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Abstract—For the emerging 5G millimeter-wave communica-
tions, the nonlinearity is inevitable due to RF power amplifiers of
the enormous bandwidth operating in extremely high frequency,
which, in collusion with frequency-selective propagations, may
pose great challenges to signal detections. In contrast to classical
schemes, which calibrate nonlinear distortions in transmitters,
we suggest a nonlinear equalization algorithm, with which the
multipath channel and unknown symbols contaminated by non-
linear distortions and multipath interferences are estimated in
receiver-ends. Attributed to the nonlinearity and marginal inte-
gration, the involved posterior density is analytically intractable
and, unfortunately, most existing linear equalization schemes may
become invalid. To solve this problem, the Monte-Carlo sequential
importance sampling based particle filtering is suggested, and
the non-analytical distribution is approximated numerically by a
group of random measures with the evolving probability-mass.
By applying the Taylor’s series expansion technique, a local-
linearization observation model is further constructed to facilitate
the practical design of a sequential detector. Thus, the unknown
symbols are detected recursively as new observations arrive. Sim-
ulation results validate the proposed joint detection scheme. By
excluding transmitting pre-distortion of high complexity, the pre-
sented algorithm is specially designed for the receiver-end, which
provides a promising framework to nonlinear equalization and
signal detection in millimeter-wave communications.

Index Terms—5G millimeter-wave communications, nonlinear
equalization, signal detection, nonlinear power amplifier, Bayesian
recursive approach, particle filtering.
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I. INTRODUCTION

A TTRIBUTED to the availability of abundant unautho-
rized spectrum resources in millimeter-wave (mm-Wave)

frequency band, wireless personal communication networks
(WPANs) and wireless local area networks (WLANs) operat-
ing in such frequencies (e.g., 60 GHz) have recently aroused
general interests [1], [2]. The mainstream 60 GHz mm-Wave
communication standards, i.e., IEEE 802.15.3c and 802.11ad
[3], [4], are mainly oriented towards 5G communications
aiming to support the high-speed data transmissions such
as Uncompressed High Definition Television (UHDTV) and
Gbps wireless accessing (e.g., Wi-Fi applications) [5], [6]. In
all such scenarios, single carrier (SC) modulation has been
recommended as one of the promising physical layer (PHY)
techniques [7]. To achieve the ultra-high data rate up to 7 Gbps
with a regulated transmission bandwidth of 2.16 GHz, high-
order modulations such as M -order phase shift key (MPSK)
and M -order quadrature amplitude modulation (M-QAM) have
been commonly suggested to improve the spectrum efficiency
furthermore [3], [4], [8].

As the absorption from oxygen to signals may reach a
maximum in mm-Wave bands (about 15 dB/km), in practice,
the propagation attenuation in such a high-frequency band
is tremendous, correspondingly coming with a rather limited
link budget [9]. To efficiently compensate the path-loss and,
therefore, reinforce the signal-to-noise ratio (SNR) in receivers,
usually high emission power is used in 60 GHz mm-Wave
communications, except for the deployment of high resolution
beam-forming techniques. Taking the high-order modulation
signal with the high peak-to-average power ratio (PAPR) and
the enormous bandwidth into accounts, mm-Wave communica-
tions may become extremely vulnerable to nonlinear distortions
[10] and multipath propagations.

Unfortunately, the mm-Wave power amplifier (PA) may in-
evitably show nonlinear characteristics due to hardware imper-
fections [11], which may arouse serious nonlinear distortions in
practice. The received signals, as a consequence, will be shifted
sharply in the constellation-plane. Then, the symbols will be
interpreted erroneously. In some bad cases, the bit error ratio
(BER) will be significantly increased, leading to substantial
performance deteriorations. In addition, further considering
typical short-range indoor applications, the frequency-selective
multipath propagations become very common to 60 GHz mm-
Wave systems. The resulting multipath interference may also
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remarkably degrade the detection performance. Thus, one of
the major concerns in mm-Wave communications is to combat
the linear and nonlinear distortions and, therefore, enhance the
signal detection performance.

To overcome the destructive effect, many investigations have
been dedicated to dealing with the PA nonlinearity in mm-
Wave systems. A simple and direct approach is to reduce the
radiation power [12], which makes the operational power away
from the PA’s saturation point and thereby alleviate nonlinear
distortions to some extent. This output power back-off (OBO)
method, nevertheless, may sacrifice the power efficiency and,
as a consequence, the SNR in receiver may remarkably decline
with a large OBO. Another approach to combat the PA nonlin-
earity is the widely recommended digital pre-distortion (DPD)
techniques [13]–[17]. These methods may compensate or repair
the operating condition of PAs [14], [15], which is practi-
cally implemented in the transmitter-end, by utilizing various
complicated learning-based algorithms [15] or, alternatively, by
a realization of the inverse nonlinear function deduced from
the PA input-output response [16], [17]. Because such tech-
niques are essentially designed for the baseband processing,
the emitted radio-frequency (RF) signals are firstly required to
be down-converted via an analog-to-digital converter (ADC).
Subsequently, the baseband signal is calibrated via a feedback
control loop (e.g., adaptive least mean squares scheme) or a
look-up table (LUT). Given the additional reception sub-system
in mm-Wave transmitters, the pre-distortion technique may be
computationally intensive and impractical. More importantly, it
is noted that such pre-distortion techniques can only compen-
sate PA nonlinearity partly. Even utilizing such a complicated
mechanism, serious nonlinear effects may still degrade the
detection performance, especially when a small OBO is used
and the frequency-selective multipath propagation of mm-Wave
systems is further considered.

The first contribution of this investigation is that, by present-
ing a promising joint detection scheme, we directly address
the nonlinear distortion and the frequency-selective multipath
fading in the receiver-end. The original motivation of the new
scheme is to alleviate the RF hardware requirements of mm-
Wave devices by designing an effective baseband processing
scheme. In sharp contrast to the widely used sophisticated pre-
distorter in transmitter-ends, the received signal constellations,
with serious distortions introduced by both PA contamina-
tions and multipath interferences, are blindly calibrated via
the Bayesian statistical inference. Since the formulated signal
model involves both nonlinear distortions and linear multipath
disruptions, the analytic form of the a posteriori probability of
interest may be practically intractable. To cope with the diffi-
culty, relying on the conception of Monte-Carlo random sam-
pling [18], [19], a group of discrete measures with the evolving
weights are simulated to approximate the realistic complex
probability distribution function (PDF) numerically. Thus, the
Bayesian inference is implemented by particle filtering (PF).

Although PF has been applied widely to blind equalizations
(see [20]–[27]), as far as we know, there are few works in the
literature reported on the design of PF-based joint detector in
the presence of both nonlinear distortions and linear multipath
propagations. The second contribution, correspondingly, is that

we designed a nonlinear equalization scheme for mm-Wave
systems. A Taylor series expansion technique, as in [19], is
applied to the nonlinear observation function. On this basis, a
generalized PF framework with the local-linearization process
is suggested for the mixed linear and nonlinear problem. Thus,
the joint estimation of unknown symbols accompanying the lin-
ear multipath response can be derived recursively on reception
of new observations. Experimental simulations further validate
the proposed nonlinear equalization scheme. It is demonstrated
that, even with realistic nonlinear PAs, the detection perfor-
mance of the new scheme may remarkably surpass other ex-
isting techniques, e.g., a joint linear equalization scheme and
the DPD methods.

Related Work: Attributed to the pioneering works of
P. M. Djuric et al. [20], [21], PF has been applied widely to joint
estimations in the signal processing context. The linearization
method based on the Taylor series expansion was firstly in-
troduced by Doucet et al. [19]. In this investigation, however,
two differentiated points may be noted. 1) While a nonlinear
estimation framework has been formulated, either the system
model or application scenarios remain relatively different from
this specific problem. The considered observation model, in
contrast, involves two heterogeneous components, i.e., the
nonlinear PA cascading a linear multipath channel. With the
coupling of nonlinear effects from realistic PAs, the estimation
of linear multipath becomes more challenging. The signal
processing objective, i.e., linear de-convolution with nonlinear
distortions, seems also to be different. 2) A particular signifi-
cance of our nonlinear equalization scheme is that, by excluding
complicated RF repairing operations (i.e., pre-distortion) in
transmitter-ends, it may provide a more attractive approach to
implement joint detection with nonlinear effects. To the best
of our knowledge, the nonlinear equalization in mm-Wave
systems, by fully taking both realistic nonlinear distortions and
linearly frequency-selective fading, remain still as an unex-
ploited area. This work extends the PF conception to such a
new application scenario and presents a promising solution for
5G mm-Wave signal detections with nonlinear distortions.

The rest of this article is structured as follows. In Section II,
the nonlinear PA model and the propagation model for mm-
Wave communications are briefly described. Next, a new dy-
namic state-space model (DSM) is established to characterize
the channel estimation and joint signal detections with nonlin-
ear PAs. In Section III, the PF and Bayesian inference for tradi-
tional linear equalizations are introduced, and some difficulties
in the considered nonlinear detection are further analyzed.
In Section IV, a generalized PF is suggested by resorting to
a local-linearization technique. Thus, a recurrence nonlinear
equalization scheme is developed to cope with both linear
multipath propagations and nonlinear distortions. Experimental
simulations are provided in Section V. We finally conclude the
investigation in Section VI.

II. SYSTEM DESCRIPTION

A. Nonlinear Power Amplifier

For broadband mm-Wave communications, the nonlinear
effect is always of crucial importance to the input signals with
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Fig. 1. Nonlinear PA model regulated by the IEEE 803.11ad TG.

a high operational power or PAPR. After propagated from a
nonlinear PA, both the amplitude and phase of output signals
will experience serious distortions, which can be commonly
characterized by the amplitude modulation-amplitude modu-
lation (AM-AM) model and the amplitude modulation-phase
modulation (AM-PM) model [28], respectively. In this analysis,
the nonlinear PA model regulated by the IEEE 802.11ad task
group (TG) is considered [11].

Specifically, the AM-AM model is given by:

G(Vin) =
gVin

[1 + (gVin/Vsat)]
1/(2σp)

, (1)

Here, Vin and G(Vin) represent the input and output voltage
amplitude in root mean square, respectively. g is the linear gain
and we practically have g = 4.65; σp is the smoothness factor
and σp = 0.81; Vsat denotes the saturation level and is typically
configured to 0.58 V.

The AM-PM mode can be expressed as:

Ψ(Vin) =
αV q1

in

1 + (Vin/β)q2
, (2)

where Ψ(Vin) is the additional phase in degrees, and after
multiplied by π/180 it can be transformed into radians form.
The typical values of α, β, q1, q2 are respectively configured to
2560, 0.114, 2.4 and 2.3. For analysis clarity, we may denote the
AM-AM model and AM-PM model together by the associative

parameter set (G,Ψ)
Δ
= [g, σp, Vsat, α, β, q1, q2].

Given the PA’s parametric model, i.e., the input-output curves
of AM-AM and AM-PM models shown in Fig. 1, the nonlinear
distortion is mainly related with the input voltage Vin. To
be specific, the increment on the output voltage G(Vin) will
decrease with the increasing of the input voltage Vin and, there-
fore, the output-input voltage relations (i.e., the AM-AM curve)
may become nonlinear. The additional phase of output signals,
i.e., Ψ(Vin), on the other hand, will also increase with the
increasing of the input voltage as shown by the AM-PM curve.

It is seen that if the input power pin is relatively small, or the
operational voltage keeps far away from the saturation point
Vsat, then the PA will be treated as an ideal system with the

linear gain and negligible phase shifts. In such a case, nonlinear
distortions can be ignored without affecting the performance. In
fact, this is also the principle of OBO techniques [12], in which
the back-off value is measured by −10log10(pin/psat) dB. It
follows that the nonlinear distortion may be alleviated partly by
reducing the input power pin. Note that, however, the efficiency
of PA will decrease and the receiving SNR may not be guaran-
teed. With the further increasing of pin (or the decreasing of
the OBO value), the operational point may move towards to the
saturation point and, correspondingly, the nonlinear distortion
may be evident. I.e., the amplifier output may be increased
slowly to a steady value by dramatically disrupting the linear
relationship and, simultaneously, introducing remarkable phase
shifts. As a result, signal constellations will be distorted and the
detection performance will be degraded.

B. Channel Modeling for 60 GHz Communications

Attributed to rich scatters in typical indoor environments and
the excellent time resolution of transmitted signals, the short-
range mm-Wave channel is known to be linearly dispersive with
tens of resolved multipath components (MPCs) [29], [30]. Cur-
rently, the approved channel model is built on a modified Saleh-
Valenzuela (S-V) indoor model [29]. The IEEE 802.15.3c TG
has defined seven channel types for mm-Wave applications in
dense multipath environments. The unified channel impulse
response (CIR) is expressed as:

h(t, θ, φ) = α0,0δ(θ − α0,0)δ(φ− φ0,0)δ(t− τ0,0)

+
N∑

n=1

Ln∑
l=1

αn,lδ(θ − αn,l)δ(φ− φn,l)δ(t− τn,l), (3)

where N is the number of paths (or clusters) and Ln is num-
ber of sub-paths of the nth cluster; αn,l = |αn,l|exp(−jϕn,l)
corresponds to the complex coefficient of the lth sub-path of
the nth cluster, with independent and identically distributed
(i.i.d) random phase ϕn,l distributed over U [0, 2π). Here, j
is the square root of −1. τn,l is the time delay; θn,l and φn,l

are the angle of arrive (AoA) and angle of departure (AoD),
respectively [30].

In the S-V channel model, the coefficients are grouped into
N cluster. For the nth cluster, the arrival time is denoted by
Tn, while the arrival time relative to Tn of the lth resolvable
sub-path is τn,l. The corresponding time delay of the (n, l)th
MPC is (Tn + τn,l)× Ts, where Ts denotes the sampling in-

terval. The mean power of MPCs, i.e., |h̄2
n,l|

Δ
= E(|αn,l|2), is

reorganized to:

|h̄|2 =

⎡
⎢⎣∣∣h̄2

1,0

∣∣ ∣∣h̄2
1,1

∣∣ · · · ∣∣h̄2
1,L1−1

∣∣︸ ︷︷ ︸
n=1

· · ·
∣∣h̄2

N,0

∣∣ · · · ∣∣h̄2
N,LN−1

∣∣︸ ︷︷ ︸
n=N

⎤
⎥⎦
T

.

According to real measurements, the power delay profile
(PDP) of MPCs will be modeled by a double exponential
function [29], [30]. Thus, each component is given by:∣∣h̄2

n,l

∣∣ = exp(−Tn/2Γ)exp(−τn,l/2γ), (4)

where Γ and γ denotes two arrival rate of clusters and sub-paths,
respectively.
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Fig. 2. Transmitter-end block diagram.

It is noteworthy that, owing to high-resolution spatial trans-
missions promised by beam-forming techniques [31]–[33], the
line-of-sight (LOS) term in (3) is significantly larger than other
non-line-of-sight (NLOS) multipath components. Following
the experimental result, the energy of the 1st LOS path is
about 20 dB higher than NLOS components [29], [30]. So, sub-
paths generated from the secondary reflecting may be ignored
due to noticeable attenuations (e.g., about 10 dB for once
reflection). Thus, the total number of multipaths L (i.e., N = 1)
may become much smaller if the beam-forming technique is
adopted.

C. Signal Model

Taking both the PA nonlinearity and the multipath fading
into accounts, an uncoded mm-Wave communication system
is considered and the block diagram of transmitter is shown
in Fig. 2. The binary source sequence bi (i = 0, 1, 2, · · ·) is
firstly fed to an M-order linear modulator (such as M-PSK or
M-QAM modulator). Subsequently, each m (m = log2M) bits
are mapped to one output data symbol xk (k = 0, 1, 2, · · ·).
Each symbol is then passed through a front-end nonlinear PA
and, finally, the emitted symbols x†

k are generated. The emis-
sion symbols are propagated through multipath fading channels
and, consequently, the inter-symbols interference (ISI) will be
inevitable in receivers.

Based on the descriptions above, a discrete-time base-
band form of sampled receiving signal, denoted by yk(k =
0, 1, 2, · · ·), is given by:

yk =

L−1∑
l=0

h∗
k,lx

†
k−l + nk

=hH
k x†

k + nk, k = 0, 1, · · · ,K − 1. (5)

where L specifies the memory order of multipath response; K is
the size of a transmission burst. The baseband complex multi-
path response is h, and (.)H denotes the conjugate transpose.
For the convenience, the quasi-static channel is considered.
That is, hk remains invariant within each transmission burst but
is allowed to be changed among different bursts. Thus, we may
further simplify hk to h = [h0, h1, h2, · · · , hL−1]

T .
It should be noted that the nonlinearly distorted symbol

can be viewed as an unobserved intermediate state, which

is denoted by x†
k = [x†

k, x
†
k−1, · · · , x

†
k−L+1]

T
. Here, x†

k is the
distorted symbols of the kth discrete time index. Given the
nonlinear mapping function q(.), the PA outputs x†

k are deter-
mined by x†

k = q(xk). Apart from contaminating the receiving
constellations, this nonlinear transform will introduce a mea-
sure of memory to output symbols. As suggested by measure-
ments [34], [35], the memory effect of nonlinear PAs may be
aroused by electrical and thermal memory effects (especially
for high power amplifier), which can be characterized by spe-

cific behavior models, e.g., a discrete time-domain Volterra
model with the finite memory [35], [36]. The envelops of PA’s
output signal x̆†

k, as demonstrated, may be then represented
as a truncated Volterra series of previous input envelops, i.e.,
x̆k−i(i = 0, 1, · · · , lm). Here, lm accounts for the finite memory
order of output symbols.

It is supposed that input complex symbols xk keep indepen-
dent of each other, which are drawn from a finite alphabet set
A = {a1, a2, · · · , a|A|}. The a priori probabilities of each sym-
bols xk are specified by pι = P (xk = aι)(ι = 1, 2, · · · , |A|).
In practice, the transmitted symbols are equally likely, i.e., pι =
1/|A|. So, we have xk ∈ AL and p(xk) =

1
|A|L . It is further

assumed that the additive channel noise nk is a sequence of
zero-mean i.i.d complex random variables, i.e., nk ∼ N (0, σ2),
which is independent of the symbols xk.

After propagated from a nonlinear PA and multipath channels
and corrupted by the ambient noise, the received signal yk(k =
0, 1, 2, · · ·) of mm-Wave systems will be distorted dramatically.
In the receiver-end, then the nonlinearly contaminated symbols
xk would be estimated with the help of the a priori information
and the estimated channel state information (CSI).

From eq. (5), the resulting memory of multipath channels
may facilitate the signal detection of mm-Wave systems. We
will resort to the DSM to thoroughly characterize the nonlinear
estimation process and, furthermore, exploit the underlying
dynamics of the received signal. For the considered nonlinear
estimation problem, a new DSM can be established as following

xk = f(xk−1) + uk, (6)

yk = g(xk) + nk. (7)

In the state equation eq. (6), the states xk can be modeled
by an unobserved (or hidden) Markov process. For the adopted
independent source, we may further employ a linear transform
to fully describe the relationship between xk and xk−1 [20],
[23], i.e., f(·) : AL → AL, which is specified by f(xk−1) =
Fxk−1. That is, the evolution of unknown states would be
characterized by a state transitional matrix (STM) FL×L and
an L× 1 driven vector uk. Here, the perturbation vector is
specified by uk = [xk, 0, · · · , 0]T , while the linear transitional
matrix is specified by:

F =

⎡
⎢⎢⎢⎢⎣
0 0 · · · 0 0
1 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0
0 0 · · · 1 0

⎤
⎥⎥⎥⎥⎦ .

The received signals yk is derived from the measurement
equation involving a nonlinear observation function g(.) :
AL → R

1, which is specified both by the nonlinear PA model
(G,Ψ) and the unknown multipath response h. Here, R1 gives
the real-valued space of 1-dimension. With the established
DSM, the main concern of the mm-Wave nonlinear equalization
is to recover the unknown symbols xk (k = 0, 1, 2, · · ·) blindly,
relying on the nonlinearly distorted and noisy-corrupted obser-
vations yk (k = 0, 1, 2, · · · ,K).
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III. BAYESIAN INFERENCE AND PARTICLE FILTERING

A. Bayesian Inference

By excluding the pilot sequence, blind equalizations and
signal detections, which may enhance the energy and spectrum
efficiency, are of promise to mm-Wave applications. For the
specific problem, the multipath channel h and transmitted
symbols xk are two unknown quantities, which are assumed
to be independent of each other and have the a priori densities
p(h) and p(xk), respectively. From a Bayesian point of view,
the optimal signal detection should rely on the joint a posteriori
probability p(h,x0:k|y0:k, (G,Ψ)), which is given by:

p (h,x0:k|y0:k, (G,Ψ))

=
p (y0:k|h,x0:k, (G,Ψ)) p(h,x0:k)

p(y0:k)
, (8)

=
p (y0:k|h,x0:k, (G,Ψ)) p(x0:k)p(h)

p(y0:k)
, (9)

where the observations trajectory till the kth time index is

denoted by y0:k
Δ
= [y0, y1, · · · , yk], and the state trajectory

is x0:k
Δ
= [x0,x1, · · · ,xk]. Given the nonlinear observation

model in (7) and the white Gaussian noise nk, the likelihood
function p(yk|h,xk, (G,Ψ)) at time index k is expressed to
eq. (10), where Re(x) and Im(x) represents the real part
and image part of the complex variable x, respectively. It is
seen from eq. (10), shown at the bottom of the page, that the
likelihood distribution here is a non-Gaussian function of xk.

For simplicity, the multipath response h is assumed to follow
a priori Gaussian distribution, with the mean vector of h̄ and
the covariance matrix Σ, i.e.,

p(h) =
1

(2π)L/2 (det(Σ))
1
2

exp

[
−1

2
(h− h̄)HΣ−1(h− h̄)

]
.

(11)

The posterior probability of transmitted symbols xk may be
derived via the marginalization of the a posteriori density. As a
consequence, signal detections will be realized by maximizing
the posterior density p(xk|y0:k, (G,Ψ)), which is given by:

p (xk|y0:k,(G,Ψ))∝
∫
h

p(y0:k|x0:k,h,(G,Ψ)) p(h)dh︸ ︷︷ ︸
p(y0:k|x0:k,(G,Ψ))

×p(xk).

(12)

For real-time transmissions of mm-Wave systems, it is signif-
icant to estimate the posterior probability p(xk|y0:k, (G,Ψ))
sequentially and accomplish signal detections on reception
of new observations. By alleviating the computation burden
repeated on each new observation, the recursive detection will
be recommended which could adaptively incorporate the inno-

vation information into the past inference. With the Chapman-
Kolmogorov equation, p(x0:k|y0:k) is estimated by:

p (xk,h|y0:k, (G,Ψ)) = p (xk−1,h|y0:k−1, (G,Ψ))

× p (yk|xk,h, (G,Ψ)) p(xk|xk−1)∫
x

∫
h p (yk|xk,h, (G,Ψ)) p(h)p(xk|y0:k−1)dhdxk

. (13)

The above recurrence propagation of the posterior density
forms a solid theoretical framework of Bayesian statistical
inference. Note that, unfortunately, except for some special
situations with a linear and Gaussian model that may be ad-
dressed elegantly without any approximations [20], e.g., the
well-known Kalman filtering (KF), the above sequential esti-
mation of the a posteriori probability can only be considered
as a conceptual solution. More specifically, attributed to the en-
countered nonlinear and non-Gaussian process and the resulting
intractable high-dimensional marginalization, the analytic form
of the posterior distribution of interest could be hardly derived.

B. Sequential Importance Sampling

As a promising alternative that avoids the marginalization
and implements the recursive estimation approximately, PF
provides a great promise to the joint detection of mm-Wave
communications. Relying on a simulated Monte-Carlo random
sampling approach, PF obtains the consistent estimation of
a posteriori (or target) probability via a group of discrete
random measures (or particles) x(i) with different probability
masses (or weights) w(i)(i = 1, 2, · · · , I), where I the size of
discrete particles [18]. For clarity, here x denotes the hidden
vector to be estimated. Essentially, the particles are simulated
samples drawn from an unknown space associated with the
target probability p(xk|y0:k, (G,Ψ)). Thus, the continuous
target distribution can be approximated numerically by:

p (xk|y0:k, (G,Ψ)) �
I∑

i=1

w
(i)
k δ

(
x− x

(i)
k

)
, (14)

where δ(x− x
(i)
k ) denotes the Dirac mass at the point x

(i)
k .

Based on eq. (14), the expectation of associated features of
x, i.e., E{g(xk)} =

∫
xk

g(xk)p(xk|y0:k, (G,Ψ))dxk, may be

evaluated by Ê{g(xk)} �
∑I

i=1 g(x
(i)
k )w

(i)
k when the particle

size I is sufficiently large [20], [24].
Although PF may provide a feasible approach to esti-

mate various complicated distributions, it has to be empha-
sized that, it is usually infeasible to sample directly from
the target posterior distribution p(xk|y0:k, (G,Ψ)). This is
because, in practice, an analytical form of posterior PDFs
will be unavailable. A proposal distribution or an impor-
tance function π(xk|y0:k,x(i)

0:k−1, (G,Ψ)), therefore, is de-
signed from which discrete particles can be simulated, i.e.,
x
(i)
k ∼ π(xk|y0:k,x(i)

0:k−1, (G,Ψ)). Accordingly, the associated

p (yk|h,xk, (G,Ψ)) =
1√
2πσ

exp

{
− 1

σ2

(
|Re(yk)−Re (g(xk))|2 + |Im(yk)− Im (g(xk))|2

)}
(10)
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probability masses (or importance weigh) w(i) may be deter-
mined by:

w
(i)
k =

p
(
y0:k|x(i)

0:k, (G,Ψ)
)
p
(
x
(i)
0:k

)
π
(
xk|y0:k,x(i)

0:k−1, (G,Ψ)
) . (15)

As an approximation of realistic distributions, the importance
weights should be normalized.

w
∗(i)
k = w

(i)
k

/ I∑
i=1

w
(i)
k . (16)

Note that, usually an importance function will be factored as:

π(xk|y0:k) = π(xk|x0:k−1, y0:k)× π(x0:k−1|y0:k−1). (17)

With the particles x(i)
k (i = 1, 2, · · · , I) sequentially sampled

from π(xk|y0:k,x(i)
0:k−1, (G,Ψ)) as each new observation ar-

rives, the associated importance weight w
(i)
k can be updated

recursively by:

w
(i)
k ∝

p
(
yk|xk,x

(i)
0:k−1, (G,Ψ)

)
p
(
xk|x(i)

k−1

)
π
(
xk|y0:k,x(i)

0,k−1, (G,Ψ)
) ×w

(i)
k−1. (18)

It should be noted that the importance distribution, which
should be carefully designed in accordance with different re-
alistic situations, will have a significant impact on the estima-
tion performance of PF [25], [26]. In practice, two popular
importance functions can be recommended, i.e., the prior and
the optimal importance function. The prior importance function

is chosen to p
(
xk|x(i)

k−1

)
, which is easy to implement but

rarely exploits the innovation information of observations. The
optimal importance function, which would minimize the one-

step variance var(w(i)), is given by p
(
xk|x(i)

0:k−1, yk

)
. In our

analysis, the optimal importance function will be adopted and,
accordingly, the importance weight w(i)

k will be propagated via:

w
(i)
k = p

(
yk|x(i)

0:k−1, (G,Ψ)
)
× w

(i)
k−1. (19)

To sum up, two steps are involved in the implementation of
PF: (1) draw the random particles by sampling from the im-

portance distribution, i.e., x(i)
k ∼ π

(
xk|y0:k,x(i)

0:k−1, (G,Ψ)
)

;

and (2) update the associated weight w(i)
k by using (19). To deal

with the degeneration of particle weights, a resample process
is usually necessary to eliminate the negligible particles and
further improve the estimation performance, one can refer to
[18], [19], [23] for details.

C. Application Considerations

With the linear multipath and Gaussian noise (i.e., in absence
of nonlinear effects), PF will be implemented conveniently. For
the ideal linear and Gaussian model, the posterior distribution
of h, after observing yk, is given by:

p(h|x0:k, y0:k) = p(h,x0:k|y0:k)/p(x0:k|y0:k) (20)
∝ p(y0:k|h,x0:k)p(h). (21)

Note that, for the posterior distribution of h, here the term
p(x0:k|y0:k) may be treated as a constant which is independent
of h. Thus, p(h|x0:k, yk) also follows a Gaussian posterior
distribution and, accordingly, its mean and covariance may be
updated by (22) and (23).

Σ−1
k =xkx

H
k /σ2 +Σ−1

k−1, (22)
h̄k =Σk

(
xkyk/σ

2 +Σ−1
k−1h̄k−1

)
. (23)

The closed analytical form of the importance distribution,

which is also related to the likelihood function p
(
yk|x(i)

k

)
,

may be derived [20], [21], [23]. Thus, the random sampling

may be realized effectively and discrete measures
{
x
(i)
k , w

(i)
k

}
can be drawn. As a result, the posterior distribution

p
(
xk|y0:k,x(i)

0:k−1

)
will be calculated approximately via (24).

p
(
xk|y0:k,x(i)

0:k−1, (G,Ψ)
)
�
∑

i∈Xj
w

(i)
k∑I

i=1 w
(i)
k

,

Xj =
{
i|x(i)

k → AL(j)
}
. (24)

Moving on, the transmitted symbols xk will be estimated
by maximizing the approximated a posteriori distribution

p
(
xk|y0:k,x(i)

0:k−1, (G,Ψ)
)

. If the particle size I is sufficiently

large, then the estimation obtained from PF will be considered
as the maximum a posteriori (MAP) estimation.

Based on the following two considerations, traditional PF-
based linear equalization schemes, unfortunately, may be in-
valid in mm-Wave systems with non-ideal PAs. For one thing,
the Bayesian estimation of the multipath response h, from
(20)–(23), relies primarily on a linear map between xk and
yk, which is derived via a linear minimum mean square error
(LMMSE) criterion. The nonlinear observation function (i.e.,
g(x)), however, has disorganized the linear relationship. Ac-
cordingly, the recursive estimation (i.e., ĥ), premised on the
traditional MAP scheme, may tend to be erroneous. For another,
attributed to the involved nonlinear coupling relationship, a
direct sequential importance sampling (SIS) process involved
by recursive estimations will be infeasible.

IV. NONLINEAR EQUALIZATION AND SIGNAL DETECTION

In this section, the realistic challenge of Bayesian estimation
aroused by the nonlinear effects will be addressed via sug-
gesting a nonlinear equalization and signal detection scheme,
which is embedded with a local-linearization process. As in
[19], with the linearly approximated observations, the difficulty
of the SIS and marginalization process will be avoided by
the new paradigm. As a consequence, the posterior density of
interest, even given the nonlinear coupling between unknown
symbols and observations, can be derived numerically. With
the generalized PF detection framework, the nonlinearly con-
taminated symbols will be recursively estimated by receivers,
accompanying the unknown multipath CIR.

A. Local Linearization of Observations

Nonlinearity has long been remained as one major difficulty
in Bayesian inference, which will make the analytic PDF of
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interests unavailable. To deal with the encountered PA distor-
tion, from a suboptimal filtering point of view [19], [37], a local
linearization model is introduced before the SIS procedure.

For convenience, the nonlinear function in (7) is reformat-
ted as:

g(xk) = hT {G(xk) ◦ exp [−jθk − jψ(xk)]} , (25)

Here, the notation ◦ represents the Hadamard product be-
tween two vectors with the same length L; θk denotes the
phase vector of the complex state xk. Based on eqs. (1), (2),
and (5), it is visually shown that the composite function g(xk)
remains continuous and derivable in the domain of definition.
Thus, the high-order derivatives ∂LG(x)

∂Lx
and ∂LΨ(x)

∂Lx
exist for

L ≥ 1. Therefore, it may be represented by the L-term Taylor
series expansion (TSE).

By utilizing the first-order TSE at the point xk = f(xk−1),
then a linear approximation of g(xk) will be obtained, i.e.,

yk=g(f(xk−1))+
∂g(xk)

∂xk

∣∣∣∣
xk=f(xk−1)

[xk−f(xk−1)]+nk.

(26)

Two remarks should be made concerning the local-
linearization model in (26). First, as a linear approximation
to the original nonlinear function, the TSE-based simplified
model may lead to the loss of information to some extent. Thus,
only a suboptimal estimation performance will be obtained.
Fortunately, from Fig. 1, the piece-wise linear property of
AM-AM and AM-PM curves indicates that such a linearly
approximated model will provide the competitive detection
performance, which will be also demonstrated by subsequent
experimental results. Second, the expansion point should be
carefully configured. As a compromise between the implemen-
tation complexity and the estimation performance, in practice
the expanding point f(xk−1) is suggested.

B. Sequential Nonlinear Equalization

With the local linearization model, the proposed nonlinear
equalization scheme, which is more flexible to address the mm-
Wave nonlinear signal detection problem, will involve three
recursive steps, i.e., (1) draw discrete particles, (2) update of
multipath statistics, and (3) estimate the partial derivative.

1) Draw Discrete Particles: Relying on the locally-

linearized model at the expanding point f(xk−1)
Δ
= Txk−1 and

taking the a priori Gaussian distribution of nk, the analytical
importance distribution in the presence of both realistic 60 GHz
PA nonlinear effect and multipath propagations is derived
analytically.

Proposition: For the formulated nonlinear estimation of
60 GHz mm-Wave systems, the optimal importance function

π
(
xk|x(i)

0:k−1, y0:k,h, (G,Ψ)
)

follows a Gaussian distribution

(see Appendix A), i.e.,

π
(
xk|x(i)

0:k−1, y0:k,h,(G,Ψ)
)
Δ
=p
(
xk|x(i)

0:k−1, y0:k,h,(G,Ψ)
)

∼ N (m∗, σ∗), (27)

with the variance σ∗ determined by:

σ−1
∗ =

1

σ
×
[
∂g(xk)

∂xk

∣∣∣∣
xk=f(xk−1)

]H
∂g(xk)

∂xk

∣∣∣∣
xk=f(xk−1)

, (28)

and the mean vector mk calculated from:

m∗ =
σ∗
σ

×
[
∂g(xk)

∂xk

∣∣∣∣
xk=f(xk−1)

]H

×
[
yk − g (f(xk−1)) +

∂g(xk)

∂xk

∣∣∣∣
xk=f(xk−1)

]
. (29)

The basic idea of approximating the optimal proposal distri-
bution is that, with the local linearization model in eq. (26), the
AM-AM and AM-PM model are treated as two linear curves
locally. Despite the simplicity, part of underlying properties
aroused by nonlinear PAs may be lost as mentioned and,
therefore, the estimation performance is compromised. Note

that, the particle vector at time index k, i.e.,
{
x
(i)
k

}
, will be

decomposed into the latest particle component
{
x
(i)
k

}
and the

former estimated symbols {x̂k−1, · · · , x̂k−L+1}. For simplicity,
only the latest particle needs to be derived from the impor-

tance function p
(
xk|x(i)

0:k−1, y0:k,h, (G,Ψ)
)

, which is then

appended to x̂k−L+1:k−1.
When updating the weights of simulated particles, it

is relatively difficult to obtain p
(
yk|x(i)

k−1,h, (G,Ψ)
)
=

p(yk|xk,h, (G,Ψ))× p
(
xk|x(i)

k−1

)
, owing to the involved

nonlinear observation. For the considered DSM, we may fur-

ther have p
(
yk|x(i)

k−1,h, (G,Ψ)
)
∝ p

(
yk|x(i)

k ,h, (G,Ψ)
)

,

as p
(
xk|x(i)

k−1

)
∝ p(xk) (constant) is independent of k. To

have an effective recurrence update of particle weights, we
may propagate the derived particles x

(i)
k through a nonlinear

mapping modular and obtain a group of auxiliary states x†(i)
k . It

is seen that the likelihood function, premised on new auxiliary
particles x

†(i)
k (i = 0, 1, · · · , I), now follows a Gaussian distri-

bution, i.e., p
(
yk|x(i)

k ,h, (G,Ψ)
)
∼ N

(
m

(i)
k , σ

(i)
k

)
, with its

mean and variance calculated from:

m
(i)
k = x

†(i)T
k ĥk−1, (30)

and

σ
(i)
k

2
= x

†(i)T
k Σ̂k−1x

†(i)
k + σ2. (31)

Here, ĥk and Σ̂k denote the channel statistics to be esti-
mated, i.e., the mean vector and covariance matrix. Note that,
for the assumed quasi-static channel with the invariant mean
and variance, it is practically feasible to employ the one-step
delay of the latest estimation (i.e., ĥk−1 and Σ̂k−1). So, in
eqs. (30) and (31) the previously estimated statistics will be
used to evaluate m

(i)
k and σ

(i)
k at time index k.
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Given the likelihood distribution p
(
yk|x(i)

k−1,h, (G,Ψ)
)

,

the associated weights of new particles
{
x
(i)
k

}
is updated via:

w
(i)
k ∝ 1

√
2πσ

(i)
k

exp

[
−
(
yk−m

(i)
k

)2/
2σ

(i)
k

2
]
×w

(i)
k−1. (32)

It is observed from eqs. (28) and (29) that the analytic
form of the first-order derivative (i.e., ∂g(x)

∂x ) of the nonlinear
function is further required during each SIS iteration. For the
considered blind scenario, however the analytic expression of
nonlinear function g(x), which is associated with unknown
multipath CIR, is unavailable. Therefore, to make the nonlinear
signal detector revolve, the first-order derivative needs to be
estimated in practice. To accomplish this, we firstly investigate
the recursive estimation of channel statistics.

2) Update of Multipath Statistics: If we treat the nonlinear
PA output x†

k to be one auxiliary state (i.e., the intermediate
input of multipath channel), we may then obtain a quasi-linear

map, i.e., yk = XH
k h+ nk, where Xk

Δ
=
(
x†
0,x

†
1, · · · ,x

†
k

)T
and yk

Δ
= [y0 y1 · · · yk]T . Based on the kth observation yk and

the estimated symbols x̂k = argmax
x

∑I
i=1 w

(i)
k δ

(
x− x

(i)
k

)
,

then the posterior probability of h follows a Gaussian distribu-
tion (see Appendix B), i.e.,

p(h|Xk, y0:k) ∼ N
(
ĥk, Σ̂k

)
, (33)

where the channel statistics (ĥk, Σ̂k) will be refined via:

Σ̂k = Σ̂k−1 −
Σ̂k−1x̂

†
kx̂

†H
k Σ̂k−1

σ2 + x̂†H
k Σ̂k−1x̂

†
k

, (34)

ĥk = ĥk−1 +
yk − x̂†H

k ĥk−1

σ2 + x̂†H
k Σ̂k−1x̂

†
k

Σ̂kx̂
†
k. (35)

3) Estimate the Derivative: From eq. (25), although we
have coordinated realistic effects from both the linear multipath
blurring and the nonlinear distortion together into the DSM,
the channel response h may still be separated from g(x). That
is, the nonlinear transform function g(x) could be resolved
to a linear part h and the nonlinear part q(xk) = G(xk) ◦
exp[−jθk − jψ(xk)]. Thus, the first-order derivative of the
nonlinear function g(x) will be calculated by:

∂g(xk)

∂xk

∣∣∣∣
xk=f(xk−1)

= ĥH ∂q(xk)

∂xk

∣∣∣∣
xk=f(xk−1)

= ĥH

{
∂G(xk)

∂xk

∣∣∣∣
xk=f(xk−1)

◦ exp [−jθk − jΨ(xk)]

−j
∂Ψ(xk)

∂xk

∣∣∣∣
xk=f(xk−1)

G(xk) ◦ exp [−jθk − jΨ(xk)]

}
,

(36)

where ∂G(xk)
∂xk

|xk=f(xk−1) and ∂Ψ(xk)
∂xk

|xk=f(xk−1) represent
two L× 1 partial derivative vectors, respectively. The MMSE
estimator of the unknown frequency-selective multipath re-
sponse, i.e., ĥ = E{h|y}, is obtained from:

ĥ = h0 +ΣXH
k

(
XH

k ΣXH
k +Σσ

)−1 (
yk −XH

k h0

)
,

where the diagonal matrix Σσ = diag(σ2) is the covariance
matrix of noise vector nk. The MSE of the above channel
estimation is given by:

MSE= tr

{
E

{[
h− E

(
ĥ|y
)]H}}

= tr

[
Σ̂k−1−Σ̂k−1X

H
k

(
XkΣ̂k−1X

H
k +Σσ

)−1

XkΣ̂k−1

]
(37)

With the help of Duncan-Guttman inverse formula, we may
further have

MSE =tr

[(
XkΣ

−1
σ XH

k + Σ̂
−1

k−1

)−1
]

� σ2

kE(x†2) + σ2
∑L

l=1 1/δ
2
l

δl=δ
=

σ2δ2

kE(x†2)δ2 + Lσ2
.

(38)

where δl is the lth diagonal element of the covariance matrix
Σ. From eq. (38), it is seen that the MSE will decrease as
the increasing of E(x†2)/σ2. It is also supposed that, with
the recurrence estimation process, the updated statistics of
multipath response may gradually become more accurate.

Inspecting the estimated channel ĥ and eq. (35), we easily
find ĥ = ĥk. By using the one-step delay of ĥk, the channel
estimation can be then simplified to ĥ � ĥk−1. With the esti-
mated channel and the approximated 1st-order derivative, new
particles x(i)

k will be generated from the importance distribution

p
(
xk|x(i)

0:k−1, y0:k,h, (G,Ψ)
)

. Thus, the sequentially nonlin-

ear equalization is realized relying on the new extended PF-
based paradigm.

Algorithm 1 Nonlinear Equalization and Signal Detection

Input: Observation yk, k = 0, 1, · · · ,K − 1
Nonlinear PA Model (G,Ψ)

Output: Estimated symbols {xk}.

Initialize the particles
{
x
(i)
0 , w

(i)
0

}
and the channel statistics

(i.e., the mean ĥ0 and variance Σ̂0).
for k → 0 to K − 1 do

for i → 1 to I do
Based on eq. (36), calculate the first-order derivation
∂g(xk)/∂xk at the point xk = f(x̂k−1).
Derive the importance density by eqs. (27)–(29).
Draw x

(i)
k from the updated importance density.

Let the particles pass a nonlinear mapping module
and obtain the auxiliary particles x(i)†

k .
Derive the likelihood function based on eqs. (30), (31).
Update the particle weights by eq. (32).

end for
Normalize the particle weights w∗(i)

k = w
(i)
k /

∑
i w

(i)
k .

Let the effective size Neff =1/
∑

i

(
w

(i)
k

)2
, and choose

a random term ε ∈ (0, 1).



3802 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 14, NO. 7, JULY 2015

Fig. 3. Schematic implementation of the proposed PF-based nonlinear detection.

if Neff ≤ ε and k < K then
for i → 1 to I do

x
(i)
0:k = x

(i)
0:k with the probability of w(i)

k .
end for

end if
Perform MAP estimation by following eq. (24).
Update the channel statistics (ĥk, Σ̂k) by following
eqs. (34), (35).

end for

C. Implementations

The schematic implementation of the presented recursive
estimation algorithm is illustrated by Fig. 3. Based on the one-
step delay of the estimated channel statistics, the derivative of
nonlinear observation function is evaluated. Subsequently, new
particles are generated relying on the new observations, which
is further fed into a baseband nonlinear transform modular
(maybe DSP-based). The resulting auxiliary states are then
employed to update the likelihood function and the associated
weights. Finally, the estimation of transmitted symbols will
be derived premised on the approximated posterior density
and an MAP criterion. Meantime, the multipath channel
statistics (ĥk, Σ̂k) will be refined sequentially by utilizing the
estimated auxiliary state (i.e., x̂†

k). The flow of the suggested
nonlinear equalization and signal detection scheme is given by
Algorithm 1.

As another approach to construct the importance density,
we may alternatively adopt an M -length discrete probabil-
ity mass function (PMF), which shares a much similar con-
ception with [21]. The basic idea is that the new particles
can take values only from an M -elements discrete space A
(e.g., for M-QAM/QPSK), thus the optimal importance den-
sity p(xk|x0:k−1; y0:k) ∝ p(yk|xk;x0:k−1) may be obtained by
constructing an M -length PMF after translating total M states
through a nonlinear PA [21]. Then, the SIS process will be
performed. This PMF-based scheme, i.e., directly deriving its
importance density by feeding possible symbols into the non-
linear PA, is theoretically optimal for unknown independent
symbols xk. It is noteworthy that, as mentioned, nevertheless
the intermediate or received symbols (i.e., x†

k or yk) would

present some level of memory after propagated from a nonlinear
PA [34]–[36]. The linearization approach, which fully takes
the memory among output symbols, may be more compatible
to the considered nonlinear detection scenario. Recall that
the recursive updating of its importance density utilizes the
information of past particles and observations. The PMF-based
scheme, however, fails to construct an importance density by
incorporating the historical information.

D. Complexity Analysis and Algorithm Simplification

As the suggested scheme essentially exploits simulation-
based techniques to solve signal processing problems, the
involved computational complexity is relatively high. For
example, during the SIS process of eq. (27), the required num-
ber of multiplications may even approach O[q1L

2 + κ1(nb) +
Iκ2(nb)]. The first term, O(q1L

2), mainly accounts for the
computation of channel statistics. The second term, O[κ1(nb)],
represents the additional complexity of evaluating the mean
and variance of the proposal density, where κ1(nb) ∝ q2nb +
q3[log(nb)]

2 is the complexity of evaluating related mathe-
matical functions and nb is the number of digital-bits of pre-
cision. The third term denotes the complexity of calculating
the proposal density, where κ2(nb) ∝ [log(nb)]

2 is mainly the
complexity of evaluating Gaussian functions [38]. q1, q2 and q3
are three constants.

V. EXPERIMENTAL SIMULATIONS AND

PERFORMANCE EVALUATIONS

In this section, we will evaluate the performance of the
proposed joint estimation algorithm. In the simulation, the
nonlinear PA model regulated by the IEEE 802.11ad TG is
used. Without loss of generality, a simplified channel of L =
3 is adopted, i.e., the strong LOS component is assumed in
mm-Wave communications given the widely adopted beam-
forming techniques [31], [33]. Correspondingly, the channel
mean is configured to |h̄| = [1 0.1 0.001]T and its covariance
matrix is Σ = diag{δ2 δ2 δ2}. The size of particles is set to
I = 20. Each BER curve is obtained from the average on 20
independent realizations of random channel responses and, in
each realization, total 20 000 bits are transmitted.
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Fig. 4. Detection performance with the different channel covariance δ.
(a) QPSK modulation. (b) 16QAM modulation. Note that the OBO value is
set to 6 dB.

A. Different Multipath Channels

With different channel variance δ2, the numerically derived
BER curves of QPSK signals are illustrated in Fig. 4(a). In this
experiment, an OBO value of 6 dB is adopted. As shown by
simulation results, the covariance matrix (or the variance δ2)
may have a significant impact on the performance of joint
detections. The blind detection performance will decline with
the increase of channel uncertainty (i.e., δ2). When the standard
deviation δ is 0.001, the desired Eb/N0 is about 5 dB when
BER drops below 10−2. In comparison, when the value of δ
increases to 0.01, the target Eb/N0 will be remarkably raised to
6.25 dB to acquire the comparable BER.

Compared with QPSK signals, the 16QAM modulation seems
to be more sensitive to multipath interference and residual errors.
In the experimental results shown by Fig. 4(b), the prescribed
OBO value is also 6 dB. It is observed that, when δ increases
from 0.002 to 0.01, the archived BER will remarkably increase
from 6.0×10−4 to 6.2×10−2 if Eb/N0 is configured to 8 dB.

To evaluate the joint detection performance in realistic mm-
Wave communications, the standard channel model regulated
by the IEEE 802.15.3c task group (TG) is further considered.

Fig. 5. (a) Simulated response of IEEE 802.15.3c channel model. (b) Detec-
tion Performance of 16QAM modulation signals. Notice that the OBO value is
set to 6 dB.

The CM3 is used for the LOS case, and the mean number of
clusters is set to N = 6. For the NLOS case where the LOS path
is obscured, the CM8 channel is adopted. The mean channel
amplitudes generated by LOS and NLOS models have been
demonstrated by Fig. 5(a). We may note that the first path of
the LOS scenario, which is significantly stronger than other
MPCs (with ΔK = 24 dB), will become completely dominant.
In this case, the detection performance is comparative to that
of the simplified channel (e.g., N = 1, L = 3), as illustrated
by Fig. 5(b). Nevertheless, for realistic NLOS scenarios, the
detection performance will be degraded tremendously.

B. Different Operational Conditions

The influences on detection performance from nonlinear PA
are also investigated. The channel mean is configured by |h̄| =
[1 0.1 0.001]T and δ is 0.01. From the BER curve of QPSK
signals in Fig. 6(a), it is observed that, even if the operational
power is configured to the saturation point (or the OBO is 0 dB),
the distorted signals can be still recovered if a sufficiently large
Eb/N0 is provided. Meanwhile, the adoption of OBO may
bring some benefits. To be specific, when the OBO is increased
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Fig. 6. Detection performance with the different OBO values. (a) QPSK sig-
nals. (b) 16QAM signals. The channel mean amplitude is |h̄|=[1 0.1 0.001]T .

from 3 dB to 6 dB, the desired Eb/N0 will decrease slightly
from 9.5 dB to 8.6 dB when BER drops below 10−3. If the
OBO is 7.5 dB, the gap between the proposed scheme and the
LMMSE equalization (with known channel response and linear
PA) is about 1.7 dB.

The detection performance of 16QAM, with different degree
of PA distortions, is illustrated by Fig. 6(b). When the operation
voltage is 0.58 V (or the OBO value is 0 dB), the BER
will be gradually reduced, indicating the distortion both from
nonlinear PA and linear multipath ISI can be eliminated with
the increasing of Eb/N0. As we will see later, the BER floor
may not be avoided by traditional schemes, e.g., joint MAP
scheme assuming a linear PA. Thus, the nonlinear equalization
scheme may be efficiently applied to mm-Wave systems, yet at
the cost of the high power consumption and the greatly reduced
energy efficiency. In practice, furthermore, the OBO can be
combined to enhance the efficiency of the designed algorithm.
From Fig. 6(b), the adoption of OBO may noticeably reduce
the desired Eb/N0 and thereby promote the energy efficiency.
It is noteworthy that, when the OBO value surpasses 6 dB, the
benefit will become limited. As shown from numerical results,
the detection performance will be converged finally, which is
attributed to residual errors of multipath ISI.

Fig. 7. RMSE performance of 16QAM signals under different OBO values.
The Eb/N0 is set to 10 dB.

The estimation performance of multipath channels with dif-
ferent OBOs is also investigated. The root-mean-square error
(RMSE) of channel estimations is numerically derived from
experimental simulations. During the experiment, the mean
channel amplitude is configured to [1 0.1 0.001]T and the
deviation is δ = 0.01. It is seen from Fig. 7 that the RMSE
of channel estimations will be decreased with the increase of
OBO. In practice, with the larger OBO, signal constellations
would experience less nonlinear distortions and, therefore, the
detection performance of unknown symbols, accompanying the
estimation accuracy of multipath channels, may be promoted.

C. Performance of Inaccurate PA Model

It is noted that the designed joint estimation algorithm will
depend on the parametric PA model, i.e., the AM-AM and
AM-PM model, as the proposal density may involve the first-
order derivative of nonlinear observation functions. In prac-
tice, the PF-based method may fail to derive joint estimations
of parametric PA models and multipath responses, since this
process involves intractable high-dimensional marginalization.
Thus, the designed algorithm may be not adaptable to realistic
PA variations.

To make the designed scheme more applicable to realistic
scenarios, the proposed algorithm in the presence of inaccu-
rate PA models is evaluated. In numerical experiments, the
parametric PA model will vary randomly from different op-
erating environments (e.g., chip heating). However, the mean

of PA parameters, i.e., ν
Δ
= (Ḡ, Ψ̄), is known as a priori by

receivers, which may be justified by the fact a PA model is
formulated practically based on the common (or average) chip
heating. For simplicity, PA’s parameters are assumed to follow
the i.i.d. Gaussian distribution, i.e., (G,Ψ) ∼ N{ν,Σp}. The
nth element of the covariance matrix, i.e., σp(n) = Σp(n, n),
accounts for the random variance of the nth PA parameter,
which is assumed to remain proportional to ν(n)× �, where
� is referred to as the relative mismatch ratio. Based on ex-
perimental simulations, the detection performance of different
relative mismatch ratios have been shown in Fig. 8. In the
analysis, the 16QAM signal is considered. The mean channel
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Fig. 8. Detection performance of realistic PA of inaccurate parametric model.

Fig. 9. Detection performance of the local-linearization based scheme and the
PMF-based scheme.

amplitude is configured to [1 0.1 0.001]T . It is seen that the
mismatch between the assumed parametric PA model and a
realistic PA model will degrade the detection performance.
The greater the relative mismatch ratio, the worse the BER
performance. For example, if a relative mismatch ratio of 15%
is considered, the BER performance may be deteriorated even
by an order of magnitude. Although we may draw a conclusion
that, for a relatively small mismatch (e.g., the relative mismatch
ratio less than 10%), the designed scheme could be applied to
realistic scenarios, it has to be emphasized that the stability of
parametric PA models is of importance to the proposed joint
estimation algorithm.

D. Linearization Scheme vs PMF Method

In this experiment, both the linearization-based scheme and
the PMF-based method are studied in the context of mm-Wave
nonlinear equalization and signal detection. It is seen from
numerical results in Fig. 9 that, with small OBOs and high
SNRs, the linearization-based scheme may surpass the PMF-
based method. For example, a detection gain of 1 dB can be
achieved by the linearization method when the OBO is 3 dB and

Fig. 10. Performance comparisons with the joint MAP estimation method
(with LMMSE blind equalization) and transmitter-end DPD techniques.

the BER drops to 4× 10−4. To fully promote the detection per-
formance, it seems that the linearization approach is relatively
more effective in dealing with received symbols, which exhibit
some level memory introduced by the PA nonlinearity. An
important characteristic of the linearization method is that, with
the full exploration of historical information, the importance
density will be evolved sequentially, which may exploit the
underlying memory more thoroughly and thereby may be more
attractive to mm-Wave joint estimation (e.g., with dependent
symbols/observations). For the PMF-based method, by passing
independent symbols through a nonlinear PA, its importance
density focuses primarily on the current information and, un-
fortunately, may underuse the involved memory effect.

E. Different Methods

For comparative analysis, some other existing schemes, i.e.,
the linear equalization algorithm and the DPD technique, are
further investigated.

1) Blind Linear Equalization: To blindly equalize the mul-
tipath ISI channel, a joint MAP estimation scheme may be
suggested. As in [21], the multipath response is sequentially
estimated with the LMMSE criterion. Note that, like most
blind equalization schemes, the linear PA has to be assumed
in realizations.

2) Transmitting Pre-Distortion: First, the PA identification
process of the DPD is carried out, in which the polynomial
memory model is adopted. To be specific, the 7th odd-order
nonlinearity is considered and the number of delay-taps are
3 [17]. This process is implemented with the assistance of a
sequence of a priori training sequence. The length of training
sequence is set to 512. After this supervised identification
process, an inverse system of the identified PA model can be
extracted which will be used to perform pre-distortion [17],
[39]. It should be noteworthy that, in mm-Wave receivers, the
LMMSE equalization and MAP estimation are also used other
than the transmitting pre-distortion [21].

With regards to the joint MAP method [21], it seems from
Fig. 10 that the estimation performance of 16QAM signals
will be degraded dramatically. Since such traditional methods
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may fail to deal with nonlinear distortions, the BER floor is
relatively obvious in the presence of realistic PA nonlinearity
(even if the OBO is set to 3 dB). For DPD techniques [17], [39],
notice that the nonlinearity calibration will be conducted in
transmitter-ends, which may also lead to complex computations
and implementations in transmitters, especially for low-power
and low-cost mm-Wave applications. Even so, its performance
seems still to be less competitive when OBO = 6 dB. In com-
parison, by mitigating the BER floor and improving detection
performance remarkably, the proposed nonlinear equalization
and signal detection algorithm may effectively address realistic
PA distortions.

F. Other Considerations

Except for the advantage of detection performance, the sug-
gested scheme may be implemented completely in the baseband
of receiver-ends. Thus, we may further analyze its potential ad-
vantages in some technical terms, e.g., energy consumption and
chip designing. It has to be noted that, in practice, such techni-
cal quantities may vary with specific designing philosophies,
e.g., the built-in or external linearization [40], the digital (base-
band) or RF pre-distortion (RPD) [41], the adaptive feedback
or LUT methods [42], [43], etc. 1) With regards to the power
consumption, taking the common DPDs for example, a pre-
distortion modular may conservatively account for 30% of total
power consumption of a broadband transmitter [44]. When the
most complicated pre-distortion structure is considered [41],
i.e., involving the down-converter, ADC, digital signal pro-
cessing, digital to analog converter (DAC) and DPD modular,
the power consumption of pre-distortion may become more
considerable, typically >30% of total power consumption. Note
that, for some other simpler methods (e.g., LUT), the power
consumption may be not so high. 2) With regards to the chip
area, it seems also hard to give a unified evaluation. Taking
the RPD for example, it has been shown that the pre-distortion
modular may usually cover 5 ∼ 15% of the chip area. For the
DPD technique, a pre-distorter may even account for >30% of
the chip area usage, e.g., the LUT technique with multiple on-
chip static random-access memories (SRAMs) [45].

On the other hand, the power consumption of the receiving
procedure will be increased due to additional nonlinear esti-
mation, since the baseband signal processing will be realized
in receiver-ends. Although it may be hard to figure out addi-
tional consumption accurately, it seems that the introduction
of nonlinear estimation may not increase the total power of
receivers significantly. As in most joint estimation methods
[21], [24], in fact, the estimation of multipath channels and
unknown symbols has already consumed much of energy.

VI. CONCLUSION

A nonlinear equalization and signal detection scheme is
proposed to combat the realistic PA nonlinearity of 5G mm-
Wave communications, which is designed particularly for
the baseband processing in receiver-ends. With such a new
paradigm, which remains in contrast to the widely used DPDs
in transmitter-ends, the received symbols contaminated by both
nonlinear effects and multipath fading are blindly calibrated.
By resorting to the Monte-Carlo SIS based numerical approx-
imation approach, even with realistic nonlinear distortions, the
unknown symbols and the multipath channel can be estimated
jointly. A generalized PF scheme, embedded with a local
linearization model, is further suggested to effectively cope
with encountered nonlinear observations. Thus, the involved
posterior density is derived numerically. Simulation results val-
idate the proposed algorithm. It is shown that the new scheme
can enhance the detection performance of seriously distorted
signals and may also simplify the implementation complexity
of transmitters by excluding sophisticated DPDs, which may
provide a promising nonlinear signal detection framework for
the emerging 5G mm-Wave communications.

APPENDIX A
PROOF OF PROPOSITION 1

To derive the analytic importance distribution, we firstly
construct a new variable

x̃k
Δ
=

∂g(xk)

∂xk)

∣∣∣∣
xk=f(xk−1)

× xk (39)

= yk − g (f(xk−1)) +
∂g(xk)

∂xk)

∣∣∣∣
xk=f(xk−1)

f(xk−1)−nk.

(40)

Given the a priori Gaussian distribution of nk, then we may
have eqs. (41) and (42), shown at the bottom of the page.
Notice from eq. (42), such an instrumental variable x̃k follows a
Gaussian distribution, i.e., x̃k ∼ N (m̃, σ̃), with the mean m̃ =

g(f(xk−1))− ∂g(xk)
∂xk)

|xk=f(xk−1) × f(xk−1) and the variance
σ̃ = σ.

As the linearization is performed at the point xk = f(xk−1),
then following the state transition in (6), at time index k the term

f(xk−1)
Δ
= Txk−1 is only related with x0:k−1 which may be

further replaced properly by using the derived particles x(i)
0:k−1.

As a consequence, the term ∂g(xk)
∂xk)

|
xk=f(x

(i)

k−1
)

can be regarded

as a constant. Taking the factxk= x̃k ×
(

∂g(xk)
∂xk)

|
xk=f(x

(i)

k−1
)

)−1

p (x̃k|yk,x0:k−1,h, (G,Ψ)) ∝ exp

(
− 1

σ2

∣∣∣∣ yk − g (f(xk−1)) +
∂g(xk)

∂xk)

∣∣∣∣
xk=f(xk−1)

× f(xk−1)|2
)

(41)

∼N
(
g (f(xk−1))−

∂g(xk)

∂xk)

∣∣∣∣
xk=f(xk−1)

× f(xk−1), σ
2

)
(42)
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into account, we may derive the analytic form of importance
function as following:

p
(
xk|x(i)

0:k−1, y0:k,h, (G,Ψ)
)
∼ N (m∗, σ∗).

That is, the optimal importance function also follows the
Gaussian distribution, with its mean and variance defined by:

m∗ = m̃×
(

∂g(xk)

∂xk)

∣∣∣∣
xk=f

(
x
(i)

k−1

)
)−1

, (43)

and

σ
(−1)
∗ = σ̃−1×

(
∂g(xk)

∂xk)

∣∣∣∣
xk=f

(
x
(i)

k−1

)
)H

∂g(xk)

∂xk)

∣∣∣∣
xk=f

(
x
(i)

k−1

) ,
(44)

respectively. Then, further manipulations on eqs. (43) and (44)
will lead to eqs. (28) and (29).

APPENDIX B
DERIVATION OF EQS. (34), (35)

Following eq. (21), we may easily have:

p(h|Xk, y0:k) ∝ p (y0:k|h,Xk, (G,Ψ)) p(h)

∝ exp

⎛
⎝− 1

σ2

k∑
j=0

|yj − g(xj)|2
⎞
⎠

× exp
[
−(h− h0)

HΣ−1
0 (h− h0)

]
.

By utilizing the detachable property between the linear mul-
tipath propagations and nonlinear effect, and simultaneously by
fully exploiting the derived new estimation x̂k, the first term in
above equation can be further approximated by:

p (y0:k|h,Xk, (G,Ψ))

� 1√
2πσ

exp

⎛
⎝− 1

σ2

k∑
j=0

∣∣∣yj − hH x̂†
j

∣∣∣2
⎞
⎠ . (45)

With the help of the auxiliary particles x̂†
k, further treatment

on the above relationship leads to:

p (h|Xk,y0:k,(G,Ψ))∝exp

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩
−hH

⎛
⎝ 1

σ2

k∑
j=0

x̂†
j x̂

†H
j +Σ−1

0

⎞
⎠

︸ ︷︷ ︸
Σ̂

−1
k

h

+ 2Re

⎡
⎢⎢⎢⎢⎢⎢⎣h

H

⎛
⎝ 1

σ2

k∑
j=0

x̂†
jy

∗
j +Σ−1

0 h0

⎞
⎠

︸ ︷︷ ︸
Σ̂

−1
k ĥk

⎤
⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

= exp
[
−(h− ĥk)

HΣ−1
k (h− ĥk)

]
. (46)

From eq. (46), p(h|x0:k, y0:k) follows also a Gaussian distri-

bution N
(
ĥk, Σ̂k

)
, with the covariance matrix and mean vec-

tor determined by Σ̂
−1

k =
∑k

j=0 x̂
†
j x̂

†H
j /σ2 + Σ̂

−1

0 and ĥk =

Σ̂0

(∑k
j=0 x̂

†
jy

∗
jσ

2 + Σ̂
−1

0 ĥ0

)
respectively. On this basis, we

may easily have the recursion of channel covariance ma-

trix by using Σ̂
−1

k = x̂†
kx̂

†H
k /σ2 + Σ̂

−1

k−1. Then, the Sherman-
Marrison matrix inversion lemma can be applied and further
manipulation may finally result in eqs. (34) and (35).
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