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Abstract—Cluster identification of ultra-wideband (UWB)
propagations is of great significance to the parameter extraction
and measurement analysis of channel modeling. In this paper, we
address this challenging problem within a promising biological
processing framework. Both the two large-scale characteristics
of each multipath component, i.e., the decaying amplitude and
the time of arrivals, are organically combined and fully explored
in the suggested cluster identification algorithm. Each resolvable
trajectory component is first projected onto a 2-D amplitude–time
plane and further modeled as a virtual ant-agent, which can
move around in this 2-D workspace with a preference to the high
local-environment similarity. By establishing a subtle population
similarity and specifying an efficient position adaptation strategy,
cluster identifications can be realized by the biological ant colony
clustering procedure. Owing to the population-based intelligence
and the involved positive-feedback collaboration during the agents
evolution, the suggested algorithm can efficiently identify the
involved multiple clusters in a completely automatic manner.
Experiments on UWB channels validate the proposed method.
The practical parameter configuration is analyzed, and a group
of numerical performance metrics is derived. As demonstrated
by numerical investigations, multiple clusters involved in UWB
channel impulse responses can be accurately extracted.

Index Terms—Ultra-wideband propagations, cluster identifica-
tion, ant colony clustering, population similarity.

I. INTRODUCTION

PROVIDING a fair criterion for performance evaluations of
various transmission schemes, channel modeling is always

of great importance to the comparative design of physical
(PHY) and media access control (MAC) schemes [1]. Owing
to the enormous bandwidth (> 500 MHz) of ultra-wideband
(UWB) signals and typical short-range application scenarios
[2], UWB channel propagations are known to be highly disper-
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sive into hundreds of resolvable multipath components (MPCs)
[3]–[5]. This is mainly attributed to the excellent temporal
resolution of UWB signals as well as the rich scatters (or re-
flections) involved in operation environments [2], [6], [7]. The
resolvable trajectories, which are reflected from different large
objects (e.g., walls and desks), usually arrive in a discontinuous
manner, i.e., grouped into several distinguishing clusters [5].
This tendency was originally reported by the well-known Saleh-
Valenzuela (S-V) indoor channel model [8].

The popular UWB channel modeling, currently favored by
the IEEE 802.15.3a wireless personal networks (WPANs) and
802.15.4a wireless sensor networks (WSNs) task groups (TGs),
is essentially based on a modified S-V model [9], [10]. In order
to further bring these contributions into full play in promoting
practical designs, nevertheless, there are still two works to be
deepened. First, more experimental measurements of realistic
operation environments are required to enrich the parameters
database and, therefore, to cover more general UWB applica-
tions [4]. It is encouraging to see that, since the birth of first
literature on UWB propagations, many works on UWB chan-
nel measurements have being reported [11]–[13]. Second, in
order to analyze the more detailed structures of UWB channel
impulse responses (CIRs), more efficient parameter extraction
algorithms may still be desired [11]. Unfortunately, some anal-
ysis methods on measured data are relatively elementary and,
sometime, may even produce inaccurate results, which may
greatly hinder us from drawing more profound conclusions on
realistic UWB propagations.

Among these, cluster identification has long remained as
a challenging task in the measurement analysis and UWB
channel modeling, which is yet of immense significance to
propagation characterizations and system designs. First, accu-
rate cluster extraction is the basis for S-V channel modeling
[4], [8], [11], [14]. Second, cluster properties can be properly
exploited by receiving algorithms, for example in channel
estimations [15] and noncoherent detections [16]. Most works
in literatures, however, still identify clusters through a time
consuming “visual inspection” technique. Such methods gener-
ally rely on the subjective assessment from analysts, which on
one hand is considerably vulnerable to inconsistency of various
observers and, on the other hand, will become impractical for
a large amount of measurement data. Reference [17] firstly
studied the automatic cluster identification issue by setting up
a quantitative criterion of cluster, which may unfortunately
produce fake clusters due to serious small-scale fading or
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specula reflections. Next, by assuming that different clusters
with an exponential power delay profile (PDP) may introduce
remarkable amplitude discontinuity, [18] suggested a piecewise
linear-regression (LR) technique to extract multiple clusters
involved in UWB CIRs, and thereby develops a computer-aided
cluster identification method. Nevertheless, this mathematically
trial fitting technique consumes much computation resource
[18], [19] and, simultaneously, requires the aid from analysts
to develop a reasonable result, making it impractical for large
numbers of automatic data processing. More importantly, for
more complicated soft-onset PDPs [11], this scheme may even
become invalid due to the unconscious exponential decay of
measured CIRs.

Recently, relying on the conception of discontinuity detec-
tions, a new cluster identification scheme is developed [20]. A
moving average ratio (MAR) is firstly constructed to reflect am-
plitude discontinuities aroused by the large-scale fading effect.
Such discontinuities are further interpreted as the inter-cluster
break points. Then, by resorting to the multi-resolution analysis
ability, wavelet transform is used to identify these break points.
Finally, multiple clusters are extracted by setting a threshold on
wavelet coefficients of the MRA signal. Although this method
may produce relatively convincing results, there are still some
practical difficulties. Firstly, the thresholding operation suitable
for a vehicle cabin is still too simple and, to some extent, even
heuristic, which may become invalid to other specific scenarios.
Second, the moving average length and wavelet scales should
be configured properly as they have significant impacts on
identification results. However, the parameters setting can only
rely on some empirical researches. Third, the average length is
supposed to be large enough to sufficiently suppress the small-
scale fading while also small enough to resolve two adjacent
clusters. Unfortunately, when the analyzed bandwidth is rela-
tively small or the number of intra-cluster MPCs is few, then
confused cluster extractions may be observed, e.g., two adjacent
clusters may be interpreted as a single one [20], or false clusters
may be generated due to the inefficient suppression of small-
scale fading effects. Thus, this algorithm is applicable to some
limited circumstances only with the extremely large bandwidth
or containing rich intra-cluster MPCs.

Motivated by the considerations above, we develop a new
efficient cluster identification scheme inspired by a promising
biological ant colony clustering (ACC) mechanic. Firstly, we
represent each resolvable MPC as a virtual ant-agent, which is
projected onto a two-dimensional (2-D) amplitude-time plane.
By taking both the decaying amplitudes and time of arrivals
(ToAs) into accounts, a subtle environment similarity between
neighborhood agents (or multipaths) is designed. Thus, these
virtual ants can move around in this 2-D workspace, with a pref-
erence to a relatively higher population similarity. Essentially,
the similarity metric can be considered as the likelihood of
MPCs belonging to one cluster. A high environment similarity,
therefore, evidences the current neighbor agents sharing more
similar properties of decaying amplitudes and ToAs, also sug-
gesting a high probability of intra-cluster MPCs. By exploring
the appealing self-adaptation and the underlying positive feed-
back reinforcement of ACC, the virtual agents with significant
similarities and affiliated probably with one unique cluster will

be put together into one group finally. In sharp contrast to
other classical clustering techniques (such as K-means), even
without a priori clusters number, multiple different clusters can
be identified in a completely automatic fashion. Experiments
on simulated CIRs validate this proposed scheme, and the
extracted clusters keep basically in line with the results of visual
inspections. The practical parameters configuration is analyzed
and a group of performance metrics are derived numerically.
It is demonstrated that the presented algorithm can identify
multiple clusters accurately, which may significantly facilitate
the parameter extractions in practical channel modeling and,
furthermore, deepen our understanding on UWB propagations.
This presented method may also provide insights to other time-
series analysis (e.g., the analysis of network traffic abnormity).

The rest of the paper is structured as follows. In Section II,
the modified S-V channel modeling for UWB, regulated by
IEEE 802.15.4a TGs, is described briefly. Subsequently, a
new efficient cluster identification algorithm inspired by a
biological ant clustering mechanic is developed in Section III.
In Section IV, by using UWB CIRs of different scenarios,
the practical parameters configuration is discussed. Numeri-
cal experiments and performance evaluations of the suggested
cluster identification algorithm are also presented. Finally, we
conclude the whole investigation in Section V.

II. UWB CHANNEL MODEL

A. Channel Modeling

Owing to the fine temporal resolution of transmitted signals
and rich scatters in typical operation environments, the short-
range UWB channel is known to be linearly dispersive with tens
or hundreds of resolved MPCs [3], [4]. Based on the modified
S-V channel modeling, the IEEE 802.15.3a and IEEE 802.15.4a
TGs have defined several channel types for UWB applications
in dense multipath environments [10]. The unified time domain
expression of UWB CIRs can be expressed as

h(t) = χ
L−1

∑
l=0

Kl−1

∑
k=0

αk,lδ(t −Tl − τk,l), (1)

where L is the number of clusters, Kl is the number of rays of
the lth cluster, αk,l is the fading coefficient of the kth path of the
lth cluster, χ is the channel shadowing factor. αk,l and χ are log-
normal random variables [3], [4], [9], [10]. Tl is the ToA of the
lth cluster and τk,l is the delay of the kth path of the lth cluster
relative to Tl . As suggested, Tl has a Poisson distribution, i.e.,

P(Tl |Tl−1) = ϒexp [−ϒ(Tl −Tl−1)] , l > 0,

where ϒ is the cluster arrival rate. τk,l follow a mixture Poisson
distribution, i.e.,

P
(
τk,l |τ(k−1),l

)
= βλ1exp

[
−λ1

(
τk,l − τ(k−1),l

)]
+ (1−β)λ2exp

[
−λ2

(
τk,l − τ(k−1),l

)]
, k > 0, (2)

where β is the mixture probability; λ1 and λ2 account for the
ray arrival rates of two Poisson processes, respectively [5].
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TABLE I
PARAMETERS FOR IEEE 802.15.4A CM1–CM8 MODELS

After the small-scale fading has been suppressed, the PDP
can be well approximated by the product of two negative
exponential functions [3].

E
[
|αk,l |2

]
∝ exp(−Tl/Γ)exp(−τk,l/γ), (3)

where Γ and γ denote the inter-cluster and intra-cluster decay
constants, respectively [4], [10]. Many measurements reveal
that the PDP shape may not be always monotonic, but also
exhibit a soft-onset shape in extreme NLOS situations [4], [10].
In practice, the PDP will increase until a local maximum and
then shows decease. The following PDP is suggested to depict
the observed phenomenon, i.e.,

E
[
|αk,l |2

]
∝ [1−κexp(−τk,l/γrise)]exp(−τk,l/γ1), (4)

where κ denotes the attenuation of the first component, γrise

determines how fast the PDP rises to its local maximum, and γ1

represents the decay rate at later times [10].

B. IEEE 802.15.4a Channel Models

The statistical channel model regulated by IEEE 802.15.4a
TGs has been widely recommended for evaluating different
solutions, which is considered as the most universal model
irrespective of the data rate and modulation formats. Such a
parametric model is derived from a huge number of realistic
measurements [10]. This general model also covers most wire-
less applications. Typical operating scenarios and correspond-
ing cluster arrival rates of CM1–CM8 are listed in Table I.
Such promising applications of UWB are essentially excited by
its unique advantages, including the low power consumption,
excellent ranging and geolocation capability, etc.

It is suggested that, in order to enrich the parameters database
and further reveal some new properties of realistic UWB
propagations [3], [4], intensive experimental works are still
beneficial. For example, another UWB channel measurement
campaign in the frequency-domain has been launched recently
[20]–[22] and, after the post-processing on real data [24], a
new parametric PDP function, which stems from the Fresh-
reflection theory, has been reported [22].

III. ANT INTELLIGENCE INSPIRED

CLUSTER IDENTIFICATION

It has been widely recognized that clusters are groups of
MPCs exhibiting the similar larger-scale properties, such as

ToAs, angle of arrivals (AoAs) and decaying amplitudes [11],
[17], [20], [22]. In other word, the MPCs showing very similar
large-scale fading properties (or reflected from the same large
object) should be grouped into one cluster, while those exhibit-
ing quite different amplitudes or ToAs characteristics should be
put into another cluster. From this point of view, the identifica-
tion process of multiple clusters can be essentially regarded as
a special data clustering problem. Due to complicated wireless
UWB propagations, unfortunately, such a cluster identification
problem may be always beyond the capability of traditional
methods.

As is witnessed, on the other hand, most recent researches
have been shifted gradually to use biologically-inspired algo-
rithms to perform the complex data processing [25]. Inspired
by social insects’ behaviors of the real ant (e.g., foraging, nest
building, garbage cleaning and territory guarding) [26], [27],
ant colony optimization can realize data-clustering by essen-
tially exploiting the population self-similarity, which seems to
be in high conjunction with the cluster identification problem
in hand. It is noted that, nevertheless, classical ACC methods
with unsuitable similarities and random movement strategies
may become unattractive to this specific application. In this
section, a promising ACC with a new environment similarity
and position update rule is specially designed. On this basis,
UWB cluster identifications are properly addressed within a
promising biological data processing framework by resorting
to the ant colony intelligence.

A. Problem Formulation

In classical ACC methods, e.g., the Lumer and Faieta (LF)
algorithm [28], the data object is projected onto a virtual
workspace. Then, a population of ant-agents are employed
which randomly carry (or drop) these data objects with a
preference to the low (or high) local environment similarity.
With such a formulation, unfortunately, a large amount of ants’
aimless (or random) movements may remarkably consume
computation resources, leading to the slow convergence in
practice [29].

In this investigation, we will adopt another more efficient
data clustering formulation. Firstly, each MPC is directly mod-
eled as a virtual ant-agent OOOi, and then projected onto a 2-D
amplitude-time plane (x,y) which is also referred as to a vir-

tual workspace [29], [30]. Correspondingly, OOO(k)
i = [x(k)i ,y(k)i ]

denotes the position of the ith agent during the kth iteration.
Instead of adopting the classical ant pheromone, we introduce

a novel environment similarity Λr

(
OOO(k)

i ,OOO(k)
j

)
to describe the

local-region fitness (or suitability) which will efficiently guide
agents’ movements then. The virtual local environment of the

ith agent OOO(k)
i , denoted by L

(
OOO(k)

i ,r
)

, is specified by its sensing

range r and the neighbor agents OOO(k)
j satisfying

∣∣∣OOO(k)
i −OOO(k)

j

∣∣∣≤r

[29]. Here, r specifies the largest radius distance between
the current agent OOO(k)

i and its neighbors of interest. During

each iteration, the ith agent OOO(k)
i will firstly evaluate its local

environment similarity Λr

(
OOO(k)

i ,OOO(k)
j

)
, and then, decide which
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region should move into. Specifically, if the local similarity is
very weak (i.e., the current neighbors exhibit quite different

properties), then the agent OOO(k)
i will turn to sense the other

feasible region. If the similarity value is significant, indicating
the current neighbor agents possibly sharing the unique large-
scale effects, it will move close to this region and update its

position by OOO(k+1)
i = f

(
OOO(k)

i

)
, where f

(
OOO(k)

i

)
accounts for the

position update function from the kth iteration to the (k+ 1)th
iteration.

Relying on the formulation above, the success of this new ant
intelligence-based automatic cluster extraction algorithm may
hinge greatly on a well-designed population similarity and an
efficient ant movement rule.

B. Population Similarity

To get these intelligent agents ahead on, firstly a proper
environment similarity should be specified for the considered
cluster identification problem [29]–[31]. Such an environmental
fitness is supposed to effectively characterize the similarity
of two considered MPCs, which may be thought of a rough
probability of MPCs belonging to one single cluster. Usually,
a reasonable environment similarity may produce fair data
clustering results. In order to develop a good environment
similarity, two practical considerations should be taken into
accounts.

Firstly, it is apparent that, the closer the two MPCs’ am-
plitudes coming to each other, the higher the probability of
two MPCs coming from one unique cluster. We may denote
the Euclidean distance between the two considered amplitudes

by Δdyi, j =
∣∣∣y(k)i − y(k)j

∣∣∣, for OOO(k)
j ∈ L

(
OOO(k)

i ,r
)

. Accordingly,

Λr

(
OOO(k)

i ,OOO(k)
j

)
is expected to decrease with the increasing

of Δdyi, j. To facilitate the algorithm design, in practice, a
reciprocally decaying metric may be suggested to instinctively

depict this relationship, i.e., Λr

(
OOO(k)

i ,OOO(k)
j

)
∝ 1

Δdyi, j
. Another

more effective alternative, however, may be Λr

(
OOO(k)

i ,OOO(k)
j

)
∝

exp(−Δdyi, j). It is seen that, actually, the term exp(−Δdyi, j)
may give an exponentially distributed likelihood that the ith
agent and the jth agent belong to one single group (or
cluster).

Secondly, the closer the ToAs of two MPCs, the higher
the probability of the two MPCs affiliated with the same
cluster. Denote the Euclidean distance between two corre-

sponding ToAs by Δdxi, j =
∣∣∣x(k)i − x(k)j

∣∣∣ for OOO(k)
j ∈ L

(
OOO(k)

i ,r
)

,

thus Λr

(
OOO(k)

i ,OOO(k)
j

)
is also expected to be decreased as

Fig. 1. The illustration of the formulated cluster identification problem on a
two-dimensional amplitude and time of arrival plane.

Δdxi, j increases. Similarly, we may assign Λr

(
OOO(k)

i ,OOO(k)
j

)
∝

exp(−Δdxi, j).
Combining the above two considerations together, we may

define two environment similarities (corresponding respectively
to the left and right region) as (5) and (6), shown at the bottom

of the page. Here, L
(

OOO(k)
i ,r1

)
=

{
OOO(k)

j

∣∣∣0 < x(k)i − x(k)j ≤ r1

}
denotes the left neighborhood region of the ith agent OOO(k)

i (i =
0,1,2, . . . ,N − 1), where the x-values (on 2-D workspace) of

all elemental agents are equal or smaller than x(k)i by r1, while

L
(

OOO(k)
i ,r2

)
=

{
OOO(k)

j

∣∣∣0 < x(k)j − x(k)i ≤ r2

}
designates the right

neighbors, which have also been illustrated by Fig. 1. In
practice, we may simply have r1 = r2 = r. Notice that, p(k)
and q(k) respectively account for the relative weights on two
considered factors (i.e., ToA and amplitude of MPCs) during
the kth iteration. And usually, we have p(k)+q(k) = 1 for all k.
It is clearly seen that the weighting parameter p(k) (or q(k))
gives a relative preference to two large-scale factors, which
may have some impacts on the performance of cluster identi-
fications. Their practical configurations will be lately discussed
in Section III-D.

From (5) and (6), it is suggested that Λr1

(
OOO(k)

i

)
may roughly

describe the probability that the current ith ant agent (or MPC)

belongs to its left region L
(

OOO(k)
i ,r1

)
, while Λr2

(
OOO(k)

i

)
approx-

imates the likelihood affiliated with the right one L
(

OOO(k)
i ,r2

)
.

Given the defined environment similarity, the main objective of
cluster identification is now to determine a sequence of most
appropriate time-bounds which could divide the x-axis into
multiple non-overlapped regions (i.e., clusters). Correspond-
ingly, agent movements may be simplified to moving towards
the most probable region (i.e., left or right).

Λr1

(
OOO(k)

i

)
Δ
= ∑OOO

(k)
j ∈L

(
OOO
(k)
i ,r1

) 1
p(k)× exp(Δdxi, j)+q(k)× exp(Δdyi, j)

(5)

Λr2

(
OOO(k)

i

)
Δ
= ∑OOO

(k)
j ∈L

(
OOO
(k)
i ,r2

) 1
p(k)× exp(Δdxi, j)+q(k)× exp(Δdyi, j)

(6)
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Based on the above analysis, we may further define the
movement preference as

Λr

(
OOO(k)

i

)
Δ
=

Λr1

(
OOO(k)

i

)

Λr2

(
OOO(k)

i

) . (7)

Accordingly, the current ith agent will migrate to the left

region L
(

OOO(k)
i ,r1

)
when the evaluated preference Λr

(
OOO(k)

i

)
is larger than 1, while it will move into the right region if

Λr

(
OOO(k)

i

)
< 1.

Although we have taken both the amplitude (i.e., Δdyi, j)
and ToAs (i.e., Δdxi, j) into the population similarity, a simple
moving strategy mentioned above, e.g., only towards the left
or the right, seems still to be inefficient. First, the left (or
right) region specified by the region resolution r1 (or r2) may
cover a very broad range. For example, the single left region

of the ith agent may even span from x = 0 to x(k)i . How to
efficiently move round on this broad region and formulate
some clusters as soon as possible, therefore, still remains as
a key challenge. Second, the amplitude information should be
jointly updated, which may further contribute to the population
evolution during the next round. In order to maximize the
functioning of the population-based clustering procedure, in
fact, the positive feedback enhancement of ant intelligence also
calls for an efficient updating of both two components.

C. Position Updating

As far as the rule of ant movements is concerned, most
existing ACC algorithms may be less effective to the clus-
ter identification scenario. Taking the recently developed ant-
movement (AM) algorithm for example [32], each agent could

only select its subsequent positions
(

x(k+1)
i ,y(k+1)

i

)
randomly

from eight nearest neighbors of the current position
(

x(k)i ,y(k)i

)
.

To be specific, the continuous 2-D workspace has been divided
into Nx ×Ny discrete grids, and each candidate position should

meet

√(
x(k+1)

i − x(k)i

)2
+

(
y(k+1)

i − y(k)i

)2
≤ 1 (unit grid dis-

tance). It is found that such a random position updating scheme,
which utilizes only the point-to-point distance information
while ignoring others neighborhood agents, may easily become
blind and less attractive, by resulting in more computation
burden and time consumption. Thus, we will adopt a promising
move strategy, which avoids ants’ aimless movements and,
simultaneously, may enhance the clustering performance.

To be specific, when the similarity measurement Λr

(
OOO(k)

i

)
is larger than 1, the ith agent (or MPC) will migrate to the

center of mass of its left neighbors specified by L
(

OOO(k)
i ,r1

)
={

OOO(k)
j

∣∣∣0 < x(k)i − x(k)j ≤ r1

}
. Otherwise, it may move towards

the center of mass of the right neighbors L
(

OOO(k)
i ,r2

)
if

Λr

(
OOO(k)

i

)
< 1. By fully utilizing the single-to-multiple infor-

mation of many neighbor agents, both the amplitude and ToA

can be jointly updated in an efficient way. If Λr

(
OOO(k)

i

)
> 1,

then the position of the ith agent will be updated by (8), (9).

x(k+1)
i =

1

N(k)
1

∑OOO
(k)
j ∈L

(
OOO
(k)
i ,r1

) x(k)j , (8)

y(k+1)
i =

1

N(k)
1

∑OOO
(k)
j ∈L

(
OOO
(k)
i ,r1

) y(k)j . (9)

where k accounts for the iteration index; N(k)
1 denotes the sub-

population size of neighbor agents over L1

(
OOO(k)

i ,r1

)
. Other-

wise, i.e., Λr

(
OOO(k)

i

)
< 1, its position will be updated by

x(k+1)
i =

1

N(k)
2

∑OOO
(k)
j ∈L

(
OOO
(k)
i ,r2

) x(k)j , (10)

y(k+1)
i =

1

N(k)
2

∑OOO
(k)
j ∈L

(
OOO
(k)
i ,r2

) y(k)j . (11)

With the designed similarity and movement rule, neighbor
agents with sharing properties will gather together gradually,
further making the local similarity be reinforced during the next
round, which is the so-called positive-feedback enhancement of
ant behaviors [26]. Compared with traditional random walks
based position updating (e.g., AM algorithm), the ant move-
ment driven by a center of mass may accelerate the conver-
gence of population evolutions, if further combined with the
new environment similarity. As demonstrated, by exploiting in
parallel the single-to-multiple information of large populations,
the probability of falling into local optimums may be also
reduced [29].

Notice that, in the 1st round, the initial positions of ant-
agents correspond exactly to their ToAs and amplitudes of input

CIRs, i.e.,
(

x(0)i ,y(0)i

)
= (ti,αi). In the projection process, the

maximum MPC amplitudes (i.e., y(k)i ) have been normalized
to 1, and the unity of such normalized amplitudes may be

considered as the Voltage. Similarly, the time delays (i.e., x(k)i )
have also been normalized by the sampling time, and the unity
of such discrete indexes can be regarded as the Second. After
MPCs being projected onto a 2-D workspace, then the unities
of both two components are ignored (or treated as One), and the
Euclid distance between any two virtual objects is concerned.

D. Parameters Configuration

As suggested by most recent experiments carried in closed
aircraft cabins [33], [34], the measure of UWB CIRs often
requires a spatial averaging in order to eliminate the small-
scale fading. It is achieved usually by repeating measurements
within a uniform grid (i.e., spaced at least equal to half of the
wavelength) [4], [35]. In practice, approximately 9 spatial grid
samples will be sufficient to average out realistic small-scale
fading effects [3].

On the other hand, a robust cluster identification scheme is
also supposed to be relatively immune to the small-scale fading,
especially when those spatial or physical mitigation mechanics
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Fig. 2. (a) The derived result after the pre-clustering process with k0 assumed to be 5. (b) Cluster identification result after 50 iterations. Note that, the intra-cluster
MPCs are clustered onto several clusters with the clustering center denoted by red stars.

(e.g., grid measurements) are unavailable. For example, in
certain circumstances the channel characteristic may become
time-variant among grid measurements. In this case, a time-
domain averaging (or moving averaging) process could be used
to suppress unfavorable fading effects and thereby improve the
cluster identification, as have been demonstrated by [18]–[20].

In this work, by properly configuring two relative weights
p(k) and q(k), this problem will be addressed alternatively
by the presented ant-based biological framework. In order to
accomplish the objective of time-averaging, we may initially set
p(k) = 0 and q(k) = 1 for a small k ≤ k0. Thus, with the agents
moving towards the center of mass of neighbor populations, the
local averaging on amplitudes may be implemented and, corre-
spondingly, some specula reflections with strangely high ampli-
tudes may be eliminated. During realistic analysis, the number
of times of this pre-clustering (i.e., k0) may be configured to
5∼10. In fact, the pre-clustering procedure can be viewed as a
special filtering mechanic. In sharp contrast to classical finite
impulse response (FIR) filters with linear weights on MPCs,
such a non-linear mechanic may remove the small-scale fading
effectively, while preserving some subtle large-scale structures,
as illustrated by the experimental result in Fig. 2(a). Due to
the randomly distributed initial agents and complex population
collaborations, it may be infeasible to exactly figure out how
many paths have “moved” to nearby mass centers. It seems
that, after the pre-clustering, many specula reflections will be
smoothed by the agents’ movement driven by the center-of-
mass of neighborhood regions, as shown by Fig. 2(a).

Note that, despite the benefits of removing specula reflec-
tions, as a double-edge sword, such average operations may
also smooth some real cluster points inevitably. In practice, a
compromise should be made between false clusters (generated

by small fading effects) and missing clusters (smoothed by
averaging process). It is observed from the subsequent exper-
iments that, with a relatively small pre-clustering resolution,
fortunately the pre-clustering scheme will eliminate small-
scale fading effects while generally preserving real cluster
start-points.

Then, both the amplitude and ToAs should be considered dur-
ing subsequent clustering process. In [36], ToAs are assumed to
be a hidden Markov modeling (HMM), based on which cluster
identifications of S-V channels are realized. By ignoring the
amplitude discontinuity, unfortunately, the recovered clusters
may overlap with each other. Thus, despite the significant
theoretical contribution, this method can be hardly applied to
channel modeling or the practical design, in which a channel
response is also supposed to be impractically sparse [36]. In
fact, as highlighted by [17] and [20], amplitude discontinuities
usually involve useful information to judge a cluster [37]. In this
scheme, we manage to make full use of the decaying property
of amplitudes, yet still consider ToAs as the indispensable
information for successful cluster identifications. Accordingly,
we may practically set p(k) to a constant p for k > k0.

Thus, the relative weight p(k) can be configured as in
eq. (12).

p(k) =

{
0 1 < k ≤ k0,
p k > k0.

(12)

1) Region Resolution Adaptation: Since the similarity is
evaluated within the neighbor region, the resolution parameters
(r1 and r2) may also have impacts on clustering results. Practi-
cally, a larger resolution should be suggested at the beginning,
in order to explore the whole space and avoid being attracted
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by local optimum. As the clustering process continues, the
resolution should be gradually shrunk to speed up the clustering
convergence and form some clear inter-cluster bounds.

Algorithm 1 Ant Intelligence-Based Cluster Identification

Input: Discrete UWB CIR h(n)
Guiding parameters (p,rp,r0,λ)

Output: A Data Clustering Result: B = {bi|i = 1, · · · , I}
1: Project each MPC into the x− y plane (i.e., 2-D virtual

workspace). Initialize the pre-clustering times k0, the
initial region resolution r0.

2: for k → 1 to k0 do
3: Set the region resolution r = r0, and the relative weight

p(k) = 0, i.e., q(k) = 1.
4: for i → r to n− r do
5: Calculate two environment similarities of the ith

virtual ant, i.e., Λr1(OOO
(k)
i ) and Λr2(OOO

(k)
i ), and further

obtain the movement preference Λr

(
OOO(k)

i

)
according

to eqs. (5)–(7).

6: if Λr

(
OOO(k)

i

)
≥ 1 then

7: Update the ant position OOO(k)
i , by moving it to the

center of mass of its left neighbor according to
eqs. (8) and (9).

8: else
9: Update the ant position OOO(k)

i , by moving it to the
center of mass of its right neighbor according to
eqs. (10) and (11).

10: end if
11: end for
12: end for
13: Reconfigure the relative weight p(k) to p.
14: for k → k0 +1 to K do
15: for i → r to n− r do
16: Calculate two environment similarities of the ith

virtual ant, i.e., Λr1(OOO
(k)
i ) and Λr2(OOO

(k)
i ), and further

obtain the movement preference Λr

(
OOO(k)

i

)
according

to eqs. (5)–(7).

17: if Λr

(
OOO(k)

i

)
≥ 1 then

18: Update the ant position OOO(k)
i , by moving it to the

center of mass of its left neighbor according to
eqs. (8) and (9).

19: else
20: Update the ant position OOO(k)

i , by moving it to the
center of mass of its right neighbor according to
eqs. (10) and (11).

21: end if
22: end for
23: Update the region resolution r = λ× r.
24: end for
25: Extract the clustering bound bi (i = 1, · · · , I), i.e., bi =

min{xk|OOOk ∈ i,k = 0,1, · · · ,Ki −1}.
26: Return the identified clusters breakpoints B = {bi}.

For simplicity, given the initialization resolution r(0) = r(0)1 =

r(0)2 , we may reduce it geometrically by using (13).

r(k) =

{
rp 1 < k ≤ k0,
λ(k−k0)× r(0) k > k0.

(13)

Here, the pre-clustering resolution rp specifies the sensing
range of ant agents in the pre-clustering stage. In order to
derive accurate cluster identification results, in the 2nd stage,
the attenuation constant λ and the initial resolution r(0) should
be configured properly. Later, the parameters will be configured
based on experimental investigations. With such a resolution
adaptation, the ant movement may usually produce promising
identification results as shown by Fig. 2(b).

E. Implementations

Based on the elaborations above, the proposed cluster extrac-
tion scheme has been summarized in the following Algorithm
flowchart.

IV. NUMERICAL SIMULATIONS AND

PERFORMANCE EVALUATIONS

In this section, we will firstly evaluate the proposed cluster
identification scheme with simulated UWB CIRs, which are
generated from the channel model regulated by IEEE 802.15.4a
TG [3], [4], [10]. Then, the new scheme will be further applied
to measured UWB CIRs.

A. Parameter Configurations

We firstly investigate the parameters configuration of this
new ACC scheme. It is worth noting that, due to complicated
collaborative mechanics of the large population, the theoret-
ical analysis on parameters influence becomes practically in-
tractable for most biological processes. Alternatively, we tend
to derive the performance by resorting to the numerical ap-
proach. In the simulation, two performance metrics are mainly
concerned, i.e., the mean error and the complexity. The first
one is defined as the relative error (or derivation) between the
identified starts and real clusters, which is also normalized
by the average cluster interval. The second one accounts for
the implementing computation of the designed ACC scheme,
which may be roughly measured by the total number of accu-
mulated iterations. With the numerically derived two metrics,
the compromise should be made in practice and, accordingly,
the feasible parameter settings can be determined.

In Fig. 3(a), the influences of the relative weight p (and q)
on both the mean error and the search complexity are demon-
strated. Note that, the other weight q = 1− p will vary with
p. UWB CIRs are generated from the CM5 model and, for the
ACC process, the related parameters (λ,rp,r0) are configured
to (0.95, 1.5 ns, 7.5 ns). It is easily seen that the relative weight
p only has some effects on the identification performance,
while is basically independent of the time complexity (or the
accumulated search rounds). Based on the derived statistic
results, it may be conclude that, for the CM5 channel, p could
be practically set to 0.6 which minimizes the mean derivation
of identified clusters.
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Fig. 3. Cluster identification performance under different parameters. (a) The relative weight p; (b) the decay constant λ; (c) the pre-clustering region resolution rp;
(d) the region resolution r(0). Note that, here the resolution parameters rp and r0 account for the times.

We then evaluate how the decay constant λ affects the cluster
identification performance in the second experiment, in which
the relevant parameters (p,rp,r0) are configured to (0.7, 1.5 ns,
7.5 ns). From Fig. 3(b), the decay parameter λ will have a
noticeable effect on the search complexity. In practice, a larger
λ comes also with a slower region shrinking process, which
may therefore slow down the convergence speed. If the fast
region shrink is adopted (i.e., a small λ is used), on the other
hand, the search process will be accelerated excessively, which
may lead to the deteriorated performances (e.g., the finding
of local solutions). It is observed that if λ is larger than 0.95,
then the mean error seems to change little, whereas the search
complexity will be increased dramatically. Thus, the decay
parameter λ may be properly chosen to 0.95.

In Fig. 3(c), the effects from the pre-clustering resolution
rp are illustrated. In this simulation, the parameters (p,λ,r0)
are configured to (0.7, 0.95, 7.5 ns). Apparently the algorithm
complexity will not be influenced by the pre-clustering res-
olution rp. Such a parameter, however, will affect the mean
error of identified clusters. As has been mentioned, with a too
small rp, the fading effect may be suppressed insufficiently
which will deteriorate the performance, while the cluster break-
points will be smoothed and some separable clusters may be

deviated by a too large rp. From the experimental result, rp may
be configured to 1.33–1.67 ns (approximately 4–6 samples) in
order to primarily minimize the mean derivation.

Since the presented iterative scheme terminates when the
neighbor region is small enough, e.g., r(k) < 3 × ts (sample
time), a large initial region r0 may increase the search complex-
ity substantially, as demonstrated by Fig. 3(d). Here, (p,λ,rp)
are configured to (0.7, 0.95, 1.5 ns). By extending the sensing
range of agents, a large initial region may also fail to resolve
some real clusters that are very close. A small r0, on the other
hand, may result in local solutions. Thus, the initial resolution
r0 should be configured carefully in order to obtain the promis-
ing identification performance while maintaining an acceptable
complexity. Based on the numerical results, r0 may be prop-
erly set to 6.67–8 ns (i.e., approximately 20–24 samples) in
practice.

In the above experiments, the proposed cluster identification
scheme is mainly exemplified by simulated CIRs of the CM5
channel, which usually exhibits distinct clusters and, therefore,
allows to clearly visualize the algorithm performance. It is note-
worthy that the parameters configuration, however, is practi-
cally associated with different types of simulated channels with
various time resolutions and cluster properties (e.g., sparser
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TABLE II
PARAMETERS CONFIGURATIONS OF CM1–CM8 SIMULATED CHANNELS

or denser). As a consequence, the parameters configuration
is also supposed to vary from different channel types. Based
on experimental investigations and the similar criterion above,
the feasible ranges of ACC’s parameters under CM1–CM7
channels have been obtained, as summarized in Table II.

With regards to the above analysis, there are some other
remarks worthy of note:

1) In the experimental simulation, only with a full explo-
ration of the 4-dimension (4-D) parameters space can
the optimal parameter configurations be derived. As far
as a 4-D space is considered, unfortunately the involved
implementing complexity of joint parameters evaluation
may be unaffordable. For each possible parameter com-
bination in the 4-D space of each single channel type,
about 100 UWB CIRs may be required to derive numer-
ical identification performances. The average number of
clusters may approach 10 in each CIR, and during every
experiment, some visual assistance may be needed. Even
if each continuous parameter is represented by 20 discrete
grids on its feasible range, such a complexity may easily
become prohibitive.

2) To avoid the unaffordable complexity, rather than evalu-
ating these four parameters jointly, a simplified approach
is adopted. By searching along 4 separate directions,
the experimental investigation may be feasible. It should
be noteworthy that, even with a reduced optimization
space, the considered parameters set has already been pre-
screened or pre-evaluated. In other words, some bad pa-
rameters combinations or regions (e.g., λ<0.8 or p≥0.9)
have been preliminarily excluded. Consequently, the
other fixed 3 parameters may be involved by a near-
optimal (or at least local optimal) region. From numerical
results, it is observed that promising identification perfor-
mances have been obtained. Meanwhile, the performance
variations under each parameter seem to remain within
a relatively small region. Taking the initial resolution rp

for example, given the pre-screened and fixed parameters
set (i.e., p = 0.7, r0 = 5 ns, λ = 0.95), a worst mean
error is about 4.79%, while the near optimal (or sub-
optimal) mean error is about 0.31%. Thus, the simpli-
fied optimization approach, i.e., a rough screening on
parameters set followed by a local exhaustive search, may
generally acquire the promising performances in practice
(e.g., with the very small mean errors). It is expected that,
with a more complicated 4-D full search, the identifica-
tion performances may be further promoted. However,

Fig. 4. Cluster identification results under different similarity. (a) LoS case;
(b) NLoS case.

compared with the inaccessible low bound of 0, the
identification errors achieved by the simplified scheme
(e.g., 0.0031) may be sufficiently applicable to the real-
istic measurement analysis (e.g., parameters extraction)
or channel modeling. Besides, the dependence between
three guiding parameters, i.e., the initial resolution r0,
the relative weight p and the pre-clustering resolution
rp, which are not explicitly connected with each other,
can be identified by this simplified search process. From
Fig. 3(a), (c), and (d), the curves of mean deviations
of three parameters remain much similar to each other,
i.e., first decreased and then increased. Supposed that
the practical objective surface is continuous (or at least
locally continuous), it may indicate that a correlation
region (with similar trends on three parameters) exists in
the high-dimensional surface.

B. Exponential or Reciprocal Metric?

The identification results under two feasible similarity met-
rics, i.e., the exponential metric and reciprocal metric, have
been shown by Fig. 4. It is seen that, when the iterative
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generation of ACC process is sufficiently large (e.g., N = 40),
both the exponentially decaying metric and the reciprocally
decaying metric can identify multiple clusters in an automatic
manner. Actually, the identification results derived from two
biological metrics are almost the same in this case. If the
biological iteration is too small (for example N = 15), it is ob-
served that the exponentially decaying metric may still produce
clustering results as accurate as the large iteration case (e.g.,
N = 40). Due to inadequate clustering, however, the recipro-
cally decaying metric may produce unsatisfactory identification
results. From the two specific realizations in Fig. 4, a shorter
convergence time is required by the exponential metric. It is
shown from extensive experiments that the exponential metric
is of some efficiency in CM5 channels. Similar observations
can be made to CM6 and CM7 channels.

Naturally, the Gaussian metric can be also suggested in

practice, i.e., Λr

(
OOO(k)

i ,OOO(k)
j

)
∝ exp(−Δx2

i, j). We found that,

nevertheless, a faster decaying metric is not always necessary
to have a better performance. In order to obtain a more com-
petitive performance, the optimal metric should also conform
to realistic distributions of MPCs in the 2-D workspace. Thus,
the similarity metric will even become correlated with specific
CIR realizations of different cluster property. How to determine
exact effects of different metrics on different channel types,
therefore, remains still as an interesting topic in future. For
convenience, the exponential metric is suggested in the follow-
ing analysis, which may basically produce promising clustering
results.

C. Cluster Identification Performance

Based on the above analysis, experimental results of various
simulated CIRs have been shown in Fig. 5. It is seen that,
for CM1∼CM7 channels, the presented scheme can identify
multiple clusters in UWB CIRs automatically. From Fig. 5(h),
however no clear bound can be finally formed after the clus-
tering procedure, i.e., the ACC based scheme fails to identify
clusters in CM8 channels. In fact, the resolvable MPCs of this
extreme NLOS scenario, which are measured with an infinite
time resolution (or huge bandwidth) and in dense multipath
environments, may be very close and the MPCs’ amplitude
becomes comparable in neighbor regions. The ant-agent will
move around but fail to gather together and, as a consequence,
no explicit MPCs group will be resolved even by the biological
procedure. In this complex situation, it is more likely (or
reasonable) they will belong to one single cluster and the soft-
onset shape in (4) is shown suitable to depict such single-
cluster PDPs [4], [5]. In such soft-onset cases, it is impossible
to identify clusters simply with time and amplitude information.
An extension of the proposed approach, e.g., by including the
direction of arrival (DoA) and direction of departure (DoD),
may be able to distinguish multiple clusters.

The other two existing methods are also investigated in the
context of CM5, i.e., the wavelet-based method in [20] and the
piece-wise linear regression algorithm in [18]. It is apparent
that, from Fig. 6, the proposed ACC scheme would accurately
recognize cluster start-points. Due to the sensitive parameters
configuration, nevertheless, the wavelet-based discontinuities

detection scheme may sometimes exclude certain noticeable
clusters. For example, the 4th cluster in Fig. 6(b) (located at
83 ns) has been missed. Meanwhile, by ignoring the important
property of ToAs, such a scheme may produce several false
clusters by mistaking some specula reflections for cluster break-
points, e.g., the cluster located at 144 ns in the plotting of
Fig. 6(a). Besides, the wavelet-based technique may shift the
cluster start-points to certain maximum MPCs, due to the inac-
curate averaging-based extraction [20]. The resulting deviated
estimations may become noticeable especially when the first
intra-cluster MPC is not the maximum one. For example, in
Fig. 6(a), the estimated start-point of the 3rd cluster has been
deviated dramatically. Another popular method, i.e., the linear
regression technique, may suffer from sensitivity to the key
parameters (e.g., the MPC interval and the MSE threshold)
[18] and may fail to produce attractive identification perfor-
mances [37]. Since simulated CIRs may not always strictly
follow a negative exponential decay law, the extracted cluster-
starts seem to also have deviations, as shown by Fig. 6. Note
that, in numerical experiments, the involved parameters of two
counterpart methods have been adjusted according to different
channel types [18], [20].

Visual aspects may definitely provide a comprehensible view
of identification performances. Such methods, however, lack of
a quantitative description and, therefore, is not sufficient for
convincing comparisons. In contrast, the statistical approach
may be of significance to deeper understanding and more
thorough performance evaluations. Based on the experiments,
the cumulative distribution functions (CDFs) of the mean errors
have been plotted. As shown by Fig. 7, from a point view of
numerical fitting, a generalized extreme value (GEV) distribu-
tion may quite fit the CDF of the piecewise linear-regression
method, while an exponential distribution seems to be more
suitable to the wavelet method. For the presented ACC scheme,
it is shown that a negative Binormal distribution can closely
match its error CDF. From the statistical CDFs, it is seen the
proposed method is superior to another two existing methods,
as far as the mean deviation is concerned.

From the experimental result shown in Fig. 6, it is recognized
that, unfortunately, the mean error of deviated estimations is
no longer an effective criteria of performance evaluations in
this cluster identification problem, especially when the miss-
ing cluster and the wrong cluster are considered. To remedy
this problem, more profound quantitative measures should be
exploited. As observed from experimental simulations, there
may contain three kinds of errors in identified clusters, i.e., the
missing clusters, the wrong clusters (or erroneously identified
clusters) and the error clusters with start-point deviations. To
make the analysis more precise, a tolerable error ratio, denoted
by ρ, is employed to separate the error (or deviated) clusters and
wrong clusters from the identification results. To be specific, (1)
if the deviation of an estimated cluster start (i.e., T̂l) is smaller
than ρ, i.e., |Tl − T̂l | < ρ× 1

ϒ , then it will be treated as an error
estimation of the lth real cluster; (2) else if the derived cluster
start T̂l satisfies both T̂l − Tl ≥ ρ× 1

ϒ and Tl+1 − T̂l ≥ ρ× 1
ϒ ,

then it will be treated as a wrong cluster; (3) else if there is no
estimation falls into the reference region |Tl − T̂l |< ρ× 1

ϒ , then
the missing estimation occurs; (4) if several estimated cluster
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Fig. 5. Cluster identification results for the simulated UWB CIRs, i.e., CM1–CM8.
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Fig. 6. Cluster identification results under different methods. (a) LoS case;
(b) NLoS case.

Fig. 7. The cumulative distribution functions of the deviation errors. Note
that, the CIRs are simulated from the CM5 channel type in the experiment.

starts simultaneously meet |Tl − T̂l | < ρ × 1
ϒ , then the closet

estimation with respect to the lth real cluster is considered
as one error cluster, while the remaining estimations will be

viewed as wrong clusters. In the experiment, the tolerable error
ratio is configured to ρ = 0.3.

For the purpose of comparative analysis, four key statistic
metrics, i.e., the probability of missing clusters Pm, the prob-
ability of wrong clusters Pw, the probability of error clusters
Pe and the relative error of mean deviations ΔE, are estimated
numerically, which are summarized in Table III. In order to
estimate the above probabilities, three counters are employed
to respectively record the numbers of three types estimations.
Based on experimental simulations, then each probability is
calculated from the occurrence ratio of the corresponding es-
timations. The mean error (or deviation) here, is obtained only
from the error deviated clusters, i.e., by discarding the wrong

cluster estimations. That is, ΔE
Δ
= E{(Tl − T̂l)× ϒ} × 100%

where each T̂l meets |Tl − T̂l |< ρ× 1
ϒ .

From the derived results, it should be noteworthy that, for
specific simulated channels, some performance measures of
two classical methods may be comparable or even preferable
to the new ACC scheme. For example, for the CM7 channels,
the relative mean deviations of the linear-regression method
and the ACC scheme are equal basically. Then, for the CM1
channel, the probabilities of error clusters (i.e., Pe) of both the
linear-regression technique and the wavelet-based method are
superior to ACC. And for the CM2 channel, the wrong clusters
probability Pw of the wavelet-based method is much lower than
ACC. In addition, it is seen that one measure of the proposed
ACC scheme, i.e., the probability of missing clusters Pm, may
always surpass the other two methods in simulated channels.
Based on the derived performance metrics, it may be therefore
concluded that, in general, the ACC scheme would produce
attractive identification results.

Note that, operating blindly on provided UWB CIRs, the
identification performances of existing schemes (including the
new ACC algorithm) are all dependent of different types of
UWB CIRs (even different CIRs of the same type). In practice,
CIRs of a good clustering quality will result in the promising
identification result. CIRs of bad qualities, like simulated CIRs
of CM1–CM4 channels (i.e., with indistinct clusters or polluted
by small-scale fading effects), may lead to inaccurate estima-
tions (e.g., producing more wrong and error clusters). For such
CIRs, actually the cluster phenomenon is insignificant or some
adjacent clusters may become seriously overlapped.

D. Generalizations of Unknown Channels

Even the involved parameters have been investigated in
different channels, the generalization of the new scheme to
unknown channels (i.e., typically without a priori information)
should also be considered, in order to make the designed algo-
rithm more useful. First, as demonstrated by the above analysis,
the parameters configuration should be compatible with specific
CIRs in order to obtain the promising identification results if
the prior knowledge is available, i.e., different channel types
may have different parameters configuration. Second, we have
to recognize a key point in designing more realistic algorithm
that, rather than to seek the best parameter configurations for
all situations, we have to find a general configuration approach
alternatively when the a priori knowledge is unavailable, which
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TABLE III
ESTIMATIONS PERFORMANCE OF DIFFERENT CLUSTER IDENTIFICATION METHODS

may be then applied to most applications and produce suffi-
ciently good (maybe not optimal) performances.

1) It seems that the decay constant λ is basically independent
of various different channels. The fact is that, in practice, a
larger λ may correspond to a slower population evolution,
which, however, would exploits the underlying similarity
property more profoundly and therefore produce more
promising performances. Further taking the computational
complexity, the parameter λ may be set to 0.85∼0.95 for
most UWB CIRs without any a priori information.

2) With the main objective of suppressing small-scale fading
effects, another two parameters, i.e., the pre-clustering
resolution rp and the relative weight p, seem to be as-
sociated with the fading property correspondingly. For a
typical UWB bandwidth of 3∼5 GHz, it is recognized
that the small-scale fading property is mainly related
with operating environments. If no such prior information
(e.g., scenarios) is available, rp may be set to 5–7 discrete
samples, while p can be configured to 0.5∼0.7.

3) By specifying the local resolution of each evolution, r0

is associated with the interval of two adjacent clusters.
In the analysis of realistic CIRs without any a priori
information, r0 can be determined according to the es-
timated minimum cluster interval ΔT̂m. To be specific, in
order to avoid smoothing the amplitude discontinuity of
adjacent clusters, r0 is supposed to remain smaller than
ΔT̂m. In practice, the minimum cluster interval ΔT̂m could
be estimated based on several realistic channels with the
assistance of observers.

Further, the designed ACC scheme is validated with realistic
UWB measurements. The CIRs are obtained from the recent
UWB measurement campaign [20], [22]. In the experiment,
an indoor office room of 4.4 × 2.5 × 3.15 m3 is considered,
typically involving a bookshelf, a desk and a flat panel dis-
play (FPD). The walls are made of the popular acrylic-glass
material. Based on the Agilent N5269 VNA, a typical setup
of the frequency-domain measurement is constructed. Two
omnidirectional antennas working in 2.3∼11 GHz are adopted
[20], with the voltage standing wave ratio (VSWR) less than
2.25 across the measurement band. The azimuth gain variation
(AGV) is about ±1.25 dB. The vector network analyzer (VNA)
sweeps unknown channel frequency response from 2.3 GHz to
11 GHz in 5600 linearly distributed points, i.e., the sweeping
interval is about 1.55 MHz. Then, discrete UWB CIRs of
6∼9 GHz are extracted after some pre-processing operations
(e.g., windowing, IFFT and deconvolution).

Fig. 8. Identification performance of realistic measurements.

The parameters of the ACC scheme are configured according
to the above generalization analysis. In the experiments, λ =
0.87, p = 0.7, and rp = 6 samples. The estimated minimum
cluster interval ΔT̂m is about 40 samples, thus r0 may be set to
38∼40 samples. From the derived results shown in Fig. 8, it
is seen that multiple clusters in measured UWB CIRs can be
automatically identified by the ACC scheme, which is hence
applicable to unknown CIRs.
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V. CONCLUSION

A promising cluster identification algorithm for UWB prop-
agations is developed. A new cluster identification formulation,
relying on a novel conception of biological data clustering,
is established. The resolvable MPCs are viewed as a group
of ant-agents on a 2-D (i.e., amplitude and ToAs) virtual
workspace, in which they are fully movable by sensing the
local environment similarity. By constructing a novel popula-
tion similarity that thoroughly exploits the decaying amplitude
and ToAs characteristics, the cluster extraction, treated as a
special data-clustering problem, is addressed elegantly by the
biological ACC mechanic. Based on experimental simulations,
the parameters configuration is investigated and a group of per-
formance measures are numerically derived. As demonstrated,
attractive identification performances can be obtained in most
scenarios by the designed ACC scheme. Despite the accurate
identification of cluster start-points, further distinguishing the
overlapped intra-cluster MPCs still remains as an open area.
Generally, the new scheme provides a compelling processing
paradigm for cluster identifications in channel modeling, which
allows the more profound understanding on realistic UWB
propagations. Besides, the presented method may be also of
great promise to other time-series analysis.
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