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Abstract—The unrestrained mobility and dynamic spectrum
sharing are considered as two key features of next-generation
communications. In this paper, spectrum sensing in mobile sce-
narios is investigated, which faces still great challenges as both the
mobile location of primary-user and fading channel will become
time-variant. Such two uncertainties would arouse remarkable
fluctuations in the strength of received signals, making most
existing sensing schemes invalid. To cope with this exceptional
difficulty, a novel paradigm, i.e., deep sensing, is designed, which
estimates the time-dependent flat-fading gains and primary-user’s
mobile positions jointly, at the same time of detecting its emission
status. All three hidden states involved by the space-time doubly
selective scenario are taken into accounts. A unified dynamic
state-space model is established to characterize the dynamic
behaviors of unknown states, in which the time-dependent flat
fading is modeled as a stochastic discrete-state Markov chain.
A Bayesian approach, premised on a formulation of random
finite set, is suggested to recursively estimate primary user’s
unknown states accompanying two others link uncertainties. In
order to avoid the mis-tracking of the mobile positions, which is
caused either by the incessant disappearance of primary-user or
time-variant channels, an adaptive horizon expanding mechanism
is also integrated. Numerical simulations validate the proposed
scheme.
Index Terms—Spectrum sharing, spectrum sensing, mobile PU,

time-correlated flat fading, Bayesian estimation.

I. INTRODUCTION

B Y PROMOTING the spectrum utilization of authorized
frequency and thereby alleviating the spectrum scarcity,

dynamic spectrum sharing (DSS) provides the great promise
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to next-generation communications [1], which may pave a way
for the development of new wireless services without allocating
extra frequency [2], [3]. For the emerging indoor applications,
e.g., the license assisted access (LAA) to the WiFi band dis-
cussed in LTE-U [3], [4], a primary user (PU) can be a smart-
phone or a personal digital assistant (PDA) that will be move
around in the local region. For other outdoor applications, e.g.,
the cognitive wireless sensor networks (C-WSN), the PU may
be a mobile device occupying the primary band. It is recognized
that, except for the occupancy status of primary band which
is usually acquired via spectrum sensing techniques, the mo-
bile locations of PU and the time-dependent channels will be of
great significance to the performance enhancement of cognitive
radios (CRs) [5], [17]. When it comes to identifying PU’s un-
known states in complex electromagnetic environments, how-
ever, such two participating random components (i.e., the mo-
bility of PU’s locations and the variation of fading channels)
will bring great challenges to the practical deployment of spec-
trum sensing.
Spectrum sensing, i.e., the real-time monitoring of the pres-

ence or absence of PU, is formulated essentially as a detec-
tion or hypothesis-test problem [7]. Since the advent of CRs,
various sensing algorithms of different advantages and require-
ments have been developed [7]–[10]. Most traditional schemes,
e.g., energy detector (ED) [11], [12], unfortunately are vulner-
able to information uncertainties, e.g., the large-scale space-
varying path loss or meso-scale time-varying fading channel.
As suggested by [12], [13], the fading effect, given the a priori
probability density function (PDF), will be marginalized out.
By focusing simply on its instantaneous random behavior, this
commonly used technique, however, ignores the correlation of
time-varying flat fading [13]. Thus, it will be less competitive,
in consideration of tracking time-dependent channels and fur-
ther exploiting the underlying dynamic property. As far as the
space-time doubly selective channels are concerned, i.e., with a
mobile PU and variant channel fading, realistic observed signals
will show remarkable fluctuations, which makes most existing
sensing schemes invalid.
The tracking of PU’s locations, on the other hand, belongs

to another parameters estimation issue. Traditional techniques
include the externally aided positioning and the passive local-
ization [14]. The first approach relies on specific external sys-
tems, e.g., global positioning system (GPS) or ultra-wideband
[15]. The second method, in contrast, estimates the mobile posi-
tions by exploiting the information of observations, e.g., the re-
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ceived signal strength (RSS) [16] or the time of arrivals (ToAs)
(or maybe the hybrid information) [17]. It is noteworthy that,
for CR applications, usually most external systems will be im-
practical. Moreover, the localization of a mobile PU has to be
accomplished in a non-coordinated manner and, thus, the avail-
able information will be very limited (e.g., only RSS may be
used). The innate reason is that a PU endowed with the absolute
priority (on its authorized spectrum) is not bound to accommo-
date the inferior secondary users (SUs).
For a space-time doubly selective scenario, one has to

deal with a more complicated mixed detection and estimation
problem. The principal challenge is that the detection process
(of PU’s emission status) and the other estimation process (of
two related link uncertainties) will be mutually interrupted.
Unlike traditional joint estimation and detection problem [18],
the RSS emitted by a PU will disappear randomly attributed
to the dynamic switching of its occupancy status, making
the acquisition of PU’s moving positions and time-dependent
channels even tough. To be specific, an erroneous PU’s state
will misguide the inference (or estimation) of its mobile posi-
tions accompanying the fading channels, which, in turns, will
definitely harass the next round of detection. Most existing
schemes, designed either for pure sensing or estimating prob-
lems, fail to take such coupling and transitive interruptions into
account, which may become less attractive to the spectrum-lo-
cation awareness application. For example, the Cramér-Rao
bound of PU localization is studied [19], which, yet of theoret-
ical significance, did not consider the incessant disappearance
of PU’s RSS and time-dependent fading channels.
Spectrum sensing under time-dependent fading channels is

firstly investigated in [13], where the fixed path-loss (i.e., with a
non-mobile PU) is assumed. The sensing algorithm with a mo-
bile PU is then studied [20], which, however, considers only
a static Gaussian channel and may be impractical to many ap-
plications. In the face of more realistic time-dependent fading,
existing schemes will be infeasible due to the further coupling
interaction between two unknown link states. For example, a di-
rect application of the method in [20] to the new scenario will
lead to significant estimation errors, e.g., when localizing a mo-
bile PU based on inaccurate fading channel, or vice versa. To the
best of our knowledge, spectrum sensing, in the context of the
space-time doubly selective channels, has not been virtually re-
ported in the open literature. In the investigation, a general deep
sensing (DS) framework is suggested for more challenging sce-
narios. To sum up, the main contributions are summarized to the
following three-folds.
1. An extended DS paradigm is proposed for the mixed

estimation of PU’s emission states and another two dy-
namic uncertainties. Differentiated from classical sensing
schemes ignoring a mobile PU and the flat-fading effect
[7]–[11], or existing localization techniques without con-
sidering PU’s switching states and time-variant channels
[17], [18], the new framework will take thoroughly the
destructive interruption from the PU’s incessant absence
into the blind tracking of its positions and time-varying
fading channels.

2. A general dynamic state-space model (DSM) is estab-
lished to characterize the DS process in space-time doubly

selective fading channels. In contrast to other traditional
sensing formulations or localization models, in the new
DSM the time-varying fading channels and PU’s moving
positions are treated as two hidden states to be estimated,
other than the unknown emission status of PU. The mu-
tually interrupting relationship, as a consequence, will be
fully embodied.

3. A recursive algorithm is designed to realize spectrum
sensing under both the time-variant fading effect accom-
panying the PU’s mobility, which, unfortunately, seems to
be beyond the capability of other existing schemes [7], [9].
The complex DS process, aiming to acquiring another two
informative link uncertainties, is modeled as a Bernoulli
random finite set (RFS). A Bayesian approach is then
suggested, in which a sequential importance sampling
(SIS) method is adopted. The non-analytical posterior
densities are approximated numerically, and the PU’s state
accompanying two link states are recursively derived.
By updating the degree uncertainty, an adaptive horizon
expanding (AHE) mechanism is further integrated, which
could avoid the mis-tracking despite the incessant disap-
pearance of PU’s signals.

The sensing performance, accompanying the estimation
performance of two link uncertainties, are studied based on
numerical simulations. It is shown that, no matter what the
PU’s state is, both time-varying fading channels and PU’s
mobile locations can be tracked. Based on the recovered two
informative link states, the promising sensing performance can
be achieved in space-time doubly selective fading channels.
Note that, the estimated fading states and PU’s locations, as the
extra gifts of sensing process, will be of great potentiality to
CRs’ performance enhancement [17], e.g., interference control
and resource allocation. The extended DS scheme, therefore,
provides a promising approach for DSS-based next-generation
communications.
The rest of the article is arranged as follows. In Section II,

a general DSM is formulated to characterize the spectrum-lo-
cation awareness problem under time-dependent fading condi-
tions. A recursive Bayesian algorithm is designed in Section IV,
which acquires PU’s emission states by inferring its locations
and fading channels simultaneously. A promising AHE is also
integrated to avoid the mis-tracking of a mobile PU. Simula-
tions are provided in Section V. Finally, we conclude this study
in Section VI.
The notations used by this work are summarized as follows:

the dimensional vector is denoted by ; the
matrix is denotes a random finite set and

is its cardinality; denotes a discrete state space of
dimensions; is the real-valued space of dimen-

sions; is the 1-dimension integer space.
is the -norm of vector . denotes the transpose.

is the variable trajectory till the
th time index. denotes the ensemble average, and

is the variance.

II. SYSTEM MODEL AND PROBLEM FORMULATION

For the spectrum-location awareness application, we consider
a cooperative sensing scenario. It is assumed that the large-scale
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Fig. 1. A outdoor DS scenario under space-time doubly selective channels with
collaborative SUs. The large-scale pass-loss is determined by the ge-

ographic distance between the mobile PU and SUs, while the fading effect is
related with local environment. The dash lines denote the first-phase sensing
procedure, while the solid lines account for the second-phase report process.

path-loss is determined by the geographic distance between a
mobile PU and the th SU, while the flat-fading is aroused by the
superposition of independent reflections, as illustrated by Fig. 1.
For simplicity, here SU nodes are assumed to be located on
a 2-D grid. The position of the th SU node, denoted by

, is known by the data-center (maybe an outdoor base-
station or the indoor access-point) as a priori.
At the discrete time , the th SU will obtain the local

observation . All SU nodes will then forward the ob-
servations toward to a data center, which will estimate the
fading gains and PU’s emission status accompanying its
position , relying on the received observation vector

.

A. Single Model
A new DSM is formulated to characterize the above spec-

trum-location awareness scenario, i.e.,
(1)
(2)
(3)
(4)
(5)
(6)

Here, (1)–(5) are referred to dynamic equations, while (6)
accounts for the measurement equation.
1) The first dynamic function , which is non-

analytical and specified by a group of transitional probabil-
ities, characterizes the stochastic switching of PU’s emis-
sion states from the th to
th time slot.

2) The second dynamic function
depicts the transitions of fading channels

. Here, each fading gain is
assumed to follow a discrete-states Markov chain (DSMC)
of one order. Note that, this analysis will focus primarily
on the multiplicative time-varying flat-fading, while the
frequency-selective multipath effect is ignored.

3) Another two dynamic functions, and
, specifies the random evolutions of PU’s

moving speed and orientation , which are driven re-
spectively by two random noises and .

4) The dynamic function gives the time
variations of PU’s locations .

5) The measurement function describes
the coupling relationship between three hidden states
(i.e., and ) and the observation .
The background noise of the th sample of the th slot,
denoted by , is assumed to be the indepen-
dent and identically distributed (i.i.d) zero-mean additive
white Gaussian noise (AWGN) with a variance , i.e.,

, which keeps independent of three
hidden states (i.e., and ).

Without losing generality, we consider the sensing-transmis-
sion slot with a duration of ms. Assume the rela-
tive displacement of a PU device is about 0.008 m among two
sensing-transmission slots, then its mobile speed will be
m/s (e.g., a moving human). Taking the carrier frequency of

GHz for example, the maximum Doppler frequency
will be 32 Hz, where m/s is the velocity

of light. In this case, the static length of flat-fading channel is
about . That is, the fading gain will remain
temporarily unchanged in 15 successive sensing-transmission
slots, while it may vary in the next slots. For a smaller mo-
bile speed, e.g., m/s, then the static length of flat-fading
channel will be even longer, i.e., . In the following anal-
ysis, three assumptions are made to the established DSM.
1) The PU’s emission state is assumed to be quasi-static.

If corresponds to a hypothesis in the absence of PU’s
signals and accounts for the presence of PU, then either

or will be unchanged during one sensing slot .
2) The slowly varying fading channel is concerned. In this

case, each fading gain will remain invariant during
successive slots, but it will changed in the next slots.

As shown, the static length is practically related with the
maximum Doppler shift , i.e., . Besides, it
is assumed that fading gains of different PU-SU links
evolve independently.

3) The PU is assumed to move slowly (e.g., m/s). Thus,
the mobile position will remain invariant
within one sensing slot (recall a slot is very short, e.g., 2
ms). In other words, is independent of different sample
index of the th sensing slot.

Next, we will elaborate on each state/observation equation.

B. PU’s Emission States
The evolution of PU’s emission states is typically character-

ized by a two-state Markov transition process
[12], [22]. In practice, the dynamical transitions of PU’s states
may keep invariant for a given application in all the time (or, at
least, in a long period). So, the transitional probability matrix
(TPM) of PU’s emission states is given by:

(7)

where the survival probability is defined as:

(8)

and the birth probability as:

(9)
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C. Time-Varying Fading
The time-varying flat fading channel, as the common feature

of next-generation communications enabling unrestrained mo-
bility [3], [5], is taken into account. The transitional behavior
of time-correlated channel is modeled as a DSMC [12], [23],
[25], which is shown to coincide with the dynamic nature of
time-varying channel and also match existing statistical models
(e.g., Clarke’s model) well [23], [25]. For simplicity, here an in-
decomposable DSMC is studied.
For the non-coherent RSS observation, it is noteworthy that

the channel phase will be insignificant to the DS process [12],
whilst the channel gain with a specific statistic distribution, e.g.,
Rayleigh fading [24], is of crucial importance. In the DMSC, the
th nonnegative fading gain will be divided
to non-overlapping regions, denoted by V . If two partition
bounds are specified by and , respectively,
then we have:
V (10)

Thus, the time-varying fading channel will be represented by
a group of discrete states, i.e., .
Each gain is
viewed as the output of a specific DSMC [25]. The sta-
tionary probability of the th fading gain is denoted by

with .
Then, we have for the assumed indecomposable
DSMC, where

denotes the TPM of fading gains and each element
specifies the transitional probability from the state

at time to the state at time .

(11)

In practice, the above transitional probabilities are usually
ergodic and stationary [12], [23], [26]. That means the prior
densities are independent of the transitional time

of fading channels.
Suppose the statistical PDF of the Rayleigh fading is denoted

by , then the steady probabilities of the fading gain
residing in the th region (i.e., ) are:

(12)

With an equiprobable partition rule, i.e., , the
partitioning bounds will be derived via

[23]. So, is evaluated via:

(13)

where is the bi-variate Rayleigh joint PDF
[26].
For simplicity, the 1st-order DSMC is assumed, which is

proven to be applicable in most slowly varying flat-fading
environments [25]. The current fading state, accordingly, will

keep independent of all other past and future fading states
with a standoff distance larger than 1, i.e., for

. Thus, the TPM of DSMC is simplified
to a tridiagonal matrix, i.e., the nonzero elements exist only on
the main diagonal and the first diagonal below/above this main
diagonal.
For convenience, PU-SU links are homogeneous and the

fading properties will be the same, i.e., , and
then the subscript may be dropped from the above transitional
probabilities. In practice, the transitional probabilities
will be evaluated by a numerical method [23], [25] premised
on the level crossing rate (LCR) , which accounts for the
number of times per second that the fading amplitude crosses

in a downward direction. For the assumed Rayleigh fading,
we have:

(14)

Relying on the conception of LCR, the transitional proba-
bilities will be approximated by . Here,

is the average number of sensing slots per
second in the state , and denotes the duration of
the sensing-transmitting slot.

D. PU’s Locations
A flexible mobility formulation, i.e., the Gauss-Markov mo-

bility (GMM) model, is studied, which has been widely used in
mobile ad-hoc networks [27], [28]. A similar parametric model
may be adapted for mobile cellular scenarios [28]. The parame-
ters would be extracted from various application scenarios, e.g.,
indoor/outdoor, human/vehicle.
Given the updated PU’s speed and orientation, the dynamic

positions will be evolved randomly according to:

(15)

where and denote the horizon and vertical positions of a
mobile PU at the th discrete time.
In order to fully characterize the mobility displacement

, the dynamic behaviors of both PU’s moving speed
and orientation are assumed to follow the random walking
(or Brownian motion). That is, given the speed and the
moving orientation of the previous th discrete
time, then these two random states of time will be derived by:

(16)
(17)

where and denote two random variances of PU’s speed
and orientation, respectively. In the above GMM model, a
Gaussian random noise, i.e., , serves as
the driven-input of speed; whilst the other exponential noise

is adopted as the orientation driven-input.
Note that, in practice, however the estimation scheme will be
adapted of specific GMM models.

E. Observations
As mentioned, the RSS-based observation is considered,

which is easy to implement and, therefore, has been widely
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suggested [7]–[10], [12]. Traditionally, the sensing procedure
is formulated as a two-hypothesis problem:

(18a)

(18b)

where represents the RSS of the th time from the th SU
device; de-
notes the geographic distance between the th SU and the PU;
is the attenuation constant which is typically larger than 2 and

thereby gives the path-loss; is the fading gain of the
th SU; denotes the samples size. represent PU’s in-
formation symbols. For simplicity, the real-valued binary phase
shift keying (BPSK) signal is assumed, e.g.,

. It is shown that, given the RSS-based non-coherent
scheme, the generalization to unknown modulated signals (e.g.,
complex signals) is straightforward [12], [13].
Conditioned on the PU’s state and two others link states,

i.e., the geographic distances and the fading gains ,
the likelihood function follows the cen-
tral chi-square distribution with the degrees of freedom (DoF)
of under , and a non-central chi-square distribution with

degrees under . The non-central parameter is
, where .

For the i.i.d noise, the likelihoods are approximated by the
Gaussian distributions according to the central limit theorem
(CLT), when the sample size is lager (e.g., ), i.e.,

(19)

(20)

where the means and variances are:

III. DEEP SENSING

A. MAP Estimation

Without taking additional link uncertainties, e.g., unknown
PU’s positions and dynamic fading channels, tradition-
ally the spectrum sensing is realized via the well-known
Neyman-Pearson (NP) criterion [7]–[11], [29]. In the investiga-
tion, a novel Bayesian inference approach is designed, which,
in contrast, acquires both PU’s unknown emission states and its
moving positions accompanying time-correlated fading gains.
Based on the formulated DSM, the maximum a posteriori

(MAP) criterion is applied. That is, the hidden states are esti-
mated by maximizing the joint posterior density, i.e.,

(21)

where denotes the trajectory of PU’s emis-
sion states until the th time slot. Similarly, and
denote three trajectories of PU’s positions, time-varying fading
gains and RSS observations, respectively.
For convenience, the hidden states are represented by a single

state-vector, i.e., .
In order to derive the posterior density sequentially, a two-step
Bayesian scheme [30], i.e., first predicting and then updating, is
suggested, see (22)–(23) at the bottom of the page.
Here, denotes the a posteriori

density of the time . The initial distribution
is assumed to be known as a priori. The one-step pre-
diction , as in (22), is obtained via the
Chapman-Kolmogorov equation. Then, the updated posterior
density, as in (23), is recursively computed on new measure-
ments via the Bayesian rule.
Although providing a conceptional framework of statistical

inference, the existing Bayesian approach of (23)-(24) may be
infeasible in the mixed sensing and positioning problem. This is
attributed to the mutual interruptions between the detecting of
PU emission states and the tracking of two link uncertainties. 1)
In dynamic CR scenarios, as indicated, the PU’s emission sig-
nals will be disappearing incessantly. Both the dynamic distance

and fading gains will vanish from the observation
when a PU turns off (i.e., ), leading to the likelihood disper-
sion problem which renders the Bayesian estimation/inference
(of either PU’s positions or time-varying fading channels) a very
tough work. 2) Without deterministic PU’s positions and fading
gains, the detection of PU states, as a coupling result, may be
also erroneous due to the resulting uncertainties.

(22)

(23)
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B. Bernoulli Random Finite Set
With a mixed objective of simultaneous detection and esti-

mation, traditional formulations (i.e., two hypothesis-test) may
become inadequate in the context of DS. In this analysis, the dy-
namic behavior of all hidden states ( and ) will be char-
acterized by one unified random process , i.e., RFS [31]–[33].
1) Cardinality of RFS: An RFS is a special set containing

many random variables, and its cardinality (i.e., the number of
variables) will changes also with time [32]. For an RFS, the
random cardinality distribution

is usually vital. For the DS scenario with a mobile PU, the
cardinality will be binary (i.e., or ), indicating the
absence or existence of PU’s signal. Thus, we have
and is a Bernoulli distribution, i.e.,

(24a)
(24b)

That is, the formulated Bernoulli RFS will either be empty in
the event of , i.e., , or have a single element

in the case of . From (24), the prior probabilities of
two events are given by and , respectively. In the presence
of PU’s signal, i.e., , the associative random state is

.
2) PDF of RFS: According to the Mahler’s theorem [31],

for a general RFS with a group of joint distributions
, a statistical PDF is defined as:

(25)

Obviously, can be treated as a PDF, as the set integra-
tion on (note that rather than the distribution marginaliza-
tion) results in .
As seen, the state associated with the active PU, i.e.,

, will involves two terms, i.e., the PU’s moving position
and the time-varying fading state . Replacing (24) into

(25), the FISST PDF will be re-formatted as:
(26a)
(26b)

It is noteworthy that, for this Bernoulli RFS, we have
if the cardinality is larger than 1.

3) Dynamics of RFS: It follows from (11) and (15) that, in-
volving two independent hidden sub-states and , the RFS

follows a 1st-order Markov process and the prior transi-
tional probabilities are given by:

(27a)
(27b)

and

(28a)
(28b)

respectively.
In (27-b), the birth density specifies the ini-

tial distribution of a singleton state after the PU is
re-emitted or re-appeared, i.e.,

which will be discussed in subsequent Section III.E.4. Another
prior transitional probability in (28-b) is:

(29)

Recall the previous (15)–(17), the transitional density of PU’s
mobile positions will be specified by:

(30)

where gives the angle of a displacement vector. The
other prior transitional density in (29) is given by:

where and
denotes two indexes of the th PU-SU

link at time under a constraint .
4) Estimations of RFS: It is seen from (26) that the FISST

PDF depends primarily on two terms, i.e., the
posterior density of PU’s existence (i.e., and the a poste-
riori spatial PDF of hidden link states . Here, the pos-
terior density of PU’s existence is:

(31)

and the other posterior spatial PDF of is:

(32)

C. Bernoulli Filtering for BRFS
Relying on the formulated DSM and measurements , the

posterior densities of RFS will be estimated recursively. Given
a priori transitional densities in (29)–(30) and the likelihood
densities of (19)–(20), a generalized two-stage recursive scheme
will be applied to derive the posterior distribution of , i.e.,

(33)

(34)

A major difference between the above generalized estimation
of RFS and traditional Bayesian inference in (23)–(24) is that,
rather than the distribution integration, here a set integration
(i.e., ) will be taken [32]–[34].
1) Prediction Stage: During the 1st stage, two predict den-

sities, i.e., and , are derived. One
may refer to [32], [33] for details.
Remark 1: The predicted existence density and spatial den-

sity will be propagated via:

(35)
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Fig. 2. An illustration of predicting procedure. For clarity, here
.

and (36), shown at the bottom of the page, respectively.
It is noteworthy that, from (35) and (36), both the pre-

dicted existence density and the spatial density
will contain two complementary terms, i.e.,

the birth component and the survival component. A logical
evolution structure of these two predicted densities is illustrated
by Fig. 2.
2) Update Stage: During the 2nd stage, the above two pre-

dicted densities will be updated based on the new observation
, see [32], [33].
Remark 2: The existence density and the spatial density

are updated [see (37)-(38) at the bottom of the
page, respectively]. Here, the term accounts
for a ratio between the likelihoods of two hypothesis, i.e.,

Based on the generalized Bayesian inference, the estimation
of two posterior densities, i.e., the existence probability and
the spatial PDF , will be obtained.

D. Refinement Mechanisms
Considering the slowly-varying fading channel remain

quasi-static in successive slots, we further suggest two im-
proving mechanisms to maximize the functioning of the recur-
sive estimation scheme.

1) The first mechanism is referred to observation accumula-
tion. As the fading state will be unchanged in a short period,
after its transition has occurred at a switching time ,
the innovation observations of the subsequent slots will be
used to promote the estimation accuracy of . That is, in the
time slot , part of previous observa-
tions (i.e., in the case of ) will be cumulated, and a new
observation is re-defined as:

(39)

Here, accounts for the number of occurrences of PU’s
active state (i.e., ) in the previous slots, i.e.,
. As the summation of independent Gaussian variables (i.e.,

) is also Gaussian distributed, the accumulated obser-
vation will also follow the Gaussian distributions, i.e.,

(40)

(41)

Note that, the accumulated observation and its likelihood are
applied only to refine and , after deriving the PU’s posi-
tion and the rough estimations of and premised on the
current observation . The underlying principle of the accu-
mulation mechanism is that, with more likelihood information
exploited, the estimation of fading gains accompanying un-
known PU states will be reinforced.
2) The second mechanism is referred to homologous estima-

tion. The main motivation is that the predicting/updating proce-
dure should be implemented in accordance with the quasi-static
transitions of the fading states with a static length . Different
from the inference of classical RFS [32], [34], in the suggested
scheme now the predicting and updating procedures utilize the
previous densities and ,
respectively.
Conditioned on the accumulated observation in (39), it is

supposed that the spatial distribution of the th time
has probably become very accurate, after combining the former

(36)

(37)

and

(38)
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historical observations. The predicting of fading
states in (36), therefore, will rely on the spatial density of time

other than the previous time ,
see (42) at the bottom of the page. Here, the prior density can
be further simplified to

.

E. PF-Based Implementation
Noted from (36) that the derivation of a predicted spa-

tial density relies on the marginalization
of continuous distributions. As far as the integration on the

-dimensional density is concerned, the implementation
will be computationally intractable. To cope with the difficulty,
a numerical approach, i.e., the SIS based PF, is suggested to
alleviate the complexity of Bayesian inference.
1) PF: In essence, PF belongs to a simulated numerical

method, which approximates the complex distribution via a
group of random discrete measures (i.e., particles) with the
evolving probability masses (or weights)
[35], i.e., . Usu-
ally, PF consists of two steps. Firstly, a proposal density

that is related with the target density
is designed, from which total simulated particles are

drawn, i.e., . Secondly, the associated

importance weights are updated via:

(43)

In practice, a re-sample procedure will be adopted in order to
eliminate particles with negligible weights [35].
2) Bernoulli PF: For the DS application, the PF is used to

approximate the predicted spatial density , i.e.,

(44)

For clarity, here denotes the
mixture hidden particles. As seen from (36), is com-
posed of two parts, i.e., a survival component and the other birth
component. A proposal distribution of two pieces is thereby de-
signed to simulate to the mixture particles ,
i.e.,

(45a)

(45b)

If collating (45) with (36), the first birth term is approximated
by particles, while the second survival term is simulated via
the later particles. Given total simulated measures

, the weights are updated by [32]:

(46a)

(46b)

Once the proposal birth density
and the other proposal

survival density are specified
properly, then the Bayesian inference will be realized, and

can be numerically evaluated.
3) Proposal Survival-Density: In practice, the proposal sur-

vival density is simple to obtain. First, with predicted
particle and their weights , the posterior
density of time will be estimated and the corresponding
particle weights are updated via:

(47)

Second, discrete particles are drawn from
. The

new particles are survival and further reserved for the
subsequent time [32].
4) Proposal Birth-Density: As far as two independent link

states and are concerned, a compound proposal birth den-
sity should be designed, i.e.,

(48)

(a) For the sub-density of birth particles corresponding to
the time-varying fading state, i.e., , we suggest
an adaptive birth density, which is determined jointly by the
prior transitional density and the accumu-
lated measurement . Further combining the homologous
estimation of fading channels, it is specified as:

(49)

where the intermediate birth density is
given by . In the considera-

(42)
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tion of the 1st-order DSFC model, the posterior component in
(49) are given by:

(50a)
(50b)

Note that, here the intermediate state is generated to
increase the diversity of birthed particles , which, to some
extent, may avoid the local solution aroused by the erroneous
estimations .
(b) For the other birth sub-density, i.e., , the

major challenge is how to address the aforementioned likeli-
hood dispersion problem aroused by the sudden cease of PU’s
emission (i.e., ). If this happens, there is no likelihood
information can be utilized. To tackle the difficult problem, we
design a flexible sub-density by integrating a promising AHE
mechanism. The principle is that, when the PU jumped into the
silent state at time , its positions of subsequent times will
be predicted, premised on the previously estimated speed and
orientation. At the same time, the uncertainty introduced by the
predicted positions will be updated when simulating new birth
particles (corresponding to ) once this PU re-emits.
For clarity, the lasting length of is denoted by ,

i.e., for and . To sum
up, the AHE involves essentially two stages, i.e., the position
predicting and the uncertainty updating.
1) If the PU enters to at time , then in subsequent

time , its unknown positions
will be predicted based on the previously estimated speed

and moving orientation [20], as well as the
tracked position of time , i.e.,

(51)

In practice, and will be derived from
the trajectory of previously tracked positions, i.e.,

. Note from (51) that the estimated
velocity will be of great significance to AHE. Thus, an
autoregressive (AR) model is suggested to suppress the
estimation bias of and , i.e.,

(52)

(53)

Here, denotes a weighting parameter, which may be set
empirically to denotes a back-
tracking length.

2) Assume the PU re-emits at the time after residing in the
silence state for successive slots. Thus, the PU’s position
should be re-birthed within an enlarged range, by fully uti-
lizing the a priori information of the mobility model. To
do so, a birth sub-density is specified as:

(54)

Fig. 3. The birth process of two associative states. After total -step predic-
tions under , the birth uncertainty of PU’s positions will be de-
termined by a 2-D sector region. Here, accounts for possible PU’s positions
after silence slots, while is the associated fading states.

where the speed density and the orientation den-
sity jointly designate a 2-dimension space.

(55)
(56)

Here, accounts for the allowance factor which is
employed to address the additional uncertainty (or error)
of the estimated fading states , which in practice can
be determined by:

(57)

It is expected from (54)–(56) that, with the increase of
, the horizon (or cover area) of the birth sub-density

will be expanded accordingly, as illustrated by
Fig. 3. Thus, the PU’s mobile positions would be tracked
by the above uncertainty adaption strategy, even after
a long suspending of PU’s emission. Notice that, in the
following emission slots , the uncertainty of the birth
sub-density will be reset to 1 in the case of .

With the designed survival-density and birth-density, total
discrete particles can be drawn from a unified proposal distri-
bution, i.e., , for

[32]. Then, the importance weights
of new particles will be updated via (46).
5) Simplified Implementations: In order to cover the

2-dimensional continuous mobile region and another -dimen-
sional discrete states-space, the required number of particles
will be considerably huge. In practice, we adopt a simplified im-
plementation scheme. To be specific, each position particle (i.e.,

) carries only one possible fading state, i.e., the 1st-order
prior transitions from . Then, position particles (i.e.,

) are drawn from the sub-birth density of , and
finally, the predicted particle will be appended to construct
the mixture particles .
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As the proposal birth density is premised on the prior transi-
tions, the weights of birthed particles will be updated by:

(58)

Thus, the predicted spatial density will be
derived approximately, with the marginalization replaced by the
summation by using .
Moving on, we can obtain and estimate PU’s state via:

(59a)
(59b)

where is configured to 0.5 under a Bayesian criterion. Simi-
larly, the PU’s positions and fading states will be estimated by
maximizing the approximated spatial density, i.e.,

(60)

6) AlgorithmFlow: A schematic structure of the proposed al-
gorithm is plotted in Fig. 4. First, two predicted densities
and will be estimated. Then, they will be updated by
utilizing the new observation . Finally, in the case of
and , the designed AHE will be applied. In order to re-
alize AHE, a counter is employed, which is of practical use
to update the uncertainty of the birth uncertainty.
7) Complexity: The algorithm complexity is roughly mea-

sured by the total number of multiplications. First, in order to
obtain RSS observations, multiplications are required.
Second, the number of multiplications required by the Bayesian
estimation is proportional to the size of simulated particles (i.e.,
) in PF. Here, the computation of each related likelihood den-
sities is basically measured by , where is related with the
representative precision of numbers and various adopted algo-
rithms [36]. To sum up, the total complexity of the new algo-
rithm will be given by .

IV. NUMERICAL SIMULATIONS

In the following simulations, the performance of the new DS
scheme will be evaluated. Three performance metrics, i.e., the
sensing accuracy of PU’s status, the localization errors and the
channel estimation errors, will be studied numerically.
1) Sensing Metric: As a Bayesian approach, unlike the clas-

sical NP criterion [7], [8], a total correct probability is used as
the sensing performance metric, as in [12], [13], [37].

(61)

where the false alarm confines the utilization of vacant spec-
trum, while a missed detection probability controls the in-
terferences caused to PU. Note that, the new compound metric
remains quite different from that of a classical NP criterion, in
which the objective is either to minimize for a target , or
to minimize the for a target .
In following analysis, rather than focusing on a single by

prescribing , we will evaluate the total correct probability
. It is suggested that, with the new metric, the spectral uti-

lization of unused PU’s spectrum and the potential interference
to PU will be jointly considered [20], [37], [38]. Note that, un-
like an NP criterion, now the cannot be fixed under an MAP
criterion. To be specific, when imposing a threshold to fix

as in classical ED, the estimations of fading channels and PU’s
locations would not be utilized. The new metric , therefore,
is more suitable to evaluate the designed Bayesian scheme. It is
demonstrated that, by exploiting the informative hidden states
and an MAP criterion, in the proposed Bayesian approach an
improved will also result in the promotion of both and

compared to an NP criterion [13].
2) Localization Metric: For the localization of a mobile PU,

as a commonly used metric, the root mean square error (RMSE)
of estimated locations is investigated, i.e.,

(62)

3) Channel Estimation Metric: When it comes to the estima-
tion of time-correlated fading channels, a similar MSE perfor-
mance will be used, i.e.,

(63)

A. Simulation Configurations
In the simulations, SUs are deployed on the vertexes

of a square (maybe an indoor office or an outdoor square, etc.),
while the PU is moving randomly within the grid region with a
side length of 100 m. The prior locations of 4 SU nodes are (0,
0), (0, 100), (100, 0), (100, 100). Without losing generality, in
the assumed GMMmodel the initial speed is m/slot
and the initial orientation is rad (i.e., 45 c), which
may correspond to a mobile human carrying the PU device. The
variance of PU’s speed is and the variance of
PU’s orientation is . Based on multiple random tra-
jectories, the average signal-to-noise ratio (SNR) will be statis-
tically evaluated, given the Gaussian noise variance . For the
considered DSMC, the variance of Rayleigh distribution may
be basically insignificant to the performance analysis, which is
set to ; the number of discrete representative states
is . The transitional probability of PU states is set to

.

B. Different Static Length
In the first experiment, the effect of different fading rates (or

the static length ) is investigated. The size of discrete particles
are and the number of birth particles are .
Total 80 trajectories have been simulated and, in each indepen-
dent realization, 5000 sensing-transmission slots are evaluated
with a new generated fading channel.
In Fig. 5, the localization RMSE of the mobile PU is plotted.

As we have indicated before, the static length ranges from 10
to 60. So, in the analysis two realistic static lengths are studied,
i.e., and . For convenience, assume the static
length is normalized by , thus will be approximately
proportional to . The sample size is . It is seen
from numerical results that, given the high SNRs, the PU’s mo-
bile locations will be tracked accurately even its emission is shut
off intermittently. When the SNR is configured to 15 dB, the
RMSE may approach 1.32 m with a static length of .
Meanwhile, it is also noted that the localization RMSE, given
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Fig. 4. Schematic flow of the suggested Algorithm.

Fig. 5. Localization RMSE of the PU under different static length .

Fig. 6. Channel estimationMSE of the PU-SU link under different static length
.

the discontinuity of PU’s emissions and time-varying fading
channels, will be basically converged under two static lengths

when dB. Also, we find the RMSE
of will be slightly superior to that of . This is
mainly because, with the observation accumulation mechanism,
the more profound refinement on channel estimations will be
achieved by a larger .
A similar trend in Fig. 6 further verifies the above analysis, in

which the channel estimation MSE of is much smaller
than that of . For example, if SNR is configured to 10 dB,
the numerically derived MSE is about 0.027 for a static length
of , while it will be increased to 0.1 given a faster fading
channel of .

Fig. 7. Total correct probability under different static length .

The total correct probability is shown by Fig. 7. We note
that, for both and , the total correct proba-
bility will approach 1 when the SNR surpasses 4 dB and the
sample size is . It is also observed that the total correct
probability of will be superior to that of .
Combined with Figs. 5 and 6, it may be further concluded that,
in the presence of a mobile PU and time-dependent fading chan-
nels, the reliable spectrum sensing (e.g., %) requires
an RMSE smaller than 20 m and a channel estimation MSE less
than 0.1.

C. Different Sample Size
In the second experiment, the effects from different sample

sizes on the sensing and localization performance are studied.
First, we note from Fig. 8 that the localization RMSE of amobile
PU will be promoted by increasing the sample size . For ex-
ample, when an dB is concerned, the RMSE is 5.34
m if is set to 50, while it will be significantly decreased to
1.65mwhen . Second, a similar trendwill be observed
from the MSE curves of channel estimation. From Fig. 9, the
MSE of channel estimation is 0.0638 when is set to 50, while
it may be decreased to 0.0069 when . That is easy
to follow, i.e., with more independent samples, the degree of
freedom of the accumulated observation will be then increased,
leading to the more accurate estimation of hidden parameters.
The total correct probability of the new DS scheme with

different is demonstrated by Fig. 10. It is seen from numer-
ical results that the correct probability will be promoted with
the increasing of the sample size . When the sample size is
increased from to , a rough detection gain
of 2.5 dB may be achieved. Note that, however, an increased
sample size indicates a prolonged sensing time and also a
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Fig. 8. Localization RMSE of PU under different sample size .

Fig. 9. Channel estimation MSE of the PU-SU link under different sample size
.

Fig. 10. Total correct probability under different sample sizes .

higher complexity. As a consequence, the compromise should
be made in the realistic designing.

Fig. 11. Total correct probability with unknown PU’s positions and the time-
varying fading channels. Here, we configure .

Fig. 12. Sensing performance in time-invariant fading channels and
time-varying fading channels. In the simulation, we configure .

D. Comparative Analysis
We firstly investigate the common ED scheme without

tracking PU’s mobile positions and time-correlated flat fading
channels. In the experiment, the PU’s locations change dy-
namically with time, yet we may only know its expected
location . For the varying flat-fading channels,
we can also obtain the expectations of fading gains, i.e.,

.
Thus, the likelihood densities will be evalu-
ated and theMAP decision is made. It is found from Fig. 11 that,
when these two link states become unknown to SUs, the
sensing performance will be dramatically deteriorated by the
resulting information uncertainty. Although the expectations of
unknown link states lead to more robust sensing performance in
low SNRs (e.g., dB), the total correct detection probability
can only be converged to 0.88, which is known as the SNR
wall. Thus, the motivation of our suggested sensing algorithm
can be demonstrated. I.e., it is of significance to acquire PU’s
mobile positions and time-varying fading gains when detecting
the availability of spectrum.
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In order to investigate the robustness of the DS scheme,
we further obtain the sensing performance in time-invariant
channels. Simulation results are shown by Fig. 12. By assuming
the prior knowledge on the expectation of PU’s location, i.e.,

, a benchmark method is studied in the absence of the
time-varying fading, which similarly relies on the non-coherent
energy observation and the likelihood densities . We
can see from the numerical results that, due to the additional
information uncertainty introduced by the time-varying fading
channels, the spectrum sensing process will be affected signifi-
cantly. Compared with the time-invariant scenarios, the sensing
performance may be degraded by about 7 dB under variant
fading channel. Meanwhile, the advantage of the proposed DS
scheme is fully demonstrated whether the flat-fading channel
is time-varying or not. It can indeed promote the sensing
performance remarkably and avoid the SNR wall of the sensing
performance by acquiring the dynamic locations of a mobile
PU.

V. CONCLUSION

The user mobility and the resulting time-varying fading
are two main stumbling-blocks for spectrum sensing of the
DSS-based next-generation communications, which renders the
path-loss and fading gains time-dependent and, therefore, poses
great difficulties to existing non-coherent sensing techniques.
The DS scheme, which is designed to address a mixed detection
and estimation problem, provides a promising approach to
spectrum sensing in more challenging space-time doubly selec-
tive fading scenarios. Relying on a Bayesian MAP criterion, the
new DS algorithm is implemented recursively and a simplified
numerical scheme is suggested to alleviate the complexity.
Some adaptive mechanisms are integrated to further enhance
the performance, e.g., the observation accumulation and the
AHE. It is demonstrated from numerical simulations that the
proposed algorithm will track PU’s locations and time-varying
fading gains accurately. Such acquired link states information,
which has been utilized to realize the spectrum sensing ef-
fectively, may be of also significance to further performance
enhancement (e.g., power control and spatial transmissions of
SUs). Future works may include the experimental validations.
The new DSM and the proposed DS scheme can be extended to
other scenarios, which, therefore, put an insight into spectrum
sensing and provide a brand-new idea for future spectrum
awareness communications.
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