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Blind Maximum Likelihood CFO Estimation for
OFDM Systems via Polynomial Rooting
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Abstract—The blind carrier frequency offset estimation problem
has been well studied by exploiting the virtual carriers existing
in practical orthogonal frequency division multiplexing transmis-
sions. A highly efficient approach by rooting a polynomial has been
proposed in the literature. However, this rooting method is subop-
timal when noise is present. In this letter, we propose an improved
polynomial rooting method that is shown to be the maximum like-
lihood estimator for both the noisy and the noise-free case.

Index Terms—Blind carrier frequency offset (CFO) estimation,
orthogonal frequency division multiplexing (OFDM), polynomial
rooting, virtual carriers.

I. INTRODUCTION

ORTHOGONAL frequency division multiplexing (OFDM)
[1] is a promising candidate for next-generation wire-

less communication due to its high data rate, high spectral ef-
ficiency, and robustness to frequency-selective channels. How-
ever, the presence of carrier frequency offset (CFO) caused by
the mismatch in oscillators or Doppler effect destroys the or-
thogonality among subcarriers and results in a severe degrada-
tion in bit-error rate (BER) performance [2]. Therefore, CFO
must be compensated before channel estimation and coherent
data detection.

A class of blind CFO estimation methods has been proposed
in [3]–[6], where the existence of null subcarriers in practical
OFDM systems is exploited. This method has two types of im-
plementation. One is the MUSIC-like searching approach [3],
[4] that is proved to be the maximum likelihood (ML) estimator
for CFO estimation [5], [6]. The other is the search-free ap-
proach that was proposed in [3] where the root-MUSIC-like
polynomial rooting is exploited. Since the root-MUSIC algo-
rithm computes the roots directly from the cost function, the re-
sulting solution is not the ML estimate in the presence of noise.

In this letter, we propose an improved polynomial rooting
method. Instead of rooting the cost function directly, the basic
idea behind is to root the first-order derivative of the cost func-
tion. This approach can yield an ML estimate of CFO, as will
be shown later. One can see from the simulation results that the
performance of the direct rooting method (DIRM) reaches that
of the derivative rooting method (DERM) asymptotically at high
signal-to-noise ratio (SNR), whereas, its performance loss is ob-
vious at low SNR.
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II. PROBLEM FORMULATION

A. System Model

For a consistent study of the problem, we use the OFDM
model provided in [3] and [4]. Here, we assume that the sub-
carriers with index 1 to from total subcarriers are used for
data transmissions. Let

(1)

denote the th block of data to be transmitted. The time-domain
signals can be obtained via points IDFT operation as

(2)

where

(3)

contains the first columns of the IDFT matrix whose th
entry is given by . Clearly, both
and its orthogonal complement matrix, defined as

(4)

are known a priori. At the transmitter, the symbols are sent at
a rate of , and a cyclic prefix (CP) of length is added in
front of each OFDM block. Let denote the
equivalent discrete channel impulse response and represent
the carrier frequency offset. Define new notations

(5)

diag (6)

(7)

diag (8)

As long as , the th received signal after removal of
CP can be formed as [5]

(9)

where is an vector that represents the white Gaussian
noise with zero mean and variance at each sampling time.
Clearly, whenever . Therefore, the
orthogonality between subcarriers are destroyed due to the ex-
istence of nonzero CFO.
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B. DIRM Algorithm

Define diag . In the absence of
noise, it can be observed that

(10)
for . Therefore

(11)

equals to zero at . Based on this observation, if we define
diag , the cost function

(12)

equals to zero at . That is, can be found
from the roots of (12). However, the highly efficient polynomial
rooting method cannot be directly applied on (12) because of
the coexistence of both and its complex conjugate . Since
the expected root lies on the unit circle, it is also a root
of the following polynomial:

(13)

Note that (13) is a function of and the rooting algorithm can
be applied. Since there totally exist roots, denoted as

, , the selection of the desired root should
obey the following steps.

• Obtain estimates as ,
.

• The desired estimate should be chosen as the one that
minimizes .

Remark 1: Although the roots of (12) and (13) are not totally
the same, the value belongs to both root categories in
the absence of the noise. So we can root instead of .

Remark 2: At the existence of noise, the polynomial (12) has
no roots because for all . Since we change to ,
roots can exist for equation . However, since
is no longer a root of , continuing to use the root from
will inevitably cause error in estimation. Moreover, the root ob-
tained from of cannot stay on the unit circle because such
a root may also satisfy , which is an impossible case.
Therefore, the effect of the noise will shift the roots of
away from the unit circle. If this shift is purely on the radius
direction, then the estimation results will not be changed. How-
ever, since the direction and the amount of the shift depend on
the value of the noise at that specific realization, this shift is ac-
tually a random variable. Denote as the minimum distance
from all to the unit circle. Table I shows the variation of the
typical value of under different SNR with parameters taken
as , , and . From Table I, we can see
that the roots of are dramatically shifted away from the
unit circle at low SNR. Therefore, the step from to
by representing as is actually a coarse approximation.
Even for SNR as high as 20 dB, the is still 0.03.

TABLE I
VALUE OF d FOR DIFFERENT SNR

Fig. 1. Typical CFO pattern with P = 6, N = 8, �f = 0:2=Ts, and
SNR = 10 dB.

III. IMPROVED POLYNOMIAL ROOTING—DERM

As pointed out in [5], is indeed a zero of (13), only in
the absence of noise. Therefore, the direct rooting of (13) will
inevitably cause performance degradation especially at lower
SNR. In fact, the ML estimate of is proved to be [5], [6]

(14)

Based on this observation, an adaptive approach that can achieve
the local minimum is proposed in [5]. However, there are sev-
eral shortcomings of using the adaptive approach. One is well
known to be the slow convergence rate and difficulty in choosing
an appropriate step size. The other is the requirement of a “good
enough” initial point to ensure the convergence at the global
minimum point. The latter is even critical since the region for
a good initial point is usually small. A typical CFO pattern, de-
fined as the plot for , is shown in Fig. 1
with parameters , , , and SNR

dB. For this example, if the initial estimate of stays out-
side the region , the adaptive algorithm will
give a false estimate.

Another way to achieve an ML detection of CFO is suggested
in [3] and [4], where the value of can be found by evalu-
ating on the unit circle at all possible values of

. Although this searching method yields the ML
estimate, it is computationally quite expensive. Moreover, the
complexity and the estimation accuracy strictly depend on the
grid that is used during the search.

Inspired by all these facts, we propose an improved polyno-
mial rooting approach that yields the ML estimate and is, mean-
while, quite computationally efficient. This approach, as can be
seen from literature, has never been proposed in [3] and [4] and
other blind CFO estimation works.
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First, we list the mathematical rule to find the global min-
imum point for a cost function.

• Obtain the solutions for all local minimum/maximum
as well as the global minimum/maximum by letting the
derivative of the cost function be zero.

• Put these solutions back to the original cost function and
select the minimum after comparisons.

Based on this rule, we define

(15)

where diag . Obviously, one of the
roots to (15) must be and others are local minimum/max-
imum of . This holds whether or not there is noise.

Replacing by , we know is one of the roots
for

(16)

Since has a unit norm, we can replace with ,
and can also be found from one of the roots of

(17)

where

(18)

(19)

(20)

diag (21)

with representing the imaginary part of the inside function.
Since totally roots exist for (again, call them as
, ), the desired root should be

selected according to two criteria.

• Choose roots , ,
that stay on the unit circle, where is an integer smaller
than or equal to .

• Obtain as . The desired estimate
is the one that minimizes among all .

Remark 3: The root always stays on the unit
circle, and other are the local minimum/maximum, global
maximum for . This is quite different from DIRM where
the roots of are shifted away from the unit circle by the
noise.

Remark 4: Since the item is involved in ,
the DERM algorithm can achieve a CFO estimation region as

. Note that this is the same region for CFO estimation in
DIRM [3], [4] and is also the maximum possible region for all
CFO estimation methods.

Remark 5: Since the highest order of both polynomials
and is , the complexities of both rooting

approaches are considered to be the same and can be approxi-
mated as . Since , the number of comparison
involved in DERM may be slightly smaller than that in DIRM.
However, since the complexity of the comparison is much
smaller compared to the rooting approach, the complexities of
both rooting algorithms can be considered as the same.

Remark 6: The identifiability problem is not considered here
since it is an independent issue. Actually, to guarantee the esti-
mate of , one could use the distinct spaced virtual carrier or
the carrier hopping proposed in [5]. Then a different cost func-
tion of , or equivalently , could be obtained where the poly-
nomial rooting can be applied, again, by replacing with .
One should only make sure that the first-order derivative of the
cost function is rooted instead of a direct rooting of the cost
function itself.

IV. NUMERICAL RESULTS

We provide several simulations in this section to validate the
proposed theoretical analysis. For all numerical examples, a
three-ray channel model is used with exponential power delay
profile given by

(22)

The phase of each channel ray is uniformly distributed over
. The data transmitted are modulated by quadrature

phase-shift keying (QPSK), and the normalized CFO is taken
as large as . All results are averaged over
Monte Carlo runs. The normalized estimation mean-square
error (NMSE) is defined as

NMSE (23)

where the subscript refers to the th simulation run.
In the first example, we compare the DERM with the

searching-based ML estimation. The parameters are taken
as , , and . The grid size for ML
searching is taken as 0.04 and 0.001, respectively, over the
entire region . Therefore, the resolution of these two
searching approaches may be expressed as
and , respectively. The NMSEs of CFO
estimation versus SNR results are shown in Fig. 2. It can be
seen that the DERM gives exactly the same performance as
that of ML searching with the grid size 0.001. This is quite
reasonable since the proposed DERM is also an ML estimator
for CFO. However for the grid size of 0.04, the searching-based
ML algorithm performs worse than the proposed DERM and
reaches a lower bound after SNR dB. This is a direct
result of its lower resolution. Therefore, the performance of the
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Fig. 2. DERM versus searching-based ML estimators.

Fig. 3. DERM versus DIRM for different values of K .

ML searching method is crucially related to the grid size. How-
ever, reducing the grid size will greatly increase the complexity
of the searching-based method.

The performance of the DIRM and the DERM is compared
under various scenarios. First, we take , and
examine the performance of both rooting methods by changing
the value of . The NMSEs of CFO estimation versus SNR
results are shown in Fig. 3. Next, we fix , and
compare the performance of both rooting methods by changing
the value of . The total signal power in each block is the same
for different . The NMSEs versus SNR results are displayed
in Fig. 4. Finally, we fix , and compare the
two algorithms by varying the value of . The NMSEs versus
SNR results are displayed in Fig. 5.

Clearly, from all numerical examples, we see that the DERM
outperforms the DIRM at all SNR regions. The performance of
the DIRM can only approaches that of DERM asymptotically at
high SNR. This is because the proposed DERM is exactly the
ML estimator, but the DIRM is only suboptimal.

Fig. 4. DERM versus DIRM for different values of P .

Fig. 5. DERM versus DIRM with different N but the same P=N .

V. CONCLUSION

In this letter, we proposed a blind search-free CFO estimator
for OFDM systems by exploiting the polynomial rooting
method. It is pointed out that the proposed search-free method
is also an ML estimator for CFO estimation, and it outperforms
the existing search-free technique that ignores the effect of
the noise. Simulation results clearly show the performance
improvement of the proposed method.
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