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Abstract

The weighted sum-rate (WSR) maximization problem of ultra-dense cloud radio access networks (C-

RANs) is considered. The user-centric clustering is adopted for reducing the complexity. To reduce the

training overhead, one only needs to estimate the intra-cluster CSI, while only the large-scale channel gains

are available outside the cluster. We first derive the rate lower bound (LB) relying on Jensen’s inequality.

For the special case of non-overlapping clusters, the accurate data rate expression is derived in closed-form.

Simulation results show the tightness of the LB for both the overlapped and non-overlapped cases. Then,

we consider an alternative problem where the actual data rate is replaced by its LB, which constitutes a

non-convex optimization problem. First, the globally optimal solution is obtained by applying the high-

complexity outer polyblock approximation (OPA) algorithm. Then we invoke the reduced-complexity

modified weighted minimum mean square error (WMMSE) algorithm for mitigating the deleterious effects

of realistic imperfect CSI. For the subproblem solved by each WMMSE iteration, the beamforming (BF)

vectors are derived in closed form relying on the Lagrangian dual decomposition method. Finally, our

simulation results show that the modified WMMSE algorithm’s performance is comparable to that of the

high-complexity OPA algorithm, whilst outperforms other benchmark algorithms.
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I. INTRODUCTION

Future wireless networks have to cope with an ever-increasing demand for conveying data traffic.

To achieve this ambitious goal, ultra dense networks (UDNs) have been recognized as one of the

key enabling techniques [1]. In UDNs, the number of access points (APs) deployed in a given

area is comparable to or even higher than the number of user equipment (UEs). Then, the signal

received at the UEs can be enhanced due to the reduced distance to their associated APs. However,

each UE also suffers from the interference imposed by the neighbouring APs, which constitutes a

limiting factor.

Cloud radio access networks (C-RAN) have been proposed as a promising network architecture

capable of dealing with this issue [2]–[4]. A typical C-RAN consists of three key components: 1)

Remote radio heads (RRHs) geographically displaced accross the coverage area; 2) Baseband unit

(BBU) pool hosted at the data center that is supported both by cloud computing and virtualization

techniques; 3) The high-speed low-latency fronthaul links that connect the RRHs and BBU pool.

The key feature of C-RANs is that the signal processing tasks of the conventional base stations have

been migrated to the BBU pool, and the RRHs are only responsible for low-complexity data tran-

mission/reception. Given this centralized architecture, advanced signal processing techniques can

be realized, such as joint UE scheduling, coordinated multi-point (CoMP) transmission, centralized

compression and decompression, etc which result in significant performance gains. Furthermore,

due to their low-complexity functionalities, RRHs can be densely deployed over the network at a

low operational cost. Hence, C-RAN is an ideal platform for reaping the benefits of UDNs, where

the interference can be substantially mitigated or even eliminated by the CoMP technique, which

leads to a powerful network architecture ultra-dense C-RAN [5].

Recently, sophisticated designs have been conceived for tackling the various challenges arising

in C-RANs [4], [6]–[12]. Specifically, the weighted sum rate (WSR) maximization problem of

C-RANs operating under realistic fronthaul capacity constraints was studied in [4], where a so-

called reweighted l1-norm based technique was adopted for transforming the non-smooth fronthaul

capacity constraints into a more tractable expression. A joint RRH selection and beamforming

(BF) design was investigated in [6] for a dense C-RAN, where three algorithms striking different

complexity tradeoffs were proposed. In [7], the authors aimed for jointly optimizing the set of

RRHs serving each UE and the BF weights for minimizing the total transmission power, while

satisfying both the fronthaul capacity constraints and the UEs’ rate requirements. A pair of low-
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complexity algorithms were developed for solving this problem. A resource allocation problem was

considered in [8] for a macrocell assisting C-RAN, where the authors aimed for minimizing the

transmission power for the C-RAN under the specific interference limit imposed on the macrocell

UEs. A joint RRH selection and BF design was conceived in [9] for simultaneously optimizing

both the sum rate and total power, where a globally optimal solution was obtained by using

the branch and bound based algorithm. Tran et al. [10] studied the WSR maximization problem

under specific computing resource constraints, where the optimization problem was solved by a

sequential convex approximation algorithm. Tang et al. [11] jointly optimized the activation of

virtual machines (VMs) in the BBU pool and the BF weights for minimizing the system cost,

where the optimal BF solution was derived in closed form. In [12], we studied the problem of

optimizing the precoding matrices and the set of active RRHs for minimizing the network’s power

consumption, where the user-centric cluster philosophy was adopted for reducing the computational

complexity, where each user is served by its closest RRHs.

However, the above-mentioned contributions were based on the assumption that the BBU pool

can possess perfect channel state information (CSI), which is not practical in ultra-dense C-RANs,

because an excessive number of CSIs is required for centralized signal processing. Caire et al.

[13] showed that the overall system performance may even be reduced upon taking into account

the heavy training overhead used for estimating all the network’s CSI. A promising technique of

reducing the training overhead is to rely on the incomplete CSI case, where each UE only needs to

estimate the CSI of the links from the RRHs in its serving cluster, while assuming the CSI from the

RRHs outside its cluster to be zero [14]–[17]. Alternatively, only the large-scale channel gains may

be made available [18], [19]. Lakshmana et al. [18] considered the WSR maximization problem for

the incomplete CSI case, where the large-scale channel gains are incorporated into the optimization

problem for the out-cluster CSI. The authors derived the data rate LB by applying the Cauchy-

Schwarz inequality and then adapted the algorithms originally developed for the perfect-CSI case

to this incomplete-CSI scenario. Their simulation results showed that significant performance gains

can be obtained compared to the ones, where the unknown CSI is naively regarded as zero. Recently,

in [19], we studied the network power consumption minimization problem of the ultra-dense C-

RANs relying on incomplete CSI, where the large-scale channel gains from the RRHs outside the

cluster were included in the optimization. A two-phase optimization method was proposed, where

the first phase deals with the feasibility issue by proposing a novel UE selection algorithm and
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the second phase optimizes the BF vectors to minimize the network’s power consumption with the

UEs obtained from the first phase.

Although the authors of [14]–[19] substantially reduced the training overhead, in these contri-

butions perfect intra-cluster CSI was assumed, which is difficult to satisfy due to the following

reasons. To estimate the intra-cluster CSI in time-division duplex (TDD) C-RANs, uplink training

pilot sequences have to be sent from the UEs to the RRHs for channel estimation. A naive pilot

allocation method is that all UEs are assigned mutually orthogonal pilot sequences. However, the

number of pilots required increases linearly with the number of UEs, which is unaffordable for

ultra-dense C-RANs since they are usually deployed in hot spots with a large number of users,

such as conference hall, shopping mall, etc. A judicious remedy is to allow the UEs to reuse the

same pilot sequence. This will however impose pilot contamination, hence increasing the channel

estimation errors. Therefore, it is imperative to design transmission schemes that are robust to

channel estimation error. Robust transmission designs have hence received extensive interests [20]–

[24]. There is a specific common assumption in these contributions: the channel errors are assumed

to lie in a bounded uncertainty region, and the robust transmission should be designed under the

condition that for each channel error in this region, the quality of service (QoS) requirements for

each UE should be satisfied. This kind of optimization problem is then transformed to a semi-

definite programming (SDP) one with the aid of the S-lemma and the semi-definite relaxation

(SDR) technique. However, this assumption was too pessimistic. The transmission regime should

be designed to be inherently robust to the practical channel estimation error sources, such as

the pilot contamination and estimation noise. In our most recent work [25], we studied the joint

pilot allocation and UE selection problem in order to minimize the total transmission power,

while satisfying each UE’s rate constraints and the fronthaul constraints. A novel pilot allocation

based on graph theory and semi-definite relaxation was proposed for solving this problem. Another

alternative optimization problem is the WSR maximization problem, where the weights can be used

for controlling the fairness of UEs. However, in contrast to the power minimization problem, which

can be transformed to a convex second-order cone programming (SOCP) or SDP problem, the WSR

maximization problem is usually non-convex, which is difficult to solve. In this paper, we study

the WSR maximization problem for the same scenario as in [25], where the joint effects of pilot

contamination and incomplete inter-cluster CSI are taken into account. Another alternative network

architecture similar to the ultra-dense C-RAN is the recent cell-free user-centric massive MIMO
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system [26], [27], where both channel estimates and the beamforming vectors can be computed

locally that incurs less fronthaul overhead. However, the proposed transmission schemes used in

[26], [27] are heuristic: the power are allocated to be proportional to the estimated channel strengths

for single antenna case in [26] and channel inversion beamforming was adopted for the multiple-

antenna case in [27], which yields inferior performance compared with the algorithm designed

in this paper. In addition, the access points should be equipped with some advanced computing

functionalities to perform the channel estimation operation and beamforming computation, which is

contrast to the low-complexity RRHs considered in ultra-dense C-RANs that are only responsible

for simple transmission/reception.

Against the above background, the contributions of this paper are summarized as follows:

1) Due to the multiple uncertain terms in the rate expression such as the channel estimation

error and the small-scale CSI from the RRHs outside the cluster, it is difficult to derive the

accurate data rate expression. To circumvent this difficulty, we derive the data rate LB by

applying Jensen’s inequality, which is more tractable to handle. For the special case of non-

overlapping clusters, we derive the accurate data rate in closed form. For both the overlapped

and non-overlapped cases, we provide simulation results to show that the data rate LB is

very tight, especially for low transmit powers, which is the case in ultra-dense C-RANs.

2) Since the WSR maximization problem is a non-convex optimization problem, we provide

a high-complexity algorithm relying on the outer polyblock approximation (OPA) method

in order to obtain the globally optimal solution to serve as our benchmark for other low-

complexity suboptimal algorithms. We provide a novel method to find the intersection point

on the Pareto boundary of the rate region in each iteration of the OPA algorithm. However,

its complexity is excessive since it involves twin-layer iterations.

3) To further reduce the complexity, we conceive a low-complexity algorithm by carefully

adapting the WMMSE algorithm originally derived for the perfect CSI case to the imperfect

intra-cluster CSI and incomplete out-cluster CSI scenario. Specifically, we decompose each

interfering source into multiple interfering sources and then construct an auxiliary signal

transmission model for each UE. Then, the conventional WMMSE is applied to this auxiliary

model. For each iteration of the modified WMMSE algorithm, there is a sub-problem in which

the BF vectors should be optimized. We derive the optimal structure of the BF solutions

with the aid of the Lagrangian dual decomposition method, and then the subgradient descent



6

method is adopted for updating the dual variables. Our simulation results show that the

Lagrangian dual decomposition method is capable of achieving the same solution as provided

by solving the SOCP problem using the CVX package, despite its much lower complexity.

The remainder of this paper is organized as follows. In Section II, we introduce the signal

transmission model of user-centric ultra-dense C-RANs along with the intra-cluster CSI channel

estimation procedure. In Section III, we provide the WSR maximization problem formulation and

discuss the tightness of the rate LB. In Section IV, two different algorithms striking different

performance vs complexity tradeoffs are developed. Extensive simulation results are given in

Section V. Finally, our conclusions are drawn in Section VI.

Notations: For a complex value a, Re{a} represents the real part of a. Boldface lower case

and upper case letters denote vectors and matrices, respectively. CM×1 denotes the set of M × 1

complex vectors. E{·} denotes the expectation operation. For the two sets A and B, A ⊆ B

represents set A belongs to B, and A\B denotes the set difference between A and B. CN (0, I)

represents a random vector following the distribution of zero mean and unit variance matrix. ‖·‖

is the norm operator. blkdiag(·) denotes the block diagonalization operation. (·)T and (·)H denote

the transpose and Hermitian operators, respectively.

II. SYSTEM MODEL
A. Signal Transmission Model

Consider the downlink of an ultra-dense TDD C-RAN network with I RRHs and K UEs, as

shown in Fig. 1. It is assumed that each RRH is equipped with M transmit antennas (TA) and each

UE has a single receive antenna (RA). Let us denote the sets of RRHs and UEs by I = {1, · · · , I}

and U = {1, · · · , K}, respectively. Each RRH is connected to the BBU pool through the high-

speed fronthaul links that are shown by dark lines in Fig. 1. The BBU pool is responsible for all

the baseband signal processing tasks, such as channel estimation and BF weight calculation. All

UEs’ data are available at the BBU pool and the BBU pool distributes each UE’s data to a subset

of RRHs through the fronthaul links.

To reduce the computational complexity, user-centric clusters are formed, where each UE is

only served by its nearby RRHs due to the severe path loss from distant RRHs. Let us define

by Ik ⊆ I and Ui ⊆ U the specific sets of RRHs that serve UE k and the UEs that are served

by RRH i, respectively. Note that the clusters for the UEs may overlap with each other, i.e. each

RRH may simultaneously serve multiple UEs. The cluster serving each UE is determined based
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Fig. 1. Illustration of a C-RAN with thirteen RRHs and six UEs, i.e., I = 13, K = 6. To reduce the complexity, each UE is

served by the RRHs within the dashed circle centered at the UE.

on the long term channel state information (CSI) such as large-scale fading [28] that changes very

slowly. Hence, the cluster formation are assumed to be fixed in this paper.

Let us define by hi,k ∈ CM×1 and wi,k ∈ CM×1 the channel vector and the BF vector of the

links from RRH i to UE k, respectively. Assume that the RRHs in each UE’s cluster coherently

transmit the same signal to the UE. Then the baseband received signal at UE k can be written as

yk =
∑

i∈Ik
hH
i,kwi,ksk︸ ︷︷ ︸

desired signal

+
∑

l 6=k,l∈U

∑
i∈Il

hH
i,kwi,lsl︸ ︷︷ ︸

multiuser interference

+zk, (1)

where sk is the data symbol of UE k, zk is the additive complex white Gaussian noise that

follows the distribution of CN (0, σ2). It is assumed that E{sk} = 0 and E{|sk|2} = 1, and

the data streams for different UEs are independent of each other, i.e., we have E{sk1sk2} = 0 for

k1 6= k2,∀k1, k2 ∈ U . Furthermore, the channel vector hi,k can be decomposed as hi,k =
√
αi,kh̄i,k,

where αi,k represents the large-scale channel gain that includes both the path loss and shadowing,

while h̄i,k is the small-scale fading following the distribution of CN (0, I).

B. Channel Estimation for Intra-cluster CSI

To design the BF vectors, the entire network’s CSI should be available at the BBU pool. However,

for ultra-dense C-RANs with a large number of RRHs and UEs, it is infeasible to obtain all the CSI

due to the limited amount of training resources. To deal with this issue, we assume that the BBU

pool only needs to estimate the CSI from RRHs within each UE’s cluster to the corresponding UE.
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For the CSI of the RRHs outside its cluster, we assume that the BBU pool only has the knowledge

of large-scale channel gains, i.e., {αi,k,∀i ∈ I\Ik, k ∈ U}. This is a feasible assumption, since

the large-scale channel gains change slowly and can be tracked with high accuracy.

In this paper, the channels are assumed to be frequency-flat within a coherence interval of T

time slots, among which τ time slots are used for channel estimation, while the remaining T − τ

time slots are dedicated to data transmission. Hence, the number of orthogonal pilot sequences is

equal to τ . In ultra-dense C-RANs, the number of UEs is much higher than τ . The pilots should

be reused among the UEs for the facilitation of channel estimation.

Let us denote the set of available pilot sequences as Q = [q1, · · · ,qτ ] ∈ Cτ×τ that satisfies the

orthogonal condition of QHQ = I. In TDD ultra-dense C-RANs, each UE sends the pilot sequence

to the RRHs. Let us define by qπk the pilot sequence used by UE k. Then the pilot signal received

at RRH i is

Yi =
∑

k∈U

√
pthi,kq

H
πk

+ Ni, (2)

where pt is the pilot transmit power at each UE, while Ni ∈ CM×τ is the Gaussian noise

matrix, whose elements are independently generated and follow the distributions of CN (0, σ2).

To differentiate the channels from the UEs, the UEs with at least one common RRH should be

allocated with orthogonal pilot sequences, i.e., we have qH
πk

qπk′ = 0, for k, k′ ∈ Ui, k 6= k′, ∀i ∈ I.

Furthermore, to control the estimation error, the maximum reuse time for each pilot should be

below a fixed value nmax, i.e., nl ≤ nmax,∀l, where nl denotes the reuse time for pilot l. In this

paper, we aim for minimizing the number of pilots required while satisfying the above two sets

of constraints. The Dsatur algorithm of graph theory can be used for solving the pilot allocation

problem, details of which can be found in [29]. Let us denote by c? the minimum number of

different colors, which is equal to the number of pilots τ .

Let us denote by Kπk the set of UEs that reuse the same pilot of UE k. Then the minimum

mean square error (MMSE) estimate of channel hi,k is given by [30]

ĥi,k =
αi,k∑

l∈Kπk
αi,l + σ̂2

1
√
pt

Yiqπk , (3)

where σ̂2 = σ2/pt. According to the property of MMSE estimate [30], channel estimation error

h̃i,k = hi,k − ĥi,k is independent of the channel estimate ĥi,k and is distributed as CN (0, δi,kI),

where δi,k is given by

δi,k =
αi,k

(∑
l∈Kπk\{k}

αi,l + σ̂2
)

∑
l∈Kπk

αi,l + σ̂2
. (4)
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III. PROBLEM FORMULATION

The BF vectors from all RRHs in Ik can be merged into a single large-dimensional vector

wk = [wH
i,k,∀i ∈ Ik]H ∈ C|Ik|M×1. Similarly, we define gl,k = [hH

i,k,∀i ∈ Il]H ∈ C|Il|M×1 as the

aggregated perfect CSI from the RRHs in Il to UE k, g̃k,k = [h̃H
i,k, ∀i ∈ Ik]H ∈ C|Ik|M×1 and

ĝk,k = [ĥH
i,k, ∀i ∈ Ik]H ∈ C|Ik|M×1 as the aggregated CSI error and estimated CSI from the RRHs

in Ik to UE k, respectively.

Since the channel estimation error can be written as g̃k,k = gk,k − ĝk,k, the signal transmission

model in (1) can be reformulated as

yk = ĝH
k,kwksk︸ ︷︷ ︸

Desired signal

+ g̃H
k,kwksk︸ ︷︷ ︸

Self−interference

+
∑

l 6=k,l∈U
gH
l,kwlsl︸ ︷︷ ︸

Interference from other UEs

+zk,∀k ∈ U . (5)

We define the effective noise as:

z̃k = g̃H
k,kwksk +

∑
l 6=k,l∈U

gH
l,kwlsl + zk,∀k ∈ U . (6)

Then, (5) can be reformulated as

yk = ĝH
k,kwksk + z̃k, ∀k ∈ U . (7)

Unfortunately, the effective noise z̃k is neither independent nor Gaussian. However, we find that

the input random variable sk and the effective noise z̃k are uncorrelated. The reasons are given as

follows: the input random variable sk is clearly independent of sl, l 6= k and zk. Furthermore, sk

is independent of the first term in (13) because the independence of the channel estimate ĝk,k and

the channel estimation error g̃k,k. The variance of the effective noise is calculated as

E
[
|z̃k|2

]
=
∣∣g̃H
k,kwk

∣∣2 +
∑

l 6=k,l∈U

∣∣gH
l,kwl

∣∣2 + σ2 (8)

where the expectation is taken over the random input variables sk,∀k and noise variable zk.

According to Theorem 1 in [31], we know that the data rate for the channel in (9) is higher than

the following channel system:

ŷk = ĝH
k,kwksk + ẑk, ∀k ∈ U , (9)

where ẑk is the independent Gaussian noise with the same noise variance as the effective noise

z̃k. Then, by using the similar derivations in [32], [33], the effective SINR and the achievable data

rate of UE k are respectively given by

ηk =

∣∣ĝH
k,kwk

∣∣2∣∣g̃H
k,kwk

∣∣2 +
∑

l 6=k,l∈U

∣∣gH
l,kwl

∣∣2 + σ2
(10)
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and

rk =
T − τ
T

E {log2 (1 + ηk)} ,∀k ∈ U , (11)

where T is the total number of time slots in a coherence interval, the expectation is taken over all

uncertain terms, such as the unknown channel estimation errors
{

h̃i,k, i ∈ Ik,∀k ∈ U
}

, and the

small-scale inter-cluster CSI {hi,k, i ∈ I\Ik}.

In this paper, we aim for optimizing the BF vectors to maximize the WSR of all UEs, while

satisfying the power constraints of all RRHs. Specifically, we formulate the following optimization

problem

max
w

∑
k∈U

ωkrk (12a)

s.t.
∑

k∈Ui
‖wi,k‖2 ≤ Pi,max, i ∈ I, (12b)

where w is the collection of all BF vectors, ωk is the weight assigned to UE k for controlling the

fairness among the UEs, rk is the data rate of UE k defined in (11), and Pi,max is the power limit

of RRH i.

Due to the multiple uncertain terms, it is difficult to obtain the accurate closed-form expression

of each UE’s data rate. Similar to [25], we consider its LB, which leads to a tractable expression.

The LB can be obtained by using Jensen’s inequality, which is given by [25]

rk ≥
T − τ
T

log2

(
1 +

∣∣ĝH
k,kwk

∣∣2
wH
k Ek,kwk +

∑
l 6=k,l∈U wH

l Al,kwl + σ2

)
∆
= r̃k, (13)

where Ek,k = blkdiag {δi,kIM×M , i ∈ Ik} and Al,k = E
{
gH
l,kgl,k

}
∈ CM |Il|×M |Il|.

Let us define the indices of Il as Il = {sl1, · · · , sl|Il|}. Then, we have

Al,k =


(Al,k)1,1 · · · (Al,k)1,|Il|

... . . . ...

(Al,k)|Il|,1 · · · (Al,k)|Il|,|Il|

 , l 6= k, (14)

where (Al,k)i,j ∈ CM×M , i, j ∈ 1, · · · , |Il| is the block matrix of Al,k at the ith row and jth

column, given by

(Al,k)i,j =



ĥsli,kĥ
H
slj ,k

, if sli, s
l
j ∈ Ik, i 6= j,

ĥsli,kĥ
H
slj ,k

+ δsli,kIM×M , if sli, s
l
j ∈ Ik, i = j,

αsli,kIM×M , if sli, s
l
j /∈ Ik, and i = j,

0M×M, otherwise.

(15)
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It is proved in Appendix A that Al,k is a positive definite matrix.

It is important to characterize the tightness of this LB. However, it is difficult to derive the

accurate closed-form expression of rk for the general case. Hence in Appendix B, we derive the

accurate closed-form rate expression for a special case: the RRH cluster for each UE is non-

overlapped with each other, i.e., Ik ∩Ik′ = ∅,∀k, k′ ∈ U . In Fig. 2, we consider a non-overlapped

ultra-dense C-RAN network deployed in a square area of coordinates [−1/2, 1/2] × [−1/2, 1/2]

km. This area is divided into nine 1/3 km × 1/3 km squares. There is one UE located in the

center of each small square, and three RRHs are randomly distributed within a circle centered at

the UE with radius equal to 1/6 km, as shown in Fig. 2. These three RRHs are exclusively serving

the centered UE. Each RRH is assumed to be equipped with four antennas. The other simulation

parameters are the same as in the simulation section. In Fig. 2, the UEs with the same shape and

color are assumed to reuse the same pilot, and UE 5 in the center of this area is assigned an

orthogonal pilot sequence. For the ultra-dense C-RAN of Fig. 2, a total of five pilots are required

and the total number of time slots within the channel’s coherence time is set to T = 80. It is

assumed that all RRHs transmit with their maximum power limit and the BF direction is chosen to

match the corresponding channel vector. Fig. 3 investigates the tightness of the LB derived for this

non-overlapped scenario, where three curves are plotted: the rate LB derived in (13), the accurate

closed form expression derived in Appendix B, and the Monte-Carlo simulation results. We observe

from this figure that the curve associated with accurate closed-form expression coincides well with

that associated with the Monte-Carlo simulation, which verifies the correctness of our analytical

results. In the low transmit power regime, the LB is very tight, and almost equal to the accurate data

rate. However, the gap increases with the transmit power limit and becomes constant in the high

transmit power regime, where the system becomes interference limited. Note that the maximum

gap is at most 4%, which is acceptable for practical applications. In the simulation section, we

also show that the approximation error is minor.

Hence, it is reasonable to consider its rate LB, instead of its accurate expression. Then, by

replacing rk in Problem (12) with r̃k in (13), we consider the following optimization problem

max
w

∑
k∈U

ωkr̃k (16a)

s.t.
∑

k∈Ui
‖wi,k‖2 ≤ Pi,max, i ∈ I. (16b)

In [34], the WSR maximization problem has been shown to be NP-hard for the simple single-

antenna interference channel [35]. Intuitively, Problem (16) formulated for the imperfect CSI case,
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Fig. 2. Illustration of a non-overlapped ultra-dense C-RAN

with nine UEs. Each UE is exclusively served by its nearby three

RRHs, which are randomly distributed in a circle area centered

at the UE with radius equal to 1/6 km. The UEs marked with

the same shape and color are reusing the same pilot, and UE 5

in the center of this area is allocated with one orthogonal pilot.
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Fig. 3. Data rate versus the transmit power for the non-

overlapped case. Three curves are plotted: the derived rate LB in

(13), the accurate derived closed form expression in Appendix

B, and the Monte-Carlo simulation results. The gap between

the LB and the accurate rate expression is at most 4%, which

is acceptable.

which involves the BF design and power allocation for multiple UEs, is also NP-hard. However, the

strict proof of the NP-hardness requires excessive additional efforts, which are beyond the scope

of this paper. In the following section, we conceive three different algorithms striking different

tradeoffs between performance and complexity to solve Problem (16).

IV. ALGORITHMS TO SOLVE PROBLEM (16)

In this section, two different algorithms striking different tradeoffs between the performance and

complexity are developed. Specifically, we first provide the OPA algorithm [36], [37] to obtain the

globally optimal solution of Problem (16). Then, an iterative algorithm based on modifying the

WMMSE algorithm [38] is proposed.

A. Globally Optimal Solution Based on the OPA Algorithm

In this subsection, we aim for providing the globally optimal solution to Problem (16). In the

following, we first provide an equivalent formulation of Problem (16), based on which the OPA

algorithm is customized to solve it optimally.
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Consider the following optimization problem

max
w,t

∑
k∈U

ωktk (17a)

s.t. (16b),
T − τ
T

log2

(
1 +

∣∣ĝH
k,kwk

∣∣2
wH
k Ek,kwk +

∑
l 6=k,l∈U wH

l Al,kwl + σ2

)
≥ tk,∀k, (17b)

where t represents the collections of all auxiliary variables tk,∀k ∈ U . The equivalence between

Problem (17) and Problem (16) can be readily verified by showing that the constraints (17b) in

Problem (17) hold with equality at the optimum solution of Problem (17).

The formulation in (17) facilitates the development of the OPA algorithm based on monotonic

optimization. Specifically, it may be readily shown that the objective function (OF) of Problem

(17) monotonically increases with each element of t. Thus, we can apply the OPA algorithm to

obtain the globally optimal solution of Problem (17). The detailed description of the monotonic

optimization-based OPA algorithm can be found in [36], [37], [39]. For the sake of consistency,

we reuse the same notations and definitions as in [36]. Define the achievable rate region for this

scenario as follows:

T ∆
=

⋃
∑
k∈Ui ‖wi,k‖

2
≤Pi,max,

i∈I


(t1, · · · , tK) : T−τ

T
·

log2

(
1 +

|ĝH
k,kwk|

2

wH
k Ek,kwk+

∑
l6=k,l∈U

wH
l Al,kwl+σ2

)
≥ tk ≥ 0,∀k

. (18)

1) Determining Initial Box: We first have to determine the initial box that contains all feasible

tk,∀k. It may be readily shown that the LB for each tk is zero. Hence, we only have to compute

the upper bound (UB) for each tk, which is as follows:

tk≤
T − τ
T

log2

(
1 +

∣∣ĝH
k,kwk

∣∣2
σ2

)
≤ T − τ

T
log2

1 +

(∑
i∈Ik

√
Pi,max

∥∥∥ĥi,k∥∥∥)2

σ2

 ∆
= z

(1)
k , (19)

where the first inequality is due to omitting the multiuser interference and self interference, the

second inequality follows due to the application of the Cauchy-Schwarz inequality and the power

constraints for wi,k.

2) Updating the Polyblocks: In each iteration of the OPA algorithm, the polyblock containing

the rate region T defined in (18) should be updated. Define P(n) as the polyblock in the nth
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iteration, and define Z(n) as the set containing all the vertices of the polyblock P(n). The vertex

in polyblock P(n) that achieves the maximum WSR is given by:

z̃(n) = arg max
z∈Z(n)

∑
k∈U

ωkzk, (20)

where zk denotes the kth element of z. Define t(n) as the intersection point on the Pareto boundary

with the line δz̃(n). Then, the K new vertices adjacent to z̃(n) can be generated as:

z(n),i = z̃(n) −
(
z̃

(n)
i − t

(n)
i

)
ei, i = 1, · · · , K, (21)

where z(n),i denotes the ith new vertex generated in the nth iteration, ei denotes the unit vector

where the ith element is equal to one, z̃(n)
i and t

(n)
i denotes the ith element of vectors z̃(n) and

t(n), respectively. Then, the new set of vertices to be used in the (n+ 1)th iteration is given by

Z(n+1) = Z(n)\z̃(n) ∪
{
z(n),i, · · · , z(n),K

}
. (22)

3) Finding the Intersection Points: The key step in the OPA algorithm is to find the intersection

point on the Pareto boundary of the rate region in each iteration. Let us define the selected vertex

in the nth iteration as z̃(n) in (20). Then α(n) = z̃(n)
/∑

k∈U z̃
(n)
k represents the slope of the line

cross the Pareto boundary of the rate region. Let us represent by Rsum =
∑

k∈U tk the sum rate of

all UEs. Then the intersection point in the nth iteration is given by t(n) = R?
sumα

(n), where R?
sum

is the optimal solution of the following problem:

max
w,Rmax

Rmax (23a)

s.t. (16b),
T − τ
T

log2

(
1 +

∣∣ĝH
k,kwk

∣∣2
wH
k Ek,kwk +

∑
l 6=k,l∈U wH

l Al,kwl + σ2

)
≥ α

(n)
k Rsum,∀k. (23b)

The bisection based search method can be used for finding the optimal Rmax of Problem (23). For

a given R̄max, we have to check the feasibility of the following optimization problem:

find w (24a)

s.t. (16b),
T − τ
T

log2

(
1 +

∣∣ĝH
k,kwk

∣∣2
wH
k Ek,kwk +

∑
l 6=k,l∈U wH

l Al,kwl + σ2

)
≥ α

(n)
k R̄sum, ∀k. (24b)
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To solve the problem, we introduce the following alternative optimization problem:

min
w,s≥0

s (25a)

s.t. (16b), ĝH
k,kwk + s ≥

√
γ

(n)
k

√
wH
k Ek,kwk +

∑
l 6=k,l∈U

wH
l Al,kwl + σ2,∀k, (25b)

Im(ĝH
k,kwk) = 0,∀k, (25c)

where s is the auxiliary variable introduced, and γ
(n)
k is given by γ

(n)
k = 2

T
T−τ α

(n)
k R̄sum − 1. It is

plausible that Problem (25) is always feasible, and it is a second-order cone programming (SOCP)

problem that can be efficiently solved by using the interior point method of [40]. If the optimal

solution of s is equal to zero, then Problem (24) is feasible, which means that R?
sum ≥ R̄sum.

Otherwise, it is infeasible and R?
sum ≤ R̄sum. Hence, the bisection based search method can be

adopted for finding the optimal R?
sum.

The detailed steps of the OPA algorithm can be found in Algorithm 1 of [36], details of which

are omitted due to the space limitation.

Complexity Analysis: We now analyze the complexity of the OPA algorithm. The main com-

plexity of the algorithm lies in finding R?
sum by solving Problem (23) with the aid of the bisection

based search algorithm. For simplicity, we assume that the cluster size for each UE is equal,

i.e., |Ik| = l,∀k ∈ U . In each iteration of the bisection search algorithm, we should solve

Problem (25) that is an SOCP problem and can be solved by the interior point method of

[40]. This problem has 2lMK + 1 real variables, plus I SOC constraints where each one has

2 |Ui|M real variables and K SOC constraints where each one has 2lMK + 1 real variables.

According to [page 196, [41]], the total complexity order of solving Problem (25) is given by

O
[
(2MKl + 1)2 (2M∑

i∈I |Ui|+ 2MlK2 +K
)]

. Let us denote the accuracy of the bisection

search method as ε, and the sum rate UB as Rmax. The total number of iterations required

by the bisection search method is log2(Rmax/ε). Note that
∑

i∈I |Ui|=
∑

k∈U |Ik| = Kl. The

total complexity order of solving Problem (23) is O [log2(Rmax/ε)M
3l3K4]. Upon denoting the

total number of iterations required by the OPA algorithm as tOPA,iter, the total complexity of the

OPA algorithm is on the order of O [tOPA,iterlog2(Rmax/ε)M
3l3K4]. It is analytically difficult to

derive the exact relationship between tOPA,iter and K. However, from Theorem 1 in [42], the OPA

algorithm converges Q-super linearly [43] to the optimal solution. Note that the OPA algorithm

involves two layers of iterations, it thus has a high computational complexity, hence it can only

be used for small-scale C-RANs as a performance benchmark. In the following two sections, we
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develop two low-complexity algorithms that are suitable for larger ultra-dense C-RANs.

B. Modified WMMSE Method

The WMMSE algorithm proposed in [38] was shown to be an efficient method of solving

the WSR maximization problem, and has been successfully applied in diverse setups [4], [12],

[18], [19], [44], [45]. Unfortunately, there are no contributions considering the application of the

WMMSE method for solving Problem (16). There are two difficulties that preclude the direct

application of the WMMSE method: Firstly, we considered the imperfect CSI scenario where each

UE suffers from self-interference, which is not considered in [38]; Secondly, the incomplete CSI

case is considered in this paper, where the rank of channel covariance matrix may be higher than 1,

i.e., rank (Al,k) > 1. However, the authors of [38] considered the perfect CSI case, where the rank

of the channel covariance matrices is equal to one when each UE is equipped with one antenna.

To deal with the above difficulties, we decompose each interfering sources into multiple in-

terfering sources. Specifically, the self-interference matrix Ek,k can be decomposed as Ek,k =

Fk,kF
H
k,k, where Fk,k = blkdiag

{√
δi,kIM×M , i ∈ Ik

}
. Similarly, since {Al,k,∀l} are positive

definite matrices, as shown in Appendix A, they can be decomposed as Al,k = Vl,kV
H
l,k,∀l,

where Vl,k =
[
vl,k,1, · · · ,vl,k,dl,k

]
with dl,k being the rank of Al,k. Then, we can construct the

following auxiliary signal transmission model for UE k

ỹk = ĝH
k,kwksk +

M |Ik|∑
d=1

fH
k,k,dwksk,d +

∑
l∈U ,l 6=k

dl,k∑
d=1

vH
l,k,dwlsl,d + zk, (26)

where sk is the desired data stream, fk,k,d is the dth column of matrix Fk,k that can be regarded as

the channel vector spanning from its dth self-interference source, vl,k,d can also be regarded as the

channel vector from the dth interfering source of UE l, while sk,d and sl,d are the corresponding

data streams. All the data streams in (26) are assumed to be independently generated and follow

the distribution of CN (0, 1). Note that these interfering sources from the same UE employ the

same BF vector. It should be emphasized that the transmission model of (26) is different from the

actual one in (5), and the former one is constructed for the sake of solving the original problem.

By adopting uk ∈ C to decode UE k’s data, we obtain s̃k = ukỹk. Due to the independence of
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the data streams and noise, the mean square error of decoding sk is computed as

εk (uk,w)

=E
[
(s̃k − sk) (s̃k − sk)H

]
=
(
uH
k ĝH

k,kwk−1
)(
uH
k ĝH

k,kwk−1
)H

+ |uk|2wH
k Ek,kwk +

∑
l∈U ,l 6=k

|uk|2wH
l Al,kwl+σ

2|uk|2. (27)

Then, as in [12], [19], [38], we introduce the following function:

Ψk (w, uk, qk) =
T − τ
T

log2e (ln(qk)− qkεk (uk,w) + 1) ,∀k ∈ U , (28)

where qk is the auxiliary variable introduced. Then, the following lemma can be formulated.

Lemma 1: Given the fixed BF vectors w, the function Ψk (w, uk, qk) gives a LB of the achievable

data rate r̃k, and the optimal variables uk and qk of Ψk (w, uk, qk) achieving r̃k are respectively

given by

u?k =
(∣∣ĝH

k,kwk

∣∣2 + wH
k Ek,kwk +

∑
l∈U ,l 6=k

wH
l Al,kwl + σ2

)−1

ĝH
k,kwk, (29)

q?k = [εk (u?k,w)]−1, (30)

where εk (u?k,w) can be calculated as

εk (u?k,w) = 1−
∣∣ĝH
k,kwk

∣∣2∣∣ĝH
k,kwk

∣∣2 + wH
k Ek,kwk +

∑
l∈U ,l 6=k wH

l Al,kwl + σ2
. (31)

Proof: Please see Appendix C. �

By replacing r̃k in the OF of Problem (16) by its LB, Problem (16) can be transformed to

max
{w,u,q}

∑
k∈U

ωkΨk (w, uk, qk) (32a)

s.t.
∑

k∈Ui
‖wi,k‖2 ≤ Pi,max, i ∈ I, (32b)

where u and q denote the collections of uk,∀k and qk, ∀k, respectively.

Note that for any given two sets of variables w,u,q, Problem (32) is convex w.r.t. the remaining

set of variables. Hence, Problem (32) can be solved by using the block coordinate descent method.

Specifically, given the BF vectors w, the decoding variables u and the auxiliary variables q are

updated according to (29) and (30), respectively; then we update the BF vectors w with fixed u

and q. We only have to solve the latter problem. By substituting the expression of Ψk (w, uk, qk)
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into the OF of Problem (32) and discarding some constant terms, the problem of optimizing the

BF vectors can be formulated as

min
w

∑
k∈U

ω̃k

(
|uk|2wH

k Ẽk,kwk − 2Re
{
uH
k ĝH

k,kwk

}
+
∑

l∈U ,l 6=k

|uk|2wH
l Al,kwl

)
(33a)

s.t.
∑

k∈Ui
‖wi,k‖2 ≤ Pi,max, i ∈ I, (33b)

where ω̃k = ωkqk and Ẽk,k = ĝk,kĝ
H
k,k + Ek,k. Note that Ẽk,k is a positive definite matrix. This

optimization problem can be transformed to a second-order cone programming (SOCP) problem

that can be efficiently solved by using the CVX package [46]. However, the CVX package may

not be convenient for practical programming in Digital Signal Processing (DSP) or for Field

Programmable Gate Arrays (FPGA). Furthermore, directly solving Problem (33) through the CVX

package cannot reveal the optimal structure of the BF vectors. In the following part, we will provide

an alternative algorithm based on the Lagrangian dual decomposition method, which beneficially

facilitates the programming in DSP or FPGA implementations.

Let us now summarize the modified WMMSE method in Algorithm 1.

Algorithm 1 Modified WMMSE Method
1: Initial the iteration number n = 1, the accuracy ε. Initialize the feasible BF vectors w(0). Then,

compute u(0) and q(0) according to (29) and (30), respectively. Calculate the value of the OF

in Problem (32) as Obj(0).

2: With u(n−1) and q(n−1), update w(n) by solving the Problem (33);

3: With w(n), update u(n) and q(n) according to (29) and (30), respectively;

4: Calculate the OF Obj(n), if
∣∣Obj(n) −Obj(n−1)

∣∣/Obj(n) ≤ ε holds, terminate; Otherwise, set

n← n+ 1 and go to step 2.

Convergence Analysis: The modified WMMSE can be guaranteed to converge, which may be

proved by using a similar approach to that of the WMMSE in [38]. It can be verified that in each

step of Algorithm 1, the OF value of Problem (32) is non-decreasing. Since the BF vectors have

power constraints, the OF value must have an UB. Hence, Algorithm 1 is guaranteed to converge.

1) Lagrangian dual decomposition method to solve Problem (33): It may be readily shown that

Problem (33) is a convex one, and the Slater’s condition [40] is satisfied. Hence, Problem (33) can

be equivalently solved by solving its dual problem. Specifically, we first introduce the following
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block diagonal matrices

Bi,k= diag


sk1︷ ︸︸ ︷

01×M , · · · ,
skj︷ ︸︸ ︷

11×M ,

skj+1︷ ︸︸ ︷
01×M , · · · ,

sk|Ik|︷ ︸︸ ︷
01×M

 , if skj = i,∀i ∈ I, k ∈ U . (34)

Then, we have ‖wi,k‖2 = wH
k Bi,kwk. Following further manipulations, the Lagrangian function of

Problem (33) can be written as

L (w,λ) =
∑
k∈U

(
wH
k Gkwk − ω̃kuH

k ĝH
k,kwk−ω̃kwH

k ĝk,kuk
)
+
∑
i∈I

λi

(∑
k∈Ui

‖wi,k‖2 − Pi,max

)
, (35)

where λ = {λi, i ∈ I} are the dual variables associated with the per-RRH power constraints, and

Gk = ω̃k|uk|2Ẽk,k +
∑

l∈U ,l 6=k |ul|
2ω̃lAk,l.

The dual function is given by

g (λ) = min
w
L (w,λ) (36)

= min
w

∑
k∈U

(
wH
k Jkwk − ω̃kuH

k ĝH
k,kwk − ω̃kwH

k ĝk,kuk
)
−
∑
i∈I

λiPi,max, (37)

where Jk = Gk +
∑

i∈Ik λiBi,k. Since Jk is a positive definite matrix, Problem (37) is a strictly

convex optimization problem, and its optimal solution can be uniquely obtained by solving the

first-order equation:

w?
k = ω̃kukJ

−1
k ĝk,k. (38)

Then, the dual pair of Problem (33) is defined as

max
{λi≥0,∀i}

g(λ). (39)

Since Problem (33) is a convex one, the duality gap between the dual problem and its original

problem is zero. Hence, we can solve its dual problem instead of directly solving the original

problem. To solve the dual problem in (39), we invoke the subgradient method [47], where the

subgradient1 of the function g(·) at λ(n) = [λ
(n)
1 , · · · , λ(n)

I ]T is required at the nth iteration. This

subgradient is provided in the following theorem.

Theorem 1: Let us denote by the optimal solution of Problem (37) {w?
k(λ

(n)),∀k} when λ =

λ(n). Then, the subgradient of function g(·) at λ(n) in the nth iteration is given by

d(n) = P?(λ(n))−Pmax, (40)

1According to [47], a vector d is a subgradient of g(λ) at λ(n), if for all λ, g(λ) ≤ g(λ(n)) + dT (λ− λ(n)) holds.
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where P?(λ(n)) =
[
p?1(λ(n)), · · · , p?I(λ(n))

]T with p?i (λ
(n)) =

∑
k∈Ui

∥∥w?
i,k(λ

(n))
∥∥2, and Pmax =

[P1,max, · · · , PI,max]T.

Proof : With any given λ̃, let us denote the optimal solution of Problem (37) by {w?
k(λ̃),∀k}

when λ = λ̃. Then, we have

g(λ̃) = min
w

∑
k∈U

(
wH
k Gkwk − ω̃kuH

k ĝH
k,kwk−ω̃kwH

k ĝk,kuk
)
+
∑
i∈I

λ̃i

(∑
k∈Ui

‖wi,k‖2 − Pi,max

)

≤
∑
k∈U

(
wH
k (λ(n))Gkwk(λ

(n))− ω̃kuH
k ĝH

k,kwk(λ
(n))−ω̃kwH

k (λ(n))ĝk,kuk
)

+
∑
i∈I

λ̃i

(∑
k∈Ui

∥∥wi,k(λ
(n))
∥∥2 − Pi,max

)
(41)

= g(λ(n)) +
∑
i∈I

(
λ̃i − λ(n)

i

)(∑
k∈Ui

∥∥wi,k(λ
(n))
∥∥2 − Pi,max

)
(42)

= g(λ(n)) +
(
λ̃− λ(n)

)T

(P?(λ(n))−Pmax), (43)

where (41) follows due to the fact that wk(λ
(n)) is not the optimal solution of Problem (37), when

λ = λ̃. Hence, the proof is complete.

Based on Theorem 1, the Lagrangian dual variables are updated as follows

λ(n+1) =
[
λ(n) + ζ(n)d(n)

]+
, (44)

where [x]+ denotes the maximum value between x and 0, while ζ(n) is the step size in the nth

iteration. To guarantee the convergence of the subgradient method, the step size ζ(n) should satisfy

limk→∞ζ
(k) = 0 and

∑∞
k=1 ζ

(k) = ∞ [40]. In the simulation section, the step size is set to

ζ(k) = a/k, where a is a constant parameter.

In summary, the overall solution of Problem (33) is summarized in Algorithm 2.

Complexity Analysis: We now analyze the complexity of Algorithm 1 (i.e., Modified WMMSE

Method). The main computational complexity of Algorithm 1 lies in calculating the BF vectors w

by solving Problem (33). For simplicity, we assume the cluster size of each UE to be equal, i.e.,

|Ik| = l,∀k ∈ U .

We first consider that Problem (33) is solved by transforming it into an SOCP problem and solv-

ing it by the interior point method. The problem has 2lMK real variables and I SOC constraints,

where each one has 2 |Ui|M real variables. By using the similar complexity analysis as the OPA

algorithm, the overall complexity order of Algorithm 1 becomes O
(
tMWMMSE,iter

√
IM3K3l3

)
,

where tMWMMSE,iter is the total number of iterations required for Algorithm 1 to converge.
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Algorithm 2 Solving Problem (33)

Initialize:

Iteration number n = 0, λ(0) = [λ1
(0), · · · , λI (0)];

Repeat

1. Calculate {w?
k(λ

(n)),∀k} with given λ(n) through (38);

2. Calculate the subgradient d(n) by using (40);

3. Update λ(n+1) by using (44), update n← n+ 1;

Until convergence

Let us now assume that Problem (33) is solved by using Algorithm 2. The main complexity

lies in the computation of w?
k in (38), where the matrix inversion operation is involved. Note that

the complexity of inverting matrix Jk is on the order of O (M3l3) [40] and there are K UEs in

total. Then the total complexity of updating the dual variables is given by O (KM3l3). The total

number of iterations required for updating the dual variables is on the order of O (I2) [40]. Hence,

the overall complexity of Algorithm 1 is given by O (tMWMMSE,iterKI
2M3l3) if Problem (33) is

solved by using Algorithm 2.

Our simulation results show that Algorithm 2 has much lower complexity than that of directly

solving Problem (33) through the CVX package.

V. SIMULATION RESULTS

In this section, we provide simulation results for evaluating the performance of the proposed

algorithms. The channel gains are composed of three parts: 1) channel path loss PL = 35.3 +

37.6log10d (dB) [48], where d is the distance measured in meter; 2) log-normal shadowing fading

with zero mean and 8 dB standard derivation; 3) Rayleigh fading with zero mean and unit variance.

Unless otherwise specified, the simulation parameters are set as follows: each RRH’s number of

transmit antennas of M = 2, system bandwidth of B = 20 MHz, noise power spectral density of

−174 dBm/Hz, pilot power of pt = 50 mW, RRH power limit of Pmax = 50 mW, pilot maximum

reuse times of nmax = 3. For simplicity, the weighting factors for each UE are set to be equal to

one, i.e., ωk = 1,∀k ∈ U . The total number of time slots in the channel’s coherence time is set to

T = 80. For simplicity, each UE is assumed to choose its nearest L RRHs as its serving candidate

set, i.e., |Ik| = L,∀k.
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Fig. 4. Illustration of a small C-RAN with four RRHs and three UEs, i.e., I = 4, K = 3. The three UEs constitute an equilateral

triangle, where the distance between any two UEs is 200 m. RRH 4 is located at the center of this triangle and serves all UEs,

while RRH i exclusively serves UE i, where i = 1, 2, 3. The radius of the serving cluster circle for each UE is set as 173 m. RRH

i is randomly generated in the exclusively serving region for UE i, i = 1, 2, 3.
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Fig. 5. WSR versus the power limit.
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Fig. 6. Operation time for the various algorithms.

In the following, we first consider a small C-RAN network in order to study the performance

gap between the modified WMMSE method and the OPA algorithm. Then, we consider an ultra-

dense C-RAN network, where we compare the proposed modified WMMSE method to the existing

algorithms and study the impact of different system parameters on the performance of our algo-

rithms. The modified WMMSE method is initialized by the robust signal-to-leakage-plus-noise

ratio (SLNR) solution detailed in Appendix D.

A. Small C-RAN Networks

In this subsection, we consider the small C-RAN network shown in Fig. 4, which consists of

four RRHs and three UEs. This small C-RAN is considered for simulating the performance of the

OPA algorithm, which has a high computational complexity.
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Fig. 5 shows the WSR versus the power limit for the various algorithms, while Fig. 6 compares

the corresponding calculation time using an E5-1650 CPU operating at 3.5GHz. In Fig. 5, the

performance of the data rate LB and the real data rate obtained through Monte-Carlo simulations

are shown. For the modified WMMSE method, there are two methods of solving Problem (32),

as discussed previously: the SOCP based method and the Lagrangian dual decomposition method.

We find that both methods achieve the same performance. Hence, for clarity, we only use a single

curve to represent their performance in Fig. 5. It is observed from Fig. 5 that the OPA algorithm

only achieves marginal performance gains over the modified WMMSE method for the entire power

limit range. For example, when Pmax = 0 dB, only 0.18 bit/s/Hz rate gain can be achieved by

the OPA algorithm over the modified WMMSE method, despite the OPA algorithm has excessive

complexity, as shown in Fig. 6. Hence the modified WMMSE method is attractive for practical

applications. A similar trend to Fig. 3 is observed in Fig. 5: the gap between the real data rate and

the LB increases with the power limit, and the LB is very close to the real data rate for low power

limit. Fortunately, in ultra-dense C-RAN, the RRH usually operates in the low power regime for

prolonging the lifetime. Hence, it is reasonable to directly consider its LB, rather than focusing

on the complex accurate rate expression. In the following simulations, we only show the rate LB

value formulated in (13) for simplicity.

In Fig. 6, we compare the execution time of the various algorithms. It is observed from our

simulations that both the modified WMMSE algorithm and the OPA algorithm converge within

20 iterations in the scenario of Fig. 4. Hence, for fairness, the maximum number of iterations

for both algorithms is set to 20. As previously discussed, the modified WMMSE algorithm has

only outer-loop iterations, while the OPA algorithm has both inner-loop and outerloop iterations,

where the bisection based search method is used in the inter-loop to find the intersection point on

the rate region boundary. Hence, the OPA algorithm has much higher computational complexity

than the modified WMMSE algorithm, which is reflected by the execution time shown in Fig. 6.

In particular, the OPA algorithm needs more than one minute while the WMMSE algorithm only

needs several seconds when Problem (32) is solved by the SOCP method, and even less than one

second when Problem (32) is solved by the Lagrangian dual decomposition method. Furthermore,

the operation time of the OPA algorithm monotonically increases with the power limit, while

that of the modified WMMSE algorithm remains fixed. As shown in Fig. 6, the Lagrangian dual

decomposition method incurs much lower execution time than that of the SOCP method. For
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example, at most 0.3 s is required by the former method. Hence, in the following simulations

results, the Lagrangian dual decomposition method is adopted to solve Problem (32).

B. Large C-RAN Networks

In this subsection, we consider a larger ultra-dense C-RAN deployed in a square area of 700

m × 700 m. The positions of UEs and RRHs are randomly generated. The number of UEs and

RRHs is set to 24 and 38, respectively. Correspondingly, the densities of UEs and RRHs are 49

UEs/km2 and 77.6 RRHs/km2. This complies with the requirements of the 5G ultra-dense network

[49], where the density of 5G base stations (BS) is expected to be up to 40-50 BS/km2. Each UE

is assumed to be associated with its nearest L RRHs, i.e. |Ik| = L,∀k. The following results are

obtained by averaging over 100 channel generations.

In the following, we compare the performance of our proposed algorithms to the following four

algorithms:

1) ‘Non-robust WMMSE’ algorithm [18] : This algorithm naively assumes a perfectly estimated

channel and ignores the estimation error.

2) ‘Without large-scale’ algorithm [14]: In this algorithm, the channel estimation error is still

considered to be zero and additionally the large-scale channel gains from out-of-cluster RRHs

are also considered to be zero.

3) ‘User-centric CF’ algorithm [26], [27]: In this algorithm, the concept of user-centric cell-

free massive MIMO is adopted, where the beamforming direction is set to match the channel

vector and the power is allocated to be proportional to channel gain.

4) ‘Com-CSI Esti.’ algorithm: In this algorithm, the BBU pool needs to estimate the complete

CSI from all RRHs to each UE. The number of orthogonal pilot sequences is equal to the

total number of UEs K in order to differentiate the channels from the UEs.

Note that except the User-centric CF algorithm, all the other algorithms (including our modified

WMMSE algorithm) have the same complexity. In the following, we study the impact of different

system parameters on the performance of these algorithms.

1) Impact of candidate set size: We first study the impact of candidate set size on the per-

formance of the various algorithms. Fig. 7 shows the WSR versus the candidate set size L.

It is interesting to observe that the WSR achieved by all algorithms except the Com-CSI Esti.

algorithm initially increases with L and then decreases. The reason for the increasing trend is

because increased spatial degrees of freedom become available upon increasing L. However, further
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Fig. 7. WSR versus the candidate size L.
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Fig. 8. WSR versus the number of RRHs.

increasing L beyond 8, more UEs will be connected with each other when constructing the graph

during the channel estimation stage. Then, more pilots are required by the Dsatur algorithm [29]

to satisfy the two constraints in the pilot allocation step. The number of time slots remaining for

data transmission will thus be reduced. Hence, the WSR will decrease. This is in contrast to the

conclusion of the existing work [7], [12], [17]–[19], where the performance of the C-RAN networks

monotonically increases with L. Note that similar trends have also been observed in [25] for the

power minimization problem. Hence, the candidate size should be carefully designed, because a

high L will not only increase the complexity but also imposes a high pilot overhead. On the other

hand, the Com-CSI Esti. algorithm always increases with L and saturates in the large L regime.

The reason is that the number of pilots required is always equal to K that is independent of L,

and larger L will provide increased spatial degrees of freedom. However, in the large L regime,

the signal strength from distant RRHs is weak, which leads to marginal performance improvement

as stated in [26], [27].

It is observed from Fig. 7 that the WSR peaks at L = 8, yielding only a slight increase from

L = 6 to L = 8. Hence, we set L = 6 to achieve a good performance vs complexity trade-off. As

expected, the proposed modified WMMSE algorithm performs better than the other four algorithms.

It is noted from Fig. 7 that the performance gain of the modified WMMSE algorithm over the

Non-robust WMMSE first increases with L and then becomes near constant for larger L. The

reason is that when L is small, only a few CSIs have to be estimated and the estimation error has

a low impact on the system performance. Then, with the increase of candidate size, although large

amount of CSI is required to be estimated, more UEs will be allocated with different pilots due to

the mechanism of the pilot allocation algorithm, which leads to more accurate channel estimation
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(small channel estimation errors). Hence, the gap between the modified WMMSE algorithm and

the Non-robust WMMSE will not enlarge with L. In contrast, the performance gain of the modified

WMMSE algorithm and the Without large-scale algorithm shrinks upon increasing the candidate

size. This can be explained as follows. When L is small, a large amount of large-scale channel gains

are exploited by our proposed modified WMMSE algorithm, which are ignored by the Without

large-scale algorithm. For the large candidate size regime, more channel information is available

at both algorithms, which leads to a similar performance. The User-centric CF algorithm has

the worst performance since heuristic beamforming direction and power allocation are adopted

without any optimization. It is also observed from Fig. 7 that the performance gain of the modified

WMMSE algorithm over the Com-CSI Esti. algorithm slightly decreases with L. The reason is

that the modified WMMSE algorithm requires more pilots for large L, the number of which is

approaching that of the Com-CSI Esti. algorithm.

2) Impact of the number of RRHs: Fig. 8 depicts the WSR versus the number of RRHs using

L = 6. As expected, the WSR obtained by all algorithms linearly increases with the number of

RRHs. This may be due to two reasons. Firstly, for more RRHs, a higher spatial diversity gain

can be exploited, which results in increased WSR. Secondly, more RRHs will result in less UEs

being connected with each other, when constructing the graph during the pilot allocation phase.

This requires less pilots, hence more times slots are left for data transmission. The above two

points mean that having more RRHs will always yield better performance, which is in contrast

to [50], where the system performance was shown to even decrease with the number of RRHs

due to the nature of non-cooperative transmission. By constructing the ultra-dense networks under

the C-RAN architecture, the interference can even be exploited by adopting the CoMP philosphy

and the system performance will continue to increase with the number of RRHs. As expected, the

proposed algorithm achieves the best performance. Hence, both the channel estimation error and

large-scale channel gains of the out-of-cluster RRHs should be taken into account upon designing

the BF vectors. As expected, the User-centric CF algorithm has the worst performance as naive

beamforming solution is used. The proposed MWMMSE algorithm has a WSR gain of roughly

15 bit/s/Hz over the Com-CSI Esti. algorithm over the Com-CSI Esti. algorithm, where all CSI

should be estimated.

3) Impact of the number of UEs: Fig. 9 illustrates the WSR versus the number of UEs for the

various algorithms. It is seen from Fig. 9 that the WSR of all algorithms increases with the number
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Fig. 9. WSR versus the number of UEs.
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Fig. 10. WSR versus the pilot power.

of UEs due to the multiuser diversity. Our proposed algorithm outperforms the other algorithms.

For example, when the number of UEs is 28, the WSR gain achieved by our algorithm over the

Non-robust WMMSE algorithm and the Without large-scale algorithm is given by 2.2 bit/s/Hz

and 13.4 bit/s/Hz, respectively. It is interesting to note that performance gain over the Com-CSI

Esti. algorithm enlarges over the whole range of the number of total UEs. The main reason is

that the increase of the number of total UEs will require a larger number of pilot sequences, and

the remaining time slots for data transmission will reduce. The proposed algorithm significantly

outperform the User-centric CF algorithm, and the WSR gain is up to 36 bit/s/Hz.

4) Impact of pilot power: Fig. 10 shows the WSR versus the pilot power. It is observed again

that the proposed algorithm has superior performance over the other algorithms. As expected, the

WSR achieved by all algorithms increases with the pilot power due to the more accurate channel

estimation. However, the improvement of all algorithms except the Com-CSI Esti. algorithm is

very slow in the high pilot power regime, and the User-centric CF algorithm even becomes flat.

This is mainly due to the fact that the channel estimation error is not so important in the high

pilot power regime, and the limited cluster size is the bottleneck. On the other hand, the WSR

achieved by the Com-CSI Esti. algorithm increases rapidly with the pilot power, which implies

that this algorithm is very sensitive to the channel estimation error. This is reasonable since this

algorithm estimates all the CSI in the system.

VI. CONCLUSIONS

This paper studied the rate maximization problem of ultra-dense C-RANs, where imperfect

intra-cluster CSI was considered. We first derived the rate LB and studied its tightness at different

powers. It was shown that the rate LB is very tight at low transmit powers, which is the case in
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ultra-dense C-RANs. Due to the non-convexity of the rate maximization problem, we invoked the

OPA algorithm to obtain the globally optimal solution as our performance benchmark. Then, to

further reduce the complexity, the modified WMMSE algorithm was proposed to deal with the

imperfect intra-cluster CSI case. Our simulation results showed that the performance gap between

the modified WMMSE algorithm and the OPA algorithm is negligible in the considered examples.

Furthermore, the proposed WMMSE algorithm provides superior performance over the existing

algorithms.

This paper assumed that the fronthaul capacity on each fronthaul link is infinity. However,

in ultra-dense C-RANs, the fronthaul links are expected to be deployed through wireless links

since they are cost-effective and flexible. Then, the fronthaul capacity imposed by wireless links

is more stringent than the conventional wired links such as optical fibers, and needs to be taken

into account. In this case, the user association should be optimized under the fronthaul capacity

constraints, which incurs performance loss compared with infinity capacity since some users cannot

be associated with the RRHs with very stringent capacity constraints. This kind of optimization

problem mixed integer non-linear programming (MINLP) problem, which is NP-hard and will be

left for future work.

APPENDIX A

PROOF OF POSITIVE DEFINITENESS OF MATRIX Al,k

We consider two cases: 1) UE l and UE k have no common serving RRHs, i.e., Il ∩ Ik = φ;

2) UE l and UE k have at least one common serving RRH, i.e., Il ∩ Ik 6= φ.

For the first case, according to the definitions of Al,k in (14) and (15), Al,k can be calculated

as Al,k = blkdiag {αi,kIM×M , i ∈ Il}. Obviously, Al,k is a positive definite matrix.

For the second case, without loss of generality, we assume that only the first p RRHs in Il are

common with Ik, i.e., sli ∈ Ik,∀1 ≤ i ≤ p and sli /∈ Ik,∀p + 1 ≤ i ≤ |Il|. Then, the matrix Al,k

can be expanded as

Al,k = ql,kq
H
l.k + Λl,k, (A.1)

where ql,k is given by

ql,k =

ĥH
sl1,k

, · · · , ĥH
slp,k

,0H
M×1, · · · ,0H

M×1︸ ︷︷ ︸
|Il|−p


H

, (A.2)
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and Λl,k is given by

Λl,k = blkdiag
{
δsli,kIM×M , 1 ≤ i ≤ p, αsli,kIM×M , p+ 1 ≤ i ≤ |Il|

}
. (A.3)

Since Λl,k is a positive definite matrix and ql,kq
H
l.k is a semi-positive definite matrix, Al,k is a

positive definite matrix, which completes the proof. �

APPENDIX B

ACCURATE CLOSED-FORM EXPRESSION FOR NON-OVERLAPPED CLUSTER CASE

The effective SINR of UE k in (10) can be rewritten as

ηk =
|Xk|2

|Yk,k|2 +
∑

l 6=k,l∈U |Yl,k|
2 + σ2

, (B.1)

where Xk = ĝH
k,kwk, Yk,k = g̃H

k,kwk and Yl,k = gH
l,kwl,∀l 6= k. Since ĝk,k is the estimated channel

vector and wk is a deterministic BF vector, Xk is a deterministic value. Hence, only the terms in the

denominator of the SINR contains random variables, i.e., {Yl,k,∀l ∈ U}. Note that g̃k,k is the un-

known channel estimation error obeying the distribution of CN (0,Ek,k). Then, given the BF vector

wk, Yk,k is a Gaussian random variable with zero mean and a variance given by $k,k = wH
k Ek,kwk,

i.e., Yk,k ∼ CN (0, $k,k). Furthermore, since we consider the non-overlapped scenario, all the

elements in the channel vector gl,k are unknown. Hence, according to the definition of Al,k in (14)

and (15), we know that gl,k follows the distribution of CN (0,Al,k). It can be readily verified that

Al,k is a diagonal matrix that can be calculated as Al,k = blkdiag
(
αsl1,kIM×M , · · · , αsl|Il|,kIM×M

)
.

Then, given the BF vector wl, Yl,k, l 6= k is a Gaussian random variable with zero mean and a

variance given by $l,k = wH
l Al,kwl, i.e., Yl,k ∼ CN (0, $l,k).

By defining Zk =
∑

l∈U |Yl,k|
2, Zk follows a generalized chi-squared distribution, given by [51]

f(zk) =
∑
l∈U

Tl,ke
−zk/$l,k , (B.2)

where Tl,k is given by

Tl,k =
1

$l,k

∏
j∈U ,j 6=l

(
1− $j,k

$l,k

) .
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Then, the achievable data rate of UE k can be derived as

rk =

∫ ∞
0

log2

(
1 +

|Xk|2

zk + σ2

)
f(zk)dzk

=
∑
l∈U

Tl,k

∫ ∞
0

log2

(
1 +

|Xk|2

zk + σ2

)
e
− zk
$l,k dzk

=
∑
l∈U

−Tl,k$l,k

ln 2

∫ ∞
0

[
ln
(
zk + σ2 + |Xk|2

)
− ln

(
zk + σ2

)]
de
− zk
$l,k

=
∑
l∈U

Tl,k$l,k

ln 2

ln

(
1 +
|Xk|2

σ2

)
+

∫ ∞
0

e
− zk
$l,k

zk + σ2 + |Xk|2
dzk−

∫ ∞
0

e
− zk
$l,k

zk + σ2
dzk

 (B.3)

=
∑
l∈U

Tl,k$l,k

ln 2

[
ln

(
1 +
|Xk|2

σ2

)
−e

σ2+|Xk|2
$l,k Ei

(
−σ

2+|Xk|2

$l,k

)
+ e

σ2

$l,k Ei

(
− σ2

$l,k

)]
(B.4)

where Ei(x) = −
∫∞
−x (e−t/t) dt is an exponential integral function, (B.3) follows by using inte-

gration by parts, and (B.4) follows by using [Eq. (3.352.4), [52]]. �

APPENDIX C

PROOF OF LEMMA 1

The proof is established by showing that for a given BF vector w, the maximum value of the

function Ψk (w, uk, qk) is equal to the achievable rate r̃k.

Note that the function Ψk (w, uk, qk) is a concave one with respect to (w.r.t.) uk when qk is fixed,

and vice versa. Hence, for a given w, the optimal solution of uk and qk to achieve the maximum

value of Ψk (w, uk, qk) can be obtained by setting the first derivative of Ψk (w, uk, qk) w.r.t. uk

and qk to zero, which are respectively given in (29) and (30).

By substituting the expression of u?k into the MSE expression in (27), we obtain εk (u?k,w) in

(31). By inserting the expressions of q?k and εk (u?k,w) into the function Ψk (w, uk, qk), we have

Ψk (w, u?k, q
?
k) =

T − τ
T

log2e ln

1−
∣∣ĝH
k,kwk

∣∣2∣∣ĝH
k,kwk

∣∣2+wH
k Ek,kwk+

∑
l∈U ,l 6=k

wH
l Al,kwl+σ2


−1

(C.1)

=
T − τ
T

log2

1 +

∣∣ĝH
k,kwk

∣∣2
wH
k Ek,kwk +

∑
l 6=k,l∈U

wH
l Al,kwl + σ2

 (C.2)

= r̃k, (C.3)

which completes the proof. �
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APPENDIX D

INITIALIZATION OF THE MODIFIED WMMSE ALGORITHM: MAXIMUM SLNR

For each RRH i, its total power is equally allocated to its served UEs:

pi,k =
Pi,max

|Ui|
, k ∈ Ui. (D.1)

Then, the BF optimization problem for UE k is formulated by

max
wk

wH
k ĝk,kĝ

H
k,kwk

wH
k Ek,kwk +

∑
l 6=k,l∈U wH

k Ak,lwk + σ2
(D.2a)

s.t. ‖wi,k‖2 = pi,k,∀i ∈ Ik. (D.2b)

Note that the OF of Problem (D.2) is different from the conventional SLNR for perfect CSI in

[53], since the self-interference is also incorporated into the denominator of the SLNR expression.

Due to the per-RRH power limit for UE k in (D.2b), Problem (D.2) is difficult to solve, and

the method designed for the total transmit power of each UE in [53] cannot be applied. To deal

with this difficulty, we first consider the following alternative optimization problem:

max
wk

wH
k ĝk,kĝ

H
k,kwk

wH
k Ek,kwk +

∑
l 6=k,l∈U wH

k Ak,lwk + σ2
(D.3a)

s.t. ‖wk‖2 = Pk, (D.3b)

where Pk =
∑

i∈Ik pi,k. Note that the per-RRH power limit for UE k is relaxed to the total power

constraints in (D.3b), which can facilitate the acquisition of the closed-form BF solution. The per-

RRH power limit will be revisited later. Obviously, Problem (D.3) is a generalized Rayleigh quotient

problem, and the optimal BF vector for UE k is given by the generalized eigenvector corresponding

to the largest generalized eigenvalue of matrix ĝk,kĝ
H
k,k and matrix Ek,k +

∑
l 6=k,l∈U Ak,l + σ2/PkI

[54]. Note that the latter one is invertible, the optimal solution to Problem (D.3) is calculated as

w∗k =
√
Pk

(
Ek,k +

∑
l 6=k,l∈U Ak,l + σ2/PkI

)−1

ĝk,k∥∥∥∥(Ek,k +
∑

l 6=k,l∈U Ak,l + σ2/PkI
)−1

ĝk,k

∥∥∥∥ . (D.4)

Then, we normalize the BF vector w∗k to satisfy the per-RRH power limit for UE k in (D.2b),

which is given by

w∗i,k =
√
pi,k

[w∗k](i−1)M+1:iM∥∥∥[w∗k](i−1)M+1:iM

∥∥∥ ,∀i ∈ Ik, (D.5)

where [w]a:b denotes the ath element to the bth element of vector w.
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