by O((K + Kj)?). Compared with the FFT

as

(28)

x 10
1 T T T T T T T T T
| ‘ \ | |
09 ! v-algorithm oo
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08 r I pv—algorithm oA
| ‘ ‘ | |
07} ‘ \ [
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€
Fig. 4. Scope-enlarged CFO pattern.

based searching, the polynomial rooting is recommended for
smaller K and K.

3) Adaptive method: Adaptive algorithm can be utilized in
certain cases in order to reduce the computational complexity.
However, the major drawback of adaptive method is that, the
initial point is critical to guarantee a global minimum.

IV. PERFORMANCE ANALYSIS

For the ease of analysis, we assume that all pilots are taken
as +1. Assuming SNR>> 1, the expectation and the variance
of the proposed estimator can be approximated by [14]

o Blim@) . B{3,0) +13u(0))
Bt} =0~ 560 @) 7 Blan@) T in@)
o E{im@)P)  E{5(0) +19u0))

Var 10} = B @I~ Blano) F @) OO

where ¢(¢) and §(¢) represent the first and the second order
derivatives of g(¢) at ¢ = . As derived in the Appendix, (29)
and (30) can be simplified as

Ep{d} = ¢, 31)
L 0% 27, + 427,
Var, {¢} = 872 (Zy +1720)° (32)
where
Zy = ||Pp(DAR — Kan(m+1)|*,  (33)
m—+1
(34

Z, =Y _ n"(9)DP,Dn(q),

and all the variables are defined in the Appendix. Note that
P,n(m+1) is the term only related to the variable Hy, k € P,
and Var,,{¢} is not related to the specific CFO value.
Meanwhile, the CFO estimation variances by using either
gp(€) or gy(e) are
~ 0'2
Var,{¢} = ma
2

- o
Varel9} = gz,

(35)

(36)
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respectively. It is interesting to find that

Var,, {¢}|y=0 = Var,{¢},
Varp,{¢}]y—o = Var,{¢}.

Therefore the value of « controls the effective part of each
single estimator.

A nice property of weighted sum of p-algorithm and v-
algorithm is that, the closed form of the optimal weight ~
can be obtained regardless of all other parameters. Taking the
derivative of (32) with respect to ~y, we arrive at that, the
minimum value of Var,,{¢} is always achieved at = 2.

(37)
(38)

V. NUMERICAL RESULTS FOR CFO ESTIMATION

In this section, we examine the performance of the proposed
estimators under various scenarios. All parameters are taken
from IEEE 802.11a standards. The 4-ray channel model with
an exponential power delay profile [33]

E{|m|*} = kexp(—1/10), 1=0,..,L (39)

is used where x is the coefficient to normalize the overall
channel gain. Each channel path is complex Gaussian. The
normalized estimation mean square errors (NMSE) is defined

as
N

1 (¢s — ¢)?
NMSE = ; e

where N = 100 Monte-Carlo runs are taken for average.

(40)

A. CFO Less than Subcarrier Spacing

In this example, different CFOs are taken from the re-
gion (—0.5/64,0.5/64]. The performance of p-algorithm, v-
algorithm, pv-algorithm, Classen&Meyr’s method and Beek’s
method are compared. We assume that the estimated channel
length is L = 12 in order to give a fair comparison between the
Beek’s method and our proposed algorithms®. Furthermore,
QPSK constellation is used for all OFDM blocks. The NMSEs
versus SNR for different algorithms are shown in Fig. 5, and
the theoretical results for p-algorithm, v-algorithm, and pv-
algorithms are given as well. As can be seen from the figure,
Classen&Meyr’s method can give a relatively satisfying per-
formance at lower SNR with a normalized CFO 0.1 subcarrier
spacing. However, at high SNR, the Classen&Meyr’s method
has an error floor. Meanwhile, even when CFO is as small
as 0.25 subcarrier spacing, the Classen&Meyr’s method fails,
because the ICI term cannot be ignored any more. On the con-
trary, since our p-algorithm does not make any approximation,
it does not have an error floor and is also valid for a large
CFO value. It is also noted that, Beek’s method, p-algorithm
and pv-algorithm give comparable performance. However, our
major concern is that the performance of Beek’s method is
greatly affected by the channel length, or the estimate of the
channel length. For example, if L = 16, or if L < 16 but the
estimate = 16 due to the power leakage, then the Beek’s
method can not even be applied. For v-algorithm, although no
error floor is met, the performance is much worse than either

The length of the region B should be the same as |P| for fairness [11].
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Fig. 5. NMSEs versus SNR for different CFO estimation algorithm: CFO
smaller than subcarrier spacing.

the p-algorithm or the pv-algorithm. This is because that v-
algorithm only consider the orthogonality between subcarriers
and is actually a blind type CFO estimation method. From
intuition, pilot aided algorithm outperforms v-algorithm. Note
that there are three dashed lines without any marker. These
lines, ordered from top down, represent the theoretical NMSE
of v-algorithm, p algorithm, and pv-algorithm for CFO equal-
ing to 0.1 subcarrier spacing, respectively. Similar discussions
hold for three solid lines in the figure for CFO equaling 0.25
subcarrier spacing. We find that the numerical performance of
p-algorithm and pv-algorithm agree with theoretical analyzes
very well, which verifies our analytical studies.

We also verify the optimality of the choice for v in Fig. 6,
which shows the NMSE of pv-algorithm versus different
value of v at SNR=15 dB. Clearly, v = 2 is the optimal
weight, which agrees with the theoretical result. Since the p-
algorithm is the dominant component of the pv-algorithm, the
performance of the pv-algorithm does not depend critically on
the choice of . From Fig. 6, we find that the NMSE value
does not change too much within the region v € [0, 5].

B. CFO Larger than Subcarrier Spacing

One important contribution of our proposed algorithm is
its applicability for CFO greater than subcarrier spacing. In
this example, we consider the performance of p-algorithm, v-
algorithm, pv algorithm. Note that, Classen&Meyr’s method
and Beek’s method are not included here because they are not
applicable for this scenario. The constellation schemes with
and without rotation are compared. For the former scheme,
Ca1 is QPSK and Cgo is 7m/4-QPSK, while for the latter
scheme, QPSK constellation is used for all OFDM blocks.
The CFO is taken as large as 0.25 of total bandwidth, which
is 16 subcarrier spacings. NMSEs versus SNR are shown in
Fig. 7. It is seen from Fig. 7 that, the pv-algorithm is about
12 dB better than v-algorithm and gives accurate estimation
over all SNRs. However, it is also noted that the p-algorithm
with constellation rotation cannot yield good performance
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Fig. 7. NMSEs versus SNR for different CFO estimation algorithm: CFO

larger than subcarrier spacing.

for SNR< 30 dB, and the p-algorithm without constellation
rotation fails at all SNR. In the simulations, we have observed
that several Monte-Carlo runs give outlier on CFO estimation.
From Fig. 3, we see that the noiseless cost function g,(¢) is
close to zero at several locations. If noise is present, those
close-to-zero points may yield the minimum value in the cost
function g,(¢), which causes CFO outlier. In section III-B,
we only provide the discussion on ambiguity elimination for
noise free environment. If the noise is present, the outlier
may happen. Nevertheless, our pv-algorithm benefits from
both algorithms. The p-algorithm part increases the estima-
tion accuracy while the v-algorithm part reduces the outlier
probability.

A reasonable way to evaluate the advantages of the con-
stellation rotation scheme is to consider the CFO outlier
probability (CFOOP), which is defined as

CFOOP — the number of runs with outlier

(41)

the total number of Monte Carlo runs’

where the outlier in the presence of the noise may be defined
as:

1 T T T T
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08 N 1
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Fig. 8. CFOOP versus SNR for p-algorithm: Comparison of two modulation
schemes.

T
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NMSE
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Fig. 9. NMSE:s versus number of the consecutive OFDM blocks: CFO lager
than subcarrier spacing.

Definition: In noisy environment, the outlier occurs if the
estimated ¢ stays outside the region [¢ — 0.5/K, ¢+ 0.5/ K].

The comparison of CFOOP for p-algorithm with different
constellation schemes is shown in Fig. 8. Clearly, the CFOOP
is reduced to zero at high SNR using the constellation rota-
tion scheme whereas it meets a floor at high SNR without
constellation rotation. As analyzed in subsection III-B, the
c-ambiguity for non-rotation scheme can never be removed,
which consequently introduces non-zero CFOOP all the time.

It has been shown that the proposed p-algorithm, pv-
algorithm can be readily modified when CIR and CFO is
constant over more than two consecutive OFDM blocks. Using
the same parameters as in Fig. 7, we show the NMSEs of
different algorithms versus the number of the consecutive
OFDM blocks used for CFO estimation in Fig. 9. The SNR
is fixed at 20 dB. From Fig. 9 we find that the outlier of
p-algorithm in noisy environment can also be “removed” by
increasing the number of blocks used. Actually, the probability
of the occurrence of the outlier is reduced when more OFDM
blocks are used.
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VI. CONCLUSIONS

In this paper, a novel CFO tracking method was devel-
oped for practical OFDM systems. The proposed algorithm
considers both pilot carriers and virtual carriers, hence is
compatible to most practical standards. The ambiguity for
pilot based algorithm was studied and several approaches to
remove different types of the ambiguity were discussed. Since
many parameters are already fixed in existing standards, a
constellation rotation scheme was suggested to remove the c-
ambiguity effect. Performance of our proposed algorithms was
analyzed, and numerous simulation results were conducted to
validate the theoretical results. From the simulation results, we
found that the pilot based algorithm increases the estimation
accuracy while the virtual carrier based algorithm reduces
the outlier probability. Therefore, the proposed algorithm is
not only an effective method for CFO tracking but also is
applicable for CFO acquisition.
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APPENDIX
DERIVATION OF (31) AND (32)

Define new vectors
y(m) = e 2= DEARIQ(—g)y (m)

= FHs(m) + e 2mm=DEKQ(_g)n(m), (42)
——
n(m)

y(m+1) = e 2T RARQ(— )y (m + 1)
= FHs(m + 1) + e 2™ KQ(—¢)n(m).

n(m)

(43)

n(m+1) fa(m-+1)

Obviously, n(m) has the same distribution as that of n(m).
Then g, (¢) is rewritten as

gp(e) = |FIQ(—e)y(m) — FQ(—e)y(m + 1)e 7?7k
= (v (m)=y"(m + DT )R()P, Q) (y(m)
—y(m+ 1)e 72k, (44)

2

where P, = Fpr is the projection matrix onto the subspace

spanned by F,. Bearing in mind that F// (n(m)—n(m+1)) =

0, gp(€) |c=¢ can be obtained as

Gp(6) = j2rAnDP,An + j2rAn” DP,An

—j2rAnf P, DAn — j2rAn” P,DAR
—j2r K" (m +1)P,An
—j2rKa" (m +1)P,An
+j2n K AnPyn(m + 1)
+j2n K AR Pyi(m + 1), (45)

where D £ diag{0,1,..., K — 1}, An 2 n(m) — n(m + 1)

and An £ ii(m) — n(m+ 1) are used for notation simplicity.

The expectation of §,(¢) is

E{gp(#)} = (0) + j4WU2tT(DPp) —(0) - j47702tr(PpD)

+(0) + j2r K 0°tr(Py) + (0)

—j2nKo*tr(P,) = 0. (46)
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After some manipulations, E{(¢,(¢))?} and E{j,(¢)} can be
obtained as

E{(gp(¢))*} = 1670 |P,(DAn — Kyn(m + 1))[|?, (47)

E{gp(¢)} = 87°||Py(DAN — K.n(m +1))]*. (48)
On the other hand, g, (¢) can be rewritten as
m+1
95(e) = Y IFQ(—e)y(q)l
i1
(49)

= > y(@Qe)P.Q(—2)y(q),

where P, = F,F¥ is the projection matrix onto the sub-
space spanned by F,. Bearing in mind that Ffn(m) = 0,
§v(€) |e=¢ can be obtained as

m—+1
gu(¢) = 527 > (" (q)DPyii(g) + 1 (q)DP,ii(g)

-1 (q)P,Dn(q) — n" (¢)P,Dii(q)).

(50)
It can be calculated that
m—+1
E{g,(¢)} = j2m0* > (0+tr(DP,) + 0 — tr(P,D))
qg=m
= 0. (51)
Furthermore, E{(§,(¢))?} and E{§,(¢)} can be obtained as
m—+1
E{(g.(¢))°} =87°0> > _ n"(9)DP,Dn(q),  (52)
m—+1 o
E{gu(6)} = 87> Y n"(9)DP,Dn(g). (53)
q=m
Lastly, we derive the expectation of §,(¢)g.(¢) as
E{3p(9)go(9)} = O(m(m)") + O(n(m + 1)), (54)

where the property PJ/P, = 0 is used, and O(n(m)*)
denotes the function at the order of n(m)*. This term can
be ignored at higher SNR compared to E{g,(¢)*} and
E{g,(¢)*}. Therefore, the p-algorithm and v-algorithm can
be considered as uncorrelated to each other.

Finally, substituting (46), (47), (48), (51), (52), (53) into
(29), (30) yields (31), (32).
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