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Abstract

Intelligent reflecting surfaces (IRSs) constitute a disruptive wireless communication technique capable

of creating a controllable propagation environment. In this paper, we propose to invoke an IRS at the cell

boundary of multiple cells to assist the downlink transmission to cell-edge users, whilst mitigating the inter-

cell interference, which is a crucial issue in multicell communication systems. We aim for maximizing

the weighted sum rate (WSR) of all users through jointly optimizing the active precoding matrices at

the base stations (BSs) and the phase shifts at the IRS subject to each BS’s power constraint and unit

modulus constraint. Both the BSs and the users are equipped with multiple antennas, which enhances the

spectral efficiency by exploiting the spatial multiplexing gain. Due to the non-convexity of the problem,

we first reformulate it into an equivalent one, which is solved by using the block coordinate descent (BCD)

algorithm, where the precoding matrices and phase shifts are alternately optimized. The optimal precoding

matrices can be obtained in closed form, when fixing the phase shifts. A pair of efficient algorithms are

proposed for solving the phase shift optimization problem, namely the Majorization-Minimization (MM)

Algorithm and the Complex Circle Manifold (CCM) Method. Both algorithms are guaranteed to converge

to at least locally optimal solutions. We also extend the proposed algorithms to the more general multiple-

IRS and network MIMO scenarios. Finally, our simulation results confirm the advantages of introducing

IRSs in enhancing the cell-edge user performance.
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I. INTRODUCTION

Next-generation wireless communication systems are expected to provide a 1000-fold increase

in the network capacity over the operational system for satisfying the ever-increasing demand

for higher data rates driven by emerging applications such as augmented reality (AR) and virtual

reality (VR). To achieve this goal, promising techniques relying on massive multiple-input multiple-

output (MIMO) solutions [1], millimeter wave (mmWave) communications [2] and ultra-dense

cloud radio access networks (UD-CRAN) have been advocated [3]–[5]. By deploying a massive

number of antennas at the base station (BS) for transmission over the millimeter-wave (mm-wave)

bands, significant spectral efficiency improvements can be achieved by exploiting the joint benefits

of a high spatial multiplexing gain and high bandwidth. However, escalating signal processing

complexity, increased hardware costs as well as high power consumption are incurred by the

associated high number of radio frequency (RF) chains operating in a high frequency band. These

issues erode their practical benefits. Although the access points (AP) can be densely deployed in

UD-CRAN systems for reducing the distance between the users and the APs, the limited fronthaul

capacity becomes their performance bottleneck. Furthermore, these techniques have to operate in

the face of unfavourable electromagnetic wave propagation, improving a high blockage probability.

As a remedy, intelligent reflecting surface (IRS) has been proposed as a revolutional technique of

facilitating both spectrum- and energy-efficient communications through reconfiguring the wireless

propagation environment [6], [7]. An IRS consists of a vast number of low-cost passive reflecting

elements, each of which can independently adjust the phase shift of the signals incident upon it, and

thus collaboratively creating favourable wireless transmission channels by innovatively harnessing

the reflected signal. By properly tuning the phase shifts by using an IRS controller, the reflected

signals can be added constructively at the desired receiver for enhancing the received signal power,

whilst destructively superimposing them at the non-intended receivers for reducing the co-channel

interference. Although passive reflecting surfaces have already been used in radar systems, the

phase shifts of passive elements cannot be changed once they were fabricated, and they are unable

to control the wireless propagation channels. Fortunately, due to the recent advance in micro-

electromechanical systems (MEMS) and metamaterials [8], the phase shifts can now be adjusted

in real time, which results in near-instantaneously reconfigurable IRS possible. Although an IRS

resembles the classic amplify-and-forward (AF) relay, the former has the advantage of lower power

consumption, since it only reflects the signals passively without requiring active RF chains, while
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Fig. 1. An IRS-assisted multicell MIMO multiuser communication system.

the latter necessitates active RF components for signal transmission. Hence, IRSs do not impose

additional thermal noise on the reflected signals. Performance comparisons between AF relay and

IRS were performed in [9], [10]. Given the limited functionality of IRSs, their phase shifters can

be fabricated in a compact form. Hence, each IRS accommodates a large number of phase shifters

and provides high beamforming gains. Furthermore, IRSs have the appealing advantages of light

weight and small sizes, which can be readily installed at buildings facades, on the room-ceilings,

on lamp posts, on road signs, etc. IRSs can also be integrated into the existing communication

systems at a modest modification. However, to reap the aforementioned benefits promised of IRSs,

the phase shifts have to be appropriately optimized along with the active beamforming weights

at the BS. The main difficulty in optimizing the phase shifts is the non-convex unit modulus

constraint imposed on the phase shifts. Although this kind of constraints have been studied both in

hybrid digital/analog precoding [11], [12] and in constant-envelope precoding in massive MIMO

systems [13], [14], these studies were only focused on the designs at the transmitter, which are

not applicable for the joint active beamforming design of the BSs and of the passive beamforming

design at the IRS.

Most recently, some initial efforts have been devoted to the transmitter design of IRS-assisted

wireless communication systems, including the single-user case of [15]–[18], the downlink mul-

tiuser case of [19]–[23], wireless power transfer design of [24], mobile edge computing of [25],

multicast scenario of [26] and the physical layer security design of [27]–[31]. However, the above-

mentioned papers only studied the single-cell scenario, whilst there is a paucity of investigations on

the multicell scenario in the existing literature. To mitigate the spectrum scarcity, different cells will
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reuse the same frequency resources, which causes severe inter-cell interference, especially for cell-

edge users [32]. Hence, in this paper, we propose to employ an IRS at the cell boundary for assisting

the cell-edge users of multicell systems as shown in Fig. 1, where the inter-cell interference can be

alleviated with the aid of IRSs. Specifically, by carefully adjusting the phase shifts of the IRS’s re-

flective elements, the inter-cell interference reflected by the IRS can be superimposed destructively

on the direct interference impinging from the adjacent BS for minimizing the interference power at

the receivers. This provides a higher degree of freedom for designing the beamforming/precoding

at each BS for the users in its own cell. As a result, the active beamforming/precoding applied at

each BS and the passive beamforming matrix of the IRS have to be jointly optimized. However, the

resultant optimization problem is challenging to solve, since the optimization variables are highly

coupled. Furthermore, all the existing contributions consider the single-antenna aided user scenario.

However, owing to the rapid developments in antenna technology [33], the user equipment is also

capable of accommodating multiple antennas for enhancing the received signal strength. Then,

multiple data streams can be transmitted simultaneously, which boost the throughput. Therefore, in

this paper, we consider the multiple-antenna aided user scenario. Given the complex mathematical

data rate expression, the techniques conceived in [15]–[23], [27]–[30] cannot be directly applied.

The multiple-antenna user case further complicates the optimization.

The main contributions of this paper can be summarized as follows:

1) To the best of our knowledge, this is the first attempt to explore the assistance of IRSs in en-

hancing the cell-edge performance in multicell MIMO communication systems. Specifically,

we jointly optimize the active transmit precoding (TPC) matrices of all BSs and the phase

shifts at the IRS for maximizing the weighted sum rate (WSR) of all users subject to each

BS’s power constraint and to the unit modulus constraint of the phase shifters. However, the

objective function (OF) is not jointly concave over both the TPC matrices and the phase

shifts, which are highly coupled. To tackle this challenging problem, we first reformulate

the original problem into an equivalent one by exploiting the equivalence between the data

rate and the weighted minimum mean-square error (WMMSE). Then, the block coordinate

descent (BCD) algorithm is proposed for alternately optimizing the TPC matrices at the BSs

and the passive beamforming at the IRS.

2) Given the fixed phase shifts, we derive the optimal TPC matrices in closed form by applying

the classic Lagrangian multiplier method. Since the phase shift optimization problem is
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highly coupled with the various channel matrices and TPC matrices, this is quite a challenge.

By using sophisticated matrix manipulations and transformations, we successfully transform

the phase shift optimization problem into a non-convex quadratically constrained quadratic

program (QCQP) subject to unit modulus constraint. A pair of efficient iterative algorithms

are proposed for solving this problem. The first one is the Majorization-Minimization (MM)

Algorithm [34], where a closed-form solution can be obtained in each iteration. The second

is based on the Complex Circle Manifold (CCM) Method [35], where we show that the unit

modulus constraints of all phase shifters constitute a complex circle manifold. Both the MM

algorithm and the CCM algorithm are guaranteed to obtain at least a locally optimal solution.

3) The proposed algorithms are also extended to the more general multiple-IRS and network

MIMO scenarios.

4) Our simulation results show that the cell-edge performance can be significantly enhanced

by employing IRSs compared to a conventional multicell system operating without IRSs.

Moreover, it is also shown that the performance gain achieved by the IRS is indeed mainly

due to the improving BS-IRS and IRS-user links. Furthermore, the location of IRSs should

be carefully chosen. It is shown that deploying IRSs at the cell boundary achieves the highest

gains for cell-edge users. Furthermore, simulation results also show that the IRSs should be

deployed in the vicinity of the user clusters, and distributed IRS deployment has superior

performance than the centralized deployment.

The remainder of this paper is organized as follows. In Section II, we present the system

model of IRS-assisted multicell MIMO communication and formulate the WSR maximization

problem. In Section III, we reformulate the original problem into a more tractable problem and the

TPC matrices and passive beamforming phases are alternately optimized. In Section V, extensive

simulation results are provided for quantifying the performance advantages of introducing IRSs

into multicell systems. Finally, our conclusions are offered in Section VI.

Notations: For a complex value a, Re{a} represents the real part of a. Boldface lower case

and upper case letters denote vectors and matrices, respectively. CM denotes the set of M × 1

complex vectors. E{·} denotes the expectation operation. ‖x‖2 denotes the 2-norm of vector x.

For two matrices A and B, A�B represents the Hadamard product of A and B. ‖A‖F , Tr (A)

and |A| denote the Frobenius norm, trace operation and determinant of A, respectively. ∇fx (x)

denotes the gradient of the function f with respect to (w.r.t.) the vector x. CN (0, I) represents a
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random vector following the distribution of zero mean and unit variance matrix. arg{·} means the

extraction of phase information. diag(·) denotes the diagonalization operation. (·)∗, (·)T and (·)H

denote the conjugate, transpose and Hermitian operators, respectively.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider an IRS-aided multicell downlink MIMO model constituted by L macro cells, each

of which has a single base station (BS) that serves K cell-edge users. Each BS and each user

is equipped with Nt ≥ 1 and Nr ≥ 1 transmit antennas (TAs) and receive antennas (RAs),

respectively. Each cell-edge user suffers both from high attenuation from its serving BS and severe

cochannel interference from its neighbouring BSs. To mitigate these, we propose to employ an

IRS which has M reflection elements at the cell edge as shown in Fig. 1, which boost the useful

signal power and mitigate the cochannel interference by carefully designing the phase shifts of the

reflective elements.

The signal transmitted by the lth BS is given by

xl =
K∑
k=1

Fl,ksl,k, (1)

where sl,k is the (d × 1)-element symbol vector transmitted to the kth user in its cell, satisfying

E
[
sl,ks

H
l,k

]
= Id and E

[
sl,k(si,j)

H
]

= 0, for {l, k} 6= {i, j}, and Fl,k ∈ CNt×d is the linear TPC

matrix used by the lth BS for transmitting its data vector sl,k to the kth user. The baseband channels

spanning from the nth BS to the kth user in the lth cell, as well as those from the IRS to the

kth user in the lth cell, and the ones from the nth BS to the IRS are denoted by Hn,l,k, Hr
l,k

and Gr
n, respectively. Let us denote the phase shift of the m-th reflection element of the IRS

by θm ∈ [0, 2π]. Thus the reflection operator simply multiplies the incident multi-path signals by

ejθm 1 at a single physical point and then forwards the combined signal to the users. Hence, the

users will directly receive the desired signals from the BSs, plus the signals reflected by the IRS.

However, we ignore the signal reflected more than once due to the severe path loss. Let us denote

the diagonal phase-shifting matrix of the IRS as Φ = diag
{
ejθ1 , · · · , ejθm , · · · , ejθM

}
. Then, the

1j is the imaginary unit.
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received signal vector at the kth user in the lth cell is given by

yl,k =
L∑
n=1

Hn,l,kxn︸ ︷︷ ︸
Siganls from BSs

+
L∑
n=1

Hr
l,kΦGr

nxn︸ ︷︷ ︸
Signals from the IRS

+nl,k, (2)

where nl,k is the noise vector that satisfies CN (0, σ2INr).

We assume that the channel state information (CSI) of all channels is perfectly known at the

BS, and the BS calculates the optimal phase shifts and sends them back to the IRS controller.

Indeed, the assumption of having perfect CSI knowledge at the BS is idealistic because it is

challenging to obtain the CSI in IRS-assisted communication systems. However, the algorithms

developed allow us to derive the relevant performance upper bounds for realistic scenarios in the

presence of realistic CSI errors. In addition, the proposed algorithms can provide insights into

the performance gain provided by IRSs, which can inspire further research in this area. Recently,

we have conceived a framework for the robust transmission design of an IRS-aided single-cell

scenario [36] by considering both the bounded CSI error model and the statistical CSI error model

associated with the cascaded channels. Its extension to the multicell scenario will be studied in

our future research.

Let us define H̄n,l,k
∆
= Hr

l,kΦGr
n + Hn,l,k, which can be regarded as the equivalent channel

spanning from the nth BS to the kth user in the lth cell. By substituting (1) into (2), yl,k can be

written as

yl,k = H̄l,l,kFl,ksl,k +
K∑

m=1,m6=k

H̄l,l,kFl,msl,m︸ ︷︷ ︸
Intra−cellinterference

+
L∑

n=1,n 6=l

K∑
m=1

H̄n,l,kFn,msn,m︸ ︷︷ ︸
Inter−cellinterference

+nl,k. (3)

Then, the achievable data rate (nat/s/Hz) of the kth user in the lth cell is given by [4]

Rl,k (F,θ) = log
∣∣I + H̄l,l,kFl,kF

H
l,kH̄

H
l,l,kJ

−1
l,k

∣∣ , (4)

where we have F = [Fl,k,∀l, k] ,θ = [θ1, · · · , θM ], and Jl,k is the interference-plus-noise covariance

matrix given by

Jl,k =
K∑

m=1,m 6=k

H̄l,l,kFl,mFH
l,mH̄H

l,l,k +
L∑

n=1,n6=l

K∑
m=1

H̄n,l,kFn,mFH
n,mH̄H

n,l,k + σ2I. (5)
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B. Problem Formulation

In this paper, we aim for maximizing the WSR of all the users by jointly optimizing the TPC

matrices F at the BSs and the phase shifts θ at the IRS, while guaranteeing the total power

constraint at each BS. Specifically, the WSR maximization problem is formulated as:

max
F,θ

L∑
l=1

K∑
k=1

ωl,kRl,k (F,θ) (6a)

s.t.
K∑
k=1

‖Fl,k‖2
F ≤ Pl,max, l = 1, · · · , L, (6b)

0 ≤ θm ≤ 2π,m = 1, · · · ,M, (6c)

where ωl,k denotes the weighting factor representing the priority of the corresponding user. Due to

the coupling effect between the TPC matrices F and the phase shifts θ, this optimization problem

is difficult to solve. Additionally, the phase shift constraints in (6c) further aggravate the challenge.

In the following, we provide a low-complexity algorithm for solving Problem (6).

III. LOW-COMPLEXITY ALGORITHM DEVELOPMENT

In this section, we first reformulate the original problem into a more tractable form. Then, the

block coordinate descent (BCD) method is proposed for solving the formulated problem.

A. Reformulation of the Original Problem

In the following, we exploit the relationship between the data rate and the mean-square error

(MSE) for the optimal decoding matrix. To reduce the decoding complexity, we consider a linear

decoding matrix so that the estimated signal vector of each user is given by

ŝl,k = UH
l,kyl,k,∀l, k, (7)

where Ul,k ∈ CNr×d is the decoding matrix for the kth user in the lth cell. Then, the MSE matrix

of each user is given by

El,k = Es,n

[
(̂sl,k − sl,k) (̂sl,k − sl,k)

H
]

(8)

=
(
UH
l,kH̄l,l,kFl,k − I

) (
UH
l,kH̄l,l,kFl,k − I

)H
+

K∑
m=1,m 6=k

UH
l,kH̄l,l,kFl,mFH

l,mH̄H
l,l,kUl,k

+
L∑

n=1,n 6=l

K∑
m=1

UH
l,kH̄n,l,kFn,mFH

n,mH̄H
n,l,kUl,k + σ2UH

l,kUl,k,∀l, k. (9)
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Upon introducing a set of auxiliary matrices W = {Wl,k � 0,∀l, k} and defining U =

{Ul,k,∀l, k}, Problem (6) can be reformulated as follows [4], [37]:

max
W,U,F,θ

L∑
l=1

K∑
k=1

ωl,khl,k (W,U,F,θ) (10a)

s.t.
K∑
k=1

‖Fl,k‖2
F ≤ Pl,max, l = 1, · · · , L, (10b)

0 ≤ θm ≤ 2π,m = 1, · · · ,M, (10c)

where hl,k (W,U,F,θ) is given by

hl,k (W,U,F,θ) = log |Wl,k| − Tr (Wl,kEl,k) + d. (11)

Note that compared to the original OF of Problem (6), the new OF in Problem (10) is in a

more tractable form, although we have introduced more optimization variables. For a given phase

shift θ, hl,k (W,U,F,θ) is a concave function for each set of the optimization matrices, when

the other two are fixed. In the following, we propose the BCD algorithm for solving Problem

(10). Specifically, we maximize the OF in (10) by alternately optimizing one set of optimization

variables, while keeping the other variables fixed. Note that the decoding matrix Ul,k and the

auxiliary matrix Wl,k are only related to hl,k (W,U,F,θ). In the following, we can derive the

optimal solution for Ul,k and Wl,k, when the other matrices are fixed. For given values of θ, W,

and F, we can set the first-order derivative of hl,k (W,U,F,θ) with respect to Ul,k to zero, which

gives the optimal Ul,k:

Ul,k =
(
Jl,k + H̄l,l,kFl,kF

H
l,kH̄

H
l,l,k

)−1
H̄l,l,kFl,k. (12)

Similarly, for given θ, U, and F, the optimal auxiliary matrix Wl,k can be obtained as follows:

Wl,k = E−1
l,k , (13)

where El,k is given in (9).

Let us now focus our attention on optimizing the TPC matrices F and phase shifts θ.

B. Optimizing the Precoding Matrices F

In this subsection, we focus our attention on optimizing the TPC matrices F, while fixing W,U

and θ. By substituting El,k into (11), the optimization over F can be decoupled among the different
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BSs. Specifically, by removing the constant terms, the TPC matrix optimization problem of the lth

BS is given by

min
Fl,k,∀k

L∑
n=1

K∑
m=1

ωn,mTr

(
Wn,m

K∑
k=1

UH
n,mH̄l,n,mFl,kF

H
l,kH̄

H
l,n,mUn,m

)
−

K∑
k=1

ωl,kTr
(
Wl,kU

H
l,kH̄l,l,kFl,k

)
−

K∑
k=1

ωl,kTr
(
Wl,kF

H
l,kH̄

H
l,l,kUl,k

) (14a)

s.t.
K∑
k=1

‖Fl,k‖2
F ≤ Pl,max. (14b)

It can be readily verified that the above problem is a convex optimization problem, which can

be transformed into a second order cone programming (SOCP) problem that can be efficiently

solved by using standard optimization packages, such as CVX [38]. However, the computational

complexity of solving an SOCP problem is high. To reduce the complexity, in the following

we provide a near-optimal closed-form expression of the TPC matrices by using the Lagrangian

multiplier method.

Following some further manipulations, the Lagrangian function of Problem (14) is written as

L (Fl,k,∀k, λl) =
K∑
k=1

Tr
(
FH
l,k (Al + λlI) Fl,k

)
−

K∑
k=1

ωl,kTr
(
Wl,kU

H
l,kH̄l,l,kFl,k

)
−

K∑
k=1

ωl,kTr
(
Wl,kF

H
l,kH̄

H
l,l,kUl,k

)
− λlPl,max,

(15)

where λl ≥ 0 is the Lagrangian multiplier associated with the power constraint of the lth BS, and

Al,k is given by

Al =
L∑
n=1

K∑
m=1

ωn,mH̄H
l,n,mUn,mWn,mUH

n,mH̄l,n,m. (16)

By setting the first-order derivative of L (Fl,k, ∀k, λl) w.r.t. Fl,k to zero, we can obtain the optimal

solution of Fl,k as follows:

Fl,k(λl) = ωl,k(Al + λlI)†H̄H
l,l,kUl,kWl,k, (17)

where (·)† denotes the matrix pseudoinverse. The value of λl should be chosen for ensuring that

the following complementary slackness condition for the power constraint is satisfied:

λl

(
K∑
k=1

‖Fl,k(λl)‖2
F − Pl,max

)
= 0. (18)

In the following, we elaborate on how to obtain the optimal λl, which is divided into two cases:

1) Al is full rank; 2) Al is low rank.
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1) Case I: Al is full rank: In this case, Al is a positive definite matrix, which can be decomposed

as Al = QlΛlQ
H
l by using the singular value decomposition (SVD), where QlQ

H
l = QH

l Ql = INt

and Λl is a diagonal matrix with positive diagonal elements. Then, we have

fl(λl)
∆
=

K∑
k=1

Tr
(
Fl,k(λl)

HFl,k(λl)
)

=
L∑
k=1

ω2
l,kTr

(
WH

l,kU
H
l,kH̄l,l,k(Al + λlI)−1(Al + λlI)−1H̄H

l,l,kUl,kWl,k

)
(19)

=
L∑
k=1

ω2
l,kTr

(
WH

l,kU
H
l,kH̄l,l,k

(
QlΛlQ

H
l + λlI

)−1(
QlΛlQ

H
l + λlI

)−1
H̄H
l,l,kUl,kWl,k

)
(20)

=
L∑
k=1

ω2
l,kTr

(
WH

l,kU
H
l,kH̄l,l,kQl(Λl + λlI)−2QH

l H̄H
l,l,kUl,kWl,k

)
(21)

= Tr
(
(Λl + λlI)−2Zl

)
(22)

=
Nt∑
i=1

[Zl]i,i(
[Λl]i,i + λl

)2 , (23)

where Zl =
L∑
k=1

ω2
l,kQ

H
l H̄H

l,l,kUl,kWl,kW
H
l,kU

H
l,kH̄l,l,kQl, [Zl]i,i and [Λl]i,i denote the ith diagonal

element of matrix Zl and matrix Λl, respectively. It can be readily verified that fl(λl) is a

monotonically decreasing function. Hence, if fl(0) ≤ Pl,max, then the optimal TPC matrix is

given by Fopt
l,k = Fl,k(0). Otherwise, the optimal λl can be obtained by using the bisection based

search method to find the solution of the following equation:

fl(λl) =
Nt∑
i=1

[Zl]i,i(
[Λl]i,i + λl

)2 = Pl,max. (24)

Since fl(∞) = 0, the solution of Equation (24) must exist, which is denoted as λopt
l . Then, the

optimal TPC matrix can be obtained as Fopt
l,k = Fl,k(λ

opt
l ). To apply the bisection based search

method, we have to find the upper bound of λl, which is given by

λl <

√√√√√ Nt∑
i=1

[Zl]i,i

Pl,max

∆
= λub

l . (25)

This can be proved as follows:

fl(λ
ub
l ) =

Nt∑
i=1

[Zl]i,i(
[Λl]i,i + λub

l

)2 <

Nt∑
i=1

[Zl]i,i(
λub
l

)2 = Pl,max. (26)
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2) Case II: Al is low rank: In this case, the above method cannot be directly applied since the

Ql obtained by SVD is not a unitary matrix, hence the step in (21) cannot be applied. To resolve

this issue, we first check whether λl = 0 is the optimal solution or not. If

fl(0) =
K∑
k=1

Tr
(
Fl,k(0)HFl,k(0)

)
≤ Pl,max, (27)

then the optimal TPC matrix is given by Fopt
l,k = Fl,k(0), otherwise, the optimal λl is a positive

value, which will be obtained as follows. Upon defining the rank of Al as rl = rank(Al) < Nt

and using the SVD, we have

Al = [Ql,1,Ql,2] Λl[Ql,1,Ql,2]H, (28)

where Ql,1 contains the first rl singular vectors corresponding to the rl positive eigenvalues, and

Ql,2 holds the last Nt − rl singular vectors corresponding to the Nt − rl zero-valued eigenvalues,

Λl = diag
{
Λl,1,0(Nt−rl)×(Nt−rl)

}
with Λl,1 denoting the diagonal matrix containing the first rl

positive eigenvalues. Upon defining Ql
∆
= [Ql,1,Ql,2] and applying similar steps to those in (19)

to (23), we have

fl(λl) =
K∑
k=1

Tr
(
Fl,k(λl)

HFl,k(λl)
)

(29)

=

rl∑
i=1

[Zl]i,i(
[Λl]i,i + λl

)2 +
Nt∑

i=rl+1

[Zl]i,i
λ2
l

, (30)

where Zl is the same as that in Case I. It is plausible that fl(λl) is a monotonically decreasing

function for λl > 0 and the optimal λl can be obtained by using the bisection based search method,

where the lower bound of λl is set to a small positive value.

The overall algorithm to solve Problem (14) is summarized in Algorithm 1.

Algorithm 1 Bisection Search Method to Solve Problem (14)
1: Initialize the accuracy ε, the bounds λlb

l and λub
l ;

2: If fl(0) ≤ Pl,max holds, the optimal TPC matrix is given by Fopt
l,k = Fl,k(0),∀k and terminate;

Otherwise, go to step 3;

3: Calculate λl =
(
λlb
l + λub

l

)
/2;

4: If fl(λl) ≤ Pl,max, set λub
l = λl. Otherwise, set λlb

l = λl;

5: If
∣∣λlb
l − λub

l

∣∣ ≤ ε, terminate. Otherwise, go to step 2.
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C. Optimizing the Phase Shifts θ

In this subsection, we focus our attention on optimizing the phase shifts θ, while fixing W,U

and F. By substituting El,k into (11) and ignoring the terms that are not related to the channels,

the phase shift optimization problem is formulated as:

min
θ

L∑
l=1

L∑
n=1

K∑
m=1

Tr
(
ωn,mWn,mUH

n,mH̄l,n,mFlH̄
H
l,n,mUn,m

)
−

L∑
l=1

K∑
k=1

Tr
(
ωl,kWl,kU

H
l,kH̄l,l,kFl,k

)
−

L∑
l=1

K∑
k=1

Tr
(
ωl,kWl,kF

H
l,kH̄

H
l,l,kUl,k

) (31a)

s.t. 0 ≤ θm ≤ 2π,m = 1, · · · ,M, (31b)

where Fl =
∑K

k=1 Fl,kF
H
l,k.

By using H̄l,n,m = Hr
n,mΦGr

l + Hl,n,m, we have

ωn,mWn,mUH
n,mH̄l,n,mFlH̄

H
l,n,mUn,m

= ωn,mWn,mUH
n,mHr

n,mΦGr
lFlG

rH
l ΦHHrH

n,mUn,m + ωn,mWn,mUH
n,mHl,n,mFlG

rH
l ΦHHrH

n,mUn,m

+ωn,mWn,mUH
n,mHr

n,mΦGr
lFlH

H
l,n,mUn,m + ωn,mWn,mUH

n,mHl,n,mFlH
H
l,n,mUn,m

(32)

and

ωl,kWl,kU
H
l,kH̄l,l,kFl,k = ωl,kWl,kU

H
l,kH

r
l,kΦGr

lFl,k + ωl,kWl,kU
H
l,kHl,l,kFl,k. (33)

By defining Bn,m
∆
= ωn,mHrH

n,mUn,mWn,mUH
n,mHr

n,m, Cl
∆
= Gr

lFlG
rH
l and

Dl,n,m
∆
= ωn,mGr

lF
H
l HH

l,n,mUn,mWn,mUH
n,mHr

n,m,

from (32) we have

Tr
(
ωn,mWn,mUH

n,mH̄l,n,mFlH̄
H
l,n,mUn,m

)
= Tr

(
ΦHBn,mΦCl

)
+ Tr

(
ΦHDH

l,n,m

)
+ Tr (ΦDl,n,m) + const1,

(34)

where const1 is a constant term that does not depend on Φ.

Similarly, by defining Tl,k
∆
= ωl,kG

r
lFl,kWl,kU

H
l,kH

r
l,k, from (33) we have

Tr
(
ωl,kWl,kU

H
l,kH̄l,l,kFl,k

)
= Tr (ΦTl,k) + const2, (35)

where const2 is a constant term that is independent of Φ.

By substituting (34) and (35) into the OF of Problem (31) and ignoring the constant terms, we

have

min
θ

Tr
(
ΦHBΦC

)
+ Tr

(
ΦHVH

)
+ Tr (ΦV) (36a)

s.t. 0 ≤ θm ≤ 2π,m = 1, · · · ,M, (36b)
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where B, C and V are respectively given by

B =
L∑
n=1

K∑
m=1

Bn,m,C =
L∑
l=1

Cl,V =
L∑
l=1

L∑
n=1

K∑
m=1

Dl,n,m −
L∑
l=1

K∑
k=1

Tl,k. (37)

Upon denoting the collection of diagonal elements of Φ by φ ∆
=
[
ejθ1 , · · · , ejθm , · · · , ejθM

]T
and using the matrix identity of [39, Eq. (1.10.6)], we arrive at

Tr
(
ΦHBΦC

)
= φH

(
B�CT

)
φ. (38)

Let v be the collection of diagonal elements of matrix V, given by v =
[
[V]1,1, · · · , [V]M,M

]T

.

Then, we have

Tr (ΦV) = φTv,Tr
(
ΦHVH

)
= vHφ∗. (39)

Hence, Problem (36) can be rewritten as

min
θ

φHΞφ+ φTv + vHφ∗ (40a)

s.t. 0 ≤ θm ≤ 2π,m = 1, · · · ,M, (40b)

where Ξ = B�CT. It can be readily verified that B and CT are semidefinite matrices. Then,

according to Property (9) on Page 104 of [39], the Hadamard product B�CT (or equivalently

Ξ) is also a semidefinite matrix.

Recall that φm = ejθm ,∀m, and that φ = [φ1, · · · , φM ]T. Then, Problem (40) can be equivalently

rewritten as

min
φ

f(φ)
∆
= φHΞφ+ 2Re

{
φHv∗

}
(41a)

s.t. |φm| = 1,m = 1, · · · ,M. (41b)

Due to the unit modulus constraint in (41b), Problem (41) is a non-convex optimization problem.

In the following, we provide a pair of efficient algorithms for solving this problem.

1) Majorization-Minimization (MM) Algorithm: We adopt the MM algorithm [34] to solve

Problem (41), which was originally introduced in [40]. Then, this method has been widely in

resource allocation for wireless communication networks [41]–[43]. The main idea is to solve a

difficult problem by constructing a series of more tractable approximate subproblems. Specifically,

let us denote the solution of the subproblem at the tth iteration by φt, and the OF value of Problem

(41) at the tth iteration by f(φt). Then, at the (t + 1)st iteration, we have to introduce an upper



15

bound 2 of the OF function based on the previous solution, which is denoted as g(φ|φt). We solve

the approximate subproblem with the aid of the new OF g(φ|φt) at the (t + 1)st iteration. If the

OF g(φ|φt) satisfies the following three conditions:

1) g(φt|φt) = f(φt),

2) ∇φg(φ|φt)|φ=φt = ∇φf(φt)|φ=φt ,

3) g(φ|φt) ≥ f(φ),

then the sequence of the solutions obtained in each iteration will result in a monotonically decreas-

ing OF {f(φt), t = 1, 2, · · · } and finally converge. The converged solution satisfies the Karush-

Kuhn-Tucker (KKT) optimality conditions of Problem (41) [44]. The first two conditions represent

that the OF g(φ|φt) introduced and its first-order gradient should be the same as the original OF

and its first-order gradient at point φt. The third condition means that the OF g(φ|φt) constructed

should represent the upper bound of the original OF. To make this algorithm work, the most

important task is to find the OF g(φ|φt), which should satisfy these three conditions and should

be much more tractable than f(φ).

To this end, we first introduce the following lemma proposed in [45].

Lemma 1: For any given solution φt at the tth iteration and for any feasible φ, we have

φHΞφ ≤ φHXφ− 2Re
{
φH (X−Ξ)φt

}
+
(
φt
)H

(X−Ξ)φt
∆
= y(φ|φt), (42)

where X = λmaxIM and λmax is the maximum eigenvalue of Ξ. �

Upon constructing the surrogate OF g(φ|φt) as follows:

g(φ|φt) = y(φ|φt) + 2Re
{
φHv∗

}
, (43)

where y(φ|φt) is defined in (42), it can be readily verified that g(φ|φt) given in (43) satisfies

the three conditions. Additionally, the OF g(φ|φt) is more tractable than the original OF f(φ).

Specifically, the subproblem to be solved at the tth iteration is given by

min
φ

g(φ|φt) (44a)

s.t. |φm| = 1,m = 1, · · · ,M. (44b)

2Please note that we consider the minimization problem here.
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Since φHφ = M , we have φHXφ = Mλmax, which is a constant. By removing the other constants,

Problem (44) can be rewritten as follows:

max
φ

2Re
{
φHq

t
}

(45a)

s.t. |φm| = 1,m = 1, · · · ,M, (45b)

where qt = (λmaxIM −Ξ)φt − v∗. The optimal solution of Problem (45) is given by

φt+1 = ej arg(qt). (46)

Based on the above discussions, we provide the details of the MM algorithm in Algorithm 2.

When the algorithm converges, we can obtain the optimal phase shift as θ? = arg(qt).

Algorithm 2 MM Algorithm
1: Initial the iteration number t = 1, the accuracy ε. Input the feasible solution φ0. Calculate the

value of the objective function in Problem (41) as f(φ1);

2: Calculate qt = (λmaxIM −Ξ)φt − v∗;

3: Update φt+1 in (46);

4: Calculate the objective function f(φt+1), if |f(φt+1)− f(φt)|/f(φt+1) ≤ ε holds, terminate;

Otherwise, set t← t+ 1 and go to step 2.

2) Complex Circle Manifold (CCM) Method: In this subsection, we adopt the CCM method

proposed in [35] for directly solving Problem (41). We first transform Problem (41) into the

following equivalent problem

min
φ

f̄(φ)
∆
= φH(Ξ + αIM)φ+ 2Re

{
φHv∗

}
(47a)

s.t. |φm| = 1,m = 1, · · · ,M, (47b)

where α > 0 is a positive constant parameter, the value of which will be given in Theorem 1.

Problem (41) is equivalent to Problem (47), since we have αφHφ = αM . The parameter α can

control the convergence of the CCM method, which will be discussed in Theorem 1.

The search space in Problem (47) can be regarded as the product of M complex circles3, which

is a sub-manifold of CM given by

SM ∆
=
{
x ∈ CM : |xl| = 1, l = 1, 2, · · · ,M

}
, (48)

3Each complex circle is given by S ∆
=

{
x ∈ C : x∗x = Re{x}2 + Im{x}2 = 1

}
, which is a sub-manifold of C [35].
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Fig. 2. Geometric interpretation of the CCM algorithm.

where xl is the lth element of vector x.

The main idea of the CCM algorithm is to derive a gradient descent algorithm based on the

manifold space defined in (48), which is similar to the concept of the gradient descent technique

developed for the conventional optimization over the Euclidean space. The main steps of the CCM

algorithm is composed of four main steps in each iteration t:

1) Gradient in Euclidean Space: We first have to find the search direction and the most common

search direction for a minimization problem is to move in the direction opposite to the gradient

of f̄(φt), which is given by

ηt = −∇φf̄(φt) = −2(Ξ + αIM)φt − 2v∗. (49)

2) Riemannian gradients: Since we optimize over the manifold space, we have to find the

Riemannian gradient [12]. The Riemannian gradient of f̄(φt) at the current point φt ∈ SM is in

the tangent space TφtSM 4. Specifically, the Riemannian gradient of f̄(φt) at φt can be obtained

by projecting the search direction ηt in the Euclidean space onto TφtSM by using the projection

operator, which can be calculated as follows [12]:

PTφtSM (ηt) = ηt − Re{ηt∗ � φt} � φt. (50)

3) Update over the tangent space: Update the current point φt on the tangent space TφtSM :

φ̄t = φt + βPTφtSM (ηt), (51)

4The tangent space of S at point zm is defined as TzmS = {x ∈ C : Re{x∗zm} = 0}. Then, the tangent space TzSM is the

product of these M tangent space TzmS given by TzSM = Tz1S × Tz2S · · · × TzMS.
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where β is a constant step size that will be discussed in Theorem 1.

4) Retraction operator: In general, the φ̄t obtained is not in SM , i.e. we have φ̄t /∈ SM . Hence,

it has to be mapped into the manifold SM by using the retraction operator5 as follows

φt+1 = φ̄t � 1∣∣φ̄t∣∣ . (52)

Note that both φt+1 and φt belongs to SM , which satisfies the unit constant modulus constraints.

The details of the CCM algorithm are presented in Algorithm 3. The CCM algorithm is also

illustrated geometrically in Fig. 2.

Algorithm 3 CCM Algorithm
1: Initial the iteration number t = 1, the accuracy ε. Input the feasible solution φ1. Calculate the

value of the objective function in Problem (47) as f̄(φ1);

2: Calculate the Euclidean gradient ηt in (49);

3: Calculate the Riemannian gradient PTφtSM (ηt) in (50);

4: Update over the tangent space according to (51);

5: Update φt+1 by retracting φ̄t to the complex circle manifold SM according to (52);

6: Calculate the objective function f̄(φt+1), if
∣∣f̄(φt+1)− f̄(φt)

∣∣/f̄(φt+1) ≤ ε holds, terminate;

Otherwise, set t← t+ 1 and go to step 2.

The following theorem provides guidance for the choices of parameters α and β to guarantee

the convergence of the CCM algorithm.

Theorem 1 [35]: Let λΞ and λΞ+αIM be the largest eigenvalue of matrices Ξ and Ξ + αIM ,

respectively. If α and β are chosen to satisfy the following conditions,

α ≥ M

8
λΞ + ‖v‖2, 0 < β <

1

λΞ+αI

, (53)

then the CCM algorithm generates a non-increasing sequence {f̄(φt), t = 1, 2, · · · }, and finally

converges to a finite value. �

3) Complexity Analysis: In this part, we analyze the complexity of both proposed methods in

solving Problem (41).

Let us now analyze the complexity of the MM algorithm. At the beginning of the MM algorithm,

we have to calculate λmax, i.e. the maximum eigenvalue of Ξ. The associated complexity is given

5The retraction operator normalizes each element of φ̄t to be unit.
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TABLE I

COMPUTATIONAL COMPLEXITY COMPARISON FOR TWO DIFFERENT ALGORITHMS TO FIND THE PHASE SHIFTS

Algorithms MM Alg. CCM Alg.

Complexity O(M3 + TMMM
2) O(M3 + TCCMM

2)

by O(M3). For each iteration of the MM algorithm, the main complexity lies in the calculation of

qt in Step 2, the complexity of which is O(M2). Let us denote the number of iterations required

for the MM algorithm to converge by TMM . Then, the total complexity of the MM algorithm is

given by CMM = O(M3 + TMMM
2).

We then analyze the complexity of the CCM algorithm. At the start of the CCM algorithm, we

have to find the range of α and β to guarantee the convergence of the CCM algorithm, which

relies on calculating the largest eigenvalue of the matrices Ξ (λΞ), as shown in Theorem 1. Its

complexity order is given by O(M3). For each iteration of the CCM algorithm, the complexity

mainly depends on the calculation of the Euclidean gradient ηt, which is given by O(M2). Let us

denote the total number of iterations required by the CCM algorithm to converge by TCCM . Then,

the total complexity of the CCM algorithm is given by CCCM = O(M3 + TCCMM
2).

The complexity of these algorithms is summarized in Table I. It can be observed that the

complexity mainly depends on the number of iterations required for convergence. The simulation

results of Section V will compare their convergence speed.

D. Overall Algorithm to Solve Problem (6)

Based on the above analysis, we provide the detailed description of the BCD algorithm conceived

for solving Problem (6) in Algorithm 4. In Step 5, we have to apply two algorithms for solving

Problem (41) to find the phase shifts θ(n+1). Both the MM algorithm and the CCM algorithm

can guarantee to yield a monotonically decreasing OF value of Problem (41) compared to the

previous phase solution, i.e., f(φ(n+1)) < f(φ(n)). It can be readily verified that the OF value of

Problem (10) monotonically increases in each step of Algorithm 4. Additionally, due to the power

constraints, the OF value has an upper bound. Hence, Algorithm 4 is guaranteed to converge.

Let us now analyze the complexity of the BCD algorithm. In Step 2, the complexity of computing

the decoding matrices U(n) is O(LKN3
r ). In Step 3, the complexity of calculating the auxiliary

matrices W(n) is given by O(LKd3). In Step 4, we have to calculate the TPC matrices F(n+1). The
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Algorithm 4 Block Coordinate Descent Algorithm
1: Initialize iterative number n = 1, maximum number of iterations nmax, feasible F(1), θ(1),

error tolerance ε, calculate the OF value of Problem (6), denoted as Obj(F(1),θ(1));

2: Given F(n) and θ(n), calculate the optimal decoding matrices U(n) in (12);

3: Given F(n), U(n) and θ(n), calculate the optimal auxiliary matrices W(n);

4: Given U(n), W(n) and θ(n), calculate the optimal precoding matrices F(n+1) by solving Problem

(14) with the Lagrangian multiplier method in Subsection III-B;

5: Given U(n), W(n) and F(n+1), calculate the optimal θ(n+1) by solving Problem (41) with the

algorithms developed in Subsection III-C;

6: If n ≥ nmax or
∣∣Obj(F(n+1),θ(n+1))−Obj(F(n),θ(n))

∣∣/Obj(F(n+1),θ(n+1)) < ε, terminate.

Otherwise, set n← n+ 1 and go to step 2.

detailed analysis is provided as follows. For any pair of complex matrices X ∈ Cm×n,Y ∈ Cn×p,

the complexity of computing XY is O (mnp) [46]. We assume that Nt > Nr > d. Hence, the

complexity of computing the matrices {Al,k,∀l, k} in (16) is given by O(LKN2
t d). The complexity

of calculating Fl,k in (17) is given by O(LKN3
t ). The SVD decomposition of {Al,∀l} is given

by O(LN3
t ). The complexity of calculating {Zl} is given by O(L2N2

t Nr). The complexity of

evaluating the Lagrangian multipliers {λl, ∀l} can be ignored. Hence, the overall complexity of

calculating the TPC matrices F(n+1) is given by O(max{LKN3
t , L

2N2
t Nr}). The complexity of

calculating the optimal θ(n+1) is given in Table I, while the complexity of each algorithm is denoted

by Ci, i = MM,CCM. Then, the overall complexity of the BCD algorithm is given by

CBCD,i = O(max{LKN3
t , L

2N2
t Nr, Ci}), i = MM,CCM, (54)

where CBCD,i denotes the overall complexity of the BCD algorithm, when the phase shifts are

obtained by using method i, i = MM,CCM.

IV. EXTENSION TO OTHER SCENARIOS

A. Network MIMO

In network MIMO, multiple BSs in different cells cooperate with each other and send the same

data to each user. In this scenario, the antennas of all BSs form a giant antenna array and jointly

serve each user, where the inter-cell interference can be effectively mitigated [3]–[5]. It should be
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emphasized that compared to the model in Section II, the data should be shared among multiple

BSs, which incurs increased information exchange overhead.

Let Fi,l,k be the precoding matrix of the ith BS for the kth user in the lth cell, and Fl,k =[
FH
i,l,k,∀i

]H ∈ CLNt×d be the overall precoding matrix from all BSs to the user. Define Gr =

[Gr
i ,∀i] ∈ CM×LNt be the overall channel from all the BSs to the IRS, and Hl,k = [Hi,l,k, ∀i] ∈

CNr×LNt the direct channel from all the BSs to the kth user in the lth cell. Let H̄l,k
∆
= Hr,l,kΦGr+

Hl,k be the equivalent channel spanning from all the BSs to the kth user in the lth cell.

Then, the signal received at the kth user in the lth cell is given by

yl,k = H̄l,kFl,ksl,k +
K∑

m=1,m 6=k

H̄l,kFl,msl,m +
L∑

i=1,i 6=l

K∑
m=1

H̄l,kFi,msi,m + nl,k. (55)

The data rate of the kth user in the lth cell is given by

Rl,k (F,θ) = log
∣∣I + H̄l,kFl,kF

H
l,kH̄

H
l,kJ

−1
l,k

∣∣ , (56)

where Jl,k is given by

Jl,k =
K∑

m=1,m 6=k

H̄l,kFl,mFH
l,mH̄H

l,k +
L∑

i=1,i 6=l

K∑
m=1

H̄l,kFi,mFH
i,mH̄H

l,k + σ2I. (57)

The weighted sum rate problem is the same as in (6), except that the power constraint for each

BS is formulated as follows:
L∑
l=1

K∑
k=1

‖Fi,l,k‖2
F ≤ Pi,max, i = 1, · · · , L. (58)

The optimization problem formulated for the case of Network MIMO can be similarly solved by

using the methods of Section III, details of which are omitted for simplicity.

B. Multiple-IRS Scenario

Assume that the system has A IRSs, each of which has M reflection elements. The baseband

channels spanning from the ath IRS to the kth user in the lth cell, and the ones from the ith BS

to the ath IRS are denoted by Hr
a,l,k and Gr

i,a, respectively. The diagonal phase-shifting matrix

of the ath IRS is denoted by Φa = diag
{
ejθa,1 , · · · , ejθa,m , · · · , ejθa,M

}
. Then, the received signal

vector at the kth user in the lth cell is given by

yl,k =
L∑
n=1

Hn,l,kxn +
L∑
n=1

A∑
a=1

Hr
a,l,kΦaG

r
n,axn + nl,k, (59)

where Hn,l,k, xn and nl,k are defined in Section II.
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By defining Hr
l,k =

[
Hr

1,l,k, · · · ,Hr
A,l,k

]
, Φ = diag {Φ1, · · · ,ΦA} and Gr

n =
[
GrH
n,1, · · · ,GrH

n,A

]H,

(59) can be rewritten as

yl,k =
L∑
n=1

Hn,l,kxn +
L∑
n=1

Hr
l,kΦGr

nxn + nl,k, (60)

which is the same as (2). Hence, the derivations for the single-IRS scenario are directly applicable.

V. SIMULATION RESULTS

In this section, simulation results are provided for validating the benefits of employing IRSs for

improving WSR of multicell systems. The large-scale path loss in dB is given by

PL =PL0 − 10αlog10

(
d

d0

)
, (61)

where PL0 is the path-loss at the reference distance d0, d is the link distance, α is the path-loss

exponent. In our simulations, we set PL0 = −30 dB and d0 = 1 m. Due to extensive obstacles

and scatterers, the path-loss exponent between the BS and the users is given by αBU = 3.75. The

heights of BSs, IRSs, and users are assumed to be 30 m, 10 m, and 1.5 m, respectively. By carefully

choosing the location of the IRS, the IRS-aided link has a higher probability of experiencing nearly

free-space path loss. Then, we set the path-loss exponents of the BS-IRS link and of the IRS-user

link to αBI = αIU
∆
= αIRS = 2.2. For the direct channel from the BSs to users, the small-scale

fading is assumed to be Rayleigh fading due to extensive scatters. However, for the IRS-related

channels, the small-scale fading is assumed to be Rician fading. In specific, the small-scale channel

can be modeled as

H̃ =

√
β

β + 1
H̃LoS +

√
1

β + 1
H̃NLoS, (62)

where β is the Rician factor, H̃LoS is the deterministic line of sight (LoS), and H̃NLoS is the non-

LoS (NLoS) component that is Rayleigh fading. The LoS component H̃LoS is given by H̃LoS =

aDr
(
ϑAoA

)
aHDt

(
ϑAoD

)
, where aDr

(
ϑAoA

)
is defined as

aDr
(
ϑAoA

)
=
[
1, ej

2πd
λ

sinϑAoA , · · · , ej
2πd
λ

(Dr−1) sinϑAoA
]T

(63)

and

aDt
(
ϑAoD

)
=
[
1, ej

2πd
λ

sinϑAoD , · · · , ej
2πd
λ

(Dt−1) sinϑAoD
]T
. (64)

In (63) and (64), Dr and Dt are the number of antennas/elements at the receiver side and transmitter

side, respectively, d is the antenna separation distance, λ is the wavelength, ϑAoD is the angle
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Fig. 3. The simulated two-cell IRS-aided MIMO communication scenario.

of departure and ϑAoA is the angle of arrival. It is assumed that ϑAoD and ϑAoA are randomly

distributed within [0, 2π]. For simplicity, we set d/λ = 1/2. Unless otherwise stated, we set the

simulation parameters as follows: Channel bandwidth of 10 MHz, noise power density of −174

dBm/Hz, number of transmit antennas of Nt = 4, number of receive antennas of Nr = 2, number

of data streams of d = 2, number of reflection elements of M = 50, maximum BS power of

Pl,max = 1 W,∀l, Rician factor of β = 3, error tolerance of ε = 10−6, and weighting factor of

ωl,k = 1,∀l, k. The x coordinate of the center point of the first circle is given by xu = 280 m, which

means that the users are located at the edge of their corresponding cells. The following results are

obtained by averaging over 200 independent channel generations. In Step 5 of the BCD algorithm,

if the MM method is used, the BCD algorithm is denoted as BCD-MM. Similar definition holds

for BCD-CCM. The step parameters α and β in the CCM algorithm are set based on Theorem 1.

A. Two-cell Scenario

In order to obtain more insights about the benefits of deploying IRS, we first consider a two-cell

communication network with a single IRS shown in Fig. 3, in which there are two BSs located at

(0, 0) and (600, 0)6, respectively. By default, the IRS is deployed at the boundary point between

two cells, the coordinate of which is (300, 0). Two users in the first cell are uniformly and randomly

placed in a circle centered at (xu, 0) with radius 20 m, while two users in the second cell are also

uniformly and randomly distributed in a circle centered at (600 − xu, 0) with radius 20 m. Note

that these two circles are symmetric w.r.t. the boundary point.

1) Convergence Behaviour of BCD Algorithm: We first study the convergence behaviour of

the BCD algorithm in Algorithm 4. Fig. 4 shows the WSR versus the number of iterations for

various number of phase shifts, i.e., for M = 10, 20 and 40. Both the BCD-MM and BCD-CCM

algorithms are tested. It can be observed from this figure that both the BCD-MM and BCD-CCM

6We only illustrate the horizontal plane of the system, where the height of various devices are not shown.
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Fig. 4. Convergence behaviour of the BCD algorithm.
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Fig. 5. Convergence behaviour of the MM and CCM algorithm.

have a very similar convergence speed and converged value. Having more phase shifts leads to

a slightly slower convergence speed. This is due to the fact that more optimization variables are

involved, and more iterations are required for convergence. However, for different values of M ,

the proposed algorithms converge within 200 iterations, which confirm the practical benefits of

our algorithms.

2) Convergence behaviour of the MM and CCM algorithms: In each iteration of the BCD

algorithm, we have to use the MM or CCM algorithm for finding the phase shifts of the IRS.

Fig. 5 shows the convergence performance of the MM and CCM algorithms for the first iteration

of the BCD algorithm. It can be seen from Fig. 5 that the MM algorithm converges a little faster

than the CCM algorithm, which implies having a lower computational complexity for the MM

algorithm based on the complexity analysis of Table I. As expected, the number of iterations

required for the convergence of the two algorithms increase with the number of phase shifts, since

more variables have to be optimized. For different values of M , the MM algorithm and CCM

algorithm may converge to different values. However, as seen from Fig. 4, the final WSR value

obtained by the BCD algorithm by using different algorithms to update the phase shifts is almost

the same.

We then compare our proposed algorithms to the following benchmark schemes:

1) RandPhase: We assume that the phase for each reflection element is uniformly and inde-

pendently generated from [0, 2π]. We only have to optimize the TPC matrices, which can be

obtained by skipping Step 5 of the BCD algorithm.

2) No-IRS: Set the IRS related channel matrices to zero matrices, i.e., Hr,l,k = 0, Gn,r =

0,∀n, l, k. Then, use the BCD algorithm to find the optimal TPC matrices by removing Step

5 for the phase shift update.
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Fig. 6. Achievable WSR versus the number of phase shifts M .
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Fig. 7. Achievable WSR versus IRS-related path loss exponent.

3) Impact of the Number of Phase Shifts: Fig. 6 compares the WSR performance of various

algorithms versus the number of phase shifts M . The performance of Network MIMO scheme

(with legend ‘Net-MIMO’) proposed in Section IV-A is also compared. We can observe that

both the BCD-MM algorithm and BCD-CCM algorithm have similar performances over the entire

range of M , and both of them significantly outperform the other two benchmark schemes. The

performance gain becomes quite pronounced upon increasing M . Specifically, when M = 10,

the performance gain over the No-IRS is only 2 bit/s/Hz, while the performance gain increases

up to 13 bit/s/Hz when M = 80. This is mainly attributed to two reasons. Firstly, the signal

power received at the IRS can be enhanced by increasing M , leading to a higher array gain. On

the other hand, by appropriately designing the phase shifts, the reflected signal power received

by the users increases with M . Hence, the proposed IRS-assisted system can exploit not only

the array gain, but also the reflecting beamforming gain at the IRS. More importantly, the IRS

is a passive reflection device, hence installing more passive reflecting elements is both energy-

efficient and economical since the IRS does not require active radio frequency chains and power

amplifiers as in conventional transmitters. These results demonstrate that introducing IRSs into

wireless communications enhances the system performance, and it is a promising technique for

future networks. It is seen that the performance of the RandPhase algorithm is slightly better

than that of the No-IRS scheme. This is because the reflected signals have not been carefully

beamed towards the receivers. By contrast, for the proposed algorithms, both the direct signals and

reflected signals are superposed more constructively, while the multicell interference signals are

added destructively. As expected, the WSR achieved by the Network MIMO is significantly higher

than that of the system studied in Section II (denoted as ‘Coordinated beamforming’). However,
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this performance gain is attained at the cost of the heavy information exchange associated with

Network MIMO, where the data streams of all the users should be exchanged. By contrast, only

the CSI has to be shared among the BSs, the amount of which is much lower than that of the data.

4) Impact of the IRS-related Path Loss Exponent: In the above examples, the path loss exponents

of the IRS-related links is set as αIRS = 2.2, since we assume that the location of the IRS

can be appropriately chosen for ensuring that a free space BS-IRS link and IRS-user link can

be established. However, in some practical scenarios, it may not be feasible to find such ideal

places. Hence, it is intriguing to investigate the performance gain that can be achieved by our

proposed algorithms when the IRS-related links experience rich scattering fading with higher value

of αIRS. To this end, we plot Fig. 7 to show the impact of the IRS-related path-loss exponent.

As expected, the WSR achieved by the proposed algorithms decreases upon increasing αIRS, and

finally converges to the same WSR as achieved by the No-IRS scheme. This is because upon

increasing αIRS, the signal attenuation associated with the IRS-related links becomes larger, and

the signal received from the IRS is weaker, hence more negligible. However, when αIRS is very

small, significant performance gains can be achieved by our proposed algorithms over the No-IRS

scheme. For example, for a free-space channel associated with αIRS = 2, the performance gain is

up to 14.5 bit/s/Hz. Hence, for multicell systems, the performance gain of IRS-assisted systems

may be attributed to the favourable channel conditions of the BS-IRS link and IRS-user link.

This provides an important engineering design insight, where the IRS should be deployed in an

obstacle-free scenario, such as the ceiling for indoor use or advertisement panels for outdoor use.

Otherwise, the performance gain brought about by the IRS is marginal. Fig. 7 also shows that if

the phase shifts are not optimized, the performance of an IRS-aided system may even be worse

than that operating without the IRS, i.e. the WSR achieved by the RandPhase algorithm is equal

to or lower than that of the No-IRS scheme. This emphasizes the importance of jointly optimizing

the TPC matrices and the phase shifts at the IRS.

5) Impact of the IRS Location: Denote the coordinate of the IRS as (xIRS, 0). In Fig. 8, we

study the impact of the IRS location by moving the IRS from xIRS = 50 m (cell center of the

first cell) to xIRS = 300 m (cell boundary). It may be observed again that both the proposed

algorithms achieve the similar performance, and drastically improves the WSR performance over

the other benchmark schemes. It is interesting to observe that the WSR achieved by the proposed

algorithms first decreases with xIRS (50 m< xIRS < 150 m), and then increases for xIRS > 150 m.
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Fig. 9. Achievable WSR versus IRS-related path loss exponent.

This becomes plausible upon considering a special case, where the IRS lies on the line between

the BS and the user central point. Let us denote the distance between the BS and the IRS by d,

and that between the BS and the user central point by D. By ignoring the small-scale fading, the

large-scale channel gain of the combined channel from the IRS may be approximated by

PLIRS = 2PL0 − 10αIRSlog10 (d)− 10αIRSlog10 (D − d) , (65)

which achieves its minimum value at d? = D/2. Hence, the combined channel gain achieves its

minimum value when the IRS is located at the middle point, which is consistent with the simulation

results of Fig. 8. Due to the strong BS-IRS link, the WSR performance gain achieved by our

proposed algorithms over the No-IRS is 4 bit/s/Hz at xIRS = 50 m. However, this performance

gain doubles when the IRS moves to the boundary of these two cells. This performance is partly

due to the favourable IRS-user channel link. The other important reason is that we can optimize

the phase shifts of the IRS to make the equivalent channel spanning from the inter-cell BS to the

users approach zero matrices. Specifically, we can optimize Φ to let H̄n,l,k, n 6= l approach zero

matrices. This alleviates the severe inter-cell interference for the cell-edge users, which significantly

enhances the system performance. Additionally, deploying the IRS at the cell center for Cell 1

is only beneficial for the users in Cell 1, while all the users will benefit from the IRS, when

positioning it at the cell boundary. This means that for multicell communication systems, significant

performance gains can be obtained when the IRS is employed at the cell boundary, which mitigates

the inter-cell interference. Furthermore, the phase shifts should be carefully designed. Otherwise,

the performance may in fact become inferior to that without IRS, e.g., xIRS = 150 m.
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Fig. 11. Individual data rate under two sets of weights.

6) Impact of the User Location: In Fig. 9, we compare the WSR achieved by all schemes versus

the horizontal distance between BS 1 and the first circle central point, i.e., xu. Since the users

are randomly positioned in this circle, this is equivalent to varying the locations of the users. It

is again observed that the proposed algorithms achieve almost the same performance and achieve

superior performance over the other two benchmark schemes. Additionally, the performance gap

increases with xu, because the users receive strong reflected signals from the IRS, when the users

approach the cell edge. This means that the IRS mitigates the inter-cell interference.

7) Impact of the Reflection Amplitude : Due to the absorption and parasitic reflection of the

phase shifters, there may be a signal power loss at the IRS. Then, in Fig. 10, we study the impact

of the reflection amplitude on the system performance. Specifically, the phase-shift matrix of the

IRS is rewritten as Φ = ηdiag
{
ejθ1 , · · · , ejθm , · · · , ejθM

}
, where the reflection amplitudes of all

the elements are the same as η. As expected, the WSR achieved by the IRS-aided scheme increases

with η due to the reduced power loss. The reflection amplitude has a substantial impact on the

system performance. Specifically, when η increases from 0.2 to 1, the WSR increases by about 6

bit/s/Hz.

8) Impact of the Weights : As mentioned in our problem formulation, the weights can be

used for controlling the fairness among the users. To be more explicit, we provide an example for

illustrating this point. For clarity, the index of the jth user in the ith cell is denoted as 2(i−1)+ j.

For example, the index of the second user in the second cell is 4. The coordinates for the four

users (two in each cell) are respectively given by (100, 0), (250, 0), (350, 0) and (500, 0), which

indicate that the first user is closer to BS 1 than the second user, and the third user is closer to

BS 2 than the fourth user. Two sets of weights are tested: 1) ωk = 0.5,∀k; 2) ω1 = 0.15, ω2 =
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Fig. 12. The simulated four-cell IRS-aided MIMO communication scenario.

0.85, ω3 = 0.3, ω4 = 0.7. In Fig. 11, the individual data rates achieved under two sets of weights

are illustrated. For the case of the equal weights, the first user and the third user have higher data

rate than the other two users, since they are closer to the BSs. To guarantee rate-fairness amongst

the users, for the case of unequal weights, a more balanced data rate distribution can be achieved

by assigning higher weights to the users having low channel gains.

B. Four-cell Scenario

Finally, in order to study the beneficial impact of IRS deployment on the system’s performance,

we consider the four-cell scenario of Fig. 12, where the coordinates of the four BSs are given

by (0, 0), (600, 0), (0, 600) and (600, 600), respectively. Additionally, the coordinates of the user

distribution center in the four cells are (280, 0), (320, 0), (280, 600) and (320, 600), respectively. The

circle radius is also 20 m. Four points (i.e., A,B,C,D) are located at the middle of the corresponding

two BSs. The number of antennas at each BS is set to 2, and each cell has three users.

1) Single-IRS Case: We first study the single-IRS scenario, when the number of phase shifts

at the IRS is 50. Three IRS schemes are considered: 1) Scheme-1: As in the case of two-cell

scenario, the IRS moves from BS 1 to BS 2; 2) Scheme-2: The IRS moves from point B to point

D; 3) Scheme-3: The IRS moves from BS 3 to BS 2. The WSR achieved by various schemes is

shown in Fig. 13. It is seen from this figure that Scheme 1 achieves its maximum WSR at the

cell boundary point with xIRS = 300m, which implies that the IRS should be deployed at the cell

edge to benefit the users in the first and second cells. This conclusion is consistent with that of

the two-cell scenario shown in Fig. 8. It is also shown that Scheme-1 has the best performance for
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Fig. 14. Achievable WSR versus various IRS deployment

schemes for two-IRS case.

any locations of the IRS. The reason may be that the IRS in Scheme-1 is more close to the first

and second users. However, the users in the third and fourth cells are far away from the IRS in

Scheme-1, thus the benefits of the IRS for these users are marginal. This motivates the deployment

of more IRSs in the system. Again, the WSR achieved by the various schemes is higher than that

without IRS, which demonstrates the benefits of installing IRSs in multicell networks.

2) Two-IRS Case : In this case, two IRSs are deployed, each of which has 25 phase shifts.

Hence, the total number of phase shifters is equal to that of the single-IRS case. Three schemes

are considered: 1) Scheme-1: IRS 1 moves from BS 1 to BS 2, and IRS moves from BS 3 to

BS 4; 2) Scheme-2: IRS 1 moves from BS 1 to BS 4, and IRS 2 moves from BS 3 to BS 2; 3)

Scheme-3: IRS 1 moves from point B to point D, and IRS 2 moves from point C to point A. The

WSR achieved by various schemes is shown in Fig. 14. Similar trends have been observed to the

single-IRS case. For example, Scheme-1 performs the best, and achieves its highest WSR when

the IRS is located at points A and C, respectively. The reason is that the IRSs are closer to the

users in these two points. By comparing Fig. 13 and Fig. 14, when XIRS = 300m, the WSR of

the Scheme-1 in the two-IRS scenario is higher than that in the single-IRS scenario, which means

that the distributed IRS deployment is more beneficial than centralized deployment. In general, the

number of IRSs depends on the number of user clusters. It is expected that in the vicinity of each

user cluster, there is at least one IRS.

VI. CONCLUSIONS

In this paper, we have enhanced the cell-edge user performance of multicell communication

systems by employing an IRS at the cell boundary. Specifically, by carefully tuning the phase
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shifts, the inter-cell interference reflected by IRS can be added destructively to that directly

received from the adjacent BSs, which alleviates the inter-cell interference received by the cell-edge

users. We studied the WSR maximization problem by jointly optimizing the active TPC matrices

at the BSs and passive shifts at the IRSs, while guaranteeing each BS’s power constraint and

unit-modulus constraint at the IRS. To tackle this non-convex problem, the BCD algorithm was

used for optimizing them in an alternating manner. The optimal TPC matrices were obtained in

closed form, and a pair of efficient algorithms were provided for solving the challenging phase

shift optimization problem. Our simulation results verified that the proposed algorithms achieve

significant performance gains over their conventional counterpart operating without incorporating

an IRS. Furthermore, the location of IRS should be carefully chosen to guarantee a favourable BS-

IRS link and IRS-user link. When the IRSs are deployed in the vicinity of user clusters, distributed

IRS deployment is shown to be advantageous over the centralized deployment.
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