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Abstract—Cognitive radios may operate in practice under
various adverse environments. For typical mobile and short-range
scenarios, wireless links may tend to be time and frequency
selective, i.e., the multipath propagations with time-varying
fading coefficients will be inevitable. To cope with the encoun-
tered doubly-selective channels, in this paper we present a new
spectrum sensing algorithm for distributed applications. Firstly, a
dynamic discrete state-space model is established to characterize
sensing process, where the occupancy state of primary band and
the time-varying multipath channel are treated as two hidden
states, while the summed energy is adopted as the observed
output. With this new paradigm, spectrum sensing is realized by
acquiring primary states and time-dependent multipath channel
jointly. For the formulated problem, unfortunately, Bayesian
statistical inference may be impractical due to the absence of
likelihoods and involved non-stationary distributions. To remedy
this problem, an iterative algorithm is further designed by
resorting to sequential importance sampling techniques, thus the
dynamic non-Gaussian multipath channel and primary states are
estimated recursively. Another critical challenge, e.g., the noise
uncertainty, is also considered, which may be incorporated con-
veniently into this sensing diagram and, furthermore, addressed
effectively by the designed algorithm. Simulations validate the
proposed algorithm. While classical schemes fail to deal with
doubly-selective channels, the new sensing scheme can exploit the
underlying channel memory and operate well, which provides a
great promise to realistic applications.

Index Terms—Spectrum sensing, time-frequency doublely se-
lective channels, dynamic state-space model, noise uncertainty

I. INTRODUCTION

THE general interests on cognitive radios (CRs) are driven
essentially by the scarcity of spectrum resources and

increasing demands of wide frequency-bands [1]. In order to
accomplish the opportunistic usage of allocated spectrum, the
secondary users (SUs) are endowed with the ability of detect-
ing or sensing the unoccupied band [2]. Based on the real-time
awareness of current wireless environments, then CRs devices
intelligently adapt its functionalities and dynamically access
authorized bands of primary users (PUs) [3].
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As a key ingredient to promote frequency utilization and
mitigate interferences, CR has enjoyed high favor among
commercial communications recently, including IEEE 802.22,
the long term evolution (LTE) systems [4] and wireless local
area networks (WLANs) (i.e. IEEE 802.11af) [5]. Given the
emerging services, it takes little imagination to foresee that
CRs will operate in various adverse environments. Firstly,
attributed to the relative movement, wireless propagations will
be characterized intrinsically by time-varying dynamics [6],
i.e., the time selective fading may be encountered. Secondly,
the frequency selective multipath propagations will be in-
evitable, which is aroused by rich reflectors in typical short-
range applications as well as the good temporal resolution of
CRs receiver with a broad reception bandwidth [7], [8]. What it
comes down is that, in practice, the design of CRs should take
the complex time-frequency double selective fading channels
(TF-DSFCs) into full accounts [9].

One of the fundamental issues to be addressed in CRs is
spectrum sensing, which aims to identify the working state
(i.e. active or sleep) of PUs and, therefore, makes CR users
ready for the opportunistic use of vacant license bands [10]–
[12]. Traditional techniques for spectrum sensing may be
distributed into three classes, i.e., cyclostationary detection
(CD) [13], matched filtering detection (MFD) [14] and energy
detector (ED) [15], which may have different advantages and
requirements [10]–[12]. Despite a moderate sensing perfor-
mance, ED excludes any a priori information of primary
signals and is robust and simple, which is hence of great
interest to CRs. Recent new techniques designed for spectrum
sensing include wavelet analysis and compressive sensing [16].
Another sensing scheme is developed based on a covariance
matrix [17], which exploits the statistical information (i.e.
either temporal or spatial correlations) of primary signals [10].
In refs. [18] and [19], the probabilistic property of PUs’ states
is properly utilized to either design the sensing algorithm or
optimize the sensing schedule strategy.

It is noteworthy that, however, most existing sensing meth-
ods are tailored to a static single-path channel model. That
is, wireless propagations from PUs to SUs are assumed to
be invariant and, simultaneously, the multipath components
(MPCs) are also ignored for simplicity. More importantly, the
widespread memory distributed in time-correlated channels has
been ignored unfortunately, which could be fully exploited
to promote the detection performance. Therefore, the sensing
performance of these methods (i.e. ED) may become less
competitive in TF-DSFCs. Ref. [15] investigated the sensing
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performance under Rayleigh fading based on the statistical
probability distribution function (PDF), which, however, can
only characterize the instantaneous random behaviors of the
single-path gain and may fail to track its time variations,
let alone exploit the underlying channel dynamics. Besides,
multipath fading will also contaminate the received signal
dramatically and, therefore, results in substantial performance
degradations. In our previous work, a spectrum sensing scheme
is designed for the time-varying flat fading (TVFF) channel,
nevertheless, only with a single-path [20]. For the encountered
more complex TF-DSFCs, the development of efficient sensing
schemes remains still as an unexplored area.

To the best of our knowledge, there are few works in the
literature reported on the design of spectrum sensing schemes
in the presence of TF-DSFCs. In this paper, we present a
promising spectrum detection algorithm for realistic time-
varying multipath flat-fading (TVMFF) propagations. A dy-
namic discrete-state model (DSM), involving two hidden states
(i.e., the working state of PUs and the unknown multipath
channel), is established firstly. Spectrum sensing is thereby
realized by blindly estimating both the real-time TF-DSFCs
response and unknown PUs states. Relying on a Bayesian
statistical inference framework and premised on a simulated
Monte-Carlo approach, an iterative algorithm is designed to
estimate the non-stationary a posteriori probability. To sum
up, the main contributions of this work are two-fold.

A. Dynamic State-space Model of Spectrum Sensing. A
novel DSS is established, which will effectively characterize
the spectrum sensing process over TF-DSFCs and may exploit
the underlying memory property. In the new stochastic model,
the PU state and unknown time-varying multipath gains are
considered as two hidden states to be estimated. As both of
them will evolve dynamically along time, a two-state Markov
chain (TSMC) is used to model the dynamics of PU’s states,
while another finite-state Markov chain (FSMC) is used to
depict the random transitions of multipath gains. As in most
schemes [10]–[12], [15], [19], [20], the summed energy is
adopted as an observation of the formulated stochastic DSM
for the simplicity of implementations.

B. Joint Estimations based Spectrum Sensing. With this
new DSS paradigm, the time-varying multipath gain will be
estimated sequentially on reception of new observations. As
far as the two-hypothesis based spectrum sensing procedure is
concerned, nevertheless, a direct joint estimation may become
impractical due to the coupling relationship between the
multipath response and PU states as well as the intractable
computation. For this reason, an iterative estimation scheme
is further designed, with which the estimations of two hidden
states are refined successively. The new sensing algorithm
involves three steps, i.e., coarse detection, multipath coeffi-
cients estimation and PU state update. In order to obtain the
recurrence propagation of time-varying posterior densities, the
Monte-Carlo random finite sampling based particle filtering
(PF) is suggested furthermore. Thus, the non-analytic posterior
probability can be derived recursively by using all informa-
tion available up to the time. Besides, a special estimation
mechanic is integrated to calculate unknown noise variance.
With the assistance of the recovered multipath gains and by

exploiting the dynamic of time-dependent channels, spectrum
sensing can be implemented effectively even in realistic TF-
DSFCs. The new scheme, which can be extended to combat
other realistic challenges (e.g., the noise uncertainty or non-
quiet sensing), may provide a great promise for future CR
applications.

The rest of the paper is structured as following. The
stochastic DSM is established in Section II. On this basis,
in Section III, a new spectrum sensing scheme is presented
based on a joint estimation framework. An iterative estimation
algorithm relying on SIS is designed. Simulation results and
performance evaluations are provided in Section IV. Finally,
we conclude the whole investigation in Section V.

The notations used in this work are summarized as fol-
lowing: the n × 1 dimensional vector is denoted by xn×1,
and the M × N matrix is XM×N ; Cnx×1 (or Rnx×1) is
the complex-valued (or real-valued) space of nx dimensions.
∥x∥22 =

∑
n x

2(n) is the l2-norm of vector x. (·)T denotes the
transpose and (·)H is the conjugate transpose (or Hermitian);
x0:n , {x0, x1, x2, · · · , xn} represents the variable trajectory
till the nth time index; ⊗ denotes the Hadamard multiplication,
⊕ accounts for a Boolean complementary operation between
two binary variable; ⌊x⌋ is the floor of x; diag(·) gives a
block matrix having the arguments along its main diagonal;
E(·) denotes the ensemble average; EH,B(·) is the statistical
expectation on the joint set (H,B).

II. SYSTEM MODEL OF SPECTRUM SENSING

In this section, the time-varying dynamics of multipath
fading channels are given full considerations, and a compre-
hensive DSM is formulated. A prevailing advantage of the
new stochastic DSM is that, while traditional methods can
only concentrate on time-invariant statistical distribution of
the single-path fading channel, it may elegantly incorporate
realistic unknown TF-DSFCs into the spectrum sensing.

A. PUs Working State

The periodic sensing strategy is adopted [21], i.e., a fixed
frame duration TF is assumed and the sensing duration is
TS . As suggested, for most wireless services, the evolution
of primary states sn ∈ S = {0, 1} ⊂ Z (i.e. a set of integer)
may be described by an alternating renewal process [22], [23].
The PDFs of both busy and idle states are assumed to follow
the negative exponential distribution, i.e.

f1(n) = µ× exp(−µn) (1a)
f0(n) = λ× exp(−λn) (1b)

where µ and λ denote two transitional rates of busy-to-idle
and idle-to-busy, respectively. n is the index of discrete time
slots. With the help of Komogorov Equation, the probability
of the idle state (i.e. sn =“0”) remaining unchanged during
q successive slots, which is denoted by p00(q) , Pr

(
s(n) =

0|s(n− j) = 0
)
(1 6 j < q), is given by

p00(q) =
µ

µ+ λ
+

λ

µ+ λ
exp
[
− q(µ+ λ)

]
. (2)



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. XX, NO. XX, MONTH 2014 3

Similarly, the probability of the active state lasting for q
slots, i.e., p11(q) , Pr (s(n) = 1|s(n− j) = 1) (1 6 j < q),
may be written to

p11(q) =
λ

µ+ λ
+

µ

µ+ λ
exp
[
− q(µ+ λ)

]
. (3)

Thus, if the busy state is identified initially at the time index
n0 with a probability of Pr(sn0 = 1), then the probability that
this PU state stays always in busy within q sensing slots is
obtained from

Pr
(
sn0+q = 1|sj∈[n0+1,n0+q−1] = 1

)
(4)

= p11(q)× Pr(sn0 = 1).

Accordingly, the probability of PU state transiting into idle
in the qth detection period, after staying in “1” for (q − 1)
periods, can be expressed as 1− p11(q)× Pr(sn0 = 1).

B. Time-varying Multipath Channel

In this work, we consider a realistic channel more common
to future wireless applications, i.e., the TVMFF channel.

1) Frequency-selective fading: Owing to rich reflectors
involved in the typical scenario (e.g. indoor) and the improved
time resolution of receivers, multipath propagations are ob-
served usually in broad band wireless communications [8].
The channel impulse response (CIR) is given by

hn =
L−1∑
l=0

hn,lexp(−jθn,l)δ (t− tn,l) , (5)

where δ(·) denotes the Direct function. hn,l is the amplitude
of the lth path at the nth time index, θn,l denotes the MPC’s
phase which is assumed to be uniformly distributed, i.e.,
θn,l ∼ U [0, 2π]; tn,l corresponds to the time of arrivals
(ToAs). L accounts for the length of complex multipath
channel. For simplicity, the multipath gain vector is denoted
by hn , [hn,0 hn,1 · · · hn,L−1]

T .
The amplitudes of independent MPCs are assumed to follow

a priori log-normal distribution. The distribution mean is
mh = [m0 m1 · · · mL−1]

T with ml , ln(hn(l)), and the
variance is V{ln(hn(l))} = σ2

h (l = 0, 1, · · · , L − 1), which
are both considered to be static. Thus, the joint distribution of
negative amplitudes (i.e. p (hn)) is given by

p (hn) =

L−1∏
l=1

1

σh

√
2π

exp
{
− [ln(hn(l))− mh(l)]

2 /
2σ2

h

}
. (6)

2) Time-selective fading: Further considering the relative
movement in radio environments, the multipath response of
realistic CR links is also a time-correlated random process.
The time-varying dynamics of fading coefficients can be
described by two classical models, i.e., the autoregressive (AR)
model [24] and the Clarke’s model. Rather, in this analysis, a
FSMC model is considered alternatively [25], which is proven
to be a good match to a Clarke’s model and may also reflect
the dynamic transitional property.

Based on the FSMC, the representative state of the lth
fading gain at time index n (i.e. hn(l)), which serves as an
output of one specific Markov chain, is denoted by An,l = Rk,
k ∈ {0, 1, · · · ,K − 1}, Rk ⊆ R1. For the lth path, the state
evolutions at time n are specified by a transitional probability
matrix (TPM) Pn,l = {Pk1→k2,n,l, k1, k2 ∈ 0, 1, · · · ,K−1}.

Pn,l =


P0→0,n,l P0→1,n,l · · · P0→(K−1),n,l

P1→0,n,l P1→1,n,l · · · P1→(K−1),n,l

...
...

. . .
...

P(K−1)→0,n,l P(K−1)→1,n,l · · · P(K−1)→(K−1),n,l

 .

(7)
Here, Pk1→k2,n,l specifies the prior probability of the lth path
transiting from state k1 to state k2, i.e.

Pk1→k2,n,l , Pr
(
An,l = Rk2 |An−1,l = Rk1

)
. (8)

For convenience, the first-order FSMC model is considered
which usually coincides with the popular statistical fading
models (e.g., Clarke’s model) [35]. Thus, the current state
of fading channels is only associated with the previous state,
while keeps statistically independent of all other past and
future fading states. More specifically, we may now have
Pk1→k2,n,l = 0 for |k1 − k2| > 1. So, the TPM Pn,l may
be further simplified to eq. (9), with its elements specified in
Appendix 1.

3) TVMFF channel: Taking both the time-selectivity and
frequency-selectivity into accounts, the resolvable MPCs are
also assumed to evolve independently according to

p(hn|hn−1) ,Pr
(
hn → Hn

∣∣hn−1 → Hn−1

)
=
∏L−1

l=0
Pr
(
An,l = Rk2

∣∣An−1,l = Rk1

)
=
∏L−1

l=0
Pk1→k2,n,l, (10)

where Pk1→k2,n,l may vary with different time indexes n.
Given the latest fading set Hn−1 = {An−1,l = Rk1}, the
feasible state set of time n, i.e. Hn, is specified by

Hn = {An,l = Rk2 , |k2 − k1| < 2, l = 0, 1, · · · , L− 1}.

For convenience, the dynamic of hn is further assumed
to be stationary [27], i.e., the probabilistic transitions are

Pn,l =


P0→0,n,l P0→1,n,l 0 0 · · · 0 0 0
P1→0,n,l P1→1,n,l P1→2,n,l 0 · · · 0 0 0

...
...

...
...

. . .
...

...
...

0 0 0 0 · · · P(K−2)→(K−3),n,l P(K−2)→(K−2),n,l P(K−2)→(K−1),n,l

0 0 0 0 · · · 0 P(K−1)→(K−2),n,l P(K−1)→(K−1),n,l

 . (9)



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. XX, NO. XX, MONTH 2014 4

independent of n. So, we may further have

p(hn|hn−1) =
∏L−1

l=0
Pk1→k2,l. (11)

C. Observation

For ease of implementations, in practice, ED has been
widely recommended as a fundamental sensing technique
[10]–[12]. This work will establish a general DSM of spectrum
sensing based on the summed energy. Before proceeding, it is
necessary to briefly illustrate ED in the situation of TF-DSFCs,
which is formulated to the following two hypotheses

yn =



M∑
m=1

z2n,m, H0, (12a)

M∑
m=1

∣∣ [hn ⊗ exp(−jθθθn)]
H bn,m + zn,m

∣∣2, H1, (12b)

where M = TS × fs is the samples size. In order to alleviate
the hardware complexity and also ensure the recovery of
MPCs, fs is assumed to the Nyquist-rate. ⊗ denotes the
Hadamard multiplication between two vectors. H0 and H1

denote two hypotheses corresponding to the absence and
presence of PU signals, respectively. yn is the summed-energy
in SU’s devices, while bn,m = [bn,m bn,m−1 · · · bn,m−L+1]

T

is the mth information vector of PUs in the nth slot. In
practice, bn,m ∈ B ⊆ CL×1 can be either the single-carrier
(SC) format or orthogonal frequency division multiplexing
(OFDM) signals. Without losing generality, {bn,m} is assumed
to be OFDM modulated signal, which follows a priori Gaus-
sian distribution, i.e., bn,m ∼ N (0, σ2

b ). The additive white
Gaussian noise (AWGN) noise zn,m is zero-mean Gaussian
distributed, with a variance of σ2

z . It is shown that the noise
variance σ2

z may usually become uncertain in practice [10].

D. DSM of Spectrum Sensing in TF-DSFCs

In order to characterize spectrum sensing with TF-DSFCs,
a stochastic DSM is established as follows.

sn = F (sn−1) (13)
hn = H(hn−1) (14)

bn,m = T (bn,m−1) (15)
yn = G(hn, sn, bn,m, zn,m) (16)

Here, (13)-(15) are referred to as the dynamic equations and
(16) is the measurement equation. Two hidden states to be
estimated, i.e. sn,m ∈ S and hn ∈ H, are evolved indepen-
dently according to transitional functions F (·) : Z1 → Z1

and H(·) : CL×1 → CL×1, respectively. For the independent
information source, we have bn,m = Tbn,m−1 + un,m ∈ B,
where the elements of linear transitional matrix TL×L are
all zeros expect for diag(T2:L,2:L) = [1 1 · · · 1]T , and
un,m = [bn,m 0 · · · 0]T . The nonlinear and noisy observations

yn are derived from the function G(·) : CM×1 → R1 in eq.
(16). Note that, in this DSM, one auxiliary variable bn,m is
used, which, however, will not be resolved by SUs.

For the convenience of analysis, two important aspects are
assumed to the established DSM.

1) This work focuses on a slow-fading case. The multipath
amplitude hn, therefore, is assumed to be invariant
within several successive slots. The length of static
sensing slots, where hn remains unchanged, is denoted
by Nf . In practice, the static period Nf × TF is asso-
ciated with the maximum Doppler frequency shift fD.
Specifically, we have fD = 1

NfTF
, i.e., Nf ∝ 1/fD.

2) The dynamic transitions of multipath channels hn occur
possibly at the edge of each sensing slot n′ = ⌊n/Nf⌋
[20]. So, the TF-DSFCs response may be dealt as a
constant within each sensing slot.

III. SPECTRUM SENSING IN TF-DSFCS

Contaminated both by TF-DSFCs and additive noise, in
practice, the received signals will show remarkable random
fluctuations and CR devices may fail to identify the actual
occupancy state of PU bands. As a consequence, most sensing
schemes (e.g. ED), which average out the unfavorable random
fading effects by using statistical distributions [15], will be-
come less attractive in this situation.

To evaluate the sensing performance, the false alarm proba-
bility Pf is defined by P (H1|H0), while the missed detection
probability Pm is P (H0|H1) and the detection probability is
given by 1 − Pm. For realistic applications, the false alarm
and missing detection have different implications. A low Pf

is meaningful to maintain the high spectral utilization, while
the missed detection probability Pm measures the interferences
from SUs to PUs which should be restricted. Thus, the main
metric of practical designs, under a Neyman-Pearson criterion,
is either to minimize the missed probability for a target false
alarm probability, or minimize the false alarm probability for a
target miss probability [10]–[12]. Based on a consideration of
both the spectral utilization to unused bands and the potential
interference to PUs, alternatively the total error detection
probability is considered by this work [28], [29], i.e.

Ω = PmP (H1) + PfP (H0). (17)

Or equivalently, we will focus on the total probability of
detections defined by PD := 1 − Ω = 1 − p(H1) − µ

µ+λ ×
Pf + λ

µ+λ × Pd in the following analysis. Note that, this
compound probability PD is fundamentally different from the
single detection probability Pd.

A. MAP Detection

In order to obtain joint estimations of unknown PU states
and time-varying multipath channels, a Bayesian approach, i.e.
maximum a posteriori (MAP) detection, is specially designed,

(
ĥn, ŝn

)
= arg max

hn∈H,sn∈S,bn,m∈B
p(hn, sn, |yn)

∣∣yn, p(hn|hn−1), p(sn|sn−1), p(bn,m|bn,m−1), (18)
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which will rely on the posterior probability p(hn, sn|yn).
Thus, the main objective of our new scheme can be expressed
into eq. (18), where the a posteriori density is given by

p(hn, sn|yn) ∝ p(yn|hn, sn)× p(hn, sn)

(a)
=

∫
bn,m∈B

p(yn|hn, bn,m, sn)p (bn,m|hn, sn) dbn,mp(hn)p(sn)

(b)
=

∫
bn,m∈B

p(yn|hn,bn,m, sn)p (bn,m|sn) dbn,mp(hn)p(sn).

(19)

Here, (a) holds for the two independent states hn and sn,
and (b) holds because bn,m is independent of channels. The
conditional a priori distribution of bn,m is given by

p (bn,m|sn) =


L−1∏
m=0

1√
2πσb

exp[−b2n,m
/
σ2
b ], sn = 1, (20a)

0, sn = 0. (20b)

As in ED, the likelihood function, i.e. p
(
yn
∣∣hn, sn

)
, then

conditionally follows a central chi-square distribution with 2M
degrees of freedom (DoF) under H0, i.e.

p
(
yn
∣∣hn, sn = 0

)
∼ χ2

2M . (21)

And, in the case of H1, we may have the following remarks.
Remark 1. Given TF-DSFCs response hn, the likelihood

density is Gaussian distributed under H1 (see Appendix 2).

p
(
yn
∣∣hn, sn = 1

)
=Ebn,m∈B

{
p
(
yn
∣∣hn,bn,m, sn = 1

)}
∼N

(
µn, σ

2
n

)
, (22)

with the mean µn and variance σ2
n specified by

µn = 2M ×
[
EB

{∣∣hH
n bn,m

∣∣2 ∣∣∣hn

}
+ σ2

z

]
, (23)

and

σ2
n = 2M ×

(
σ4
b ||hn||42 + σ4

z + 2σ2
zσ

2
b ||hn||22

)
, (24)

respectively, where the expectation term is given by

EB

{∣∣hH
n bn,m

∣∣2 ∣∣∣hn

}
= EB

{∣∣ [hn ⊗ exp(jθθθn)]
H bn,m

∣∣2∣∣∣hn

}
,
∫

bn,m∈B

∣∣hH
n bn,m

∣∣2 p (bn,m|sn = 1) dbn,m

= σ2
b ||hn||22. (25)

It should be noteworthy that, from eqs. (22)-(25), the
MPCs gain vector hn is of significance in practice, while
the random phase (i.e. θθθn) may not matter much to non-
coherent ED schemes. For realistic CR networks with the non-
cooperative PU, in fact, the interference evaluation or capacity
optimization will also be related primarily with the gain (or
l2-norm) of multipath channels.

With Remark 1, it is also seen that both the mean and
variance are all associated with EB

{∣∣hH
n bn,m

∣∣2 ∣∣∣hn

}
(i.e.

σb
2||hn||22). The likelihood function, marginalized on the mul-

tipath channel hn, is thereby the weighted sum of a group
Gaussian distributions [30], and the occurrence probability of
each component distribution is specified by p(hn → Hn).

Remark 2. For the formulated DSM, the marginal likelihood
function under H1, which is of importance to evaluate the
overall sensing performance of TF-DSFCs, is a mixed Gaus-
sian process, i.e.,

p(yn
∣∣sn = 1) ∼

Nh∑
i=1

p(hn → Hn)×N
(
µi, σ

2
i

)
, (26)

with its total mean and variance given by

E(yn) =

Nh∑
i=1

µip(hn → Hn), (27)

E
{
[yn − E(yn)]

2
}
=

Nh∑
i=1

p(hn → Hn)
{
[E(yn)− µi]

2
+ σ2

i

}
,

(28)

respectively, where Nh = KL is the size of feasible states set.
Notice that, EB

{∣∣hH
n bn,m

∣∣2 ∣∣∣hn

}
is also a random variable

given different hn. With some manipulations, the first term in
eq. (28) can be further expressed to

Nh∑
i=1

p(hn → Hn) [E(yn)− µi]
2

=

Nh∑
i=1

p(hn → Hn)

×
{
EH,B

{∣∣hH
n bn,m

∣∣2}− EB

{∣∣hH
n bn,m

∣∣2 ∣∣∣hn

}}2

,VH

{
EB

{∣∣hH
n bn,m

∣∣2}} . (29)

B. Sequential MAP Detection

From a point of view of sequential inference, the esti-
mations should be acquired based on the new observation
and all historical information available to the time n. Thus,
p(h0:n, s0:n|y0:n) is of special interest to spectrum sensing in
TF-DSFCs. Here, y0:n , {y0, y1, · · · , yn} represents the ob-
servation trajectory till the nth sensing slot, h0:n and s0:n de-
note two hidden states trajectories, respectively. Given the in-
dependent noise samples, then the update of p(h0:n, s0:n|y0:n)
is given by eq. (30), where p(h0) and p(s0) are assumed to
be known as a priori.

Notice that, for the considered alternating renewal pro-
cess, the transitional probabilities p(sn|sn−1) tend to be non-
stationary or time-dependent. For clarity, it is further replaced
by pn,q

(
sn|sj , sj∈[n−q+1,n−1] = 1⊕ sn−q

)
, which is related

with the lasting intervals (i.e. q) of the current PUs state,
where 1⊕sn−q accounts for the complementary state of sn−q .
Given the flat-fading channel with a static period of NfTF ,
the posterior probability can be written to eq. (31).

In addition, the evolution of multipath channel hn in eq.
(31) remains also asynchronous with sn. Thus, the involved
two heterogeneous states, in collusion with the non-stationary
property, further challenge the DSM-based joint estimations.
More than this, for realistic CR networks, it is also desirable
to evaluate the posterior probability and accomplish spectrum
sensing in real-time on reception of new observations.
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To this end, the recurrence estimation seems to be a
promising way to tackle above difficulties, which estimates
posterior densities sequentially by incorporating the innovation
information of new observations. Following the Chapman-
Kolmogorov equation and the 1st-order Markov process,
p(h0:n, s0:n|y0:n) will be updated via eq. (32).

Attributed to the involved time-dependent dynamics of the
specific DSM, and the intermittent disappearance of likeli-
hoods (e.g. H1) as well as the non-Gaussian marginalization
in the denominator of eq. (32), unfortunately the analytical
posterior density of interest cannot be obtained [20], [31].
Thus, the above recurrence procedure is only a conceptual
solution of the Bayesian statistical inference and, ultimately,
becomes intractable in realistic applications.

C. Particle Filtering

As a feasible approach that may effectively deal with
realistic complex distributions (e.g., non-Gaussian and non-
stationary situations), the SIS inspired PF may be of promise
to spectrum sensing in TF-DSFCs.

Relying on a numerical mechanic, SIS obtains the consistent
estimation of a posteriori probability via a group of discrete
random measures (i.e. particles) x(i) with different probability
masses (or weights) w(i) (i = 1, 2, · · · , I), where I is the
particles size [32], [33]. For clarity, x represents the hidden
states to be estimated here. The particles are simulated samples
and drawn from an unknown state space which is associated
with the target probability p(x). Thus, the target distribution
is approximated by

p̃(x) =
I∑

i=1

w(i)δ
(

x − x(i)
)
, (33)

It is shown from eq. (33) that the numerically approximated
distribution p̃(x) may converge to p(x) when the particle size
I is large. Note that, it is infeasible to sample directly from
p(x). So, a proposal distribution (or importance function) π(x)
is designed from which discrete particles are drawn, i.e., x(i) ∼
π(x). Thus, the importance weights w(i) are determined by

w(i) = p
(
y0:n|x(i)

0:n

)
p
(

x(i)0:n

)/
π
(

x(i)0:n|y0:n
)
. (34)

As an approximation of the realistic probability distribution,
the importance weights should be normalized to 1, i.e., w∗(i) =
w(i)

/∑I
i=1 w

(i). Usually, π(x) may be factored as

π(x0:n|y0:n) = π(xn|x0:n−1, y0:n)π(x0:n−1|y0:n−1). (35)

With the particles x(i)k (i = 1, 2, · · · , I) sequentially sampled
from π

(
xn
∣∣x(i)0:n−1, y0:n

)
as each new observation arrives,

w
(i)
k may be updated by

w
(i)
k ∝

p
(
yn|x(i)n

)
p
(

x(i)n |x(i)
n−1

)
π
(

x(i)n |x(i)
0:n−1, y0:n

) w
(i)
n−1. (36)

The importance function π
(

xn|x(i)
0:n−1, y0:n

)
has a signif-

icant impact on estimation performances, which should be
carefully designed in accordance with realistic situations. In
the analysis, the optimal importance function is adopted [31],
which is specified by p

(
xn
∣∣x(i)0:n−1, y0:n

)
and may minimize

the one-step variance of importance weights. Accordingly, the
importance weights w(i) are recursively updated by

w(i)
n = p

(
yn
∣∣x(i)n−1

)
× w

(i)
n−1. (37)

To sum up, two steps are involved in PF. (1) Draw the
discrete measures by sampling the importance distribution, i.e.,
x(i)n ∼ π

(
xn
∣∣x(i)0:n−1, y0:n

)
; and (2) update the weights w

(i)
n

by using (37). One can refer to refs. [31]–[33] for details.

D. Iterative Estimation Based Spectrum Sensing

In contrast to classical joint detections of wireless commu-
nications, note that, there are two formidable challenges in this
considered problem. (1) The fading channel hn, unfortunately,
will disappear completely from observations yn when sn = 0,
while in classical situations the multipath response may be
always enclosed in received signals. (2) As observed from
eq. (32), the direct recurrence estimation of both multipath
fading gains and unknown PU states is analytically intractable
and computationally prohibitive, which may involve at least
2L ×KL dimensional non-Gaussian marginal integrations.

To cope with above problems, we design an effective
sensing algorithm for more complex TF-DSFCs. A recursive
scheme is developed, which iteratively estimates the multipath
response and PU states. The proposed algorithm mainly con-
tains three steps, i.e. (a) coarse detection; (b) MAP estimation
of channel gains and (c) PF-based PU state estimation. Note
that, (b) and (c) will be iteratively performed to further refine
the estimations.

p(h0:n, s0:n|y0:n) ∝ p(h0)p(b0,0)p(s0)×
n∏

i=1

∫
bi,m∈B

p(yi|hi, bi,m, si)p(bi,m|sn)dbi,m︸ ︷︷ ︸
p(h0:i,s0:i|y0:i)

p (hi|hi−1) p (si|si−1) . (30)

p(h0:n, s0:n
∣∣y0:n) ∝ p(h0)p(s0)×

n∏
i=1

p(h0:i, s0:i|y0:i)p
(
h⌊i/Nf⌋

∣∣h⌊i/Nf⌋−1

)
pi,q

(
si
∣∣si−1, sj∈[i−q+1,i−1] = 1⊕ si−q

)
. (31)

p(h0:n, s0:n|y0:n) = p(h0:n−1, s0:n−1|y0:n−1)×
p(yn|hn, sn)p(hn|hn−1)p(sn|sn−1)∫∫

hn∈H,sn∈S p(yn|hn, sn)p(hn, sn|y0:n−1)dhndsn
. (32)
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1. Coarse Detection

This procedure is designed to obtain a rough estimation of
unknown PU states and, on this basis, subsequent estimation
methodologies of hn′ in accordance with different PU states
may be determined. To accomplish this, the MAP criterion
would be applied to derive the initial estimation of PU states,
which is denoted by in, i.e.

in = arg max
sn∈S

p
(
yn|sn, ĥ0:n−1

)
× p(sn|ŝ0:n−1). (38)

In practice, the noise uncertainty (NU) may have bad
impacts on the sensing performance. So, a special mechanic
is further integrated to estimate the unknown noise variance
recursively. In order to obtain likelihood densities, firstly the
estimated noise variance of time (n− 2) may be used. Thus,
the likelihoods, conditioned on ĥ0:n−1, are given by

p
(
yn|sn, ĥ0:n−1

)
=

{ N
{
Mσ̂2

z(n− 2), 4Mσ̂4
z(n− 2)

}
, H0, (39a)

N
{
EH,B

(∣∣hH
n′bn,m

∣∣2 ∣∣∣ĥn′−1

)
, σ̂2

n

}
, H1, (39b)

where the variance term is given by

σ̂2
n = 2M×

[
σ4
b ||ĥn′−1||42 + σ̂4

z(n− 2)+

2σ̂2
z(n− 2)σ2

b ||ĥn′−1||22
]
, (40)

and the conditional expectation of receiving power
EH,B

{∣∣hH
n′bn,m

∣∣2 ∣∣∣ĥn′−1

}
is specified by

EH,B

{∣∣hH
n bn,m

∣∣2 ∣∣∣ĥn−1

}
,

∫∫
hn∈H,bn,m∈B

∣∣∣ĥH

n bn,m

∣∣∣2 p(hn|ĥn−1

)
p (bn,m) dbn,mdbn

(a)
=

∑
hn∈Ĥn

p
(

hn|ĥn−1

){ L∑
l=0

EB
{
h2
n,lb

2
n,m−l

}
+

L∑
l1=0

L∑
l2=0,l1 ̸=l2

hn,l1hn,l2EB {bn,m−l1bn,m−l2}


=
∑

hn∈Ĥn

p
(

hn|ĥn−1

)
∥ hn ∥22 σ2

b , (41)

where Ĥn′ refers to the feasible set of hn′ at the time n′ =
⌊n/Nf⌋, which is predicted from the estimated multipath gain
(i.e. ĥn′−1). In (41), (a) holds due to the fact hn′ and bn,m

are two independent terms.
Secondly, the noise variance of time (n − 1) will be

estimated. As suggested, the unknown noise variance may
practically follows a priori Inverse-Gamma distribution [34],
[35], i.e., σ2

z ∼ IG(α, , β). Based on a Bayesian criterion,
the estimation of noise variance, i.e. σ̂2

z(n − 1), would be
recursively derived by (see Appendix 3)

σ̂2
z(n− 1) = βn−1/(αn−1 − 1), (42)

where the numerator βn−1 and the denominator term αn−1,
conditioned on different estimated PU states ŝn−1, will be

updated recursively by

βn−1 =

{
βn−2, ŝn−1 = 0, (43a)
βn−2 + yn−1/2, ŝn−1 = 1, (43b)

and

αn−1 =

{
αn−2, ŝn−1 = 0, (44a)
αn−2 +M/2, ŝn−1 = 1. (44b)

2. Estimation of Fading Gain

As far as the multipath fading is concerned, the estimation
methodology will rely on different initial estimations of sn
[29], [36]. First, the MAP estimation of hn may become
infeasible in H0 (i.e. ŝn = 0), due to the unavailability of the
related likelihood information. Second, for the slow varying
channels with a static response in Nf successive sensing
slots, the estimated fading channel can be further modified
sequentially in H1 (i.e. ŝn = 1).

(1) If we have in = 0, expect for a priori state transitional
probabilities, there is little innovation information can be
utilized in the sensing slot where the fading channel may
change (i.e. n′ = ⌊n/Nf⌋ ). In such a case, the estimation
of hn′ is directly derived by

ĥn′ = arg max
hn′∈Ĥn

p
(
hn′ |ĥn′−1

)
. (45)

Then, in subsequent sensing slots n = (n′ + J) (1 ≤ J <
Nf ), the estimated multipath response will remain unchanged,
i.e. ĥn′+J = ĥn′ .

(2) If we have in = 1, in the sensing slot n′ = ⌊n/Nf⌋
where the multipath channel may evolve, the observations and
the related likelihood function can be fully exploited. Thus, the
posterior estimation of hn′ is obtained from

ĥn′ = arg max
hn′∈Ĥn

p
(
hn′ |yn′ , in′ = 1, ĥn′−1

)
= arg max

hn′∈Ĥn

p
(
yn′ |hn′ , in′ = 1

)
p
(
hn′ |ĥn′−1

)
. (46)

Then, in subsequent sensing slots with n = (n′ + J) (1 ≤
J < Nf ), we may entirely utilize those past observations to
further refine the estimation of hn′ . More specifically, during
the (n′ + J)th subsequent slot, with the historic information
yn′+J we may redefine the accumulated observation via

yn′+J =

J−1∑
jn=1

yn′+jn

+

M∑
m=1

∣∣∣[hn ⊗ exp(−jθθθn)]
H bn,m + zn,m

∣∣∣2 . (47)

Correspondingly, the accumulated observation yn′+J still
follows a Gaussian distribution, nevertheless, with a new mean
Jµn and variance Jσ2

n, i.e.,

p
(
yn′+J |hn′ , in′ = 1

)
∼ N

(
Jµn, Jσ

2
n

)
. (48)

Notice from eq. (48) that, with more information from
observations being exploited, it is expected the estimation of
fading channel will become more accurate.
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3. Particle Filtering based PU State Estimation
Although an initial estimation of PU states (i.e. in) is

obtained by exploiting the 1-step prediction of the estimated
multipath response, such an estimation ignores the dynamic
evolutions of multipath fading and, therefore, may become
inaccurate. Thus, this estimated PU state, which is treated
as a soft-output, will be employed to further refine multipath
coefficients iteratively. After R iterations, the sensing result
will be derived finally.

Relying on an SIS framework, the posterior probability is
derived numerically via a group of discrete particles {x(i)

0:n}
and associative weights {w(i)

0:n}. Thus, a more accurate estima-
tion of sn may be obtained by maximizing the approximated
posterior density. With the sequential Bayesian mechanic, the
innovation information carried by new observations will be
incorporated with historical knowledge.

In practice, given the new observation and the estimation of
multipath fading gains ĥn′ , we may then derive new particles
from the importance distribution. Here, the optimal importance
distribution is specified by

π(xn|x(i)
0:n−1, ĥn′ , yn) , p

(
xn

∣∣x(i)
0:n−1, ĥn′ , yn

)
= p

(
yn
∣∣ĥn′ , xn

)
× pn,q

(
xn

∣∣x(i)
n−j , xj∈[n−q+1,n−1] = 1⊕ xn−q

)
. (49)

After sampling from the importance distribution, the asso-
ciative weights of these random measures, which correspond
to the probability pass, will be updated by

w(i)
n = w

(i)
n−1 × p

(
yn
∣∣x(i)

n−1, ĥn

)
. (50)

The likelihood densities, conditioned on estimated multipath
gains and new particles, are then given by eq. (51) and (52),
respectively, where Γ(x) denotes the gamma function.

With the measures randomly sampled from a relevant dis-
tribution, thus the estimation of sn is finally derived by eq.
(53), which is a MAP estimation when I → ∞.

ŝn = arg max
sn∈S

p
(
sn|y0:n, s0:n−1, ĥn′

)
, (53)

where the a posteriori probability are approximated numeri-
cally by eqs. (54) and (55).

p
(
sn = 0

∣∣y0:n, s0:n−1, ĥn′

)
≃
∫

bn,m∈B
p
(
sn = 0

∣∣y0:n, s(i)0:n−1, ĥn′ , bn,m

)
dbn,m

=

∑
i∈X0

w
(i)
n∑I

i=1 w
(i)
n

, X0 =
{
i
∣∣x(i)

n = 0
}
, (54)

p
(
sn = 1

∣∣y0:n, s0:n−1, α̂n′
)

≃
∫

bn,m∈B
p
(
sn = 1

∣∣y0:n, s(i)0:n−1, ĥn′ , bn,m

)
dbn,m

=

∑
i∈X1

w
(i)
n∑I

i=1 w
(i)
n

, X1 =
{
i
∣∣x(i)

n = 1
}
. (55)

E. Implementations

Based on the above elaborations, the schematic flow of
the proposed algorithm is illustrated by Fig. 1. In realistic
implementations, it is worth noting that there contains two
counters in the proposed algorithm. (1) The first counter J is
involved in the second phase (i.e. the estimation of fading
channel), which is reset to 0 every time the channel state
transition occurs. (2) The second counter q is used in the third
phase (i.e. the estimation of PUs states). If we have ŝn = ŝn−1,
we may set q = q + 1; and otherwise we reset q = 0.

F. Complexity

For the presented algorithm, the complexity comes es-
sentially from three parts. In the 1st phase, the number of
multiplications in obtaining the observation and the rough
threshold is about O(M + L × KL

1 ). Note that, from eqs.
(42)-(44), the complexity of updating unknown noise variance
may be basically ignored. In the 2nd phase, there are KL

1

feasible transitions of dynamic multipath response, and for
each candidate, O(L) multiplications are required in calcu-
lating the related likelihoods. Correspondingly the number of

p
(
yn|ĥn, x

(i)
n−1 = 0

)
∝ p (yn|xn = 0) p

(
xn = 0

∣∣x(i)
n−1 = 0

)
+ p

(
yn|xn = 1, ĥn

)
p
(
xn = 1

∣∣x(i)
n−1 = 0

)
=

1

2MΓ(M)
yM−1
n exp (−yn/2)× p00(q) (51)

+
1

2

√
πM

(
σ4
b ||ĥn||42 + σ4

z + 2σ2
zσ

2
b ||ĥn||22

)exp


−
∣∣∣yn − 2M ×

(
∥ ĥn ∥22 σ2

b + σ2
z

)∣∣∣2
2M

(
σ4
b ||ĥn||42 + σ4

z + 2σ2
zσ

2
b ||ĥn||22

)
×

[
1− p00(q)

]
,

p
(
yn|ĥn, x

(i)
n−1 = 1

)
∝ p

(
yn|xn = 1, ĥn

)
p
(
xn = 1|x(i)

n−1 = 1
)
+ p (yn|xn = 0) p

(
xn = 0|x(i)

n−1 = 1
)

(52)

=
1

2

√
πM

(
σ4
b ||ĥn||42 + σ4

z + 2σ2
zσ

2
b ||ĥn||22

)exp


−
∣∣∣yn − 2M ×

(
∥ ĥn ∥22 σ2

b + σ2
z

)∣∣∣2
2M

(
σ4
b ||ĥn||42 + σ4

z + 2σ2
zσ

2
b ||ĥn||22

)
× p11(q)

+
1

2MΓ(M)
yM−1
n exp (−yn/2)×

[
1− p11(q)

]
.
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Fig. 1. Algorithm flow of the proposed spectrum sensing algorithm. For
clarity, the estimation process of unknown noise is not shown.

multiplications are O(KL
1 × L). Finally, the complexity of

SIS process is proportional to O(I). Further given the R
iterations, the total complexity can be roughly measured by
O{M +KL

1 L+R× (KL
1 L+ I)}. In practice, we may have

L = 3 and, for the 1st order FSMC, K1 = 3.

IV. NUMERICAL SIMULATIONS AND PERFORMANCE
EVALUATIONS

Based on numerical simulations, in this section the proposed
sensing algorithm will be evaluated in realistic TF-DSFCs. For
convenience, in the analysis the memory length of multipath
channel is set to L = 3, the number of discrete-states is K =
8. The variance of log-normal distribution is σ2

h = 0.1. The
iterative time of implementing the new scheme is configured to
3, which is practically considered to be sufficient in the specific
application. We consider three kinds of multipath channels,
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Fig. 2. MSE performance under different static length Nf . The sample size
is M=100 and the Type-2 channel is used.
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Fig. 3. Detection performance under different static length Nf . The static
length is M=100 and the Type-2 channel is used.

with the mean-energy vectors E {h} specified by eq. (56).

Type-1 : E{|h|} = [0.2 0.5 1]T , (56a)

Type-2 : E{|h|} = [0.05 0.2 1]T , (56b)

Type-3 : E{|h|} = [0.0001 0.01 1]T . (56c)

As suggested, even for a blind case of distributed CRs, the
time-varying multipath channel would be jointly estimated. In
the simulations, we will also investigate the mean-square error
(MSE) performance of estimated multipath channel hn, i.e.

MSE , E

{
1

N

N∑
n=1

∥ĥn − hn∥22
∥hn∥22

}
× 100%. (57)

A. Static Length

The MSE performance of TF-DSFCs estimations, with var-
ious the maximum Doppler frequency fD, is shown by Fig. 2.
In this experimental simulation, the sample size is configured
to M = 100 and the Type-2 response is used. For realistic
TF-DSFCs, the maximum Doppler frequency shift is relatively
large and, accordingly, three typical configurations are adopted
in the analysis, i.e. Nf = 10, 20 and 50 (corresponding to
fDTF = 0.1, 0.05, 0.02). We may observe from Fig. 2
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Fig. 4. MSE performance under different type of TF-DSFCs. The sample
size is M=100, the static length is Nf=20.

that the static length Nf may affect the MSE performance
significantly. Taking the SNR=15dB for example, the MSE
is about 1.14 × 10−3 when Nf=50, and it will increase
to 6.92 × 10−2 when Nf=10. This is mainly attributed to
the increment estimation of multipath gains by thoroughly
exploiting the accumulated observations. To be specific, with
a larger Nf , the multipath channel will remain unchanged in
more sensing slots and, therefore, more historical observations
can be accumulated to refine the estimations.

Much similar to MSE curves of different static length
Nf , the better detection performance may be achieved by
a larger Nf as in Fig. 3. When the detection probability
PD is 0.9, a detection gain of 6.5dB can be obtained if
the static length Nf is increased from 10 to 20. When Nf

is further increased from 20 to 50, however the achieved
gain is only 1.7dB. That is, with a large Nf accompanying
the more accumulated information, the estimation of time-
varying multipath response may become sufficiently accurate.
Accordingly, the improvement on detection performances may
become limited for a large Nf (Nf > 20).

B. Multipath Channels

The MSE performance of TF-DSFCs estimations under
various time-varying responses has been shown by Fig. 4. In
the experiment, we configure the sample size to M = 100
and the static length Nf = 20. It is seen that the MSE
of channel Type-3 is much less than that of Type-1. Taking
SNR=15dB for example, the MSE is 4.41× 10−3 for Type-3
and 7.70 × 10−2 for Type-1. In fact, the channel of Type-3
may be approximately treated as a single-path channel and,
accordingly, its frequency selectivity is not obvious. So, it is
expected Type-3 would achieve a better MSE, i.e., the single-
path channel is usually easier to estimate compared with the
multipath case due to inter-symbol interferences.

It is seen from Fig. 5 that, despite a worse MSE per-
formance, the Type-3 channel may achieve the better de-
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Fig. 5. Detection performance under different type TF-DSFCs. The sample
size is M=100, the static length is Nf=20.

tection performance compared with Type-1. It should be
noteworthy that, as far as the detection performance of un-
known PUs is concerned, the marginal likelihood function,
i.e., p(yn|sn = 1), is of great significance on the top of
the estimation accuracy of TF-DSFCs, which is related with
the multipath property characterized by a mixed Gaussian
distribution as in eqs. (27)-(30). It is seen that the total variance
VH

{
EB

{∣∣hH
n bn,m

∣∣2}} may vary with different multipath
gains (e.g. different E{|h|}). For the realistic discrete TF-
DSFC, a larger VH

{
EB

{∣∣hH
n bn,m

∣∣2}} comes also with a
wider likelihood distribution p(yn|sn = 1). For the considered
three TF-DSFCs, the corresponding variance terms are evalu-
ated and listed by eq. (59). Thus, the total detection probability
of Type-1 is supposed to be better than Type-2, while Type-2 is
superior to Type-3. The above analysis has also been verified
by numerical results shown in Fig. 5.

C. Different Modulation Signals

The detection performance of various modulated PU signals
with unknown constellations are plotted by Fig. 6. In this
analysis, the Type-2 channel is adopted, we configure Nf = 20
and M = 100. The sensing performance is evaluated in
the context of both OFDM and SC modulated signals. Fron
numerical results, the detection probability of OFDM-QPSK
signals is relatively inferior to that of SC-QPSK signals when
the same modulation scheme are used (i.e. QPSK).

Even for SC signals, different modulation schemes have
different performance. To be specific, the detection probability
of SC-QPSK signals is superior to SC-BPSK signals. Given
the same PU signal variance and SNR, it is shown from eq.
(12) that the DoF of SC-QPSK signals is 2M , while the DoF
of SC-BPSK signals is only M . In other words, even with
the same sample size M = 100, the performance of SC-
QPSK signals would become comparable to SC-BPSK signals

VH

{
EB{

∣∣hH
n bn,m

∣∣2 |Type-1}
}
< VH

{
EB{

∣∣hH
n bn,m

∣∣2 |Type-2}
}
< VH

{
EB{

∣∣hH
n bn,m

∣∣2 |Type-3}
}
. (59)
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Fig. 6. Detection performance under various different modulated signals. The
sample size is M = 100, the static length is Nf = 20 and the Type-2 channel
is used.
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Fig. 7. Detection performance of SC signals (i.e. BPSK and QPSK) under
different sample size M . The static length is Nf=20 and the Type-2 channel
is used.

of M = 200. The above analysis has also been verified by the
experimental results shown in Fig. 7.

D. Noise Uncertainty
As suggested, with the designed recursive mechanic, the

noise variance may be estimated by the proposed scheme.
In the experiment, the Type-2 channel is adopted, the static
length is Nf = 20 and the sample size is M = 100. The
noise variance is assumed to be uniformly distributed around
the predefined SNR. Here, “NU-1dB” denotes the maximum
derivation from the assume SNR is 1dB. From Fig. 8, we may
see that the UN of 1dB may have a slight effect. As shown by
experimental results, with the increase of the NUs, however the
sensing performance will be degraded to some extent. Thus,
even if a recursive estimation technique has been integrated,
the designed scheme may slightly suffer from realistic UNs.
Fig. 9 also plots the estimation accuracy of unknown noise
variance. It is seen that the estimation MSE will be improved
as the SNR increases.

E. Comparative Analysis
In order to thoroughly evaluate the proposed algorithm,

another covariance absolute value (CAV) scheme is further
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Fig. 8. Detection performance of SC-QPSK signals under realistic noise
uncertainty. The sample size is M = 100, the static length is Nf = 20 and
the Type-2 channel is used.
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Fig. 9. MSE of the unknown noise variance. The SC-QPSK signals are
considered with a sample size of M = 100. The static length is Nf = 20
and the Type-2 channel is used.

investigated, which is also proven to be robust relatively even
with time-varying fading effects or multipath propagations
[17]. In the experiment, the static length is configured to
Nf = 20. For the CAV method, the smoothing factor is
chosen to 12. As has been mentioned, the Nyquist sampling
rate is adopted for the ease of hardware implementations.
Two multipath configurations are considered, i.e., the Type-
1 and Type-2 channels. Firstly, from Fig. 10, the sensing
performance of both two schemes will be improved by in-
creasing the sample size M , as the statistical information may
become more accurate with a large M . Secondly, for the CAV
method, the signal correlation of Type-1 is much stronger than
that of Type-2 and, accordingly, the sensing performance will
be significantly enhanced with Type-1 multipath channels. A
similar result can be observed to the new algorithm, which
has also been analyzed in Section IV-C. It is demonstrated by
Fig. 10 that, with realistic TF-DSFSc, the proposed method
is in general superior to the CAV method. The main reason
is that, although these two methods are all premised on
statistical information, the CAV method unfortunately ignored
the time-varying property accompanying the resulting memory
of fading channels which could be utilized to further promote
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Fig. 10. Performance comparison of different sensing algorithms. The sample
size is M = 100, the static length is Nf = 20 and the Type-2 channel is
used.

detection performance [29]. With the formulated DSM and
a joint estimation framework, in contrast, the new algorithm
will estimate the TF-DSFC accurately and, therefore, improve
the sensing performance by fully exploiting the underlying
dynamics of time-varying multipath channels.

V. CONCLUSION

In order to address the formidable challenges posed by real-
istic time-varying multipath fading channels in distributed CR
applications, a new non-coherent spectrum sensing paradigm
is proposed in this paper. A novel DSM is established to
thoroughly characterize spectrum sensing process, by fully
considering the dynamic evolution behaviors of both PU
states and time-variant multipath channels. On this basis,
an iteratively joint estimation scheme is presented within a
Bayesian statistical inference framework. By resorting to an
SIS-based PF, spectrum sensing is effectively realized by
estimating time-varying multipath gains and unknown PU
states jointly. The designed algorithm can also deal with
other critical challenges, e.g. noise uncertainty. Both the MSE
of channel estimations and the detection probability of PU
states are investigated. Simulation results validate the proposed
algorithm. With a constructive exploitation of the dynamic of
TF-DSFCs, the established new DSM and the designed joint
estimation scheme provide a promising solution of spectrum
sensing in realistic TF-DSFCs.
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APPENDIX 1 TRANSITIONAL PROBABILITY OF
LOG-NORMAL DISTRIBUTIONS

The Markov transition process, in practice, is assumed
to be indecomposable and stationary [25], [36]. That

is, if the stationary probability is denoted by πππl =
[π0,l, π1,l, · · · , πK−1,l]

T with πk,l , Pr (An,l = Rk) for any
n, then we have PT

l πππl = πππl. To obtain discrete channel
representations, the nonnegative gain hn,l is partitioned into
K non-overlapping regions, with the representative state set
denoted by Vl. If we further specify ν0,l = 0 and νK,L = ∞,
we may have

Vl = {[ν0,l, ν1,l), [ν1,l, ν2,l), · · · , [νK−1,l, νK,l)} .

Given the prior log-normal distribution, the steady proba-
bility that the lth fading coefficient resides in the kth region
is derived by

πk,l =

∫ νk+1,l

νk,l

1

σh

√
2π

exp
{
− [lnhn,l − mh(l)]

2 /
2σ2

h

}
dhn,l

=F (νk+1,l)− F (νk,l), (60)

where F (x) ,
∫ x

0
1

σh

√
2π

exp
[
− (lny − mh(l))

2 /
2σ2

h

]
dy

is the cumulated distribution function. For the considered
log-normal distribution, we further have F (x) = 1

2 +
1
2erf

[
− (lnx− mh(l))

/√
2σh

]
.

Under an equiprobable partition, i.e. πk,l = 1/K, the
partitioning bounds, denoted by vk,l, may be easily derived.
Then, the transitional probability Pk1→k2,l is determined by

Pk1→k2,l

, Pr
{
hn′,l ∈ [νk2,l, νk2+1,l)

∣∣hn′−1,l ∈ [νk1,l, νk1+1,l)
}

=
1

πk,l

∫ νk2+1

νk2

∫ νk1+1

νk1

f(hn′−1,l, hn′,l)dhn′−1,ldhn′,l.

(61)

For convenience, the level crossing rate (LCR) Nk,l, which
refers to the number of times per second that the lth coefficient
crosses νk,l in a downward direction, can be further utilized
to evaluate the transitional probability. For the log-normal
distribution, Nk,l will be calculated from

Nk,l =
fD · f(νk,l)√

2πσh

×
∫ ∞

0

exp

(
− (lnr −ml)

2

2σ2
h

)
dr

(a)
=

fD · exp
(
ml + σ2

h/2
)

√
2πνk,lσh

× exp

[
− (lnr −ml)

2

2σh
2

]
,

(62)

where fD denotes the maximum Doppler frequency shift. (a)
holds for the substitution variable t=lnr and dt = 1

rdt. Relying
on the LCR, Pk1→k2,l will be approximately calculated by

Pk1→k2,l ≃ Nk2,l/Rk1,l, (63)

where Rk1,l , πk1,l/TF denotes the average number of frames
per second in the state k1.

APPENDIX 2 PROOF OF REMARK 1

As in most applications, the OFDM signal {bn,m} is con-
sidered. Here, the modulation constellations of PU signals
are also assumed to be unknown. In practice, bn,m may
usually follow the Gaussian distribution, i.e. bn,m ∼ N (0, σ2

b ).
As suggested, the Gaussian assumption may be justified by
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OFDM signals with QPSK and MQAM modulations on sub-
carriers. The signal variance is specified by σ2

b = σ2
s + σ2

c ,
where the variances of the quadrature and in-phase compo-
nents are given by

σ2
s = E[R{b2n,m}], σ2

c = E[I{b2n,m]}, σ2
s = σ2

c =
σ2
b

2
, (64)

where R(x) and I(x) represent the real and image parts of x,
respectively.

In this situation of H1, the received signals may be given
by eq. (65), where the in-phase component ys can be further
reformatted into eq. (66).

(a) When the sample size M is large (e.g., M > 100),
according to the central limit theorem (CLT), it will suffice to
say the first term ys,1(n) may tend to be Gaussian distributed,
i.e., ys,1(n) ∼ N {E(ys,1(n)|hn, H1),V(ys,1(n)|hn,H1)}.
Conditioned on the multipath response hn at time index n,
then the distribution mean and variance can be given by eq.
(67) and (68), respectively. In eq. (67), (a) holds for the fact
that the quadrature component and in-phase component remain
independent of each other, i.e.

E [R(bn,m−1)I(bn,m−l)] = 0. (69)

In order to derive a more compact expression of the distribu-
tion variance, we have to investigate the property of high-order
moments of bn,m. For such a zero-mean Gaussian variable, the
4th moment may be calculated from [27]

E
{
R(bkn,l)

}
=

{
1 · 3 · · · (k − 1)× σk

s , k = 2r, (70a)
0, k = 2r − 1. (70b)

Thus, the variance term may be simplified to

V(ys,1(n)|hn,H1) = 2Mσ4
s ×

L∑
l=1

[
R(hn,l)

2 + I(hn,l)
2
]2

= 2Mσ4
s ||hn||42. (71)

(b) The second term is a weighted Gaussian variable,
given the independent noise samples with a priori Gaussian
distribution. Thus, it also becomes a Gaussian variable, i.e.,

p (ys,2(n)|hn, sn,m = 1)

=

∫
bn,m∈B

p (ys,2(n)|hn, sn,m = 1) dbn,m

∼ N {E(ys,2(n)|hn,H1),V(ys,2(n)|hn,H1)} , (72)

with its mean and variance respectively given by

E (ys,2(n)|hn,H1) ,V(ys,2(n))

= 2M × E

{
L∑

l=1

[
R(hn,l)R(bn,m−l)− I(hn,l)I(bn,m−1)

]}

= 2M ×
L∑

l=1

{
R(hn,l)E{R(bn,m−l)} − I(hn,l)E{I(bn,m−1)}

}
= 0, (73)

and

V (ys,2(n)|hn,H1) ,V(ys,2(n))

= 4Mσ2
zE

{
L∑

l=1

[
R(hn,l)R(bn,m−l)− I(hn,l)I(bn,m−1)

]}2

= 4Mσ2
z ×

L∑
l=1

{
R(hn,l)

2E{R2(bn,m−l)}

+ I(hn,l)
2E{I(b2n,m−1)}

}
= 4Mσ2

zσ
2
s ||hn||22. (74)

(c) The third term ys,3(n) is a summation of a group of
central chi-square distributed variables with a DoF of M , i.e.,
p (ys,2(n)|hn,H1 = 1) ∼ χ2

M . Similarly, consider the sample

y(n) =

M−1∑
m=0

|hH
n bn,m + zn,m|2 =

M−1∑
m=0

∣∣∣∣ L∑
l=1

[R(hn,l) + jI(hn,l)]× [R(bn,m−l) + jI(bn,m−1)] + [R(zn,m) + jI(zn,m)

∣∣∣∣2
=

M−1∑
m=0

∣∣∣∣ L∑
l=1

[R(hn,l)R(bn,m−l)− I(hn,l)I(bn,m−1)] +R(zn,m)

∣∣∣∣2
+

M−1∑
m=0

∣∣∣∣ L∑
l=1

[R(hn,l)I(bn,m−l) + I(hn,l)R(bn,m−1)] + I(zn,m)

∣∣∣∣2
= ys(n) + yc(n). (65)

ys(n) =
M−1∑
m=0

{ L∑
l=1

[
R(hn,l)

2R(bn,m−l)
2 + I(hn,l)

2I(bn,m−1)
2
]
− 2×

L∑
l=1

[
R(hn,l)R(bn,m−l)I(hn,l)I(bn,m−1)

]}
︸ ︷︷ ︸

ys,1(n)

+ 2×
M−1∑
m=0

L∑
l=1

[
R(hn,l)R(bn,m−l)I(hn,l)I(bn,m−1)

]
×R(zn,m)︸ ︷︷ ︸

ys,2(n)

+
M−1∑
m=0

R(zn,m)2︸ ︷︷ ︸
ys,3(n)

, H1. (66)
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number M is usually large in practice, the third term ys,2 may
also tend to be Gaussian distributed according to the CLT, i.e.

p (ys,3(n)) ∼ N
{
Mσ2

z , 4Mσ4
z

}
. (75)

It is seen that, as the PU signal is independent of noise
samples, the first term is uncorrelated with the second and third
terms. That is, only the cross-correlation function between
ys,2(n) and ys,3(n), denoted by Rys,2,ys,2(∆m), need to be
investigated in order to obtained the distribution of yn, which
can be expressed into

Rys,2,ys,2(∆m)

= E
{
yHs,2(n)ys,3(n−∆m)

}
≃ 2M2 × EH,B

{
hH
n bn,m1

}
E
{
zHn,m1

z2n,m2

}
, (76)

and with independent variables zn,m, it is easily seen

E
{
zHn,m1

z2n,m2

}
→ 0, for ∆m = |m1 −m2| > 0. (77)

Thus, for any ∆m > 0 we have Rys,2,ys,2(∆m) ≃ 0, i.e.,
ys,2(n) and ys,2(n) remain independent of each other.

Recall that the linear combination of independent Gaussian
variables (i.e. ys,2(n) and ys,2(n)) forms a Gaussian variable,
we may have

ys(n) ∼ N {E(ys(n)|hn,H1),V(ys(n)|hn,H1)} (78)

with its mean and variance determined by:

E(ys(n)|hn, H1) = E (ys,1(n)|hn,H1) + E(ys,3(n))

= Mσ2
z ||hn||22 + σ2

z , (79)

and

V(ys(n)|hn,H1)

= V(ys,1(n)|hn,H1) + V(ys,2(n)|hn, H1) + V(ys,3(n))

= 2M ×
(
σ4
s ||hn||42 + σ4

z + 2σ2
zσ

2
s ||hn||22

)
, (80)

respectively.
Similarly, the term yc(n) is also a Gaussian variable,

whose mean and variance is equal to that of ys(n). Given
yc and ys(n) involve a group of noise variables of the same
distribution, then the likelihood density of the observations
y(n) is also a Gaussian distribution, i.e.,

y(n) ∼ N {E(y(n)|hn,H1),V(y(n)|hn,H1)} , (81)

where the mean and variance are specified by eqs. (82) and
(83), respectively.

E(y(n)|hn,H1) = 2× E(ys(n)|hn,H1), (82)
V(y(n)|hn,H1) = 2× V(ys(n)|hn,H1). (83)

Based on the above analysis and with little manipulations,
we may finally obtain the conclusion in Remark 1.

APPENDIX 3 ESTIMATION OF NOISE VARIANCE

In the analysis, the unknown noise variance is assumed to
follow the a priori Inverse-Gamma distribution, as in most
investigations [35], [37]. That is, we may have σ2

z ∼ IG(α, β),
where the shape parameter is α and the scale parameter is β.
Thus, the PDF of σ2

z is given by

p(σ2
z) =

βα

Γ(α)
×
(

1

σ2
z

)α+1

· exp
(
− β

σ2
z

)
. (84)

E(ys,1(n)|hn,H1)

= M × E

{
L∑

l=1

[
R(hn,l)

2R(bn,m−l)
2 + I(hn,l)

2I(bn,m−1)
2
]
− 2×

L∑
l=1

[
R(hn,l)R(bn,m−l)I(hn,l)I(bn,m−1)

]}

= M ×
L∑

l=1

[
R(hn,l)

2E{R(bn,m−l)
2}+ I(hn,l)

2E{I(bn,m−1)
2}
]
− 2M ×

L∑
l=1

[
R(hn,l)I(hn,l)E{R(bn,m−l)I(bn,m−1)}

]
(a)
= Mσ2

s ×
L∑

l=1

[
R(hn,l)

2 + I(hn,l)
2
]

= Mσ2
s ||hn||22, (67)

V(ys,1(n)|hn,H1)

= M × E

{
L∑

l=1

[
R(hn,l)

2R(bn,m−l)
2 + I(hn,l)

2I(bn,m−1)
2
]
− 2

L∑
l=1

[
R(hn,l)R(bn,m−l)I(hn,l)I(bn,m−1)

]
−Mσ2

s ||hn||22

}2

= M × E

{
σ4
s

L∑
l=1

[
R(hn,l)

4 + 2R(hn,l)
2I(hn,l)

2 + I(hn,l)
4
]
− 2σ2

sR(hn,l)
2

L∑
l=1

[
R(hn,l)

4 + 2R(hn,l)
2I(hn,l)

2 + I(hn,l)
4
]

+E
{
R(b4n,l)

} L∑
l=1

[
R(hn,l)

4 + I(bn,m−l)
4
]
+ 6σ4

s

L∑
l=1

R(hn,l)
2I(hn,l)

2

}
, (68)
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Given the a priori Gaussian distribution of the likelihood
density, then the posterior density of unknown noise variance,
which is conditioned on unknown PU state and the observa-
tions, is expressed as

p(σ2
z |y0:n, s0:n, h0:n)

∝ p(y0:n, s0:n|σ2
z , h0:n)p(σ

2
z |h0:n)

= p(y0:n|s0:n, σ2
z , h0:n)p(s0:n)p(σ

2
z). (85)

In order to improve the accuracy, we may estimate the
unknown noise variance only in this case of sn = S0. Denote
the accumulated length of state S0 with n† (n† < n), the
likelihood density of observation trajectory of silence states is
given by

p
(
y0:n† |σ2

z , s0:n† ∈ {S0}
)

=

(∏n†

t=1 yt

)M/2−1

(2σ2
z)

Mn†/2 × Γ(M/2)n† × exp

 n†∑
t=1

yt

/
2σ2

z

 . (86)

With the Bayesian criterion, the posterior density of the
noise variance will become

p(σ2
z |y0:n† , s0:n† ∈ {S0})

∝ p
(
y0:n† |σ2

z , s0:n† ∈ {S0}
)
× p(σ2

z)

=

(∏n†

t=1 yt

)M/2−1

(2σ2
z)

Mn†/2 × Γ(M/2)n† × exp

 n†∑
t=1

yt

/
2σ2

z


× βα

Γ(α)

(
1

σ2
z

)α+1

exp

(
− β

σ2
z

)
∝ 1

(σ2
z)

α+1+Mn†/2
× exp

(
−
β +

∑n†

t=1 yt/2

σ2
z

)
. (87)

It is noted that the final term in eq. (87) will also become
an inverse Gamma PDF (if normalized), i.e., IG(α + 1 +

Mn†/2, β+
∑n†

t=1 yt/2). Inspired by this derived relationship,
now the shape parameter α and the scale parameter β can be
refined recursively via

αn = α+Mn†/2 = αn−1 +M/2, sn = S0, (88)

βn = β +
n†∑
t=1

yt/2 = βn−1 + yt/2, sn = S0. (89)

When the PU state is present (i.e., sn = S1), note that both
the shape and scale parameters, i.e., αn and βn, however will
be remained unchanged, i.e.

αn = αn−1, sn = S1, (90a)
βn = βn−1, sn = S1. (90b)

In realizations, therefore, the two density parameters will be
updated according to different rules based on the PU state sn.
With the recursively propagated shape parameter and scale
parameter, then the estimation of noise variance could be
derived from an MAP criterion, i.e.,

σ̂2
z(n) = βn/(αn − 1).

With the designed recursive mechanic, the noise variance
may be effectively estimated.
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