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Abstract

In this paper, we investigate the downlink transmission for cache-enabled fog radio access networks

aiming at maximizing the delivery rate under the constraints of fronthaul capacity, maximum transmit

power, and size of files. To reduce the delivery latency and the burden on fronthaul links and make full

use of the local cache and baseband signal processing capabilities of enhanced remote radio heads

(eRRHs), a two-level transmission scheme including cache-level and network-level transmission is

proposed. In cache-level transmission, only requested files cached at the local cache are transmitted

to the corresponding users. The duration of cache-level transmission is the delay caused by the transfer

between the baseband unit (BBU) and eRRHs as well as the signal processing at the BBU. The remaining

requested files are jointly transmitted to the corresponding users at network-level transmission. For cache-

level transmission, a centralized optimization algorithm is firstly presented and then a decentralized

optimization algorithm is provided to avoid the exchange of signaling among eRRHs. Meanwhile,

another centralized optimization algorithm is presented to tackle the optimization problem for network-

level transmission. All presented algorithms are proved to converge to the Karush-Kuhn-Tucker (KKT)

solutions of the problems. Numerical results are provided to validate the effectiveness of the proposed

transmission scheme as well as evaluating the system performance.
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I. INTRODUCTION

To cope with the continuously increasing number of wireless devices, to satisfy the demand of

high data rates, and to meet the stringent quality-of-service (QoS) requirement of the emerging

wireless services, various advanced communication technologies have been proposed in recent

years [1]. For example, cooperative communication [2], massive multiple-input multiple-output

(MIMO) [3], and network densification [4] are key technologies to achieve high capacity, high

data rate, and guarantee network coverage in the fifth generation (5G) mobile cellular systems.

Especially for network densification, cloud radio access network (C-RAN) is considered as an

emerging network architecture that shows significant promises in suppressing interference and

coordinately allocating resource for wireless networks [6]–[8]. In C-RAN, the remote radio

heads (RRHs) are connected to a central processor, i.e., baseband signal processing unit (BBU),

through fronthaul links [9]–[11]. However, performing completely joint processing requires not

only signaling overhead but also payload data sharing among all coordinated RRHs, resulting

in tremendous burden on fronthaul links [12]–[16]. Thus, the design of transmission scheme

needs to take the limitation of the capacity of fronthaul links into account. In [12]–[14], the

maximization problem of weighted sum rate was investigated under the constraint of fronthaul

capacity. In [15], the data-sharing strategy and compression strategy were studied regarding the

energy efficiency of the C-RANs. In [16], joint design of fronthaul and radio access links for

C-RANs was investigated. Note that a common assumption in aforementioned literature is that

the coordinated RRHs do not have the ability to cache data files.

One of the most challenging requirements in 5G is the provision of connections with low end-

to-end latency. In most cases, the latency should be smaller than 100 ms, while sometimes it is

smaller than 10 ms [17]. The low latency is demanded by some applications such as augmented

reality and vehicular communications [18]. One solution to reduce the end-to-end latency as

well as the fronthaul bottleneck in C-RANs is using distributed caches at the edge of the mobile

cellular network, referred to as fog radio access networks (F-RANs) [19]–[21]. The resulting

RRHs are referred to as enhanced RRHs (eRRHs). The eRRHs can pre-fetch the most frequently

requested files to the eRRHs’ local caches during off-peak traffic periods so that the fronthaul
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overhead can be reduced during the peak traffic periods. In this way, lower latency and higher

spectral efficiency can be achieved [21]. In [22], the optimization of hybrid cache placement of

data files for coordinated relaying networks was studied. Then the cache placement in F-RANs

was investigated by fully considering the flexibility of physical-layer transmission and diverse

content preferences of different users [23]. In [24], joint design of cloud and edge processing

for the downlink of F-RANs was investigated for maximizing the minimum user delivery rate.

In [25], the problem of minimizing the system cost that accounts for fronthaul overhead while

satisfying the target signal-to-interference-plus-noise ratio (SINR) was considered. More recently,

the authors of [26] proposed to use wireless caching to enhance the physical layer security of

video streaming in cellular networks with limited backhaul capacity.

In general, the sum rate maximization or power minimization problem subject to QoS and

transmit power constraints needs to be centrally solved for interference channels [24]–[26].

Meanwhile, some decentralized optimization algorithms were also developed to reduce the burden

of information collection [27]–[31]. In [27], a distributed weighted sum rate maximization

(WSRMax) method was proposed via exploiting the relation between the user rate and the

minimum mean square error (MMSE) for interfering broadcast channel. At each iteration all

mobile terminals need to first estimate the covariance matrices of their received signals, and

then compute and feed back some parameters to the eRRHs. To avoid the estimation of the

covariance matrices at each mobile terminal, the authors of [28] proposed a distributed approach

to maximize the WSRMax problem with limited signaling exchange among eRRHs. In [29], both

centralized and distributed beamforming algorithms were proposed to solve power minimization

and SINR balancing problem. In [30], the max-min fairness problem under the total power

constraint was tackled from the perspective of transmit power minimization, where a distributed

hierarchical iterative algorithm was proposed based on the uplink-downlink duality. In [31], a

decentralized optimization method was proposed by exploiting interference temperature [32] to

maximize the system energy efficiency. However, the decentralized optimization algorithms in

the aforementioned literature need signaling exchange in each iteration during the optimization

process, which not only requires strict synchronization but also generates some backhaul or

fronthaul burden among coordinated eRRHs. The signaling exchange per iteration between

coordinated eRRHs is nevertheless not desirable for low latency communications.

The joint transmission of cached and uncached requested contents in [24]–[26] only used
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the caching to reduce the burden on fronthaul links without making full use of the caching to

reduce the delivery latency. However, one of the main motivation of introducing edge caching

is to reduce the delivery latency for satisfying the demands of the latency-sensitive traffic for

future wireless communication system [33]. To the best of the authors’ knowledge, how to fully

exploit the capabilities, i.e., caching and baseband signal processing, of eRRHs to reduce the

delivery latency and the overhead of fronthaul links is still an enormous challenge for wireless

transmission in F-RANs. In this paper, we investigate the downlink transmission mechanism

for cache-enabled F-RANs. We divide the transmission of the requested files into two-level,

i.e., cache-level transmission and network-level transmission. In cache-level transmission, only

requested files cached at the local cache are transmitted to the corresponding users. The duration

of cache-level transmission is the delay caused by the transfer between the BBU and eRRHs as

well as by the signal processing at the BBU. The remaining requested files are jointly transmitted

to the corresponding users at network-level transmission. Our objective is to maximize the

delivery rate under the constraints of fronthaul capacity, maximum transmit power of each eRRH,

and size of cached data files. The corresponding optimization algorithms are presented to address

the problems of interest. Specifically, the contribution of this work is summarized as follows:

• A two-level transmission scheme including cache-level and network-level transmission is

proposed to reduce the delivery latency and the burden on fronthaul links by making full

use of the local cache and the signal processing capabilities of eRRHs.

• For cache-level transmission, coordinated beamforming is adopted to improve the spectral

efficiency. A centralized optimization algorithm is firstly designed to maximize the sum of

network delivery rates. To avoid the demand of centralized processing and the exchange of

signaling among eRRHs, a decentralized algorithm is then presented to maximize the sum of

network delivery rates by introducing a new concept of signal-to-interference-leakage-noise

ratio (SILNR) for cache-level transmission.

• For network-level transmission, joint transmission is adopted to maximize the system per-

formance such that the inter-user interference can be effectively controlled. At the same

time, an optimization algorithm is developed using convex approximation methods.

• All presented algorithms are proved to converge to the Karush-Kuhn-Tucker (KKT) so-

lutions of the problems. The computational complexity of all presented algorithms is also
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analyzed. Numerical results are further provided to corroborate the effectiveness of proposed

algorithms and unveil that how to cache files and how many files to cache are key problems

for cache-enabled F-RANs.

The remainder of this paper is organized as follows. The system model is described in

Section II. Section III formulates the optimization problem of the proposed two-level transmission

scheme. The design of optimization algorithm for cache-level transmission is investigated in

Section IV. In Section V, an optimization algorithm for network-level transmission is developed.

Numerical results are provided in Section VI. Finally, Section VII concludes the paper.

Notations: Bold lowercase and uppercase symbols represent column vectors and matrices, re-

spectively. The superscripts (·)T and (·)H represent the matrix transpose and conjugate transpose,

respectively. For a set A, |A| denotes the cardinality of A. For a complex-valued number x and

a matrix A, |x| and |A| denote the absolute value of x and the determinant of A, respectively.

tr (·) and ‖·‖ denote the trace and the Euclidean norm, respectively. 0N×N and IN×N denote the

N ×N zero matrix and N ×N identity matrix, respectively. The circularly symmetric complex

Gaussian distribution with mean µ and covariance matrix R is denotes by CN (µ,R). Diag(a)

denotes a diagonal matrix with the main diagonal given by a.

II. SYSTEM MODEL

As illustrated in Fig. 1, the considered cache-enabled F-RANs include a BBU connected to

KR eRRHs serving totally KU single-antenna users. The index sets of the eRRHs and the users

are denoted as KR , {1, · · · , KR} and KU , {1, · · · , KU}, respectively. The eRRH i equipped

with Nt,i antennas is connected to the BBU through an error-free fronthaul link with the capacity

of Ci bits per symbol. The eRRH i is also equipped with a cache, which can store nBi > 0 bits,

∀i ∈ KR, where n is the number of symbols transmitted in each downlink transmission interval.

The BBU in the “cloud” can perform signal processing globally, while the eRRHs at the edge

of the “cloud” can only perform signal processing locally.

Assume that each user k ∈ KU requests contents or files from library F = {1, · · · , F} stored

in the BBU. Without loss of generality, we assume that all files in library F are of the same size

of nS bits. For simplicity, in this paper, we further assume that the files cannot be partitioned

and different eRRH caches different files. The eRRH i ∈ KR pre-stores bBi/Sc files in its

cache based on the user behavior, the delay-sensitive requirement, the long-term information of
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Fig. 1: Illustration of the system model.

the popularity distribution, the fronthaul capacity, and etc [22]–[25]. The state of cached file f ,

f ∈ F , can be modeled by defining binary variables cf,i, f ∈ F , i ∈ KR, as

cf,i =

1, if f is cached by eRRH i,

0, otherwise.
(1)

At the same time, cf,i satisfies the conditions
∑
i∈KR

cf,i = 0 or
∑
i∈KR

cf,i = 1, indicating that

different eRRH caches different files. For simplicity, in this work, we assume that the state

information cf,i, f ∈ F , i ∈ KR, is predetermined. Thus, if file fk requested by user k is cached

in the local cache of its serving eRRH, it can be retrieved directly from the eRRH without

downloading from the BBU1. Otherwise, the information of file fk needs to be transferred to its

serving eRRH from the BBU via the fronthaul link.

1Each eRRH can retrieve the information of requested files by learning-based methods and is out of the scope of this work.

The developed method in this work can be easily extended to the case where each eRRH caches multiple different files and the

case where the file can be partitioned into multiple subfiles.
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III. PROBLEM FORMULATIONS

In order to make full use of the functionalities of cache as well as the signal processing capabil-

ity of each eRRH, in this paper, the data transmission is divided into two-level transmission. The

first level transmission is cache-level transmission where all eRRHs coordinately transmit cached

files to scheduled users via coordinated beamforming. The duration of cache-level transmission is

the delay caused by the signal processing at BBU and the information exchange between eRRH

and the BBU. The second level transmission is network-level transmission where a quantized

version of the precoded signals of the untransmitted requested files is sent to the eRRHs via

fronthaul links and then all eRRHs jointly transmit it to KU users via joint transmission.

A. Cache-level Transmission

To reduce the latency incurred by the propagation of the fronthaul link and the signal process-

ing at the BBU, eRRH i firstly transmits data to users, denoted as Ki ⊆ KU, whose requested files

are stored in the local cache in cache-level transmission. Furthermore, Ki∩Kj 6= ∅, i 6= j ∈ KR,

and ∪i∈KR
Ki ⊆ KU. As a numerical example, user set Ki can be given by

Ki =
{
k :
∣∣{k′ : cfk′ ,i ‖hk′,i‖ > cfk,i ‖hk,i‖

}∣∣ < Ns and cfk,i == 1
}

(2)

where Ns is a scalable parameter with Ns ≤ Nt,i and fk is the requested file index of user k.

Here we assume that each user requests a single file. For cache-level transmission, the signal

transmitted by the eRRH i can be expressed as

xc
i =

∑
k∈Ki

cfk,igk,isfk . (3)

where gk,i ∈ CNt,i×1 is the beamforming vector and gk,i = 0 for k /∈ Ki. The signal received at

user k, ∀k ∈ KU, can be expressed as:

yck =
∑
i∈KR

hHk,ix
c
i + nk, (4)

where hk,i ∈ CNt,i×1 denotes the channel coefficients between user k and eRRH i and nk ∼

CN (0, σ2) is the additive white Gaussian noise (AWGN). Note that in (4), we assume that

baseband signal sfk and noise nk are independent, ∀i ∈ KR, k ∈ KU. Thus, the achievable rate
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of user k ∈ KU served by eRRH i is calculated as Rc
k,i = log2

(
1 + γck,i

)
, where γck,i is the

signal-to-interference-plus-noise ratio (SINR) that is calculated as

γck,i =

∣∣cfk,ihHk,igk,i∣∣2∑
k′∈Ki\{k}

∣∣cfk′ ,ihHk,igk′,i∣∣2 +
∑

j∈KR\{i}

∑
k′∈Kj

∣∣cfk′ ,jhHk,jgk′,j∣∣2 + σ2
. (5)

The goal is to maximize the sum of delivery rate by optimizing the transmit beamforming

vectors at each level transmission. Thus, for cache-level transmission, the optimization of gk,i,

k ∈ Ki, i ∈ KR, can be realized by solving the following problem2:

max τ
∑
i∈KR

∑
k∈Ki

rck,i, (6a)

s.t. rck,i ≤ Rc
k,i,∀k ∈ Ki,∀i ∈ KR, (6b)

τrck,i ≤ S,∀k ∈ Ki,∀i ∈ KR, (6c)∑
k∈Ki

‖cfk,igk,i‖
2 ≤ Pi,∀i ∈ KR, (6d)

where the variable is
{
gk,i, r

c
k,i

}
k∈Ki,i∈KR

. rck,i denotes the delivery rate of user k served by

eRRH i, ∀k ∈ Ki, ∀i ∈ KR, for cache-level transmission. In problem (6), constraint (6b) shows

that the delivery rate rck,i is bounded by the achievable data rate Rc
k,i. Constraint (6c) denotes

that the number of delivery data cannot exceed the cached file size S. Constraint (6d) means

the maximum transmit power constraint on the beamforming vectors. τ is a summation of the

delay caused by the signal processing time at BBU and the information exchange time between

eRRH i and the BBU. For simplicity, we assume that the delay τ is the same for all eRRHs.

For full caching case, i.e., all requested files are stored the local cache, the value of the delay τ

is set be unit in optimization problem (6) and network-level transmission is not need. From the

description of problem (6), one can see that the duration of the cache-level transmission is also

τ .

2The idea of this work can be extended to the scenario where multiple users request the same file via multi-cast transmission

as well as the scenario where the user equipped with multiple antennas requests multiple files via spatial multiplexing. What

we need to do is to adjust the formulation of problems (6) and (10) according to the parameters of the corresponding scenario.

However, it is left as our future work.
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B. Network-level Transmission

For network-level transmission, all eRRHs coordinately transmit data to all scheduled users

by using joint transmission [2]. Although joint transmission can effectively control the intra-

and inter-eRRH interference and improve the quality of service for each user, the BBU needs to

collect all channel state information (CSI) and allocates the processed data files to each eRRH

resulting in a considerable large amount of overhead on the fronthaul links. For network-level

transmission, the signal transmitted by eRRH i is expressed as3:

xn
i = xi + qi =

∑
k∈KU

uk,isfk + qi, (7)

where uk,i ∈ CNt,i×1 is the beamforming vector for file fk used at eRRH i. The quantization

noise qi ∈ CNt,i×1 is assumed to be independent of the transmitting signal and distributed as

qi ∼ CN (0,Ωi). The signals xi and xj for different eRRHs i 6= j are quantified independently

so that the quantization noise signals qi and qj are independent [24]. For ease of presentation, let

Ω be the covariance matrix of quantization noise, i.e., Ω = Diag (Ω1, · · · ,ΩKR
). For network-

level transmission, the signal received at user k, ∀k ∈ KU, can be expressed as:

ynk =
∑
i∈KR

hHk x + nk, (8)

where hk =
[
hHk,1, · · · ,hHk,KR

]H and x =
[
(xn

i )
H , · · · ,

(
xn
KR

)H]H . For the joint transmission, we

implicitly assume that the stringent synchronization of timing and frequency among eRRHs has

been finished. Similarly, the achievable rate of user k ∈ KU is calculated as Rn
k = log2 (1 + γnk ),

where SINR γnk is given by:

γnk =

∣∣hHk uk
∣∣2∑

k′∈KU,k′ 6=k
|hHk uk′ |

2
+ hHk Ωhk + σ2

, (9)

where uk =
[
uH
k,1, · · · ,uH

k,KR

]H.

3Note that point-to-point compression algorithm is adopted to quantize the precoded signals for each eRRH during the network-

level transmission. As pointed out in [8], we can adopt some advanced compression algorithm to quantize the precoded signals

such that the system performance can be further improved. Therefore, we would like to study the performance of the proposed

two-level transmission scheme with advanced compression algorithm in our future work.
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Similarly, for network-level transmission, the transmit beamforming vectors uk, k ∈ KU, are

optimized centrally at the BBU by addressing the following problem:

max
∑
k∈KU

rnk, (10a)

s.t. rnk ≤ Rn
k,∀k ∈ KU , (10b)∑

k∈KU

‖Biuk‖2 + tr (Ωi) ≤ Pi,∀i ∈ KR, (10c)

rnk ≤ max (S − τrck, 0) ,∀k ∈ KU , (10d)

log2

(∣∣Ai

∣∣)− log2 (|Ωi|) 6 Ci,∀i ∈ KR, (10e)

where the variables are {uk, rnk,Ωi}k∈KU,i∈KR
. Also note that rnk denotes the delivery rate of user

k during network-level transmission, ∀k ∈ KU, and Ai = Bi

∑
k∈KU

(1− cfk,i) uku
H
k BH

i + Ωi with

matrix Bi ∈ CNt,i×Nt being defined as

Bi =
[
0Nt,i×N1

Bi
, INt,i×Nt,i

,0Nt,i×N2
Bi

]
with N1

Bi
=

i−1∑
j=1

Nt,j and N2
Bi

= Ntt −
i∑

j=1

Nt,j , where Ntt =
∑
i∈KR

Nt,i. rck = max
i∈KR

rck,i denotes

the maximum transmission rate of user k at cache-level transmission4. In problem (10), (10d)

constrains the size of network-level transmission file not to exceed the remaining file size

max (S − τrck, 0)5. Constraint (10e) is due to the fronthaul capacity constraints ensuring the

signal xn
i can be reliably recovered by eRRH i [34, Ch 3]. Note that when τ is zero, problem (10)

becomes the optimization problem of precoding matrices for traditional cloud-based coordinated

joint transmission system under the constraints of the fronthaul capacity, the size of data files,

and the maximum transmit power of eRRHs.

From the aforementioned analysis, one can see that the minimum delivery content of our

proposed two-level transmission scheme is the sum of the minimum delivery rate achieved by

cache-level transmission and that of network-level transmission, i.e., Tp = τ
∑
i∈KR

∑
k∈Ki

rck,i +

4We assume that the BBU can obtain the values of rck,i, ∀k ∈ KU, ∀i ∈ KR, according to the cache state information

{cf,i}f∈F,i∈KR
and the transmission scheme adopted by each eRRH, i.e., (6).

5Note that different from [12]–[15], and [24], [25], the size of transmitted files in cache-level transmission is included in the

constraints (10d). This provides a chance to increase transmit rate of untransmitted files, i.e., improve the system delivery rate.
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∑
k∈KU

rnk. The total minimum delivery content is TT =
∑
k∈KU

rnk for the traditional cloud-based

coordinated joint transmission system.

Remark 1. Note that in network-level transmission, all eRRHs transmit quantized precoding

signals received from the BBU. However, in [21], all eRRHs transmit a superposition of precoded

signals received from the BBU and locally precoded signals based on the caching files. The

coupling of the precoding matrices used at all eRRHs make the optimization problem more

difficult such that a central controller is used to optimize the precoding matrices [21]. Thus, the

precoding matrices used at each eRRH need to be transmitted to the corresponding eRRH. In

our proposed scheme, we use the caching files to simultaneously reduce the delivery latency

and the burden on fronthaul links. Namely, in cache-level transmission, the required files which

are cached at eRRHs are first transmitted to the corresponding users during the delay time τ .

Meanwhile, the burden on fronthaul links is also reduced under the constraints of (10d) and (10e).

IV. DESIGN OF OPTIMIZATION ALGORITHM FOR CACHE-LEVEL TRANSMISSION

In this section, we first focus on addressing problem (6) by designing a centralized optimization

method. Then, to avoid the exchange of signaling between coordinated eRRHs, a novel concept

of signal-to-interference-leakage-noise ratio (SILNR) is introduced to maximize the intra-eRRH

delivery rate while suppressing inter-eRRH interference. Finally, we design a decentralized opti-

mization algorithm to obtain the coordinated beamforming vectors for cache-level transmission.

A. Centralized Optimization for Cache-level Transmission

For coordinated interference networks, the existing of intra-and inter-eRRH interference leads

the user rate Rc
k,i to be a nonconcave function. In other words, it is generally difficult to find

the global optimal solution of (6). Therefore, this requires the relaxations of the optimization

conditions in order to provide reasonable design for practical implementations. The first thing

of addressing problem (6) is to transfer it into a solvable form by using some mathematical

methods. In the sequel, we introduce some auxiliary variables εk,i, ∀k ∈ K̃i, ∀i ∈ KR, which

denote the interference leakage limitation [35]. Thus, problem (6) is equivalently reformulated

as:

max
∑
i∈KR

∑
k∈Ki

rck,i, (11a)
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s.t. rck,i ≤ R̂c
k,i,∀k ∈ Ki, ∀i ∈ KR, (11b)∑

k∈Ki

∣∣cfk,ihHk′,igk,i∣∣2 6 εk′,i, ∀k′ ∈ K̃i,∀i ∈ KR, (11c)

τrck,i ≤ S,∀k ∈ Ki,∀i ∈ KR, (11d)∑
k∈Ki

‖cfk,igk,i‖
2 ≤ Pi,∀i ∈ KR, (11e)

where the variables are
{
gk,i, r

c
k,i

}
k∈Ki,i∈KR

and {εk,i}k∈K̃i,i∈KR
. The set K̃i is given by

K̃i =
{
k′ : k′ ∈ KU \ Ki and cfk′ ,j = 1,∀j ∈ KR \ {i}

}
.

and R̂c
k,i = log2

(
1 + γ̂ck,i

)
with γ̂ck,i redefined as

γ̂ck,i =

∣∣cfk,ihHk,igk,i∣∣2∑
k′∈Ki\{k}

∣∣cfk′ ,ihHk,igk′,i∣∣2 + σ2
k,i

(12)

where σ2
k,i =

∑
j∈KR\{i}

εk,j +σ2. Constraint (11c) is activated at the optimal point of problem (11).

Unfortunately, problem (11) is still a nonconvex due to the existing of inter-user interference

in the denominator of γ̂ck,i defined in (12). To overcome this difficulty, we firstly reformulate

problem (11) into the following equivalent form:

max
∑
i∈KR

∑
k∈Ki

rck,i, (13a)

s.t. rck,i ≤ log2

(
1 + γck,i

)
,∀k ∈ Ki,∀i ∈ KR, (13b)

γck,i 6

∣∣cfk,ihHk,igk,i∣∣2
χk,i

,∀k ∈ Ki,∀i ∈ KR, (13c)∑
k∈Ki

∣∣cfk,ihHk′,igk,i∣∣2 6 εk′,i, ∀k′ ∈ K̃i,∀i ∈ KR, (13d)

∑
k′∈Ki\{k}

∣∣cfk′ ,ihHk,igk′,i∣∣2 + σ2
k,i ≤ χk,i, ∀k ∈ Ki,∀i ∈ KR, (13e)

τrck,i ≤ S,∀k ∈ Ki,∀i ∈ KR, (13f)∑
k∈Ki

‖cfk,igk,i‖
2 ≤ Pi,∀i ∈ KR, (13g)

where the variables are
{
gk,i, r

c
k,i, γ

c
k,i, χk,i

}
k∈Ki,i∈KR

and {εk,i}k∈K̃i,i∈KR
. Note that in prob-

lem (13), constraints (13c), (13d), and (13e) are activated at the optimal point of problem (13).

Although the function |cfk,ih
H
k,igk,i|2
χk,i

in (13c) is convex function, constraint (13c) is non-convex.
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Therefore, problem (13) is still non-convex. If K̃i = ∅, the corresponding constraint given

in (13d) can be removed, implying that the interference suppression among eRRH i, ∀i ∈ KR

is not needed.

In what follows, we try to iteratively convexify the non-convex constraint (13c) such that an

iterative optimization method is designed to address problem (13). In light of [36]–[39], we

replace the right side of the inequality in (13c) by its lower bound, which now can be obtained

by the first order approximation due to the convexity of |cfk,ih
H
k,igk,i|2
χk,i

. In particular, we have∣∣cfk,ihHk,igk,i∣∣2
χk,i

≥ Φ
(I)
k,i (gk,i, χk,i) ,∀k ∈ Ki, ∀i ∈ KR, (14)

where Φ
(I)
k,i (gk,i, χk,i) is defined as

Φ
(I)
k,i (gk,i, χk,i) ,

2<
(
cfk,i

(
g
(I)
k,i

)H
hk,ih

H
k,igk,i

)
χ
(I)
k,i

−


∣∣∣cfk,ihHk,ig(I)

k,i

∣∣∣
χ
(I)
k,i

2

χk,i. (15)

In (15), g
(I)
k,i and χ(I) denote the values of variables gk,i and χ obtained at the I-th iteration,

respectively. Thus, we resort to solving iteratively problem (16) to obtain the solution to prob-

lem (11) instead of solving problem (13) directly.

max
∑
i∈KR

∑
k∈Ki

rck,i, (16a)

s.t. (13b), (13d), (13e), (13f), (13g), (16b)

γck,i 6 Φ
(I)
k,i (gk,i, χk,i) ,∀k ∈ Ki,∀i ∈ KR, (16c)

where the variables are
{
gk,i, r

c
k,i, γ

c
k,i, χk,i

}
k∈Ki,i∈KR

and {εk,i}k∈K̃i,i∈KR
. Problem (16) is a con-

vex problem that can be easily solved with classical convex optimization solver, e.g., CVX [40].

The detailed steps used to solve problem (11) are summarized as Algorithm 1 where η is a

predefined stop threshold.

Let rc denote the objective value of problem (16). If we replace gk,i, rck,i, γ
c
k,i, χk,i, and εk′,i

with g
(I)
k,i ,
(
rck,i
)(I), (γck,i)(I), χ(I)

k,i , and ε(I)k′,i, k
′ ∈ K̃i, k ∈ Ki, i ∈ KR, respectively, all constraints

are still satisfied, which means that the optimal solution of the I-th iteration is feasible point of

problem (16) in the (I + 1)-th iteration. This is because of the approximation in (16c) [37]. Thus,

the objective obtained in the (I + 1)-th iteration is no smaller than that in the I-th iteration, i.e.,

(rc)(I+1) ≥ (rc)(I). In other words, Algorithm 1 generates a nondecreasing sequence of objective
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Algorithm 1 Beamformer optimization for cache-level transmission

1: Set I = 0. Initialize non-zero g
(I)
k,i such that the power constraint is satisfied and r

c(I)
k,i =

0,∀k ∈ Ki, i ∈ KR. Compute γc(I)k,i , χ(I)
k,i , and ε(I)k′,i with g

(I)
k,i , k ∈ Ki, k′ ∈ K̃i, i ∈ KR.

2: Solve (16) obtaining g
(I+1)
k,i , r

c(I+1)
k,i , γc(I+1)

k,i ,χ(I+1)
k,i , and ε

(I+1)
k′,i , k ∈ Ki, k′ ∈ K̃i, i ∈ KR for

the given g
(I)
k,i and χ(I)

k,i .

3: If

∣∣∣∣∣ ∑i∈KR

∑
k∈Ki

r
c(I+1)
k,i −

∑
i∈KR

∑
k∈Ki

r
c(I)
k,i

∣∣∣∣∣ 6 η, stop iteration. Otherwise, set I ← I + 1 and go to

step 2.

values (rc)(I). Moreover, the problem has an upper bound due to the power constraints. Therefore,

the convergence of Algorithm 1 can be guaranteed by the monotonic boundary theorem [38].

Furthermore, following the same arguments as those in [37, Theorem 1], we can prove that

Algorithm 1 converges to a Karush-Kuhn-Tucker (KKT) solution of problem (11).

In Algorithm 1, Step 2 solves a convex problem, which can be efficiently implemented

by primal-dual interior point method with approximate complexity of O
((
KU (Ntm + 4)

)3.5)
,

where Ntm = max
i∈KR

Nt,i, KU =
∑
i∈KR

|Ki|, and O (·) stands for the big-O notation [41]. The

overall computational complexity is O
(
κ1 (KU (Ntm + 4))3.5

)
, where κ1 denotes the number of

the iteration of Algorithm 1.

B. Decentralized Optimization for Cache-level Transmission

Though problem (6) can be solved by Algorithm 1, it needs to be implemented centrally

at BBU, which results in large burden on fronthaul links. Note that the existing decentralized

optimization methods that are designed to address the optimization problem for coordinated

multiple point network need signaling exchange among BSs, which results in burden on backhaul

link and incurs a certain delivery latency [27]–[31]. From the perspective of reducing the

delivery latency caused by information exchange and making the best use of the available signal

processing capability of each eRRH, Algorithm 1 and the existing decentralized optimization

algorithms [27]–[31] are not suitable for cache-enabled F-RANs.

For F-RANs, the objective is to reduce delivery latency and the overhead of fronthaul links.

With the help of the cached contents, each eRRH can design its transmitted signal based only

on its local cached content. In addition, the signalling exchange between eRRHs results in a
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large potential latency and requires stringent synchronization between eRRHs. Therefore, the

optimization of transmit beamformers is expected to be independently implemented at each

eRRH for cache-level transmission. The denominator of the right item in (3) implies that eRRH

i cannot independently optimize gk,i, k ∈ Ki, due to the existing of inter-eRRH interference.

In order to release the coupling among eRRHs and to achieve autonomous optimization of the

beamformers, we introduce a new concept that is defined as the signal-to-interference-leakage-

plus-noise ratio (SILNR), i.e.,

γ̃ck,i =

∣∣cfk,ihHk,igk,i∣∣2∑
k′∈Ki\{k}

∣∣cfk′ ,ihHk,igk′,i∣∣2 +
∑
k′∈K̃i

∑
k∈Ki

∣∣cfk,ihHk′,igk,i∣∣2 + σ2
. (17)

In the denominator of (17), the first term denotes the intra-eRRH interference and the second

term denotes the total power leaked from user k ∈ Ki to all other user k′ ∈ K̃i. It is not difficult

to see that the SILNR γ̃ck,i only depends on the local CSI, i.e., the channel coefficient from eRRH

i to all users, which can be easily obtained, ∀i ∈ KR. To design an autonomous optimization,

we replace the achievable rate Rc
k,i in constraints (6b) with an approximated achievable rate

R̃c
k,i = log2

(
1 + γ̃ck,i

)
, ∀k ∈ Ki, ∀i ∈ KR. Thus, instead of directly addressing problem (6), the

problem of beamformer optimization for the cache-level transmission is formulated as a series

of parallel decentralized optimization problems given by (18) at eRRH i.

max τ
∑
k∈Ki

rck,i, (18a)

s.t. rck,i ≤ R̃c
k,i,∀k ∈ Ki, (18b)

τrck,i ≤ S,∀k ∈ Ki, (18c)∑
k∈Ki

‖cfk,igk,i‖
2 ≤ Pi, (18d)

where the variable is
{
gk,i, r

c
k,i

}
k∈Ki

. The goal of problem (18) is to maximize the local delivery

rate, while taking the inter-eRRH interference suppression into account, i.e., maximizing the

total delivery rate of cache-level transmission as much as possible. Similarly, problem (18) can

be equivalently transformed into the following form:

max
∑
k∈Ki

rck,i, (19a)

s.t. rck,i ≤ log2

(
1 + γck,i

)
,∀k ∈ Ki, (19b)
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γck,i 6

∣∣cfk,ihHk,igk,i∣∣2
χk,i

, ∀k ∈ Ki, (19c)∑
k∈Ki

∥∥cfk,ihHk′,igk,i∥∥2 6 εk′,i, ∀k′ ∈ K̃i, (19d)

∑
k′∈Ki\{k}

∣∣cfk′ ,ihHk,igk′,i∣∣2 + σ̃2
k,i ≤ χk,i,∀k ∈ Ki, (19e)

τrck,i ≤ S,∀k ∈ Ki, (19f)∑
k∈Ki

‖cfk,igk,i‖
2 ≤ Pi, (19g)

where the variables are
{
gk,i, r

c
k,i, γ

c
k,i, χk,i

}
k∈Ki

and {εk′,i}k′∈K̃i
. σ̃2

k,i =
∑
k′∈K̃i

εk′,i + σ2. Fur-

thermore, problem (19) can be independently solved at each eRRH with similar procedure

as Algorithm 1 without any signaling exchange among eRRHs. The overall computational

complexity is O
(
κi,2 (|Ki| (Ntm + 3) +KU)3.5

)
, where κi,2 denotes the number of the iterations

of decentralized optimization algorithm of problem (19).

Remark 2. Note that to obtain the performance gain, the centralized optimization algorithm

needs to collect all channel state information (CSI) and data file to the central processing unit.

However, the decentralized optimization algorithm needs only partial CSI that can be obtained

by the training sequence of the uplink and optimize the beamforming vector without sharing

data files. In time division duplex (TDD) system, each BS can directly estimate the CSI of its

own users without any information exchange among eRRHs, by exploiting uplink and downlink

reciprocity. In addition, each eRRH can estimate the crosstalk channels to other users served by

other eRRHs from the reverse link.

V. DESIGN OF OPTIMIZATION ALGORITHM FOR NETWORK-LEVEL TRANSMISSION

In this section, we focus on addressing problem (10) with centralized way at the BBU. Different

from the signal processing at each eRRHs, due to the fact that the BBU has the whole CSI and

data files of all users, the BBU can centrally design the precoders for all users and jointly

transmit data files to each user. Thus, the intra- and inter-eRRH interference can be efficiently

controlled to maximize the sum of delivery data rate. Following a similar procedure used to

solve problem (11), we firstly introduce some auxiliary variables ιk, µk, ∀k ∈ KU, and then
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reformulate equivalently problem (10) into the following form:

max
∑
k∈KU

rnk, (20a)

s.t. rnk ≤ log2 (1 + ιk) ,∀k ∈ KU , (20b)

ιk ≤
∣∣hHk uk

∣∣2
µk

, ∀k ∈ KU , (20c)∑
k′∈KU,k′ 6=k

∣∣hHk uk′
∣∣2 + hHk ΩhHk + σ2 ≤ µk,∀k ∈ KU , (20d)

∑
k∈KU

‖Biuk‖2 + tr (Ωi) ≤ Pi,∀i ∈ KR, (20e)

rnk ≤ max (S − τrck, 0) ,∀k ∈ KU , (20f)

log2

(∣∣Ai

∣∣)− log2 (|Ωi|) 6 Ci,∀i ∈ KR, (20g)

where the variable is {uk, rnk, ιk, µk,Ωi}k∈KU,i∈KR
. Note that the constraints (20c) and (20d) are

activated at the optimal point of problem (20). The difficulties of solving problem (20) lie in (20c)

and (20g), as those contraints are non-convex. To overcome the non-convexity of the right hands

of the inequalities in (20c), we resort to the following inequality [36]∣∣hHk uk
∣∣2

µk
≥ ψ

(I)
k (uk, µk) ,∀k ∈ KU , (21)

where ψ(I)
k (uk, µk) is defined as

ψ
(I)
k (uk, µk) ,

2<
((

u
(I)
k

)H
hkh

H
k uk

)
µ
(I)
k

−


∣∣∣hHk u

(I)
k

∣∣∣
µ
(I)
k

2

µk. (22)

To convexify the left side of constraint (20g), we need to transform the first function log2 (·)

into a convex form. According to the concavity property of function log2 (·), we have

log2

(∣∣Ai

∣∣) ≤ ϕ
(
Ai,Bi

)
(23)

where Bi = Bi

∑
k∈KU

u
(I)
k

(
u
(I)
k

)H
BH
i + Ω

(I)
i and ϕ (A,B) = log2 (|B|) + 1

ln(2)
tr (B−1 (A−B)).

Now, instead of directly solving problem (20), we iteratively solve the following problem to

obtain its solution by replacing the right hands of the inequalities in (20c) with ψ
(I)
k (uk, µk),

∀k ∈ KU and log2

(∣∣Ai

∣∣) with the right side of (23) .

max
∑
k∈KU

rnk, (24a)
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Algorithm 2 Beamformer optimization for network-level transmission

1: Set I = 0. Initialize non-zero u
(I)
k such that power constraint is satisfied and r

n(I)
k = 0,

∀k ∈ KU . Compute ι(I)k and µ(I)
k with u

(I)
k , k ∈ KU .

2: Solve (24) obtaining u
(I+1)
k , r

n(I+1)
k , ι(I+1)

k , and µ(I+1)
k , k ∈ KU for the given u

(I)
k and µ(I)

k .

3: If

∣∣∣∣∣ ∑k∈KU

r
n(I+1)
k −

∑
k∈Ki

r
n(I)
k

∣∣∣∣∣ 6 η, then stop iteration. Otherwise, set I ← I + 1 and go to

step 2.

s.t. (20b), (20d), (20e), (20f), (24b)

ιk ≤ ψ
(I)
k (uk, µk) ,∀k ∈ KU, (24c)

ϕ
(
Ai,Bi

)
− log2 (|Ωi|) 6 Ci,∀i ∈ KR, (24d)

where the variable is {uk, rnk, ιk, µk,Ωi}k∈KU,i∈KR
. After applying the convexity operations, prob-

lem (20) is transformed into approximated convex problem (24) that can be easily solved with

convex optimization tools. A step-by-step summary of the beamforming design is given in

Algorithm 2 for network-level transmission. Note that when τ equals to zero, problem (10)

is equivalent to the optimization of beamforming vectors in traditional cloud-based coordinated

joint transmission, which means that Algorithm 2 can also be used for the optimization of

traditional cloud-based coordinated joint transmission systems.

Similarly, the sequence generated by Algorithm 2 is also nondecreasing. In other words,

Algorithm 2 also converges to a KKT solution of problem (10). In Algorithm 2, Step 2 solves a

convex optimization problem, which can be efficiently implemented by the primal-dual interior

point method with approximate complexity of O
(

(KU (Ntt + 3) +KRN
2
tm)

3.5
)

[41]. Suppose

Algorithm 2 takes totally κ3 number of the iteration to converge. The overall computational

complexity is O
(
κ3 (KU (Ntt + 3) +KRN

2
tm)

3.5
)

. It can be observed that among our developed

algorithms, the computational complexity of network-level optimization algorithm is higher than

that of cache-level optimization algorithm and is similar with the proposed algorithms in [24].

VI. NUMERICAL RESULTS

In this section, we present some numerical results to evaluate the performance of proposed

algorithms. We consider a cache-enabled F-RAN where the positions of eRRHs and UEs are
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uniformly distributed within a circular cell of radius of 500 m. The channel vector hk,i from

eRRH i to the user k is modeled as hk,i =
√
%k,ih̃k,i , where the channel power %k,i is given as

%k,i = 1/ (1 + (dk,i/d0)
α) and the elements of h̃k,i are independent and identically distributed

(i.i.d.) with zero mean and unit variance. For simplicity, we assume that the eRRHs have the

same number of transmit antennas, the same transmit power, the same fronthaul capacity, and

the same size of cache, i.e., Nt,i = Nt, Pi = P , Ci = C and Bi = B, ∀i ∈ KR. If not stated

elsewhere, the simulation is performed with the parameters given in Table I.

TABLE I: Simulation parameters

Symbol Value Symbol Value

KR 3 KU 5

Nt 4 F 10

B 3S σ2 1

d0 50 m α 3

η 10−3 Ns 2

In the figures, “CO-CEHTM” and “DO-CEHTM” denote respectively the centralized opti-

mization and decentralized optimization for cache-level transmission in our developed scheme.

“TC-CJTM” denotes the traditional cloud-based coordinated joint transmission mechanism, i.e.,

τ = 0 in Algorithm 2. We assume that all files have the same degree of popularity. Namely, the

cache state information cf,i, f ∈ F , i ∈ KR, is randomly given subject to the cache capacity

constraint and satisfies the conditions
∑
i∈KR

cf,i = 0 or
∑
i∈KR

cf,i = 1 while
∑
f∈F

cf,i = bB/Sc. The

requested file index fk of user k is random selected from set F . For cache-level transmission of

full caching, the user set served by each eRRH does not intersect each other, i.e., each user is

served by only one eRRH. All simulation results are obtained by averaging over 1000 random

channel realizations.

Fig. 2 and Fig. 3 illustrates respectively the convergence trajectory of the above mentioned

three algorithms for a few randomly channel realizations (RCR) where τ = 1 ms for CO-

CEHTM and DO-CEHTM and τ = 0 ms for TC-CJTM. It is seen that all algorithms generate a

non-decreasing total delivery rate (TDR) sequence. Recalling that all the objective functions of

problem (11), (20), and (20) are boundary function due to the limitation of maximum allowable

transmission power. The convergence of all algorithms can be guaranteed by the monotonic
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boundary theorem [38]. Furthermore, it is observed that all algorithms can fast converge to a

stationary point within limited number iterations, e.g., 10 iterations.
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Fig. 2: Convergence trajectory of presented algorithms, C = 5 bit/symbol, S = 10, and P = 20

dB.

Fig. 4 shows the comparison of average total delivery rate (TDR) and total achievable data

rate (TAR) for centralized and decentralized optimization algorithms for cache-level transmission,

respectively. It is shown that the performance of the decentralized and centralized algorithms is

very close. The decentralized optimization algorithm can obtain more than 97% of the perfor-

mance obtained by the centralized optimization algorithm in terms of TDR and TAR, respectively.

The performance gain of the centralized optimization algorithm is obtained at the cost of large

number of backhaul overhead and CSI collection. In other words, the decentralized optimization

algorithm is effective for delay sensitive data service and communication system with limited

backhaul/fronthaul link.

Fig. 5 illustrates the average TDR versus the fronthaul capacity C for cache-enabled F-RANs
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Fig. 3: Convergence trajectory of presented algorithms, C = 5 bit/symbol, S = 10, and P = 20

dB.

with different delays. From this figure, we can observe that the average TDR increases with

a larger capacity C of fronthaul link in the region of small to middle fronthaul capacity, in

which the performance is limited by the capacity of fronthaul link rather than the file size

and the achievable data rate. However, for large capacity of fronthaul link, the average TDR

performance is limited by other factors instead of the fronthaul capacity C and becomes saturated.

In addition, the centralized and decentralized optimization for cache-level transmission generate

very close performance. Furthermore, increasing the delay results in increasing average TDR. The

reason is that the duration of independent transmission at cache-level transmission or network

level transmission increases with an increasing delay. In addition, the optimization of transmit

beamforming vectors is transferred from eRRHs to the BBU such that the intra-cell interference

and inter-cell interference are more effectively controlled. One can also note that the proposed
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Fig. 4: Comparison of the average TDR and TAR of centralized and decentralized optimization

algorithms for cache-level transmission, τ = 0.01 s, C = 5 bit/symbol, and S = 10.

two-level transmission scheme outperforms the algorithm proposed in [24] due to the delay τ is

used transmit requested files.

In Fig. 6, we further evaluate the impact of the caching capacity B on the average TDR versus

the fronthaul capacity C for cache-enabled F-RANs. When the fronthaul capacity is sufficiently

small, full caching provides a better way for cache-enabled F-RANs. We note that the proposed

two-level transmission scheme outperforms the TC-CJTM due to the fact that the proposed two-

level transmission scheme exploits fully the duration of the delay τ to transmit data to partial

users. Together with Fig. 5, it is shown that even if the delay τ is 10 ms, the proposed two-level

transmission scheme can still obtain a certain performance gain compared to the TC-CJTM.

In addition, one can see that different caching capacity B have different impact on the TDR

performance of the proposed two-level transmission scheme. It means that how to cache files
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Fig. 5: Comparison of the average TDR of hybrid transmission with centralized and

decentralized optimization for cache-level transmission, P = 20 dB and S = 10.

and how many files to cache at each eRRH are also key problems for cache-enabled F-RANs

and caching all files at eRRHs does not necessarily obtain the optimal system performance.

In Fig. 7, we show the average TDR versus the file size S for cache-enabled F-RANs. Similar

to the observation in Fig. 5, the performance of TDR improves with a larger file size S in the

region of small fize sizes, in which the performance is limited by the file size S rather than

other factors, such as the fronthaul capacity C, the transmit power P , and the achievable data

rates. In the region of medium to large file sizes, the TDR becomes saturated where the TDR

performance is limited by the fronthaul capacity C, the transmit power P , or the achievable

data rates. Note that for the full caching, compared to Fig. 4, the performance gap between the

centralized and decentralized optimization for the cache-level transmission increases due to the

fact that the inter-eRRH interference suppression is limited to the number of the simultaneously

served users. Numerical results further reveal that only when the file size is very small, the TDR

performance of TC-CJTM is better than that of CO-CEHTM with full caching. It is due to the

fact that the performance of TC-CJTM is constrained by the fronthaul capacity C, which does

not affect the performance of CO-CEHTM. The proposed two-level transmission scheme with
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Fig. 6: Comparison of the average TDR of hybrid transmission with centralized and

decentralized optimization for cache-level transmission, P = 20 dB and S = 10.

proper latency outperforms the transmission schemes with full or no caching.

Fig. 8 demonstrates the average performance of TDR versus maximum allowable transmit

power P for the downlink cache-enabled F-RANs. Numerical results also show that the per-

formance of the centralized and decentralized optimization of cache-level transmission is very

close. Furhtermore, the performance of the TDR increases with an increasing maximum transmit

power P . In other words, in a certain power range, the TDR performance is not saturated.

VI. CONCLUSIONS

In this paper, a two-level transmission scheme including cache-level and network-level trans-

mission has been proposed for cache-enabled F-RANs under the constraints of the fronthaul

capacity and the maximum allowable transmit power of eRRHs. Centralized optimization algo-

rithms has been developed to address the problem of interest for cache-level and network-level



25

1 2 3 4 5 6 7 8 9 10
3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

S

T
D

R
 b

ps
/H

z

 

 

CO−CEHTM, τ=0.01 s

DO−CEHTM, τ=0.01 s

CO−CEHTM, τ=0.1 s

DO−CEHTM, τ=0.1 s

CO−CEHTM, Full caching

DO−CEHTM, Full caching

TC−CJTM, No caching

9 9.5 10
7.5

8

8.5

S

T
D

R
 b

ps
/H

z

1 1.5 2
3.5

4

4.5

5

5.5

6

S

T
D

R
 b

ps
/H

z

Fig. 7: Comparison of the average TDR of hybrid transmission with centralized and

decentralized optimization for cache-level transmission, P = 20 dB and C = 5 bit/symbol.

transmission, respectively. To avoid the signaling exchange among eRRHs, a decentralized opti-

mization algorithm has been further developed for cache-level transmission. Finally, numerical

results have been provided to evaluate the performance of our developed algorithms.
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