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Identifiability and Performance Analysis
Feifei Gao, Student Member, IEEE, Yonghong Zeng, Senior Member, IEEE, Arumugam Nallanathan, Senior

Member, IEEE, and Tung-Sang Ng, Fellow, IEEE

Abstract—A novel subspace (SS) based blind channel estima-
tion method for multi-input, multi-output (MIMO) orthogonal
frequency division multiplexing (OFDM) systems is proposed in
this work. With an appropriate re-modulation on the received
signal blocks, the SS method can be effectively applied to
the cyclic prefix (CP) based MIMO-OFDM system when the
number of the receive antennas is no less than the number
of transmit antennas. These features show great compatibility
with the coming fourth generation (4G) wireless communication
standards as well as most existing single-input single-output
(SISO) OFDM standards, thus allow the proposed algorithm to
be conveniently integrated into practical applications. Compared
with the traditional SS method, the proposed algorithm exhibits
many advantages such as robustness to channel order over-
estimation, capability of guaranteeing the channel identifiability
etc. Analytical expressions for the mean-square error (MSE) and
the approximated Cramér-Rao bound (ACRB) of the proposed
algorithm are derived in closed forms. Various numerical exam-
ples are conducted to corroborate the proposed studies.

Index Terms—Blind channel estimation, subspace method,
MIMO OFDM, cyclic prefix, identifiability, second order statis-
tics, asymptotical mean square error, Cramér-Rao bound.

I. INTRODUCTION

ORTHOGONAL frequency-division multiplexing
(OFDM) [1] combined with multiple antennas at

both transceiver sides has received considerable attention
over the last decade for its promising capability to combat
the multipath fading and boost the system capacity, [2], [3]. It
also appears as a promising candidate for the coming fourth
generation (4G) wireless communications [4].

Several training based channel estimation methods for
MIMO OFDM have been developed recently in [5]- [7]. It is
shown that the amount of the training increases dramatically
with the increment of the number of the transmit antennas [6],
[7], which in turn, decreases the system bandwidth efficiency
[8]. A substitute is to use blind approaches [9]- [12], which is
particularly suitable for packet based transmission, where the
channel state information (CSI) is stable for certain number of
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blocks. The blind method only requires the transmission for
a short training sequence to remove the estimation ambiguity
and thus increases the transmission bandwidth efficiency.

Perhaps the most popular blind algorithm is the so called
subspace (SS) based algorithm which was originally devel-
oped in [9] for single-input multiple-output (SIMO) frequency
selective channels. The SS method has simple structure and
achieves good performance, but it meets several difficulties
when applied to MIMO OFDM systems [10]- [12]. Firstly,
more receive antennas than transmit antennas are required,
which seldom holds since the symmetric links play a major
role in most wireless transmission standards, e.g. the 2 × 2
MIMO for IEEE 802.11n device [13], [14]. Besides, equal
number of the transceiver antennas is obviously used in the
current SISO OFDM transmission schemes, e.g. IEEE 802.11a
standard [15]. Secondly, even for the cases with more receive
antennas, the precise knowledge of the channel order must
be obtained, which is very difficult in practice. The order
over-estimation may produce an ill-conditioned channel matrix
which deteriorates the performance of the SS method or
sometimes fails the channel estimation.

To solve these problems, a zero-padding (ZP) based MIMO
OFDM was suggested in [16]. Instead of using cyclic prefix
(CP), consecutive zeros are padded at the end of each OFDM
block. This method will be referred to as ZPSOS throughout
the paper, where SOS is used for “second order statistics”.
Although ZPSOS exhibits many advantages, a major problem
that prevents its application is the incompatibility to most
existing OFDM standards or the future 4G MIMO-OFDM
standards [14]. Another way is to use the precoding based
algorithm [17], where, by properly designing the coding ma-
trix, the channel information can be directly extracted from the
singular-value decomposition (SVD) of the signal covariance
matrix. The assumption that the symbols sent from different
transmitters are independent and identically distributed (i.i.d.)
renders this method both the acceptable performance at low
signal-to-noise (SNR) region and the applicability to the
multiple-input single-output (MISO) transmission. However,
the method meets an error floor at high SNR, and the i.i.d.
assumption could not always hold if the transmitted signals are
colored, say generated from auto-regressive moving-average
(ARMA) processes.

In this paper, we develop a new SS algorithm that is
suitable for CP based MIMO OFDM systems by applying
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Fig. 1. Multiuser Multiantenna OFDM system.

an appropriate re-modulation on the received signal blocks.
The method will be, correspondingly, named as CPSOS. The
proposed method possesses all the advantages of ZPSOS but
is also compatible with the current (MIMO) OFDM standards.
For example, CPSOS is applicable to K × J1 CP-MIMO
OFDM systems with J ≥ K , is robust to channel order over-
estimation, and could always guarantee the channel identifi-
ability. Consequently, CPSOS is a promising blind channel
estimation candidate for MIMO OFDM systems. We also
derive both the asymptotical channel estimation mean square
error (MSE) and the asymptotically approximated Cramér-Rao
bound (ACRB). Interestingly, these two bounds agree with
each other.

The paper is organized as follows. Section II presents the
system model of MIMO OFDM transmission. Section III
describes the proposed algorithm and addresses the related
issues. Section IV derives the asymptotical performance anal-
ysis of the proposed algorithm. In Section V, we provide the
numerical results. Finally, conclusions are drawn in Section
VI and related proofs are given in the Appendices.

Notation: vectors and matrices are boldface small and
capital letters; the transpose, complex conjugate, Hermitian,
inverse, and pseudo-inverse of matrix A are denoted by AT ,
A∗, AH , A−1 and A†, respectively; tr(A) and ‖A‖F are
the trace and the Frobenius norm of A; diag{a} denotes
a diagonal matrix with the diagonal element extracted from
a; vec(A) performs the standard vectorization on the matrix
A; ⊗ stands for the Kronecker product; IK is the K × K
identity matrix; E{·} denotes the statistical expectation. The
MATLAB notations for rows and columns are used. For
example, A(:, m) represents the mth column of the matrix
A.

II. SYSTEM MODEL OF MIMO OFDM

A MIMO system with K transmitters and J receivers is
shown in Fig. 1. The information symbols are first divided
into K streams and each stream will be grouped into blocks of

1K transmit antennas, J receive antennas

length N , followed by the normalized inverse discrete Fourier
transformation (IDFT). Let

s(k)
i = [s(k)

i (0), s(k)
i (1), . . . , s(k)

i (N − 1)]T , (1)

k = 1, 2, . . . , K, i = 0, 1, . . . , M

be the ith information block at the kth transmitter and u(k)
i =

[u(k)
i (0), u(k)

i (1), . . . , u(k)
i (N − 1)]T be the normalized IDFT

of s(k)
i . After the CP insertion, the overall time domain block

from the kth transmitter is

t(k)
i =

[
u(k)

i,L

u(k)
i

]
= Tcpu

(k)
i (2)

where u(k)
i,L is the CP that contains the last L entries of u(k)

i ,
and Tcp is the corresponding CP insertion matrix. Let

h(j,k) = [h(j,k)(0), h(j,k)(1), . . . , h(j,k)(Lj,k)]T

be the channel impulse response (CIR) from transmitter k to
receiver j, where Lj,k is the corresponding channel order and
is uniformly upper bounded by L. For convenience, we will
pad L−Lj,k zeros at the end of h(j,k) such that they all have a
length of L. In other words, the channel order over estimation
is taken into account in the model here. Assuming perfect
synchronization, the received ith block (of length N + L) on
the jth receiver is then represented by

r(j)
i =

K∑
k=1

H(h(j,k))

[
u(k)

i−1,L

t(k)
i

]
+ n(j)

i (3)

where H(·) is the operation with respect to the argument
inside the bracket

H(h(j,k)) = (4)⎡
⎢⎣h(j,k)(L) . . . h(j,k)(0) . . . 0

...
. . .

. . .
. . .

...
0 . . . h(j,k)(L) . . . h(j,k)(0)

⎤
⎥⎦
⎫⎪⎬
⎪⎭ (N+L) blocks

︸ ︷︷ ︸
(N+2L) blocks

and

n(j)
i = [n(j)

i (0), n(j)
i (1), . . . , n(j)

i (N + L − 1)]T (5)
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is the ith noise block on the jth receiver whose elements
are zero mean complex Gaussian random variables with the
variance σ2

n and are both spatially and temporally independent
from each other. For future use, we divide r(j)

i into two parts

as r(j)
i =

[(
x(j)

i,L

)T

,
(
x(j)

i

)T
]T

where x(j)
i,L and x(j)

i have

the structures

x(j)
i,L = [x(j)

i,L(0), x(j)
i,L(1), . . . , x(j)

i,L(L − 1)]T (6)

x(j)
i = [x(j)

i (0), x(j)
i (1), . . . , x(j)

i (N − 1)]T (7)

respectively. We then group the transmitted and received
signals on the same time slot by defining

ui(n) = [u(1)
i (n), u(2)

i (n), . . . , u(K)
i (n)]T , (8a)

n = 0, ..., N − 1

xi,L(l) = [x(1)
i,L(l), x(2)

i,L(l), . . . , x(J)
i,L(l)]T , l = 0, ...L − 1(8b)

xi(n) = [x(1)
i (n), x(2)

i (n), . . . , x(J)
i (n)]T (8c)

h(k)(q) = [h(1,k)(q), h(2,k)(q), . . . , h(J,k)(q)]T , (8d)

q = 0, ..., L

H(q) = [h(1)(q),h(2)(q), . . . ,h(K)(q)] (8e)

ni(p) = [n(1)
i (p), n(2)

i (p), . . . , n(J)
i (p)]T , (8f)

p = 0, ..., N + L − 1
xi = [xT

i (0),xT
i (1), . . . ,xT

i (N − 1)]T (8g)

xi,L = [xT
i,L(0),xT

i,L(1), . . . ,xT
i,L(L − 1)]T (8h)

ui = [uT
i (0),uT

i (1), . . . ,uT
i (N − 1)]T (8i)

ui,L = [uT
i (N − L − 1),uT

i (N − L), . . . ,uT
i (N − 1)]T (8j)

ti = [uT
i,L,uT

i ]T (8k)

ni = [nT
i (0),nT

i (1), . . . ,nT
i (N + L − 1)] (8l)

H = [HT (0),HT (1), . . . ,HT (L)]T . (8m)

The signal blocks from all the J receivers, after proper entry
permutation, can be re-expressed as

ri =
[

xi,L

xi

]
= H(H)

[
ui−1,L

ti

]
+ ni

= H(H)T cp

[
ui−1,L

ui

]
+ ni. (9)

where the structure of H(H) can be referred to (4) and T cp

is the corresponding K(N +2L)×K(N +L) matrix with the
following form

T cp =

⎡
⎣ IKL 0KL×KN

0KL×KN IKL

0KN×KL IKN

⎤
⎦ . (10)

The SS method could be applied to (9) and the identifiability
could be guaranteed if

1) The J(N + L) × K(N + L) matrix H(H)T cp is tall.
2) Matrix H(H)T cp is full rank.
3) Span of H(H̄)T cp equals to span of H(H)T cp if and

only if H̄ = HB, where B is an unknown constant
matrix.

The first condition is satisfied only if J > K . Clearly, the
direct modeling on the received signals is not applicable to the
scenarios with J = K , which includes both the popular SISO

OFDM in IEEE 802.11a [15] and the 2 × 2 MIMO OFDM
in IEEE 802.11n [14]. To the best of authors’ knowledge,
the second and the third conditions have not been studied yet
in the existing literature. One obvious example that breaks
condition 2), 3) is when H(L) = . . . = H(1) = 0 but H(0) is
full column rank. In this case, the matrix H(H)T cp becomes
singular.

Remark: Although there do exist the identification study for
H(H) under J > K [18], the appearance of the precoding
matrix T cp breaks the convolutive property between channel
and information symbols. Consequently, the result in [18]
cannot be directly applied to the discussion on H(H)T cp.

III. PROPOSED ALGORITHM AND THE RELATED ISSUES

A. System Re-Modulation

We find that, by properly remodulating the received signal
block, the system model (9) could be converted to the one
similar to ZPSOS model proposed in [16]. This enlightens us
that the robust property of ZPSOS, e.g. applicability to equal
transceiver antenna scenario, robustness to channel order over
estimation and guarantee of the channel identifiability, could
possibly be inherited after the re-modulation.

Let us first divide the noise vector ni into two components
as ni1 = ni(1 : JL), and ni2 = ni(JL + 1 : J(N + L)).
Construct a new vector r̃i = [xT

i−1,x
T
i,L]T , which could be

expressed as

r̃i = H(H)
[

ti−1

ui,L

]
+
[

n(i−1)2

ni1

]
. (11)

It can be verified that

zi � ri − r̃i

= H(H)
([

ui−1,L

ti

]
−
[

ti−1

ui,L

])
+
(
ni −

[
n(i−1)2

ni1

])
︸ ︷︷ ︸

ηi

= H(H)

⎡
⎣ 0JL×1

di

0JL×1

⎤
⎦+ ηi

= Gdi + ηi (12)

where

di = ti(1 : KN) − ui−1

= [uT
i,L,uT

i (0), . . . ,uT
i (N − L − 1)]T − ui−1 (13)

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

H(0) . . . 0
...

. . .
...

H(L)
. . . H(0)

...
. . .

...
0 . . . H(L)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

N+L blocks

︸ ︷︷ ︸
N blocks

. (14)

The new noise vector ηi is colored and has the covariance
matrix

Rη = E{ηiη
H
i } = σ2

nRw (15)
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with

Rw =

⎡
⎣ 2IJL×JL 0 −IJL×JL

0 2IJ(N−L)×J(N−L) 0
−IJL×JL 0 2IJL×JL

⎤
⎦ . (16)

Although it appears that the noise power in ηi is increased by
a factor of 2, the signal power in di is enlarged twice as well.
Therefore, the effective SNR for SS algorithm is not changed.
Since G is exactly the same as the channel matrix in ZPSOS
[16], we get the following lemma:

Lemma 1 [16]: For J ≥ K , if there exists an l ∈ [0, L] such
that H(l) is of full column rank, then G is of full column rank.

The proof is obvious and is omitted for brevity. The full
column rank property of H(l) is almost surely guaranteed
because signal propagation from each of the K transmitters
scattered is most likely independent. In the following, we
assume that this condition holds. We need to mention that
even if H(l) is not full column rank, it is still possible that
G is of full column rank bearing in mind that Lemma 1 only
provides a sufficient condition.

B. Subspace Based Algorithm

The standard SS method requires the covariance of the noise
vector to be a scaled identity matrix. Therefore, we need to
whiten the vector zi by R−1/2

w and obtain

yi = R−1/2
w zi = R−1/2

w G︸ ︷︷ ︸
A

di + ñi (17)

where ñi is the J(N +L)×1 white noise vector whose entries
have variance σ2

n. In addition, since Rw is a non-singular
matrix, the new channel matrix A is full column rank if J ≥
K .

Due to the special structure of Rw, R−1/2
w can be calculated

as

R−1/2
w =

⎡
⎣ c1IJL×JL 0 c2IJL×JL

0 1√
2
IJ(N−L)×J(N−L) 0

c2IJL×JL 0 c1IJL×JL

⎤
⎦

(18)
where

c1 =

√
2/3 +

√
1/3

2
, c2 =

√
2/3 −√1/3

2

regardless of J , N , L. Then the covariance matrix of yi is
derived from

R = E{yiyH
i } = ARdAH + σ2

nIJ(N+L)×J(N+L) (19)

where Rd = E{didH
i } is the source covariance matrix,

which should be full rank if no two elements in di are fully
correlated. This requirement is normally satisfied since the
two consecutive blocks ui and ui−1 are in general not fully
correlated. The covariance matrix R can be eigen-decomposed
as

R = UsΛsUH
s + σ2

nUoUH
o (20)

where Λs is the KN × KN diagonal matrix and J(N +
L) × KN matrix Us spans the signal-subspace of R. In
turn, J(N + L) × (J(N + L) − KN) matrix Uo spans the
noise-subspace of R. The standard SS method says that the

matrix Uo is orthogonal to every column of A. This can be
equivalently expressed as

UH
o R−1/2

w CnH = 0, n = 1, ..., N (21)

where Cn is the J(N +L)×J(L+1) Toeplitz matrix with the
first column e(n−1)J+1 and ep is defined as the pth column of
IJ(N+L). The first row of Cn is [1,01×(J(L+1)−1)] for n = 1
and is 01×J(L+1) for n ≥ 2.

Define

K = [CH
1 R−1/2

w Uo,CH
2 R−1/2

w Uo, ...,CH
NR−1/2

w Uo]. (22)

The channel matrix H could be estimated from

KHH = 0. (23)

Therefore, the estimate of H, denoted as Ĥ, is a basis matrix
of the orthogonal complement space of K. We will show later
that the dimension of the orthogonal complement space of K
is exactly K . Therefore, Ĥ can be obtained from left singular
vectors of K and is away from the true H by an unknown
matrix B, namely

Ĥ = HB. (24)

Note that, matrix B must be full rank since Ĥ and H are
all full rank. This matrix ambiguity could easily be resolved
by transmitting some training symbols as suggested in [16].
A sketch on the process is provided here. Let matrix Ĝ be
constructed from Ĥ following the same way in (14). We know
that

G = Ĝ(IN ⊗ B−1). (25)

Therefore,
zi = Ĝ(IN ⊗ B−1)di + ηi. (26)

Since Ĝ is of full column rank, we can find its pseudo inverse,

denoted by Ĝ†
, and define z̆i = Ĝ†

zi, η̆i = Ĝ†
ηi. Then

z̆i = (IN ⊗ B−1)di + η̆i. (27)

By dividing the vector z̆i, di, and η̆i into blocks of length K ,
we get

z̆i = [z̆T
i (0), z̆T

i (1), . . . , z̆T
i (N − 1)]T (28)

di = [dT
i (0),dT

i (1), . . . ,dT
i (N − 1)]T (29)

η̆i = [η̆T
i (0), η̆T

i (1), . . . , η̆T
i (N − 1)]T . (30)

The relationship is now written as

z̆i(n) = B−1di(n) + η̆i(n), n = 1, . . . , N. (31)

Let

Z̆i = [z̆i(0), z̆i(1), . . . , z̆i(N − 1)] (32)

D̆ = [di(0),di(1), . . . ,di(N − 1)] (33)

Ξ̆i = [η̆i(0), η̆i(1), . . . , η̆i(N − 1)]. (34)

Then
Z̆i = B−1D̆ + Ξ̆i. (35)

Since the variance of the noise matrix Ξ̆i can be calculated,
B−1 can be obtained from standard estimation approach, e.g.
the ML detector or the minimum mean square error (MMSE)
detector, and the details are omitted here.
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Remarks:

• To make D̆i a known matrix, we only need to adjust ui

but keep ui−1 carrying the unknown information.
• Note that the ambiguity could be resolved whenever D̆

is a fat matrix. Therefore, we only need to know K
columns of D̆i, which requires K training symbols from
each transmit antennas. This amount of training is much
smaller than that required by a direct training based
channel estimation.

C. Channel Identifiability and Order Over-Estimation

Thanks to the proposed re-modulation, the channel matrix
A possesses the similar structure as that in [16], which greatly
facilitates the study of the identifiability issue.

Theorem 1: If H(0) is full column rank, then the matrix
H is uniquely determined by span(A) subject to a common
K × K non-singular matrix ambiguity on each H(l). �

Proof: For a K(L + 1) × K matrix H̄ =
[H̄T (0), H̄T (1), . . . , H̄T (L)]T , let Ā = R−1/2

w Ḡ, where G
is constructed from H̄ in a similar way how G is constructed
from H. If span(Ā) =span(A), then

Ā = AP (36)

where P is an invertible matrix of dimension KN × KN .
Since R−1/2

w is a full rank matrix, it is not difficult to derive
the following equality:

Ḡ = GP. (37)

Therefore, we know span(Ḡ) =span(G) and there is

Ḡ = GB (38)

where B is a KN × KN matrix with the form

B =

⎡
⎢⎢⎢⎣

B11 B12 . . . B1N

B21 B22 . . . B2N

...
...

. . .
...

BN1 BN2 . . . BNN

⎤
⎥⎥⎥⎦ . (39)

Following exactly the same procedure in [16], we could obtain
that Bij = 0 for i �= j and Bii = Bjj for ∀i, j ∈ {1, . . . , N}.
By defining B = Bii, we arrive at

H̄ = HB (40)

from which we can easily show that H̄(l) = H(l)B.
From Theorem 1, we know that the dimension of the

orthogonal complement space of K must be K . It is also
seen that an order over-estimation on each Lj,k does not
affect the channel identifiability of H because the estimate
H̄(l) = H(l)B = 0 for l = Lj,k + 1, . . . , L is also correct.
Therefore, the two restrictions on the SS method for general
MIMO system [12], that is, the requirement of exact channel
order and the polynomial matrix ambiguity, are simultaneously
lifted in the re-modulated CP-based MIMO OFDM system.

D. Equalization

The equalization for CP-based OFDM is quite standard, and
we will only bring a brief illustration on this process. Denote
the N -point DFT of h(j,k) as

h̃(j,k) = [h̃(j,k)(0), h̃(j,k)(1), . . . , h̃(j,k)(N − 1)]T . (41)

The normalized DFT of x(j)
i has the form

x̃(j)
i = [x̃(j)

i (0), x̃(j)
i (1), . . . , x̃(j)

i (N − 1)]T (42)

where

x̃
(j)
i (n) =

K∑
k=1

h̃(j,k)(n)s(k)
i (n) + ζ

(j)
i (n), n = 0, ..., N − 1

(43)
and ζ

(j)
i (n) is the noise after the normalized DFT. For CP-

based OFDM, ζ
(j)
i (n) is independent Gaussian random vari-

able with respect to pairs (i, j, n) and has the variance σ2
n.

This point should be emphasized because it forms one critical
difference from ZP-based OFDM, as will be seen later. Let

x̃i(n) = [x̃(1)
i (n), x̃(2)

i (n), . . . , x̃(J)
i (n)]T (44a)

si(n) = [s(1)
i (n), s(2)

i (n), . . . , s(K)
i (n)]T (44b)

ζi(n) = [ζ(1)
i (n), ζ(2)

i (n), . . . , ζ(J)
i (n)]T (44c)

H̃(n) =

⎡
⎢⎣ h̃(1,1)(n) . . . h̃(1,K)(n)

...
. . .

...
h̃(J,1)(n) . . . h̃(J,K)(n)

⎤
⎥⎦ . (44d)

Then (43) is expressed as

x̃i(n) = H̃(n)si(n) + ζi(n). (45)

Consequently, the symbol detection could be carried out
independently for different carriers. This is one major purpose
by using MIMO OFDM systems. That is, the detection could
be performed carrier by carrier, which reduces the decoding
complexity. Besides, the optimal maximum likelihood (ML)
detection could be performed using the efficient sphere de-
coding (SD) method [19] if K is not large.

E. Comparison with ZPSOS

1) Similarity: Similarities between these two methods
mainly reside in the choice of system parameters and the
model structures. For example, under the same transmission
rate, namely, the same block length and the CP length, the
channel matrix G is exactly the same for both methods.
The effective SNR, as discussed before, is the same. Similar
channel estimation accuracy for both CPSOS and ZPSOS is
also observed in the later simulation. Moreover, problems like
channel order over-estimation and the identifiability are lifted
for both CPSOS and ZPSOS.

2) Difference: Despite many similarities, there exist other
differences that show the advantages of CPSOS over ZPSOS.

a) Symbol Detection. In ZP based OFDM, one needs to
add the last L entries of x(k)

i to its first L entries before
taking the DFT operation. Then, similar relationship as
in (45) could be derived for ZPSOS. Note that, ζi(n) in
ZPSOS, is not independent for different n, although its
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entries ζ
(j)
i (n) are independent with respect to j. There-

fore, the ML detection requires the co-consideration of
x̃i(n) on all carriers. This will cause an exponential
increment in the detection complexity, which betrays
the original purpose on adopting the MIMO OFDM
systems. Although the low complexity Zero Forcing
(ZF) detection is suggested in [16], it is well known that
this linear detection will cause considerable performance
loss.
We here suggest a suboptimal way that the detection
still considers each subcarrier independently regardless
of whether the noise is dependent across the carriers or
not. It can be proved that the covariance matrix of ζi(n)
in ZPSOS is

E{ζi(n)ζH
i (n)} =

(
1 +

L

N

)
σ2

nIJ×J . (46)

Therefore, the noise power, compared to CPSOS is
increased by a factor of (1 + L/N), and the SNR loss
is around 10 log(1 + L/N) dB. In many standards, e.g.
IEEE 802.11a, IEEE 802.11n, N = 4L is adopted and
the SNR loss is around 1 dB.

b) Compatibility. Obviously, the CP-based OFDM has a
much wider application than the ZP-based OFDM. For
example, CP-based OFDM has been well adopted into
European digital audio/video broadcasting (DAB, DVB)
[20], [21], high performance local area network (HIPER-
LAN) [22], IEEE 802.11a WLAN standards and the
coming IEEE 802.11n WLAN standards. However, to
the best of authors’ knowledge, the ZP based transmis-
sion has very limited applications.

IV. ASYMPTOTICAL PERFORMANCE ANALYSIS

A. Channel Estimation Mean Square Error

We provide a first-order performance analysis on the pro-
posed estimator at high SNR similar to that adopted for DS-
CDMA in [23], [24].

Theorem 2: Assume that both noise and signals are zero-
mean i.i.d. with variances σ2

n and σ2
s , respectively, the covari-

ance of the channel estimation error is approximated by

E{vec(∆H)vecH(∆H)} = IK ⊗
(

σ2
n(KH)†K†

2Mσ2
s

)
. (47)

Specifically, the error covariance matrix for the kth transmit
antenna is

E{∆H(:, k)∆HH(:, k)} =
σ2

n(KH)†K†

2Mσ2
s

(48)

and the channel estimation MSE is

E{‖∆H(:, k)‖2} =
σ2

n‖K†‖2
F

2Mσ2
s

. (49)

�
See proof in Appendix I. Several insightful observations can

be drawn from (48), for example, the MSE is proportional to
the noise power but is inversely proportional to both the signal
power and the number of the received signal block.

B. Cramér-Rao-Bound (CRB)

The absolute CRB should be obtained from the most
original equation (9). However, since the performance of the
provided algorithm is only related (12), we would like to resort
to the CRB after the pre-processing of our re-modulation. By
using this CRB, we can also build up its relationship with the
MSE that is derived in the previous subsection.

The deterministic CRB [25] for CPSOS will be considered
here, where the observations are z = [zT

1 , ..., zT
M ]T , and the

parameters to be estimated are θ = [vec(H),d1, ...,dM , σ2
n].

To calculate CRB, we need the joint probability density
function (PDF) of z, denoted as p(z|θ). Since ηi is correlated
with both ηi−1 and ηi+1, the covariance matrix of z, denoted
as Rz , is an MJ(N +L)×MJ(N +L) Toeplitz matrix with
the main diagonal elements 2, the (JN +1)th, −(JN +1)th2

diagonal elements −1, and all other elements 0. We note that
the inverse of such a huge Toeplitz matrix is mathematically
prohibitive.

To simplify the derivation and gain more insight into the
proposed algorithm, we approximate Rz by

Rz = IM ⊗ Rw (50)

which equivalently says that we ignore the correlations among
different ηi’s. This approximation is also justified since the
performance of SS method is only related to the auto-
covariance of ηi and does not depend on whether ηi are
cross-correlated or not. The so derived CRB will be called
as approximated CRB (ACRB). Since we relax the noise
condition, ACRB should be greater than or equal to the CRB.

Define
Di = [D(1)

i ,D(2)
i , ...,D(K)

i ] (51)

where

D(k)
i =

N∑
n=1

Cndi((n − 1)K + k). (52)

The ACRB is obtained as

ACRBvec(H) = σ2
n

(
M∑
i=1

DH
i R−1/2

w P⊥
AR−1/2

w Di

)†

(53)

where P⊥
A is the projection matrix onto the orthogonal

complement space spanned by A⊥. If signals are i.i.d. with
variance σ2

s , the asymptotical ACRB for large M is obtained
as

ACRBvec(H) = IK ⊗
(

σ2
n(KH)†K†

2Mσ2
s

)
(54)

and the asymptotical ACRB for each column of H can be
separately, obtained as

ACRBvec(H(:,k)) =
σ2

n(KH)†K†

2Mσ2
s

. (55)

See proof in Appendix II.
Interestingly, the asymptotical ACRB is the same as the

asymptotical error covariance matrix (48). Nonetheless, the
channel estimation MSE is greater than or equal to the CRB,
which agrees with the intuition very well.
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Fig. 2. Channel estimation MSE versus SNR with 200 received blocks.

V. SIMULATION RESULTS

In this section, we examine the performance of CPSOS for
a 2 × 2 MIMO OFDM systems under various scenarios. The
OFDM block length is taken as N = 32, and the CP length
is taken as L = 8. The symbols are extracted from Quadratic
Phase Shift Keying (QPSK) constellations. The 6-ray channel
model with an exponential power delay profile

E{|h(j,k)(l)|2} = ρexp(−l/5), l = 0, ..., 5 (56)

is used where ρ is the coefficient to normalize the overall
channel gain to ‖h(j,k)‖2 = 1. The estimation MSE is defined
as

MSE =
1

JK
‖ĤB−1 − H‖2

F (57)

where, for simulation purpose, the ambiguity matrix B is
obtained according to [26]:

B = arg min
B

‖ĤB−1 − H‖2
F . (58)

The number of the Monte-Carlo runs used for average is taken
as 500.

We first fix the number of the OFDM blocks as 200
and compare three different blind channel estimators: CP-
SOS, ZPSOS and Gao&Nallanathan’s method [17]. For
Gao&Nallanathan’s method, the value of p is chosen as 0.5.
Note that 200 blocks is a common number for applying the
SS algorithm. The channel estimation MSE versus SNR for
these three algorithms are shown in Fig. 2. The analytical
performance derived from either asymptotical MSE or ACRB
is displayed as well. It is seen that ZPSOS and CPSOS
give comparable performance over all SNR considered. Both
methods are close to the analytical MSE after 20 dB. The gap
between the analytical result and the simulation result is due
to the asymptotical MSE being used here. One may expect a
little bit better performance from CPSOS because the noise is
colored with a known covariance matrix. On the other hand,
Gao&Nallanathan’s method gives better performance at lower
SNR region but keeps constant when SNR is greater than

2Notations follow those in MATLAB.
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Fig. 3. Channel estimation MSEs versus number of OFDM blocks for SNR=
20dB.

200 300 400 500 600 700 800 900 1000
10

−4

10
−3

10
−2

10
−1

Number of received blocks

A
ve

ra
ge

 M
S

E

 

 
CPSOS
ZPSOS
Gao&Nallanathan
Analytical

Fig. 4. Channel estimation MSEs versus number of OFDM blocks for SNR=
15dB.

10 dB. We should mention that, the proposed ACRB is not
applicable to Gao&Nallanathan’s method because the method
is based on a different signal model.

Fig. 3 and Fig. 4 show the performance of MSE versus
the number of OFDM blocks for the three algorithms at
SNR= 20 dB and SNR= 15 dB, respectively. As explained
previously, the performance of CPSOS is a little bit better
than ZPSOS and it may achieve the analytical asymptotical
MSE when the number of blocks becomes large. Although
Gao&Nallanathan’s method does not meet any error floor
with the increase of number of blocks, it is outperformed by
CPSOS over all block region at SNR= 20 dB. It is also known
from Fig. 4 that the improvement of Gao&Nallanathan’s
method with the increment of number of blocks is slower
than that of CPSOS. Therefore, we may expect that CPSOS
can asymptotically outperform Gao&Nallanathan’s method for
sufficiently large number of blocks at any SNR value.

Fig. 5 and Fig. 6 show the amplitude of the channel tap
detection of four random channel realizations at SNR= 12 dB
and SNR= 20 dB, respectively. It is noted that SNR= 12 dB



GAO et al.: ROBUST SUBSPACE BLIND CHANNEL ESTIMATION FOR CYCLIC PREFIXED MIMO OFDM SYSTEMS 385

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time delay

A
ve

ra
ge

 C
ha

nn
el

 A
m

pl
itu

de

 

 
Estimated
True

Fig. 5. Amplitude estimation of channel taps at SNR= 12dB.
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Fig. 6. Amplitude estimation of channel taps at SNR= 20dB.

yields relatively good channel amplitude estimation, whereas
SNR= 20 dB gives almost perfect estimation. Nevertheless,
by noting that the channel amplitude at tap 7 and tap 8 are very
near to zero in both figures, we may also apply the channel
order estimation method suggested in [16] to the proposed
CPSOS.

To demonstrate the robustness of CPSOS to the channel
order over-estimation, we assume the estimated channel order
as L̂ = 5, 6, 7 respectively. The value L̂ = 5 corresponds to the
correct channel order, and other values are those being over-
estimated. The channel estimation MSE versus SNR and block
number for these three different orders are displayed in Fig. 7
and Fig. 8, respectively. As expected, order over-estimation
only causes slight performance loss. This is reasonable that
assuming more channel taps, even if those zero taps, may
also contribute to the channel estimation error. Nevertheless,
the largest loss, appearing when the order is taken the same
as the CP length, is less than 1 dB.
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Fig. 7. Channel estimation MSEs versus SNR for different estimated channel
order.
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Fig. 8. Channel estimation MSEs versus number of OFDM blocks for
different estimated channel order.

VI. CONCLUSIONS

In this paper, we have developed a new SS based blind
channel estimation for MIMO OFDM systems. With an ap-
propriate re-modulation on the received signals, an effective
way has been found to apply the SS method for the CP
based MIMO-OFDM system when the number of receiver
antennas is no less than the number of transmitter antennas.
Most issues related to the SS method have been studied for
this newly proposed modulation, e.g. channel identifiability,
order over-estimation, MSE of the channel estimation as well
as the CRB of the channel estimation. Most importantly,
since the proposed method allows blind channel estimation
for the CP based MIMO OFDM, it is compatible with many
existing standards and the coming 4G wireless communication
standards.

APPENDIX A
DERIVATION OF THE CHANNEL ESTIMATION MSE

Firstly, we introduce the lemma provided in [27].
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Lemma 2 [27]: Denote the singular value decomposition
(SVD) of

Y = A[d1, ...,dM ] = AD (59)

as

Y = [Us Uo]
[

Σs 0
0 0

] [
VH

s

VH
o

]
. (60)

The first order approximation of the perturbation to Uo due
to the additive noise N = [ñ1, ..., ñM ] is

∆Uo = −UsΣ−1
s VH

s NHUo = −(YH)†NHUo. (61)

Ideally, the channel matrix H is obtained from

KHH = 0. (62)

However, we may only be able to obtain an orthonormal
matrix Ĥ from the left singular vectors of K. Therefore, H
is expressed as H = ĤB−1 for an unknown B. By applying
Lemma 2 again, the perturbation of the channel estimate Ĥ is

∆Ĥ = −(KH)†∆KHĤ (63)

where

∆K = [CH
1 R−1/2

w ∆Uo, . . . ,CH
NR−1/2

w ∆Uo]

= −[CH
1 R−1/2

w (YH)†NHUo, . . . ,

CH
NR−1/2

w (YH)†NHUo]. (64)

It then follows

∆H = ∆ĤB−1 = −(KH)†∆KHĤB−1

= −(KH)†∆KHH. (65)

Note that (65) could not be directly derived from Lemma 2
since Lemma 2 is only applicable for perturbation in the eigen-
space. From [24], we know that E{NQNH} = σ2

ntr(Q)I.
Therefore,

E{NY†R−1/2
w CmH(:, k)HH(:, p)CH

n R−1/2
w (YH)†NH}

=σ2
ntr(Y†R−1/2

w CmH(:, k)HH(:, p)CH
n R−1/2

w (YH)†)I

=σ2
ntr(AH

n,p(Y
H)†Y†Am,k)I

=σ2
ntr(AH

n,p(YYH)†Am,k)I

=σ2
ntr(AH

n,p(AH)†(DDH)−1A†Am,k)I

=σ2
ntr(eH

(n−1)K+p(DDH)−1e(m−1)K+k)I (66)

where Am,k is the ((m − 1)K + k)th column of A, and the
property (YYH)† = (YH)†Y† is used. The term DDH is
in fact the estimated signal covariance matrix 2σ2

sMI for the
asymptotically large M . Therefore, equation (66) can be well
approximated by

σ2
ntr(eH

(n−1)K+p(DDH)−1e(m−1)K+k)I

=
σ2

n

2Mσ2
s

δm−nδp−kI. (67)

Finally, the channel error covariance matrix can be obtained
as

E{vec(∆H)vecH(∆H)}
=(KH)†E{∆KHvec(H)vecH(H)∆K}K†

=IK ⊗
(

σ2
n

2Mσ2
s

(KH)†UH
o UoK†

)

=IK ⊗
(

σ2
n(KH)†K†

2Mσ2
s

)
. (68)

APPENDIX B
DERIVATION OF THE CRB

From the approximation of (50), it is suffice to first
consider zi, and the unknown parameters changes to θ =
[vec(H),di, σ

2
n]. The exact FIM for ϑ = [vec(H),di] can be

expressed from [25]

J =
1
σ2

n

ΓHR−1
w Γ, (69)

where

Γ =
[

∂(Adi)
∂vec(H)

,
∂(Adi)

∂di

]
. (70)

It can be obtained straight-forwardly that

∂(Adi)
∂vec(H)

= R−1/2
w Di, (71)

∂(Adi)
∂di

= A. (72)

From [25], we know that for blind channel estimation, the
FIM is singular such that its inverse does not exist. Then,
some constraints should be utilized to make J a non-singular
matrix. Instead of taking any specific constraint, we use the
minimal constrained CRB defined as in [25].

Lemma 3 [25]: Suppose the FIM for ϑ = [vec(H),di]T is

J =
1
σ2

n

[
J11 J12

J21 J22

]
, (73)

where J11 is of dimension KJ(L + 1) × KJ(L + 1) and
assume J is singular but J22 is nonsingular. Then, the minimal
constrained CRB for vec(H) is

CRBvec(H) = σ2
n[J11 − J12J−1

22 J21]†. (74)

This is a particular constrained CRB that yields the lowest
value for tr{CRB} among all lists of a minimal number of
independent constraints.

Applying the above lemma, we obtain

ACRBvec(H)

=σ2
n(DH

i R−1
w D − DHR−1/2

w A(AHA)−1AHR−1/2
w Di)†

=σ2
n(DH

i R−1/2
w (I − A(AHAAH)−1)R−1/2

w Di)†

=σ2
n(DH

i R−1/2
w P⊥

AR−1/2
w Di)†

=σ2
n(DH

i R−1/2
w UoUH

o R−1/2
w Di)†. (75)

From the approximation, the noise ηi can be considered
independent for each i. Then, the ACRB, by observing z, can
be found directly from

ACRBvec(H) = σ2
n(

M∑
i=1

DH
i R−1/2

w UoUH
o R−1/2

w Di)†. (76)
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Asymptotically, we have

M∑
i=1

(D(k)
i )HR−1/2

w UoUH
o R−1/2

w D(p)
i

=
N∑

n=1

N∑
m=1

CH
n R−1/2

w UoUH
o R−1/2

w Cm

×
M∑
i=1

d∗i ((n − 1)K + k)di((m − 1)K + p)

≈2Mσ2
s

N∑
n=1

CH
n R−1/2

w UoUH
o R−1/2

w Cnδk−p

=2Mσ2
sKKHδk−p. (77)

Equation (77) is obtained asymptotically for large M , bearing
in mind that elements of di are i.i.d. with variance 2σ2

s if
s
(k)
i (n) are i.i.d. with variance σ2

s . Therefore, the ACRB for
vec(H) is

ACRBvec(H) = σ2
n(IK ⊗ (2Mσ2

sKKH))†

=
σ2

n

2Mσ2
s

IK ⊗ (KKH)†

= IK ⊗
(

σ2
n(KH)†K†

2Mσ2
s

)
. (78)

REFERENCES

[1] J. Bingham, “Multicarrier modulation for data transmission: an idea
whose time has come,” IEEE Commun. Mag., vol. 28, pp. 5-14, May
1990.

[2] I. E. Telatar, “Capacity of multi-antenna Gaussian channels,” Bell Labs
Technical Memorandum, 1995.

[3] G. J. Foschini, and M. J. Gans, “On limits of wireless communications in
a fading environment when using multiple antennas,” Wireless Personal
Commun., vol. 6, pp. 311-335, 1998.

[4] H. Sampath, S. Talwar, J. Tellado, V. Erceg, and A. Paulraj, “A
fourth-generation MIMO-OFDM broadband wireless system: design,
performance, and field trial results,” IEEE Commun. Mag., pp. 143-149,
Sept. 2002.

[5] Y. Li, N. Seshadri, and S. Ariyavisitakul, “Channel estimation for
OFDM systems with transmitter diversity in mobile wireless channels”,
IEEE J. Select. Areas Commun., vol. 17, pp. 461C471, Mar. 1999.

[6] I. Barhumi, G. Leus, and M. Moonen, “Optimal training design for
MIMO OFDM systems in mobile wireless channels,” IEEE Trans.
Signal Processing, vol. 51, pp. 1615-1624, June, 2003.

[7] H. Minn, and N. Al-Dhahir, “Optimal training signals for MIMO OFDM
channel estimation,” IEEE Trans. Wireless Commun., vol. 5, pp. 1158-
1168, May 2006.

[8] L. Tong, and S. Perreau, “Multichannel blind identification: from
subspace to maximum likelihood methods,” in Proc. IEEE, vol. 86,
pp. 1951-1968, Oct. 1998.

[9] E. Moulines, P. Duhamel, J. F. Cardoso, and S. Mayrargue, “Subspace
methods for the blind identification of multichannel FIR filters,” IEEE
Trans. Signal Processing, vol. 43, pp. 516-525, Feb. 1995.

[10] E. de Carvalho, and D. Slock, “Blind and semi-blind FIR multichan-
nel estimation: (global) identifiability conditions,” IEEE Trans. Signal
Processing, vol. 52, pp. 1053-1064, Apr. 2004.

[11] A. Medles and D. Slock, “Linear precoding for spatial multiplexing
MIMO systems: blind channel estimation aspects,” in Proc. IEEE
ICC’02, New York, USA, vol. 1, pp. 401-405, 28 April-2 May 2002.

[12] K. Abed-Meraim, P. Loubaton, and E. Moulines, “A subspace algorithm
for certain blind identification problem,” IEEE Trans. Inform. Theory,
vol. 32, pp. 499-511, Apr. 1997.

[13] J. Lorincz, and D. Begusic, “Physical layer analysis of emerging IEEE
802.11n WLAN standard,” Proc. ICACT’06, Phoenix Park, Korea, vol. 1,
pp. 189-194, Feb. 2006.

[14] TGn Sync Proposal Technical Specification IEEE 802.11-05/1095r2.

[15] “Wireless LAN medium access control (MAC) and physical layer
(PHY) specifications: high speed physical layer in the 5 GHZ band,”
IEEE802.11a, 1999.

[16] Y. Zeng, and T. S. Ng, “A semi-blind channel estimation method for
multiuser multiantenna OFDM systems,” IEEE Trans. Signal Process-
ing, vol. 52, pp. 1419-1429, May, 2004.

[17] F. Gao, and A. Nallanathan, “Blind Channel Estimation for MIMO
OFDM Systems via Nonredundant Linear Precoding,” IEEE Trans.
Signal Processing, vol. 55, pp. 784-789, Jan. 2007.

[18] A. Gorokhov and P. Loubaton, “Subspace-based techniques for blind
separation of convolutive mixtures with temporally correlated sources,”
IEEE Trans. Circuits Syst. I, vol. 44, pp. 813-820, Sept. 1997.

[19] E. Viterbo and J. Boutros, “A universal lattice code decoder for fading
channels,” IEEE Trans Inform. Theory, vol. 45, pp. 1639-1642, July
1999.

[20] “Radio broadcasing system, digital audio broadcasting (DAB) to mobile,
portable, and fixed receiver,” Eur. Telecommun. Stand. Inst., Sophia-
Antipolis, Valbonne, France, ETS 300 401, 1995-1997.

[21] “Digital broadcasting system television, sound, and data services;
framing structure, channel coding, and modulation digital terrestrial
television,” Eur. Telecommun. Stand. Inst., Sophia-Antipolis, Valbonne,
France, ETS 300 744, 1996.

[22] “Broadband radio access networks (BRAN): high performance radio
local area networks (HIPERLAN), type 2; Systems overview,” Eur.
Telecommun. Stand. Inst., Sophia-Antipolis, Valbonne, France, ETR 101
683 114, 1999.

[23] H. Liu, and G. Xu, “A subspace method for signature waveform
estimation in synchronous CDMA systems,” IEEE Trans. Commun.,
vol. 44, pp. 1346-1354, Oct. 1996.

[24] S. Roy, and C. Li, “ A subspace blind channel estimation method for
OFDM systems without cyclic prefix,” IEEE Trans. Wireless Commun.,
vol. 1, pp. 572-579, Oct. 2002.

[25] E. de Carvalho, J. Cioffi, and D. Slock, “Cramér-rao bounds for
blind multichannel estimation,” in Proc. IEEE GLOBECOM’00, San
Francisco, USA, Nov. 2000, vol. 2, pp. 1036-1040.

[26] H. Gazzah, P. A. Regalia, J. P. Delmas, and K. Abed-Meraim, “A blind
multichannel identification algorithm robust to order overestimation,”
IEEE Trans. Signal Processing, vol. 50, pp. 1449-1458, June 2002.

[27] F. Li, H. Liu, and R. J. Vaccaro, “Performance analysis for DOA esti-
mation algorithms: futher unification, simplification, and observations,”
IEEE Trans. Aerosp., Electron. Syst., vol. 29, pp. 1170-1184, Oct. 1993.

Feifei Gao (S’05) received the B.Eng. degree in
information engineering from Xi’an Jiaotong Uni-
versity, Xi’an, Shaanxi China, in 2002, the M.Sc.
degree from the McMaster University, Hamilton,
ON, Canada in 2004, and is currently working
toward the Ph.D. degree at the Department of Elec-
trical Engineering, National University of Singapore.
His research interests are in communication theory,
broadband wireless communications, signal process-
ing for communications, MIMO systems, and array
signal processing.

Mr. Gao was a recipient of the president scholarship from the National
University of Singapore. He has co-authored more than 30 refereed IEEE
journal and conference papers and has served as a TPC member for IEEE
ICC (2008), IEEE VTC (2008), and IEEE GLOBECOM (2008).



388 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 26, NO. 2, FEBRUARY 2008

Yonghong Zeng (M’01−SM’05) Dr. Yonghong
ZENG received the B.S. degree from the Peking
University, Beijing, China, and the M.S. degree and
the Ph.D. degree from the National University of
Defense Technology, Changsha, China. He worked
as an associate professor in the National University
of Defense Technology before July 1999. From Aug.
1999 to Oct. 2004, he was a research fellow in the
Nanyang Technological University, Singapore and
the University of Hong Kong, successively. Since
Nov. 2004, he has been working in the Institute for

Infocomm Research, A*STAR, Singapore, as a scientist. His current research
interests include signal processing and wireless communication, especially on
cognitive radio and software defined radio, channel estimation, equalization,
detection, and synchronization.

He has co-authored six books, including ”Transforms and Fast Algorithms
for Signal Analysis and Representation”, Springer-Birkhäuser, Boston, USA,
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