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Abstract—In this paper, spectrum sensing is investigated and a
new detection framework, namely, deep sensing (DS), is proposed
for more challenging scenarios of future dynamic spectrum shar-
ing. In contrast to existing methods, the DS scheme is designed
to proactively recover and exploit some other informative states
associated with realistic cognitive links (e.g., fading gains), except
detecting the occupancy of primary-band. A unified mathematical
model, relying on the dynamic state-space approach, is formu-
lated, in which the Bernoulli random finite set (RFS) is further
exploited to theoretically characterize complex DS procedures.
A Bernoulli filter algorithm is suggested to recursively estimate
unknown PU states accompanying related link information, which
is implemented by particle filtering based on numerical approxi-
mations. The proposed DS algorithm is applied to detect primary
users under time-varying fading channel, which may increase the
observation uncertainty and, therefore, deteriorate the sensing
performance. With this new framework, the time-varying fad-
ing gain, modeled as a stochastic discrete-state Markov chain
(DSMC), is estimated along with unknown PU states. Simulations
demonstrate that, by exploiting the underlying dynamic fading
property, the sensing performance will surpass other traditional
schemes. The DS scheme may be conveniently generalized to
other applications, which will promote sensing performance and
provides a new paradigm for next-generation spectrum sharing.

Index Terms—Spectrum sensing, deep sensing, dynamic state-
space model, joint estimation, random finite set, time-variant flat
fading.

I. INTRODUCTION

BY accessing the unoccupied spectrum of licensed band,
cognitive radio (CR) based dynamic spectrum sharing

(DSS) is initially intended to alleviate the most challenging
problems of future wireless communications, namely, spectrum
scarcity [1]. With a real-time perception of surroundings and
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bandwidth availability, CR devices may dynamically use the
vacant spectrum and perform opportunistic transmissions, by
adapting its functionality intelligently to accommodate current
wireless environments [2]. Without causing harmful interfer-
ence to primary users (PUs), the frequency utilization can be
promoted significantly and, to some extent, the tensions of
spectrum scarcity may be eased. Therefore, the DSS is of great
promise to the developments of next-generation broadband
communications, e.g., LTE in unlicensed band (LTE-U) and
IEEE 802.11af.

As a key building block of DSS or CR, spectrum sensing
is specially designed to identify the occupancy state of autho-
rized spectrum [3]. Various sensing algorithms have attached
extensive investigations [4]–[6]. Traditional techniques, with
a fundamental target of detecting unknown PU states, include
energy detector (ED) [7], matched filter detection [8] and cyclo-
stationary feature detection [9], which may in practice have dif-
ferent advantages and requirements [5], [6]. Recently, wavelet
analysis is adopted [10] and compressive sensing is further
introduced to multi-band sensing [11]. By properly integrating
the statistical information of PU signals, the covariance matrix
[12], [13] and the probabilistic property based sensing tech-
niques [14], [15] have also been developed, which are proven
to effective in realistic applications.

Relying on the sensing result, the access strategies (e.g.,
transmission or silence) and recourse allocations (e.g., power
and spectrum) of secondary users (SU) would be optimized
accordingly. Such a widely recommended sensing-and-acting
infrastructure, which is currently approved by the first world-
wide CR-based wireless standard, i.e., IEEE 802.22, provides
a naturally feasible approach for implementing DSS [1], [16].
As an evolving and enabling technique of next-generation 5G
communications [17], however, there come also new charac-
teristics and requirements for mobile DSS applications. Taking
LTE-U for example, the mobile network operators (MNOs) are
emerged to offload part of the traffic onto some unlicensed
spectrum, in order to accommodate the orders-of-magnitude
increase in mobile data volume per area. Such potential sce-
narios, on one hand, create the urgent need for spectral coex-
istence when various uncoordinated networks operate on the
same frequency (e.g., mobile and distributed heterogeneous
networks), and on the other hand, pose new challenges to
traditional processing mechanisms especially in the attendant of
dynamic or time-varying environments. Based on the following
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two considerations, the existing sensing algorithms seem to be
less attractive to future DSS applications under more adverse
conditions [17], e.g., mobile or vehicle-to-vehicle scenarios.

First, the sensing performance will be affected significantly by
unknown fading channel. Despite a latent component of sensing
procedure, the fading channel will increase the uncertainty of
observations, especially in some emerging scenarios with time-
varying fading gains [18], [19], e.g., involving mobile devices
(or relative movements) in next-generation wireless local area
networks (WLANs) and LTE-U. Even if some existing schemes
have taken the statistical property of fading effects into accounts
[7], [20], unfortunately, these methods relying on static proba-
bility density functions (PDFs) fail to track time-correlated fad-
ing gains and, therefore, cannot exploit the underlying dynamic
property to further enhance the sensing performance.

Second, there is no doubt that the cognitive-link state infor-
mation (CLSI), e.g., the time-varying fading gain, is of great
promise to future DSS applications, e.g., interference evalu-
ations, energy efficiency or distributed techniques for coexis-
tence. With a deeper cognition and more detailed information
of PU-SU links, subsequent reconfigurations may be definitely
promoted. Although various feasible approaches have been
developed which may exclude such CLSI by learning wireless
environments adaptively [20], the computational complexity
and less attractive performance seem to be a main stumbling
block limiting their wide applications, especially in the time-
variant scenarios. It seems that a direct estimation of CLSI,
when performing spectrum sensing, may be more promising in
such adverse environments.

The above considerations, nowadays, have become an induce-
ment to the conceptual innovation of current spectrum sensing
schemes. For the next-generation DSS, it is supposed to probe
the other informative states associated with cognitive links,
which are of great significance to enhance sensing performance
or to facilitate following CR operations. In this paper, a new
sensing framework, referred to as deep sensing (DS), is devel-
oped to overcome the encountered difficulties. In sharp contrast
to classical sensing schemes, in the new DS the dynamic fading
channel will also be estimated blindly based on the observed
signals, at the same time of detecting unknown PU states. To
sum up, the main contributions of this work are two-folds.

1) A novel DS framework is proposed. A major innovation of
such a DS framework is that both unknown fading channel and
PU’s emission state are treated as two hidden states to be es-
timated. A dynamic state-space model (DSM), in the presence
of time-varying flat-fading (TVFF) channel, is established in
the context of more complex DS. These two states are assumed
to evolve with time according to different Markov properties.
I.e., both of them are modeled as discrete states Markov chains
(DSMCs). The summed-energy, as the observed output for ease
of implementation, is utilized to estimate two hidden states. It
is noteworthy that the formulated DS may be easily generalized
to other DS applications. That is, any important features of
PU-SU interactive links, which are coupled with the observed
signals, e.g., time-varying fading gains, dynamic power-levels,
modulation formats, unknown distance of PUs, can be cast into
the new DSM. Thus, the DS may be ready to various different
scenarios, if an adapting estimation algorithm can be available.

For the formulated problem, it is noted that traditional
sensing schemes, unfortunately, may become invalid to this
considered problem. For one thing, as mentioned, most ex-
isting techniques can hardly deal with time-correlated fading
channel and, consequently, their sensing performance will be
deteriorated significantly [20]. For another, even with the ob-
jective of estimating the associative CLSI jointly, no likeli-
hood information on the fading channel will be available in
observations when the PU signal is absence. In the previous
work, an iteratively implemented scheme has been designed to
combat this major challenge [21], which may estimate dynamic
fading gains premised on an initial estimation of PU states.
Due to its inflexibility, nevertheless, the three-step iterative
algorithm may be inefficient in DS applications where two
hidden states are supposed to be acquired jointly, rather than
via a quasi-joint approach as in [21]. Recently, another joint
detection and estimation scheme is proposed by [22], relying on
a supervised manner, which requires both synchronization and
pilot signaling of PU and, unfortunately, may be impractical in
realistic non-coordinated scenarios.

2) The second contribution, accordingly, is that a flexible
estimation algorithm for DS is developed. The DS procedure,
involving an occupancy state (i.e., PU’s state) and another
associated CLSI (i.e., the time-varying fading gain), is modeled
theoretically as one special random variable, i.e., Bernoulli ran-
dom finite set (BRFS). With the new formulation, the varying
cardinality of BRFS is viewed as a token of the occupancy state
of PU, with which dynamic fading states are closely coupled.
A sequential estimation scheme, first predict and then update,
is designed to estimate the BRFS cardinality (i.e., PU state) and
the coupled CLSI simultaneously. The DS algorithm is recur-
sively implemented on reception of new observations, which
derives the posterior densities within a Bayesian inference
framework. Two new mechanisms are further integrated to the
specific application where fading gains keep invariant in several
sensing slots. Particle filtering (PF) is suggested to approximate
non-analytical distributions numerically, and a Bernoulli PF
(BPF) scheme is thereby adopted to realize DS. With the assis-
tance of recovered fading gains, the sensing performance will
be improved in realistic TVFF channel, compared to traditional
methods designed for the time-invariant fading channel.

The reason why the new scheme is called “deep sensing”
is that, by acquiring and exploiting CLSI effectively, it indeed
senses spectrum in a deep cognition mode. It estimates blindly
unknown PU’s states and varying fading gains as a whole and,
therefore, remains also dramatically different from other ex-
isting joint estimation-based sensing concepts, e.g., estimating
PU’ states and fading gains separately [21] or utilizing the pilot
signaling from a coordinated PU [22]. The potential benefits of
the proposed DS scheme are the following three areas:

1) The time-correlated fading gain is recovered blindly with-
out posing any infeasible requirements on PUs. Thus, the
underlying dynamic property could be fully exploited to
promote the sensing performance.

2) The estimated fading gains, as an extra gift of sensing
process, may be utilized to optimize CR operations and,
furthermore, maximize the functionality of CRs. This new
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TABLE I
THE USED ACRONYMS

DS framework, therefore, may lead to more flexible or
even simplified DSS solutions.

3) The new DS scheme, which can be extended to other
important scenarios, may put an insight into spectrum
sensing and hence provides a brand-new idea for 5G
spectrum sharing.

The rest of the paper is structured as following. In Section II,
a new general system model, based on a dynamic state-space
approach, is formulated in realistic TVFF propagation. Subse-
quently, a Bayesian sequential estimation is introduced briefly
in Section IV. Then, a promising DS algorithm which jointly
estimates the fading gain and PU’s states is proposed, by
suggesting a flexibly numerical scheme. In Section V, com-
prehensive numerical simulations and performance analysis are
provided. Finally, we conclude this investigation in Section VI.
Table I lists commonly used acronyms.

II. SYSTEM MODEL OF DEEP SENSING

A main feature of the proposed DS scheme is that, except
for identifying the occupancy of vacant PU bands, it manages
also to recover other important states associated with PUs that
may be of use to promote the sensing performance or resource
reconfiguration. In this section, by taking the time-varying
property of fading channel into full account, a unified DSM is
used to comprehensively characterize the DS process in TVFF
conditions.

A. DSM for Deep Sensing

In the consideration of exploiting the dynamics property
of TVFF channel, a stochastic DSM in the context of DS is
established as follows.

sn = F(sn−1), (1)

αn = H(αn−1), (2)

yn = G(αn, sn,m, dn,m, zn,m). (3)

Here, eqs. (1), (2) are referred to as dynamic equations,
while eq. (3) is the measurement equation. The non-analytical
transitional function F(·) : Z1 → Z

1 specifies the stochastic
evolution of the PU’s states sn,m ∈ S = {0, 1} (S ⊂ Z

1) of
the mth discrete sampling time in the nth slot as a 1st order
Markov process. Another dynamic function H(·) : R1 → R

1

characterizes dynamic behaviors of the fading channel αn ∈
A (A ⊆ R

1). The observation function G(·) : RM×1 → R
1

then describes the coupling relationship between two hidden

states (i.e., sn,m and αn) and the measurement yn ∈ Y (Y ⊆ R
1),

where dn,m denotes the mth sample of PU signals at discrete
time n. The random noise involved by the received signals,
denoted by zn,m ∈ R

1, is assumed to be a zero-mean additive
white Gaussian noise (AWGN). The noise variance of is σ 2

z , i.e.,
zn,m ∼ N (0, σ 2

z ). In practice, it will also remain independent of
two hidden states.

The details on each equation will be elaborated next in the
context of TVFF channel. Before proceeding, it is necessary to
make three important assumptions to this DSM model for the
ease of analysis.

1) For the considered slowly varying case, a fading gain αn

is assumed to keep invariant within several successive
sensing-transmission slots. The ratio between the lasting
duration of αn and the length of sensing-transmission slot
TF , denoted by L, is practically related with the maximum
Doppler frequency shift fD. Specifically, a larger fD leads
to a smaller L.

2) The fading channel gain αn is assumed to remain invariant
during each sensing slot. Such a presumption becomes
practically valid for the slowly-varying channel [21].

3) The PU’s working state is assumed to be unchanged in
each sensing slot, i.e., sn,m = sn.

B. Dynamics of PU State

We firstly study the dynamic behavior of an unknown PU
state. It has been widely suggested that the evolution of PU
states over time may be modeled as a finite state machine
S = {S0, S1}, i.e., a two-state Markov transition procedure [23].
If a PU is in active state S1 at the current sensing slot n, it will
then stay in S1 with a survival probability

ps � Pr{sn+1 = 1|sn = 1},
and jump into the sleep state S0 with a probability 1 − ps in the
next slot n + 1. Then, if it is currently in the sleep state S0, it
will change to S1 with a birth probability

pb � Pr{sn+1 = 1|sn = 0},
and similarly, may stay in S0 in next slot n + 1 with a probabil-
ity of 1 − pb.

In practice, it may be further considered that the above
probabilistic property is time-homogeneous. I.e., the dynamical
transition is related only with specific wireless services while
keeping invariant for a given application in all the time (or at
least, in a long period). The statistical transitional probability
matrix (TPM) of PU’s emission states is known as a priori,
which is given by:

P =
[

(1 − pb) pb,

(1 − ps) ps.

]
. (4)

Thus, the dynamic equation F(·) is inexplicitly specified by
the stochastic transitions from sn−1 to sn, i.e., F(sn−1) = sn

with a probability Pr(sn = j|sn−1 = i), i, j = 0, 1. Also note
that, different from a traditional sense of dynamic equations,
there contains no driven noise in eq. (1) (and also eq. (2)).
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Governed by an underlying finite-states Markov chain, however
the states sn will randomly transit even without an external
driven term. Thus, we may still refer it (and eq. (2)) as a special
dynamic equation.

C. Dynamics of Fading Channels

An adverse propagation condition, i.e., the time-correlated
fading channel, is specially concerned by this work, which
may be very common to emerging future wireless applications
involving mobile devices (or relative movements), e.g., LTE-A
or 5G communications [17], [24], [25].

The dynamic behaviors of time-dependent fading gains may
be modeled properly by another DSMC. As suggested, the
DSMC may reflect the dynamic nature (i.e., evolving along
times) of time-varying fading gains effectively, which match
also the statistical models sufficiently, e.g., Clarke’s model [21],
[25]. Given the wide-sense-stationary uncorrelated scattering,
the time-correlation property may tend to be ergodic and sta-
tionary [19], [25]. In realistic scenarios, therefore, the DSMC
model is stationary [25]–[27] and the transitional probabilities
are independent of the time n.

The indecomposable DSMC is mainly considered here. I.e.,
if we denote the stationary probability vector π = [π0, π1, · · · ,

πK−1]T with πk �Pr(αn =Ak), then we have �Tπ =π , where
�K×K ={πk1→k2, k1, k2 ∈ [0, 1, · · · , K − 1]} denotes the TPM
of the fading gains, i.e.,

�K×K =

⎡
⎢⎢⎢⎣

π0→0 π0→1 · · · π0→(K−1)

π1→0 π1→1 · · · π1→(K−1)

...
...

. . .
...

π(K−1)→0 π(K−1)→1 · · · π(K−1)→(K−1)

⎤
⎥⎥⎥⎦ ,

(5)

where each element πk1→k2 accounts for the transitional prob-
ability from the state k1 at time index (n′ − 1) to the state k2 at
time index n′:

πk1→k2 � Pr
(
αn′ = Ak2 |αn′−1 = Ak1

)
, (6)

where the discrete state of the transitional time n′ = �n/L� is
denoted by Ak ∈ A, k ∈ {0, 1, · · · , K − 1}, which is regarded
as the output of a specific DSMC [25], [26]. That is, the
nonnegative fading amplitude αn (or the received SNR) may
be partitioned into K non-overlapping regions, denoted by V. If
we further specify ν0 = 0 and νK = ∞, we have:

V = {[ν0, ν1), [ν1, ν2), · · · , [νK−1, νK)} .

Suppose the PDF of fading channel is denoted by f (α), then
the steady probability the varying fading gains residing in the
kth discrete region [vk, vk+1) and its representative state are
derived from:

πk =
∫ νk+1

νk

f (α)dα, Ak = 1

πk
×
∫ νk+1

νk

αf (α)dα, (7)

respectively.
With an equi-probable partition rule, i.e., πk � 1/K,

we may easily derive the partitioning bounds by vk =√−2σ 2 ln(1 − k/K) [25], [28]. Then, the transitional probabil-
ity πk1→k2 can be easily determined by:

πk1→k2 = Pr
{
αn′ ∈ [νk2 , νk2+1

)∣∣αn′−1 ∈ [νk1 , νk1+1
)}

= 1

πk1

∫ νk2+1

νk2

∫ νk1+1

νk1

f (αn′−1, αn′)dαn′−1dαn′ , (8)

where f (αn′−1, αn′) is the bivariate Rayleigh joint PDF [29].
For simplicity, a first-order DSMC is considered, which has

been proven to be sufficiently applicable to the slowly varying
fading channel. With the first-order DSMC, then the current
fading state will be independent of all other past and future fad-
ing states when the interval between two states is larger than 1,
i.e., πk1→k2 = 0 for |k2 − k1| > 1. Accordingly, the TPM
�K×K will be further simplified to the equation (shown at the
bottom of the page).

In order to calculate the transitional probabilities via numeri-
cal approximations, in practice, the level crossing rate (LCR)
Nk may be utilized [25]–[27]. LCR refers to the number of
times per second that the fading gain crosses vk in a downward
direction. For the commonly time-varying Rayleigh fading
discussed in the analysis, we have

Nk �
∫ ∞

0
α̇f (α, α̇)dα̇

∣∣∣∣
α=vk

= √
2π fD

νk

σα

exp

(
− ν2

k

σ 2
α

)
, (9)

where f (α, α̇) is the joint PDF of the signal envelop α and its
time deviation α̇ [23], [24], and σ 2

α denotes the distribution
variance of the Rayleigh fading. Relying on such a LCR,
the transitional probability may be numerically approximated
by πk1→k2 � Nk2/Rk1 . Here, Rk1 = πk1/TF accounts for the
average number of sensing slots per second in the state i.

Given the numerically derived �K×K , another dynamic
equation H(·) will be similarly determined via a group
of stochastic transitions from αn′−1 to αn′ , i.e., H(αn′−1 =
Ak1) = {αn′ = Ak2} with a probability πk1→k2 when |k1 − k2| ≤
1 holds.

�K×K =

⎡
⎢⎢⎢⎢⎢⎣

π0→0 π0→1 0 0 · · · 0 0 0
π1→0 π1→1 π1→2 0 · · · 0 0 0

...
...

...
...

. . .
...

...
...

0 0 0 0 · · · π(K−2)→(K−3) π(K−2)→(K−2) π(K−2)→(K−1)

0 0 0 0 · · · 0 π(K−1)→(K−2) π(K−1)→(K−1)

⎤
⎥⎥⎥⎥⎥⎦ .
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D. Observation

As a fundamental sensing technique, the energy-based
scheme has been widely recommended for ease of implemen-
tations [3]–[7]. This work will establish a general DS model
based on ED. Note that, however, the generalization to other
observations (i.e., the matched filter) is straightforward. Before
proceeding, it is necessary to briefly illustrate ED scheme,
which is formulated as a two-hypothesis problem:

yn �
{∑M

m=1 z2
n,m, H0 or sn = S0,∑M

m=1(αndn,m + zn,m)2, H1 or sn = S1,

(10a)
(10b)

where M = TS × fs is the length of samples, and fs is the
sampling frequency. H0 and H1 denote two hypotheses corre-
sponding to the absence and presence of PU signals (i.e., S0
and S1), respectively; un,m = αndn,m + zn,m is the mth received
sample of the discrete time n, and yn = ∑M

m=1 u2
n,m denotes the

energy observation. dn,m = sn × bn,�m/Ns�g(m − Ns/2) is the
received baseband signal of the nth slot, where {bn,i} denote
the PU’s information symbols and g(k) (k = 0, 1, · · · , Ns − 1)

is the pulse-shaping response, and Ns is the length of the pulse.
For simplicity, the real-valued BPSK signal is considered, e.g.,
bn,i ∈ {+1,−1}. It is noteworthy that the extension of the
measurement function in eq. (10) to other modulated signals
is also feasible.

Conditioned on the fading gain αn and PU’s emission state
sn, the likelihood density p(yn|αn, sn) follows a central chi-
square distribution with M degrees of freedom (DoF) under H0,
and a non-central chi-square distribution with M degrees under
H1, i.e.,

ϕ(yn|αn, sn,m = 0) ∼ χ2
M, (11a)

ϕ(yn|αn, sn,m = 1) ∼ χ2
M(�n), (11b)

where �n = ∑M
m=1 |αndn,m|2 � MEdα

2
n denotes the non-

central parameter, which is related with the time-dependent
fading gain αn and the average power of PU signals, i.e., Ed �
E{|dn,m|2} = σ 2

d .
Note that, despite the same observation (i.e., the summed en-

ergy), classical ED schemes essentially ignore the time-variant
CLSI. For such threshold-based techniques, a proper decision
threshold γED would be configured according to various differ-
ent criterions, e.g., the Neyman-Pearson criterion [5]. Thus, the
false alarm probability Pf is defined by Pr(yn > γED|H0), while
the detection probability Pd is Pr(yn > γED|H1).

Pf � Pr(H1|H0) = 
 (M, γED/2)


 (M/2)
, (12a)

Pd � Pr(H1|H1) = QM

(√
2τ ,

√
γED

)
, (12b)

where τ = α2
nσ 2

d /σ 2
z is the instantaneous SNR at the nth sens-

ing slot, and σ 2
d is the variance of PU signals. 
(a, x) is the

incomplete gamma function, and 
(a) denotes the gamma
function. QM/2(a, x) is the generalized Marcum Q-function.
Even if the PDF of channel fading (e.g., Rayleigh fading)
may be considered [7], most threshold-based schemes fail still
to cope with time-correlated dynamic fading, which may be
unattractive in the presence of TVFF propagations.

III. DEEP SENSING

A. MAP Estimation of DS

In sharp contrast to traditional sensing schemes, a Bayesian
stochastic approach is designed for DS, which recursively esti-
mates the joint posterior PDF of two hidden states based on the
formulated DSM. Relying on the maximum a posteriori (MAP)
criterion other than the aforementioned Neyman-Pearson cri-
terion, the estimations of unknown PU states, accompanying
the dynamical CLSI (i.e., the fading gain), are derived from
eq. (13), shown at the bottom of the page, where y0:n � {y0,

y1, · · · , yn} denotes the trajectory of observations until the nth
time slot.

For clarity, two hidden terms are denoted by one state vector
sn � {sn, αn}. Given the assumed first-order Markov chain and
a priori distribution of s0, i.e., p(s0), the joint posterior distri-
bution is then propagated sequentially via the well-known two-
step procedure, i.e., the prediction followed by an update.

1) Predict Stage: Let pn−1|n−1(sn−1|y0:n−1) be the poste-
rior density at time n − 1. With the help of the Chapman-
Kolmogorov equation, the one-step prediction pn|n−1(sn|y0:n−1)

is obtained via:

pn|n−1(sn|y1:n−1)

=
∫

φn|n−1(sn|s1:n−1)pn−1|n−1(sn−1|y1:n−1)dsn−1, (14)

where s0:n � {s0, s1, · · · , sn} denotes the trajectory of hidden
states until the nth sensing slot, and the traditional density
φn|n−1(sn|s1:n−1) is determined by:

φn|n−1(sn|s0:n−1)

= Pr(sn = j|sn−1 = i) × Pr
(
αn′ = Ak2 |αn′−1 = Ak1

)
.

where i, j ∈ {0, 1} and k1, k2 ∈ {0, 1, · · · , K − 1}.
2) Update Stage: By taking full advantage of the cur-

rent measurement yn accompanying the likelihood density
ϕn(yn|sn), the Bayesian rule is then applied to refine the pre-
dicted density in eq. (14), i.e.,

pn|n(sn|y0:n) = ϕn(yn|sn)pn|n−1(sn|y0:n−1)∫
ϕn(yn|sn)pn|n−1(sn|y0:n−1)dsn

. (15)

Thus, the posterior distribution pn|n(sn|y0:n) can be computed
from the above two-stage process.

(
α̂n, ŝn

) = arg max
αn∈A,sn∈S

p(αn, sn|y0:n)
∣∣α̂n−1, ŝn−1, p(αn|αn−1), p(sn|sn−1), (13)
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For the DS scenario with the time-varying fading channel,
however the traditional sequential estimation framework may
become infeasible. First, the fading channel αn would disappear
completely from observations when a PU device turns off , i.e.,
sn = S0 or H0, as noted from eq. (10a). Thus, unlike classical
joint estimations of unknown parameters where the likelihood
is always available, the likelihood of fading gains, which is now
coupled with sn, will unfortunately be sporadic or intermittent
in such a situation, making the Bayesian inference very tough.
Second, even if the likelihood function could be utilized when
the PU state is on, the involved marginal integration seems still
to be analytically intractable or computationally prohibitive to
many practical uses [21], [30].

B. Bernoulli Random Finite States

To address the first problem, one has to resort to other more
efficient approaches to deal with the complex DS procedure.
As noted from DSM, except for the dynamic fading state (i.e.,
αn), the appearance/disappearance of PU also is an important
random process, which is used to be treated directly as another
separate random state (i.e., sn) [5], [6], [21]. From a more
attractive perspective, the dynamic behaviors of two hidden
states could be structured into one unified random process F ,
which is referred to as RFS [31]. In this new formulation, the
cardinality (i.e., the number of random elements) of the RFS F ,
which is denoted by d = |F |, is further specified by a random
density κ(d) = Pr{|F | = d}, d ∈ N0. That is, an RFS may be
considered, in essence, to be a random variable which takes
values as unordered finite sets [31], [34].

It is noted that, in sharp contrast to classical random vari-
ables, another cardinality distribution κ(d) is exploited to
characterize an RFS, apart from the d-elements joint distribu-
tion p(x1, · · · , xd), {x1, · · · , xd} ∈ Ad ⊂ R

d. Similar to other
random variables, a finite set statistics (FISST) PDF is used
to describe an RFS probabilistically, which is denoted by
p(F). Due to its convenience, the Mahler’s approach has been
widely suggested to define a FISST PDF p(F)) [31], which is
given by:

p (F = {x1, · · · , xd}) � d!κ(d)p(x1, · · · , xd). (16)

By using a set integration on eq. (16), it is seen that p(F)

indeed may be adopted as a PDF, i.e.,∫
F

p(F)δF = p(∅)

+
∞∑

d=1

1

d!
∫

{x1,··· ,xd}∈Ad
p(x1, · · · , xd)dx1 · · · dxd ≡ 1.

Here, the notation
∫
F p(F)δF denotes the set integration on

F , rather than the random distribution marginalization. In order
to fully describe an RFS F , from the above elaboration, it is
necessary to study a cardinality density κ(d), an RFS PDF p(F)

and related transitional densities, respectively.
1) Cardinality Distribution: As far as the DS application

is concerned, we have either F = {αn ∈ A} or F = ∅, i.e.,
d = 1. When the PU exists at time n (i.e., sn = S1), we have

|F | = 1, and otherwise, |F | = 0 (i.e., sn = S0). Thus, d (or sn)
is a random Bernoulli variable, which may either be empty with
probability 1 − q or have a single element with probability q.
Thus, the random cardinality of F is:

κ(d) =
{

1 − q, if Fn = ∅ or sn = 0,

q, if Fn = {αn} or sn = 1.

(17a)
(17b)

2) RFS PDF: With the TVFF effect, the singleton state
associate with the PUs’ appearance (i.e., |Fn| = 1) accounts
for the dynamic fading gain αn. The FISST PDF, depending on
a cardinality distribution κ(d) and the associative distribution
p(α), is thereby given by:

p(Fn) =
{

1 − q, if Fn = ∅,

q × p(α), if Fn = {αn}.
(18a)
(18b)

For other cases the cardinality d is larger than 1, we have
p(F) = 0. Checking eq. (18), the set integration on F satisfies∫
F p(F)δF = (1 − q) + q × ∫

p(α)dα ≡ 1.
3) Transitional Densities: Given the established DSM in

eqs. (1)–(3), the transitional behaviors of the Bernoulli RSF F
follows a first-order Markov process. As the cardinality (i.e.,
PU’s states) and the fading states evolve independently, the a
priori transitional densities of F are written to:

φn|n−1(F |∅) =
{

1 − pb, if F = ∅,

pbbn|n−1(αn), if F = {αn},
(19a)
(19b)

and

φn|n−1(F |{αn})=
{

1 − ps, if F =∅,

psπn|n−1(αn|αn−1), if F ={αn},
(20a)
(20b)

respectively. Here, bn|n−1(αn) refers to as the birth density,
which represents an initial distribution of the singleton state
{αn} after the PU is re-birthed. This birth distribution should
be properly specified as a priori in order to achieve good per-
formance, which will be discussed in subsequent Section III-F.

With the energy-based observation, the likelihood distribu-
tion, denoted by ϕ(yn|F), is easily obtained, i.e.,

ϕ(yn|F) =
{
χ2

M, if Fn = ∅,

χ2
M(�), if Fn = {αn}.

(21a)
(21b)

C. Sequential MAP Detection

It is recognized that, different strikingly from an intuitive
formulation involving two independent hidden states (e.g., sn

and αn), RFS deals only with a unified random variable Fn,
which, however, will dynamically turn on-off . A principal
benefit of such a new RFS is that, for this mixed detection
and estimation problem, two hidden states need to be estimated
simultaneously unlike the previous works [21], [37]. By cast-
ing the stochastic DS problem into an RFS, the dynamically
associative CLSI (i.e., fading state) could be estimated along
with a Bernoulli random cardinality, which actually reveals
the appearance/disappearance of PU’s signals. Thus, the first
problem in designing DS algorithm is addressed.

To accomplish this, a similar two-stage recursive framework
may be suggested. Note that, a major difference between the
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densities propagation of RFS and the general sequential esti-
mations is that, rather than the distribution integration as in eqs.
(14), (15), the set integration (i.e., δFn) will be applied to RFS.
That is,

pn|n−1(Fn|y1:n−1)

=
∫
Fn

φn|n−1(Fn|F1:n−1)pn−1|n−1(Fn−1|y1:n−1)δFn−1,

(22)

pn|n(Fn|y1:n)

= ϕn(yn|Fn)pn|n−1(Fn|y1:n−1)∫
Fn

ϕn(yn|Fn)pn|n−1(Fn|y1:n−1)δFn
. (23)

D. Bernoulli Filter

Note that, most existing schemes may fail to handle the
above complex DS process. A particular stochastic algorithm
is thereby suggested to derive the recursive estimations of the
formulated Bernoulli RFS Fn, which is known as the Bernoulli
filter scheme [31], [34].

In order to obtain the FISST PDF pn|n(Fn|y1:n), two related
distributions may be of great importance from eq. (18). I.e., (1)
the posterior density of PU’s appearance which is denoted by:

qn|n � Pr{Fn|y1:n}, (24)

and (2) the a posteriori spatial PDF of the single state

fn|n
(
Fn � {αn}

)
= p{αn|y1:n}. (25)

With the assistance of the above prediction-and-update
framework, then the Bernoulli filter will propagate the above
two posterior terms recursively.

1) Prediction Stage: During the one-step prediction stage,
the predicted terms qn|n−1 and fn|n−1(αn) will be derived based
on the posterior densities qn−1|n−1 and fn−1|n−1(αn−1) of time
(n − 1). By applying eq. (18), the predicted posterior FISST
PDF at time n is expressed as:

pn|n−1(Fn|y1:n−1)

=
∫
Fn

φn|n−1(Fn|Fn−1)pn−1|n−1(Fn−1|y1:n−1)δFn−1

= φn|n−1(Fn|∅)pn−1|n−1(∅|y1:n−1)

+
∫

φn|n−1(Fn|αn−1)pn−1|n−1(αn−1|y1:n−1)dαn−1.

(26)

Remark 1: The one-step prediction density of the appearance
of PU is

qn|n−1 = pb × (1 − qn−1|n−1) + ps × qn−1|n−1, (27)

and the predicted spatial PDF of associative CLSI is

fn|n−1(αn) = pb(1 − qn−1|n−1)bn|n−1(αn)

qn|n−1

+
psqn−1|n−1×∫

αn−1
πn−1|n−1(αn|αn−1)fn−1|n−1(αn−1)dαn−1

qn|n−1
.

(28)

Fig. 1. An illustration of the predicting process in the recursive estimation
algorithm. (a) The one-step prediction of the existence density qn|n−1. (b) The
one-step prediction of the spatial density fn|n−1(αn).

Generally, the above two prediction densities are derived
by checking respectively two complementary situations, i.e.,
Fn = ∅ and Fn = {αn}, and by further interpreting the terms of
eqs. (17)–(20) with eq. (26).

For more detailed mathematical derivation on RFS, one may
refer to [31] and [34]. As the communication practitioners,
here we focus on some intuitive explanations on the derived
predicting densities, especially in the context of the considered
DS application. As illustrated by Fig. 1(a), the predicted density
of PU’s appearance is a result of the combined action of two
dynamic switches.

1) It is seen from eq. (27) that the predicted existence proba-
bility qn|n−1 involves two complementary terms. The first term,
i.e., pb

n|n−1 � pb × (1 − qn−1|n−1), implies a birth procedure of
a dynamic PU. Recall that, in eq. (17), the posterior density
qn−1|n−1 = Pr{|Fn−1| = 1|y1:n−1} testifies the presence of PU
at time (n − 1), while the term (1 − qn−1|n−1) indicates the
absence of PU. So, the term pb(1 − qn−1|n−1), further given
the one-step Markov transition property of PU states, actually
manifests the re-birth of a disappeared PU at time n.

2) The second term, i.e., ps
n|n−1 � ps × qn−1|n−1, accounts

for the survival procedure of a dynamic PU. As the continuation
of an appeared PU at time n − 1, the term ps × qn−1|n−1 reflects
the sustained exitance of a PU at next time n.

Similarity, the predicted special density in eq. (28) also
involves two terms [34], whose physical meanings are given
as below.

1) The first term, i.e., pb(1 − qn−1|n−1) × bn|n−1(αn), char-
acterizes essentially the PU’s dynamic birth procedure. Once
a PU is re-birthed at time n, then the a priori spatial density
bn|n−1(αn) is required to predict the distribution of associative
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fading states, even in the absence of any past likelihood in-
formation. Thus, the birth component of the predicted spatial
density, conditioned on a birth probability pb(1 − qn−1|n−1),
will be easily derived.

2) The second term, i.e., psqn−1|n−1×∫A πn−1|n−1(αn|αn−1)

fn−1|n−1(αn−1)dαn−1, reveals the PU’s dynamic survival pro-
cess. It is easily found that, for a survival PU already ap-
peared at time n − 1, the one-step predicted density will
be given by

∫
αn−1∈A πn−1|n−1(αn|αn−1)fn−1|n−1(αn−1)dαn−1.

Recall that the predicted survival probability is given by
psqn−1|n−1, then the survival component of the spatial density
is relatively straightforward.

According to the total probability formula, the predicted
spatial density will be contributed consequently by the above
two complementary procedures [34]. An illustration of the
predicted spatial density is shown by Fig. 1(b).

2) Update Stage: Based on the predicted density
pn|n−1(Fn|y1:n−1), the denominator term of eq. (26) becomes
to eq. (29), by applying the set integration.

p(yn|y1:n−1) =
∫
Fn

ϕn(yn|Fn)pn|n−1(Fn|y1:n−1)δFn

= ϕn(yn|∅)pn|n−1(∅|y1:n−1)

+
∫

αn∈A
ϕn(yn|αn)pn|n−1(αn|y1:n−1)dαn. (29)

Remark 2: The updated posterior density of the PU’s appear-
ance is given by:

qn|n = qn|n−1 ×
∫

αn∈A
ϕn (yn|{αn}) fn|n−1(αn)dαn

÷
[
(1 − qn|n−1)ϕn(yn|∅)

+ qn|n−1

∫
αn∈A

ϕn (yn|{αn}) fn|n−1(αn)dαn

]
,

(30)

and the updated spatial PDF of associative CLSI is

fn|n(αn) = rn (yn|{αn}) fn|n−1(αn)∫
αn∈A rn (yn|{αn}) fn|n−1(αn)dαn

, (31)

where rn(yn|αn) accounts for the ratio of likelihoods between
two hypothesis, i.e.,

rn (yn|{αn}) � ϕn (yn|{αn})/ϕn(yn|∅). (32)

Similar to eqs. (27), (28), some intuitive explanations (maybe
not rigorous) are given to the derived densities qn|n and fn|n(αn),
see refs [31], [34].

1) In the eq. (30), the numerator is represented by the
multiplication between the prior predicted density qn|n−1 and
the likelihood

∫
αn∈A ϕn(yn|{αn})fn|n−1(αn)dαn (marginalized

on the predicted spatial density fn|n−1(αn)), leading to the
updating on qn|n−1. The updated term is further normalized by
the total probability of the denominator.

2) In the eq. (31), the numerator is expressed as the mul-
tiplication between the prior predicted density fn|n−1(αn) and
the likelihood ratio rn(yn|{αn}), also suggesting an updating
procedure. Then, the updated term is normalized by the total
probability of the denominator.

Up to now, the joint estimations of two posterior densities,
i.e., the probability existence qn|n and the spatial PDF fn|n(αn),
have been computed recursively. Further combined with two
predict distributions, i.e., qn|n−1 and fn|n−1(αn), the Bernoulli
filter may be implemented then and, consequently, the Bernoulli
RFS Fn would be estimated.

Note from the above analysis, with the single unified RFS
Fn, the unknown cardinality of BRFS (i.e., qn|n) will be
detected along with the associative CLSI (i.e., αn). The DS
scheme, therefore, is in sharp contrast to another existing three-
step estimation scheme [21], [35], in which two hidden terms
are treated as two separate quantities and are estimated succes-
sively. Except for its generality and flexibility, the unified DS
framework is supposed also to have more competitive sensing
performance by acquiring two hidden states simultaneously.

E. Designing Considerations

An illustration of the state evolutions is given by Fig. 2(a). It
is seen that, for the formulated DS problem with slowly-varying
fading channels, the transitions of two states may be mutually
asynchronous. I.e., after the transition of fading states, then
the static channel gain αn will remain invariant or homologous
in L successive slots, whilst the PU’s existence state sn may
switch dynamically among different slots n. Note that, this may
remain somewhat different from the classical RFS. Recall that,
traditionally, the cardinality (or on/off state) and its associated
states are assumed to evolve simultaneously, or as in typical
object position tracking scenarios [34], [40], the on/off state sn

will be invariant for a long while. The DS estimation algorithm,
accordingly, should be refined or re-designed to accommodate
this specific situation, as the complementary to [40]. In the sec-
tion, we will integrate two mechanisms to maximize the func-
tioning of sequential estimation algorithm which thereby may
produce the promising detection and estimation performance.

1) Observations Accumulation: Since the slowly varying
fading channel is temporarily unchanged during successive L
slots, the historical measurements could be utilized to promote
the estimation performance furthermore. Denote the latest time
index the fading channel switches by n′ = �n/L�, in subsequent
slots n = Ln′ + l (0 < l < L), then the observations will be
accumulated to refine the estimation in the case of qn|n ≥ γ .
The underlying principle behind this observation accumulation
mechanism is that, with more likelihood information exploited,
the estimation of fading gains accompanying unknown PU
states would be reinforced.

To be specific, if the total l1 (0 ≤ l1 ≤ l) former qn|n is
larger than a threshold γ (indicating the estimated PU state
ŝn = 1), then the observation of the time n = n′L + l will be re-
defined as:

yn′L+l1 = yn′L +
l1∑

t=1

yn′L+t, (33)
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Fig. 2. (a) Illustration of multiple transitional states in the DS process. (b) Illustration of the densities transitions in the DS process. The solid green circle denotes
a PU is in sleep state, while the dotted red circle denotes a PU is in active state. Here, the time-varying fading channel of a static length L = 4 is taken for example.
For clarity, the term f l

n′|n′−1 accounts for fn|Ln′−1(αn′−1) with n = Ln′ + l (l = 0, 1, 2, · · · , L − 1).

with an evolving likelihood density

ϕn
(
yn′L+l1 |αn

) =
(
yn′L+l1/�

′)(M−2)/4

2σ 2

× exp
[
− (

yn′L+l1 + �′) /2σ ′2]× IM/2−1

(√
�′yn′L+l1/σ

′2),
(34)

where IM/2−1(·) is the Bessel function of the first kind. Here,
the involved parameters are given by:

�′ =
l1M∑
m=1

|αndn,m|2 = Ml1α
2
nσ 2

d , (35)

σ ′2 = α2
nσ 2

d + σ 2
z . (36)

2) Homologous Estimation: Rather than utilizing the dis-
tribution of the previous time (n − 1), in the current slot n =
Ln′ + l (l > 1), the spatial density of the last slot in the previous
static period n′ − 1, i.e., the time slot L(n′ − 1) + L − 1 =
Ln′ − 1, will be used in both the predicting and updating
procedures, as shown by Fig. 2(b). Thus, the eqs. (28) and (31)
will become to:

fn|Ln′−1(αn)

= psqn−1|n−1

qn|n−1

×
∫

αn′−1

πn−1|n−1(αn|αn′−1)fLn′−1|Ln′−1(αn′−1)dαn′−1

+ pb(1 − qn−1|n−1) × bn|n−1(αn)

qn|n−1
, (37)

and

fn|n(αn) = rn (yn|{αn}) fn|Ln′−1(αn)∫
αn∈A rn (yn|{αn}) fn|Ln′−1(αn)dαn

. (38)

Premised on such a homologous propagation strategy, the
predicting and updating stages would be implemented in ac-
cordance with the state transitions in Fig. 2(a). Note that, with
this suggested mechanism, now the predicting and updating
processes utilize the previous spatial density fLn′−1|Ln′−1(αn′−1)

and fn|Ln′−1(αn), respectively. The motivation of adopting the
term fLn′−1|Ln′−1(αn′−1) is that, with the first accumulation
mechanism, the spatial distribution of time Ln′ − 1 may be-
come very accurate based on the former L1 innovative obser-
vations. In practice, we have E(L1) = L × Pr(sn = 1).

F. PF-Based Implementations

It is observed from eq. (37) the the prediction of the spatial
density fn|n−1(αn) involves the complex computation that is
prohibitive to practical uses. The sequential importance sam-
pling (SIS) based PF, as an alternative, shows great promise
to the DS problem, which will greatly facilitate the Bayesian
inference via a simulated Monte-Carlo approach.

1) PF: PF obtains the consistent estimation of a complex

density via fn(x) � ∑I
i=0 w(i)

n × δ
(

x − x(i)
n

)
, relying on I ran-

domly discrete measures (or particles) x(i)
n with evolving proba-

bility masses (or weights) w(i)
n (i = 1, 2, · · · , I) [30], [34], [35],

[37]. Here, δ(x) is the Dirac-delta mass function. The particles



LI et al.: DEEP SENSING FOR NEXT-GENERATION DYNAMIC SPECTRUM SHARING 2451

are drawn from a related space, i.e., x(i)
n ∼ ρ(xn), and then the

particle weights are updated by:

w(i)
n = p

(
y0:n

∣∣∣x(i)
0:n
)

p
(

x(i)
0:n
)
/ρ(xn). (39)

2) Implementations: For the DS scenario, since the pre-
dicted spatial density involves two terms as in eq. (37), two
groups particles will be simulated accordingly from [34], [40]:

x(i)
n|n−1 =

{
ξ
(

xn|n−1

∣∣∣x(i)
n−1|n−1, y1:n−1

)
, i=1, · · · , N,

β(xn|n−1|y1:n−1), i = N + 1, · · · , N + B,

(40a)
(40b)

where the first N particles drawn from a proposal survival den-

sity ξ
(

xn|n−1|x(i)
n−1|n−1, y1:n−1

)
are used to approximate the first

term in (37); while the latter B particles simulated from a birth
density β(xn|n−1|y1:n−1) are used to evaluate the second term.
Then, the importance weights would be updated via eq. (39).

In the above elaboration,
{

x(i)
n−1|n−1, w(i)

n−1|n−1

}I=N+B

i=1

correspond to the posterior density f̂n−1|n−1(αn) =
N+B∑
i=1

w(i)
n−1|n−1δ

(
x − x(i)

n−1|n−1

)
. In order to draw B birth particles

and N survival particles, a birth density β(xn|n−1|y1:n−1) and

another proposal survival density ξ
(

xn|n−1|x(i)
n−1|n−1, y1:n−1

)
should be designed.

a) Proposal survival-density: In order to be consistent
with eq. (37), in the current slot n = Ln′ + l (0 ≤ l ≤ L − 1),
the survival density will be derived directly from one-step
transitions of N survival particles of the time Ln′ − 1, i.e.,

ξ
(

x(i)
n|n−1

)
� ξ

(
x(i)

n|Ln′−1

)
,

=
∫

x′∈A
πn|n−1(x|x′) × fLn′−1|Ln′−1(x

′)dx′,

i = 1, 2, · · · , N, (41)

where the previous survival density is constructed by:

fLn′−1|Ln′−1(x)

�
N∑

i=1

δ
{

x − x(i)
Ln′−1|Ln′−1

}
× w(i)

Ln′−1|Ln′−1. (42)

The new weights w(i)
n|Ln′−1 will be updated according to eq.

(39). Note that, a re-sample procedure will be applied then [30],
[34], [40].

b) Proposal birth-density: The proposal birth density is
specified as:

x(i)
n|Ln′−1 ∼ β(xn|n′−1) � πn′|n′−1(αn′ |α̂n′−1),

i = N + 1, N + 2, · · · , N + B. (43)

Note that, the predicted particle weights is specified by:

w(i)
n|Ln′−1 = 1/B, i = N + 1, N + 2, · · · , N + B. (44)

Fig. 3. Schematic flow of the DS algorithm with observation accumulations.

Thus, the predict process in eq. (37) will be approximated by
PF via two group of discrete particles. Thereafter, the particle
weights are updated based on the new observation yn. Finally,
both the spatial density and unknown PU states will be derived.
One may refer to [34], [40] for more details.

With the Bayesian rule, the threshold may be empirically
configured to γ = 0.5, thus we have:

ŝn =
{

1, if qn|n ≥ γ,

0, if qn|n < γ.

(45a)
(45b)

Given the observation accumulation mechanism, the survival
particles would be re-determined based on the accumulated
observation yLn′+l1 (0 ≤ l1 ≤ l) in the case of ŝLn′+l = 1, as
in eq. (46). It is seen that, as a consequence, the estimation
accuracy will be improved as the time goes on.

w(i)
Ln′+l|Ln′+l ∝ w(i)

n|L(n′−1)
× r

(
yLn′+l1

∣∣∣x(i)
n|Ln′−1

)
,

i = 1, · · · , N, N + 1, · · · , N + B. (46)

After the above weights update, the new survival particles
of the time (Ln′ + l) will be derived. Notice that, a similar re-
sample process will be used after updating the weights.

3) Algorithm Flow: Based on the above elaborations, the
implementation flow of the proposed DS algorithm, which
acquires the varying fading gains along with PU states, is
demonstrated by Figs. 3 and 4. Firstly, (1) based on the current
observation yn, the posterior existence probability qn|n and the
spatial PDF fn|n(x) are estimated via the prediction and update
stages; (2) in the case of qn|n > 1, the observation will be
accumulated to further promote the estimations; (3) and finally,
the DS is realized by estimating unknown PU states along with
the associated fading states.



2452 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 63, NO. 7, JULY 2015

Fig. 4. Sub-algorithm flow of the DS scheme implemented by PF.

With the accumulation procedure, it is worth noting a
counter, namely l1, is adopted by the proposed DS algorithm.
Such a counter l1 is mainly used to record the numbers of accu-
mulated observations (as the sensing slot index n increases),
which is of great importance to determine the DoF of an
accumulated observation yLn′+l1 . Such a counter is reset to 0
every time the state transition of fading gains occurs, i.e., when
mod(n, L) = 0. Subsequently, after the evaluation of yLn′+l1 and
the estimation refinement of fading gains, the counter l1 will be
updated by l1 = l1 + 1.

The algorithm complexity can be measured roughly by the
total numbers of multiplications. Firstly, in order to obtain
the summed-energy observation, O(M) multiplications are re-
quired. Then, for the subsequent BPF, the multiplication opera-
tions in implementing PF are basically proportional to the size
of particles, i.e., I = N + B. Denote the multiplications in the
computation of likelihood density by ϑ , which is practically
related with the representative precision of numbers and the
adopted algorithms, then the involved complexity is about
O{(K1 + I)ϑ}, where K1 is the number of transitional states.
Thus, the total complexity of the proposed DS algorithm will be

measured by O{M + (K1 + I)ϑ}. Note that, K1 may decrease to
3 for a first-order DSMC. When the sample size M is large, the
complexity of the DS algorithm is comparable with that of ED,
i.e., O(M).

IV. SIMULATION RESULTS

Based on experimental simulations, the presented DS algo-
rithm will be evaluated in realistic TVFF condition. In practice,
a false alarm Pf and a missing detection Pm may have different
effects to CR. Pf measures the spectral utilization, while the
missed detection probability Pm controls the interferences from
CR users to PUs. With a classical NP criterion, a main objective
is either to minimize Pm for a target Pf , or to minimize the
Pf for a target Pm. It is noteworthy that the DS scheme is
designed specially under the Bayesian criterion and, accord-
ingly, the spectral utilization to unused bands and the potential
interference to PUs will be considered jointly. Thus, the total
detection probability is adopted as a performance metric as in
[21], [36]–[38], i.e.,

PD � 1 − p(H1)Pm − p(H0)Pf . (47)

Another performance measurement of the DS process, i.e.,
the MSE of the estimated fading channel, is defined as:

MSE � E

{
N∑

n=1

∣∣α̂n − αn
∣∣2/ N∑

n=1

|αn|2
}

. (48)

A. Sample Size M

In the first experiment, the sensing performance with differ-
ent sample sizes M is investigated. The static length of fading
channel is configured to L = 20, the transitional probability
(pb, ps) are set to (0.2, 0.8). Note that, when the TPM of
eq. (4) is unknown in practice, the estimation scheme of [39]
can be applied to acquire the transitional parameters. The
discrete states of DSMC channel is set to K = 5. From the
numerical results shown by Fig. 5(a), it is seen that the estima-
tion MSE of fading gains will be decreased with the increasing
of SNR, which would finally become convergent. Meanwhile,
the MSE may be decreased by increasing the sample size M.
Taking SNR = −2 dB for example, the MSE value in the case
of M = 50 is about 0.068. When the sample size is increased to
M = 200, the MSE will be decreased to 0.027. Similar trends
can be observed from the sensing performance demonstrated
by Fig. 5(b). Specifically, when the total detection probability
PD is 0.8, then a detection gain of 2 dB may be achieved by
increasing the sample size M from 100 to 200. It is compre-
hensible that, with more independent samples accumulated, the
statistical information of observations will be more accurate
and, therefore, the estimation performance will be enhanced.
Note that, however a compromise should be made, since a
larger M results also in the prolonged sensing time and reduced
transmission efficiency.

B. Static Length L

In the second experiment, the effects from various static
length L are investigated. In the simulation, we configure the
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Fig. 5. Deep sensing performance under differen sample size M. (a) The
estimation MSE performance with L = 20. (b) The detection performance with
L = 20.

sample size M to 100 and a priori transitional probability
(pb, ps) to (0.2, 0.8).

In realistic applications, the encountered TVFF channel is
slowly varying, i.e., fD is relatively small. Thus, three typical
configurations are considered, i.e., the static length L is 10, 20
and 50, respectively. From the MSE curves of the DS scheme
shown by Fig. 6(a), it is seen that the estimation accuracy may
be improved dramatically with the increasing of a static length
L. For example, if the SNR is configured to 2 dB, the MSE
value in the case of L = 10 is about 0.077. In comparison, the
MSE of L = 20 will be noticeably decreased to 0.023. In the
presence of a larger L, more historical information would be
exploited and more profound refinement on previous inaccurate
estimations will be ensured. In contrary, with a faster varying
channel, further refinements on the erroneous estimation of
fading states via the L1-segment observations may be weakened
due to a shortened static period.

As far as the sensing performance is concerned, a similar
trend may be observed from the provided results in Fig. 6(b).

Fig. 6. Deep sensing performance under differen static length L. (a) The
estimation MSE performance with M = 50. (b) The detection performance with
M = 50.

That is, the larger the static length L, the higher the total detec-
tion probability PD. For example, a detection gain of 3.5 dB
may be obtained by a configuration of L = 20 (e.g., PD >

0.95), compared with the faster time-varying fading of L = 10.

C. Comparative Performance Analysis

In this experiment, we will compare the performance of the
proposed DS scheme with the existing counterpart, i.e., the joint
estimation-based three-step method. In numerical experiments,
the sample size is set to M = 100 and the static fading length is
L = 20. The particle size of both the DS scheme and the other
joint-estimation scheme is configured to I = 200. Simulation
results are plotted in Fig. 7. It is seen that the DS scheme is
superior to the other joint estimation algorithm. To be specific,
a detection gain of 1∼2 dB is achieved by the DS scheme from
Fig. 7(a). This is because the joint estimation scheme in [35]
is sub-optimal, where the PU state and dynamic fading gains
are estimated independently via a successive manner. The DS
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Fig. 7. (a) The total probability detection PD of the proposed scheme and the
other existing estimation schemes. (b) The MSE performance of the proposed
scheme and the existing 3-step joint estimation scheme. Here, the static length
of time-varying fading channel is configured to L = 20.

scheme, in contrast, acquires two unknown states as a whole,
which thereby exploits more entirely the underlying dynamics
of the CLSI. Except for the advantage of sensing performance,
the channel MSE of the DS scheme is also superior to the joint
estimation method. As shown by Fig. 7(b), an estimation gain
of 2 dB may be observed in high SNRs (e.g., >0 dB).

We further compare the new DS scheme with another co-
variance absolute value (CAV) based algorithm, which relies
on the statistical covariance of PU signals. As a widely rec-
ommended technique, the CAV scheme essentially utilizes the
temporal/spatial correlation of received signals [13], which
is relatively robust to the time-varying fading. For the CAV
method, we assume the over-sampling technique is used (e.g.,
for narrow-band PU signals). A Gaussian pulse shaper of Ns =
11 samples is used, and the smoothing length is 10. We note
from Fig. 7(a) that a detection gain around 3∼4 dB will be
achieved by the new scheme, when M is set to 100 and the total
detection probability PD > 0.95. Although the two methods
are all premised on the statistical information, the DS scheme

Fig. 8. The probability of detection Pd for a specified probability of false-
alarm Pf = 0.1.

would track fading states dynamically and, therefore, exploits
the underlying channel memory to further enhance the sensing
performance. The CAV method focuses merely on the corre-
lation of PU signals, by ignoring the time-varying property of
fading gains. Notice that, in some special cases, unfortunately
the correlation of either PU signals or noise samples may
tend to be very weak. The performance of the CAV method,
which essentially relies on PU’s signal correlations, will be then
deteriorated seriously [35], [37]. The DS method, fortunately,
is immune to different PU’s signals, which may have more
widespread applications.

D. Practical Considerations

It is noteworthy that, by maximizing a posteriori probability,
our DS scheme belongs essentially to a Bayesian approach. Ac-
cordingly, the total detection probability PD = P(H0) × (1 −
P(H1|H0)) + P(H1) × P(H1|H1), which is dramatically differ-
ent from the single probability of detection Pd � P(H1|H1), is
evaluated. A merit of the compound metric is that, as suggested
by [35], [36], both the utilization of primary bands and the
interference to PUs will be organically considered. In clas-
sical threshold-based techniques (e.g., ED), another Neyman-
Pearson criterion is applied by prescribing a single probability
of false-alarm Pf � P(H1|H0), which, however, may be no
longer suitable to this DS scheme. As demonstrated, with the
MAP approach and an objective of maximizing the compound
probability PD, the false-alarm probability of the DS scheme
will be not fixed [35].

Even so, the performance of the DS scheme could still be
evaluated under the Neyman-Pearson criterion. Note that, in
this case, the estimated fading channels can be hardly exploited
by a simple threshold coinciding with a target Pf . The detection
probability Pd of the new method, accompanying the joint esti-
mation scheme [35], will be comparable to ED (recall that the
observation in the new DSM is actually the summed-energy).
In this experiment, the static fading length is L = 20 and the
sample size is M = 100. It is found from Fig. 8 that, as far as the
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single Pd is concerned, the DS scheme is more attractive than
the CAV method for the target Pf = 0.1. More importantly, as
another extra gift of the sensing procedure, the recovered fading
channels (e.g., with the estimation MSE = 0.014 when SNR =
6 dB and M = 100) are of great significance to subsequent DSS
strategies optimization.

Compared with traditional techniques, the new DS scheme
creates a unified sensing paradigm for future DSS. As a major
advantage of the suggested scheme over other joint estimation
methods, the recursive algorithm would be extended conve-
niently to any other important CLSI, e.g., PU’s unknown mod-
ulation format or its moving positions [38]. By providing both
the accurate sensing report and such additional CLSI, the DS
framework and the resulting deep cognition is more attractive
to the DSS of next-generation communications, by enabling
more flexible accessing strategies and more effective resource
allocations.

V. CONCLUSION

A general DS paradigm is proposed for future DSS appli-
cations, which is intended to meet more adverse propagation
conditions, e.g., time-varying fading channel in emerging mo-
bile scenarios. In order to fully exploiting the established DSM,
two complementary mechanisms are specially integrated into
the DS estimation algorithm that is essentially based on a
Bernoulli RFS. It is found that, by detecting the unknown PU
states and estimating the associated fading gains as a whole, the
underlying dynamic property of the time-correlated channel can
be fully utilized to enhance the sensing performance. Compared
to the main counterpart, i.e., the other joint estimation based
3-step method, both the sensing performance and the channel
estimation MSE are improved by this DS scheme. Numerical
simulations are provided to validate the DS scheme. Despite
the context of TVFF channel, the formulated new DSM and
the DS scheme can be extended to other scenarios, which puts
an insight into spectrum sensing and may provide a new idea
for the next-generation DSS of 5G communications. Future
research directions may include (1) the generalization to the
unknown TPM of time-varying fading channel, and (2) the
theoretical analysis on the lower bound of the sensing or MSE
performance.
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