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Abstract—Most of the existing spectrum sensing schemes utilize
only the statistical property of fading channels, which unfortu-
nately fails to cope with the time-varying fading channel that has
disastrous effects on sensing performance. As a consequence, such
sensing schemes may not be applicable to distributed cognitive ra-
dio networks. In this paper, we develop a promising spectrum sens-
ing algorithm for time-variant flat-fading (TVFF) channels. We
first formulate a dynamic state-space model (DSM) to characterize
the evolution behaviors of two hidden states, i.e., the primary user
(PU) state and the fading gain, by utilizing a two-state Markov
process and another finite-state Markov chain, respectively. The
summed energy, which serves as the observation of DSM, is
employed for the ease of implementation. Relying on a Bayesian
statistical inference framework, the sequential importance sam-
pling based particle filtering is then exploited to numerically and
recursively estimate the involved posterior probability, and thus,
the PU state and the fading gain are jointly estimated in time. The
estimations of two states are soft-outputs, which are successively
refined with a designed iterative approach. Simulation results
demonstrate that the new scheme can significantly improve the
sensing performance in TVFF channels, which, in turn, provides
particular promise to realistic applications.

Index Terms—Spectrum sensing, time-variant flat fading,
dynamic state-space model, Beyesian statistical inference, joint
estimation.

I. INTRODUCTION

COGNITIVE RADIO (CR) enables dynamic spectrum ac-
cess (DSA) and opportunistic transmission of the sec-

ondary user (SU) in authorized primary frequency bands [1],
which is of great promise to promote the efficiency of fre-
quency utilization and hence alleviate the scarcity of spectrum
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resources [2]–[4]. Based on a real-time awareness of operation
surroundings and the bandwidth availability, CR can intelli-
gently adapt its functionalities to best accommodate the current
wireless environment and simultaneously best serve its users
[2]. One of the most fundamental issues to be considered in
CRs is spectrum sensing, which aims to identify the unknown
working states (i.e., active or sleep) of primary user (PU) and,
therefore, makes the SUs ready for the opportunistic use of
vacant primary bands [5], [6].

Traditional spectrum sensing techniques include energy de-
tection (ED) [7], matched filter (MF) detection [8] and cy-
clostationary feature detection [10], [11], which in practice
may have different advantages and requirements [5], [6]. ED
excludes any a priori information of PU signals and, therefore,
is robust and simple, which yet has an uncompetitive sensing
performance [9], [12]. In coherent MF detection, pilot signals
are employed to achieve the optimum detection performance
[8], which, however, may impractically require the perfect
timing and the complete waveform (or sequence) information
of PUs. By concentrating on the spectrum correlation function
(SCF) of primary signals, cyclostationary detection may iden-
tify spectrum holes even in extremely low signal to noise ratio
(SNR). However, the exhaustive search for unknown cyclic
frequency makes it computationally intensive [5].

Recently, wavelet analysis [13] and compressive sensing are
introduced to perform multi-band sensing [14]. By properly
exploiting the statistical information of primary signals, a
covariance-matrix based sensing algorithm is developed in [15],
which has been proven to be efficient and robust in realistic
applications [16]. It is noted that, by exploiting statistical cor-
relations of PU signals (e.g., the time or spatial correlations),
this covariance-based method may significantly improve the
sensing performance. As suggested, the probabilistic property
of PU’s states may be utilized either to optimize the sensing
strategy and thereby maximize the throughput of CR networks
[17], or to design the sensing algorithm and further enhance the
sensing performance [18].

From a general system point of view, the spectrum sensing
may involve three stochastic processes, i.e., the contaminated
PU signal x (or noise z), the random channel state α and the
observation (or decision) variable y (e.g., the summed energy).
The observation variable is closely coupled with the other two
random components, relying on which the spectrum sensing is
realized. Practically, the channel state is independent of the PU
state, as far as the purpose of spectrum sensing is concerned.
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Hence, the unknown channel is only a latent variable for CR
devices. It should be noteworthy that, nevertheless, such a latent
variable will significantly increase the uncertainty of the obser-
vation variable y and, therefore, may have remarkable effects
on the sensing performance. For the emerging CR applications
with mobile devices (e.g., LTE-A and 802.11n), the channel
may become time-variant [19], [20], making the spectrum
sensing even tougher. In practice, the time-varying fading is
not always an unfavorable factor. For example, the PU signal
cannot be detected in extremely low SNRs regions. With proper
configurations, however the statistical property introduced by
time-varying fading effects may distinguish PU signals from
the background Gaussian noise [21]. In such cases, the time-
varying fading would become beneficial. In this investigation,
notice that, the slow-varying fading is mainly considered, i.e.,
the dynamic gain remains invariant during a sensing slot, which
may unfortunately degrade the performance.

In order to lower the adverse effects of fading channels,
the more complicated cooperative diversity technique can be
suggested as one feasible approach [22]–[24], which, however,
may increase the complexity dramatically and in turns pose
other challenges in practical deployments of distributed CR
networks. Another common approach is to estimate the PU
state relying on the marginal posterior probability p(x|y) =∫
α p(x, α|y)dα, by averaging out the unknown channel [25].

In the case of more realistic time-varying flat fading (TVFF)
channels [19], [20], [26], [27], these existing methods (i.e., ED)
may become less attractive, even if the statistical property of
fading channels may be exploited. This is because such sensing
techniques are premised basically on a static system model
[4]–[6]. So, in practice, the statistical probability distribution
function (PDF) (e.g., Rayleigh distribution) can only character-
ize instantaneous random behaviors of the fading channel [25],
which unfortunately fails to model or track the time-dependent
evolutions of fading gains. More importantly, the memory
exists widely in time-correlated channels [28], which may be
exploited to enhance the receiving performance furthermore.
Nevertheless, most existing sensing schemes can only focus on
random but memoryless channels.

In this paper, we present a new spectrum sensing framework
to address the tremendous difficulty posed by realistic TVFF
channels. We employ a dynamically stochastic system model
to characterize the spectrum sensing process, which is thereby
formulated as a blind estimation problem. Relying on the
Bayesian statistical inference and the Monte-Carlo simulated
particle filtering (PF) [29], [30], the estimation of both the
time-varying fading gain and PU state are jointly derived for
distributed applications (i.e., non-cooperative case). To sum up,
our main contributions in this work are two-fold.

A. Dynamic State-Space Model of Spectrum Sensing

Taking the dynamic evolutions of both PU states and the
time-varying fading channels into accounts, a discrete dynamic
state-space model (DSM) is established to effectively describe
the realistic sensing process. In other words, two hidden states
are considered in the new sensing model, i.e., the PU’s working
state and the real-time fading gain.

With regard to unknown PU state, we employ a two-state
Markov chain to thoroughly characterize its dynamic behavior.
An alternating renewal process is considered and the prior PDFs
of PU states are further assumed to follow the exponential dis-
tribution. Thus, the time-dependent state transitional probabil-
ity may be evaluated conveniently. Meantime, the continuously
varying fading gain of TVFF channels is treated as another
unobserved state. The finite state Markov chain (FSMC) is
utilized to properly depict dynamic transitions of the correlated
channel gains over times. Besides, in the formulated DSM the
fading channel is also assumed to be data-independent, i.e.,
the PU state and the fading gains will evolve independently
without affecting each other. The summed energy, which is used
for implementation simplicity, is treated as the observation of
two hidden states. The objective of spectrum sensing, therefore,
is to estimate the PU state based on the noisy and nonlinear
observations. It is expected that such a dynamic model could
utilize the underlying channel memory more profoundly and
hence may improve the sensing performance.

B. Joint Estimation Based Spectrum Sensing

Building on the new stochastic DSM and sequential Bayesian
inference, a promising joint estimation algorithm is further
designed to address the spectrum sensing in the presence of
TVFF propagations. In sharp contrast to classical threshold-
based techniques, in the proposed scheme the real-time fading
gain will also be estimated recursively based on new observa-
tions (i.e., the summed energy), rather than only detecting the
PU state by setting the threshold.

The new sensing algorithm mainly consists of three steps,
i.e., coarse detection, fading gain update and PU state esti-
mation. By designing an appealing iterative scheme (i.e., a
turbo-like estimation method) in which the estimations of two
hidden states are refined successively, the PU state and fading
gain are estimated by maximizing the posterior probability. In
order to realize recurrence estimations of the posterior density
which cannot be analytically derived due to the underlying
non-stationary DSM, the Monte-Carlo random sampling based
particle filtering is further suggested. Premised on a promis-
ing sequential importance sampling (SIS) strategy, a group
of discrete particles with evolving weights are employed to
approximate the complicated density numerically. Thus, as the
new observation comes, the non-analytic posterior probability
can be recursively and numerically derived in time. With the
assistance of the estimated fading gain, the sensing performance
in realistic TVFF channels can be improved significantly by
the proposed scheme, compared with other traditional methods
which fail to exploit the underlying dynamics of time-varying
fading channels.

The rest of this paper is structured as follows. A new DSM for
spectrum sensing in realistic TVFF propagations is formulated
in Section II. Subsequently, the sequential Bayesian detection
and PF is briefly introduced in Section III. On this basis, by
designing a turbo-like iterative estimation scheme, a promising
sensing algorithm which jointly estimates the fading gain and
PU state is proposed. In Section IV, the numerical experiments
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and performance analysis of the new sensing algorithm are
provided in realistic TVFF channels. Finally, we conclude the
investigation in Section V.

II. SYSTEM MODEL OF SPECTRUM SENSING

By concentrating only on the time-invariant statistical PDFs,
traditional sensing schemes may become seriously suscepti-
ble to realistic TVFF propagations. Accordingly, the sensing
performance will be degraded significantly in such situations.
In this section, we take the time-varying property of fading
propagations into full consideration and formulate a more com-
prehensive dynamic model to characterize spectrum sensing in
TVFF channels.

Before proceeding further, the sensing strategy adopted in
this investigation should be specified firstly. Since SU can-
not cause harmful interference to PUs when using the idle
spectrum, they should identify the unused spectrum before
establishing CR links. Meanwhile, as PUs may reclaim the
authorized band any time, the SUs are also supposed to period-
ically sense in order to avoid interfering PU. Thus, the periodic
sensing strategy is adopted in the analysis [3], [5]. That is, a
fixed frame duration TF is assumed, where the sensing duration
is TS and the remaining TF − TS is used for data transmission.

A. PU Working State

Most investigations have revealed the working state of spe-
cific wireless networks may be practically modeled as an al-
ternating renewal source. That is, the PDFs of both busy and
idle states can be described by the exponential distribution [18],
[31], [32], i.e.,

fS1
(n) =μ× exp(−μn) (1a)

fS0
(n) =λ× exp(−λn) (1b)

where μ and λ denote two transitional rates of state switches
from busy to idle and from idle to busy, respectively. n is the
discrete time index. With the help of Komogorov Equation,
the probability of the idle state remaining unchanged during

q successive slots, which is denoted by p00(q)
Δ
= Pr(s(n) =

0|s(n− j) = 0, 1 ≤ j ≤ q), is given by:

p00(q) =
μ

μ+ λ
+

λ

μ+ λ
exp [−q(μ+ λ)] . (2)

Accordingly, the probability of the PU state handing over
to busy in the qth detection period, after staying idle for
q − 1 periods, can be expressed as 1− p00(q). Similarly, the

probability of the active state lasting for q slots, i.e., p11(q)
Δ
=

Pr(s(n) = 1|s(n− j) = 1, 1 ≤ j ≤ q), may be written to:

p11(q) =
λ

μ+ λ
+

μ

μ+ λ
exp [−q(μ+ λ)] . (3)

Thus, if we find the primary state staying in idle at the
moment n0 with a probability Pr(sn0

= 1), then the probability

that this PU state always stays in idle within q sensing slots is
given by:

Pr
(
sn0+q = 1|sj∈[n0+1,n0+q−1] = 1

)
= p11(q)× Pr(sn0

= 1). (4)

More widely, for most wireless services, the evolution of
the working states (i.e., active or sleep) over time is usually
correlated and, therefore, may be abstracted by a finite state
machine S = {S0, S1}, i.e., a two-state Markov transition pro-
cedure [31]. To be specific, given that PU is in active state S1 at
the current sensing slot, then it will stay in S1 with a probability
of p11(1) and enter into sleep state S0 with p10(1) in the next
time slot. If it is currently in sleep state S0, then it will stay in
S0 in the next slot with a probability of p00(1) and move to S1

with p01(1). Obviously, we have:

p10(1) = 1− p11(1), p01(1) = 1− p00(1). (5)

B. Time-Varying Fading Gain

A mobile Rayleigh fading channel is considered in the anal-
ysis, which has been widely adopted to characterize the time-
varying fading effects [26], [33]. For a fixed time, the PDF of
fading gain α is given by:

f(α) =
α

σ2
exp

(
− α2

2σ2

)
. (6)

For most emerging applications involving mobile devices
(e.g., LTE-A) or some specific environments with relative
movements (e.g., indoor offices) [20], the fading gain of realis-
tic CR links may become a time-varying random process [33].
In such cases, the dynamic behavior of fading gains α, which
randomly evolves with times, can be usually characterized by
two models, i.e., the autoregressive (AR) model [34] and the
Clarke’s model [35]. Rather, in this analysis we will consider
another more versatile approach, known as the FSMC model,
which is analytically tractable and may practically produce
closed-form solutions. It is shown that the memory may remain
widespread in slow-varying channels and, as has been verified,
the Markovian transitional property of FSMC effectively re-
flects the dynamical nature of TVFF gains [33], [36], [37]. The
FSMC model is also of practice use to receiver designs in the
presence of TVFF channels, with which the underlying memory
may be properly exploited to further promote the detection
performance.

For the FSMC based fading channel, the representative dis-
crete state at time index n′, which is viewed as the output
of a specific Markov chain [33], is denoted by Ak ∈ A, k ∈
{0, 1, . . . ,K − 1}. Correspondingly, the state transition can be
specified by a transitional probability matrix (TPM) ΠK×K =
{Πk1→k2

, k1, k2 ∈ 0, 1, . . . ,K − 1}.

ΠK×K=

⎡
⎢⎢⎢⎣

Π0→0 Π1→2 · · · Π0→(K−1)

Π1→0 Π1→1 · · · Π1→(K−1)

...
...

. . .
...

Π(K−1)→0 Π(K−1)→1 · · · Π(K−1)→(K−1)

⎤
⎥⎥⎥⎦.
(7)
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where each element Πk1→k2
accounts for the transitional prob-

ability from the state k1 at time index (n′ − 1) to the state k2 at
time index n′:

Πk1→k2

Δ
= Pr (αn′ = Ak2

|αn′−1 = Ak1
) . (8)

With the wide-sense-stationary uncorrelated scattering (WS-
SUS), the time-correlation property is usually ergodic and
stationary in practice [27]. Correspondingly, the FSMC model
is also assumed to be stationary, which is shown to be rea-
sonable in many practical scenarios with channel statistics
changing slowly over time [33]. That is, each element Πk1→k2

is independent of time index n′. Furthermore, an indecompos-
able FSMC is considered in the analysis. I.e., if we denote
the stationary probability vector π = [π0, π1, . . . , πK−1]

T with

πk
Δ
= Pr(αn = Ak), then we have ΠTπ = π.

It should be emphasized that the amplitude of fading channel
is of particular significance to spectrum sensing, as far as the
widely adopted ED is concerned. So, we mainly concentrate
on the modeling of time-varying fading gains by resorting to
FSMC, while basically ignoring its phase characteristic. Thus,
the nonnegative channel gain α may be partitioned into K
non-overlapping regions, which is denoted by V. If we further
specify ν0 = 0 and νK = ∞, we may have

V = {[ν0, ν1), [ν1, ν2), . . . , [νK−1, νK)} . (9)

Correspondingly, the steady probability that the fading am-
plitude resides in the kth region can be derived from:

πk =

νk+1∫
νk

α

σ2
exp

(
− α2

2σ2

)
dα, 0 ≤ k ≤ K − 1. (10)

Under an equiprobable partition, i.e., πk = 1/K,
we may easily derive the partitioning bounds by
vk =

√
−2σ2ln(1− k/K). Then, the transitional probability

Πk1→k2
can be determined by

Πk1→k2
=Pr {αn′ ∈ [νk2

, νk2+1)|αn′−1 ∈ [νk1
, νk1+1)}

=
1

πk1

νk2+1∫
νk2

νk1+1∫
νk1

f(αn′−1, αn′)dαn′−1dαn′ . (11)

where f(αn′−1, αn′) is the bivariate Rayleigh joint PDF de-
scribed in [39], [40].

For simplicity, we further adopt the first-order FSMC model,
which usually matches well with the popular statistical fading

Fig. 1. The FSMC state transition model of the TVFF channel gains. Notice
that the first-order FSMC is assumed, with the next transition state selected
from the most adjacent states.

models (e.g., Clarke’s model). Thus, the current fading channel
state is only associated with the previous state while keeping
statistically independent of all other past and future fading
channel states, as is illustrated by Fig. 1. To be more specific,
we have Πk1→k2

= 0 for |k1 − k2| > 1. Therefore, the TPM
ΠK×K can be simplified into eq. (12), shown at the bottom of
the page.

In practice, the level crossing rate (LCR) Nk may be utilized
to evaluate the transitional probabilities numerically [28], [33],
which refers to the number of times per second that the fading
amplitude crosses νk in a downward direction [41]. For the
Rayleigh fading, we may have

Nk
Δ
=

∞∫
0

α̇f(α, α̇)dα̇|α=vk
=

√
2πfD

νk
σ

exp

(
−ν2k
σ2

)
, (13)

where f(α, α̇) is the joint PDF of the signal envelop α and its
time deviation α̇ [41], and fD denotes the maximum Doppler
frequency shift. For the assumed slow-varying fading channels,
the channel state will remain invariant in each frame duration
TF . Correspondingly, the average number of static sensing
slots, under the k1th representative state, can be estimated
by Rk1

= πk1
/TF . Thus, the transitional probability may be

approximated by the ratio of the expected occurrence times of
state-crossing (i.e., Nk2

) and the average number of discrete
states (i.e., Rk1

), i.e., Πk1→k2
� Nk2

/Rk1
. Although this tran-

sitional probability Πk1→k2
is derived numerically from a rough

dimensional analysis, its applicability has been verified [28],
which is also widely used in literatures [36]–[38], [42]. Note
that, the above analysis may be naturally generalized to other
cases, e.g., Rician and Nakagami distributions.

C. Observation

For the ease of implementations, ED has been widely rec-
ommended as a fundamental technique for spectrum sensing.
This work will establish a general model based on ED. Before

ΠK×K =

⎡
⎢⎢⎢⎢⎣
Π0→0 Π1→2 0 0 · · · 0 0 0
Π1→0 Π1→1 Π1→2 0 · · · 0 0 0

...
...

...
...

. . .
...

...
...

0 0 0 0 · · · Π(K−2)→(K−3) Π(K−2)→(K−2) Π(K−2)→(K−1)

0 0 0 0 · · · 0 Π(K−1)→(K−2) Π(K−1)→(K−1)

⎤
⎥⎥⎥⎥⎦ (12)
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proceeding, it is necessary to briefly illustrate the ED method,
which is formulated to the following two hypotheses [5]

yn =

{∑M
m=1 z

2
n,m H0 (14a)∑M

m=1(αnun,m + zn,m)2 H1 (14b)

where M = TS × fs is the length of samples, and fs is the
sampling frequency. H0 and H1 denote the two hypotheses cor-
responding to the absence and presence of PU signals (i.e., S0

and S1), respectively; yn is the summed energy in SUs receiver;
un,m = sn,mbn,�m/Ns	 × p̃(m−Ns/2) is the received base-
band signal of the nth sensing slot, where {bn,m} denote the
PU’s information symbols, p̃(m−Ns/2)(m = 0, 1, . . . , Ns)
is the periodic pulse-shaping response and Ns is its periodic
length. For simplicity, the real-valued BPSK signal is consid-
ered, e.g., bn,m ∈ {+1,−1}. The additive white Gaussian noise
(AWGN) noise is zn,m, with a variance of σ2

z . As noted from
the algorithm derivations, the extension to the complex signal
and noise model (e.g., M-PSK and M-QAM) is straightforward
(see the Appendix for details).

In realization, a band-pass filter is adopted to collect the
frequency components of interest. Given the channel state αn,
the likelihood function p(yn|αn, sn,m) follows conditionally
a central chi-square distribution with M degrees of freedom
(DoF) under H0, and a non-central chi-square distribution with
M degrees under H1, i.e.

p(yn|αn, sn,m = 0) ∼ χ2
M , (15a)

p(yn|αn, sn,m = 1) ∼ χ2
M (κ), (15b)

where κ =
∑M

m=1 |αnun,m|2 denotes the noncentral parame-
ter, which is related with the time-dependent fading gain αn

and the average power of PU signals.
For traditional ED, a decision threshold τ could be properly

determined based on certain criterions. Then, the false alarm
probability Pf is defined as P (yn > τ |H0), while the detection
probability Pd is P (yn > τ |H1).

Pf
Δ
=Pr(H1|H0) =

Γ(M, τ/2)

Γ (M/2)
, (16a)

Pd
Δ
=Pr(H1|H1) = QM (

√
2γ,

√
τ), (16b)

where γ = α2
nσ

2
u/σ

2
z is the instantaneous SNR at the nth

sensing slot, and σ2
u is the variance of PU signals. Γ(a, x) =∫∞

x ta−1 exp(−t)dt is the incomplete gamma function, and
Γ(a) denotes the gamma function. QM/2(a, x) is the gener-
alized Marcum Q-function which is given by QM/2(a, x) =

(1/aM/2−1)
∫∞
x tM/2 exp(−(t2 + a2/2))IM/2−1(at)dt, where

IM/2−1(·) is the modified Bessel function of the first kind

and order M/2− 1. Accordingly, the missed probability Pm
Δ
=

Pr(H0|H1) is given by 1− Pd.
Notice that, in realistic CR networks, Pf and Pd may have

quite different negative effects. False alarms would prevent
the unused spectral segments from being accessed by SUs,
so a high Pf implies a low spectral utilization. The missed
detections measure the interferences from SUs to PU, which

should be limited in realistic scenarios. Thus, the main met-
ric of sensing performance is either to minimize Pm for a
target Pf , or to minimize Pf with a target Pm. Based on
an overall consideration of the spectral utilization of unused
bands and the potential interference to PUs, in this investigation
we focus mainly on the total error detecting probability [23],
[43], which is specified by Ω = PmP (H1) + PfP (H0). Cor-
respondingly, for the threshold-based classical ED which fails
to exploit the time-variation of fading gains unfortunately and
can only utilizing its static PDF, the optimal threshold may be
determined from

τED = argmax
τ

{
1− λ

μ+ λ
− μ

μ+ λ
× Pf (τ)

+
λ

μ+ λ
× Pd,Rayleigh(τ)

}
, (17)

where Pd,Rayleigh(τ) is the detection probability of non-mobile
Rayleigh fading channels [25].

D. DSM of Spectrum Sensing in TVFF

Based on the elaborations above, we may now formulate the
DSM of spectrum sensing in the considered TVFF channels, as
is in (18)–(20).

sn =F (sn−1) (18)

αn =H(αn−1) (19)

yn =G(αn, sn,m, zn,m) (20)

In the formulated DSM, two hidden states, i.e., sn,m and
αn, evolves independently according to the dynamic equations
F (·) and H(·), respectively, which are non-analytical due
to stochastic transitions in eq. (4) and (12). In practice, the
mapping relationships of F (·) and H(·) will be determined
probabilistically by the a priori transitional properties. The ob-
servation is obtained from the nonlinear and noisy measurement
equation G(·) in eq. (20). For convenience, three important
aspects are assumed in the formulated DSM.

1) The TVFF channel gain αn is assumed to be invariant
(or steady) within several successive sensing slots. The
ratio of the lasting duration of αn and the number of
sensing periods TF , which is denoted by L, is practically
associated with the maximum Doppler frequency shift
fD [43]. To be specific, a larger fD ∝ (1/LTF ) leads to
a smaller L.

2) The discrete state of fading gain αn is assumed to evolve
at the exact edge of the sensing slot n′ = �n/L	, so that
we deal with a constant αn within each slot. Despite
for the analysis simplicity, such a presumption may also
become practically valid for the slow varying channel
(i.e., TS � (1/fD)).

3) The PU’s state keeps invariant during each sensing slot,
i.e., sn,m = sn. Thus, the statistical property of PU sig-
nals un,m will not be changed.
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III. JOINT ESTIMATION

As far as the established DSM is concerned, SUs may
become blind as no information could be obtained from PUs,
except for the radio energy in nearby environments. In or-
der to deal with fading effects, classical energy-based sens-
ing schemes have to use the marginalization or collaborative
techniques, which unfortunately ignores the time-variation of
realistic channels. These methods, therefore, may become less
competitive in TVFF channels. In contrast, in the new designed
sensing algorithm, both the fading gain αn and the primary state
sn will be estimated jointly.

From a Bayesian point of view, the joint estimations of the
PU state and the dynamic fading channel can be derived by
maximizing the posterior probability p(α0:n, s0:n|y0:n), i.e.,

(α̂n, ŝn)=arg max
αn∈A,sn∈S

p(αn, sn|yn)|p(αn|αn−1), p(sn|sn−1).

(21)

Here, y0:n
Δ
= {y0, y1, . . . , yn} accounts for the observation tra-

jectory till the nth sensing time slot. Similarly, α0:n and s0:n
denote the trajectories of two hidden states, respectively. With
the derived MAP estimations, as has been indicated, one signif-
icant performance metric of the new threshold-free scheme is
the probability of detections, which is given by PD := 1− Ω =
1− p(H1)− (μ/μ+ λ)× Pf + (λ/μ+ λ)× Pd.

A. Sequential MAP Detection

Given two independent hidden Markov states (αn and sn)
and independent noise samples assumed in this investigation,
we may have

p(α0:n, s0:n|y0:n)

∝ p(α0, s0)×
n∏

i=1

p(yi|αi, si)p [(αi, si)|(αi−1, si−1)]

(a)
= p(α0)p(s0)×

n∏
i=1

p(yi|αi, si)p(αi|αi−1)p(si|si−1), (22)

where (a) holds due to the considered data-independent
FSMC model, and thus we have p(α0, s0) = p(α0)p(s0) and
p[(αi, si)|(αi−1, si−1)] = p(αi|αi−1)p(si|si−1).

According to the alternating renewal process, the transi-
tional probability p(si|si−1) is time-varying and non-stationary,
which is actually related with the lasting intervals (i.e.,
q) of current state. For clarity, we may denote it by
pi,q(si|sj , sj∈[i−q+1,i−1] = 1⊕ si−q), where 1⊕ si−q accounts
for the complementary state of si−q. Furthermore, taking the

slow time-varying fading gain into account (i.e., with a mini-
mum residence time equal to L sensing slots), we may rewritten
the joint a posteriori probability to eq. (23), shown at the
bottom of the page.

Noted from eq. (23) that the evolution of fading gain will
remain asynchronous with that of PU states, which may be
in collusion with the non-stationary property and, therefore,
pose great challenges to joint estimations in the considered new
sensing scenarios. Meanwhile, in CR networks, it is desirable
to evaluate the posterior probability and accomplish spectrum
sensing in time as the new observation arrives.

The recurrence estimation is considered as a promising way
to tackle above difficulties, which sequentially updates the
involved posterior probability by incorporating the new infor-
mation of observations. Following the well-known Chapman–
Kolmogorov equation and the Markov process of order one, we
may further update p(α0:n, s0:n|y0:n) recursively by eq. (24),
also shown at the bottom of the page.

Unfortunately, attributed to the intractable marginalization,
the time-dependent dynamics of the specific problem as well
as the intermittent disappearance of the likelihood density of
fading gains (e.g., in the case of H0), usually the posterior
distribution of interest cannot be determined analytically in
practice. Thus, the above recurrence update could only be con-
sidered as a theoretical (or conceptional) Bayesian statistical
inference.

B. Particle Filtering

As a feasible approach that may avoid intractable computa-
tions and cope with complex distributions effectively, the se-
quential importance sampling inspired PF shows great promise
to the joint estimations-based spectrum sensing in TVFF chan-
nels. Relying on a simulated Monte-Carlo method and the
numerical approximation technique, SIS could obtain the con-
sistent estimation of the posterior probability via a group of
discrete random measures (i.e., particles) x(i) with different
probability masses (or weights) w(i)(i = 1, 2, . . . , I), where I
is the size of particles [29], [44].

With PF, the random particles are firstly simulated from
an unknown distribution related with the target probability
p(x). Then, the continuous distribution p(x) is approximated
numerically by

p(x) =
I∑

i=1

w(i)δ
(
x− x(i)

)
, (25)

where δ(x) is the Dirac delta function. Based on (25), the
expectation of any associated arbitrary features of x, i.e.,

p(α0:n, s0:n|y0:n) ∝ p(α0)p(s0)×
n∏

i=1

p(yi|αi, si)p
(
α�i/L	|α�i/L	−1

)
pi,q

(
si|si−1, sj∈[i−q+1,i−1] = 1⊕ si−q

)
(23)

p(α0:n, s0:n|y0:n) = p(α0:n−1, s0:n−1|y0:n−1)×
p(yn|αn, sn)p(αn|αn−1)p(sn|sn−1)∫ ∫

αn∈A,sn∈S p(yn|αn, sn)p(αn, sn|y0:n−1)dαndsn
(24)
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E(g) =
∫
x0:n

g(x0:n)p(x0:n|y0:n)dx0:n, may be then effec-
tively evaluated via Ê(g) =

∑I
i=1 g(x

(i))w(i) when I → ∞.
To accomplish this, two steps are involved in PF, i.e., (1) draw

the particles x
(i)
n by sampling the importance distribution, and

(2) update the associated weight w(i)
n .

1) Draw Particles: For most realistic applications, it is
infeasible to sample from the target posterior distribution
p(x) directly. To obtain these discrete measures, an impor-
tance distribution function π(xn|x(i)

0:n−1, y0:n) is designed,
from which discrete particles can be drawn conveniently,
i.e., x(i) ∼ π(xn|x(i)

0:n−1, y0:n). Thus, the importance function

π(xn|x(i)
0:n−1, y0:n) is supposed to be related closely with the

target posterior distribution and may have a significant impact
on the estimation performance [29], [44], which should be
carefully designed in accordance with realistic situations.

In practice, two kinds of importance distributions are recom-
mended usually, i.e., the prior and the optimal importance func-
tion. The prior importance function is chosen as p(xn|x(i)

n−1),
which is easy to implement but can hardly exploit the involved
information in observations (i.e., yn). The optimal importance
function, which can minimize the one-step variance of the
importance weights and hence promote the effectiveness of par-
ticles estimation, is given by p(xn|x(i)

0:n−1, y0:n). In the follow-
ing analysis, the optimal importance function will be adopted
and, correspondingly, the new particles x(i)

k (i = 1, 2, . . . , I) are

drawn by simulating random variables from p(xn|x(i)
0:n−1, y0:n).

2) Update Weights: In order to approximate p(xn|y0:n), the
associated weights w(i) are updated by

w(i) = p(xn|y0:n)/π
(
xn|x(i)

0:n−1, y0:n

)
. (26)

Given that the specified importance function may be usually
factored as

π(x0:n|y0:n) = π(xn|x0:n−1, y0:n)π(x0:n−1|y0:n−1), (27)

then the updating of importance weights w(i)
n can be written as

[29], [44]

w(i)
n ∝

p
(
yn|x(i)

n

)
p
(
x
(i)
n |x(i)

n−1

)
π
(
x
(i)
n |x(i)

0:n−1, y0:n

) w
(i)
n−1. (28)

As far as the assumed optimal importance distribution is con-
cerned, the importance weight w(i) may be further propagated
recursively via

w(i)
n ∝ p

(
yn|x(i)

n−1

)
× w

(i)
n−1. (29)

As the approximation of one realistic probability distribution,
the importance weights should further be normalized to 1, i.e.,
w∗(i) = w(i)/

∑M
i=1 w

(i). Notice that, some particle weights
may become negligible as the sequential estimation proceeds,
resulting in inefficient estimations. In order to deal with the
degeneration of particle weights, a resample procedure is also
necessary to eliminate some negligible particles and thereby
improve the estimation performance [29].

C. Joint Estimation Based Spectrum Sensing

In this section, we will design a promising sensing scheme
for TVFF scenarios, which can estimate the fading gain and
unknown PU state jointly. In sharp contrast to joint detections
in classical communication systems, where the information of
channel coefficients is always enclosed in received signals,
unfortunately the fading gain αn will be disappeared com-
pletely from the observation yn when the PU state is “0”. This
particular feature may present a difficult puzzle to the practical
design of joint estimations.

To meet the challenges posed by this specific problem, we
develop a recursive algorithm which could modify the estima-
tions of fading gain and PU state successively. The proposed
algorithm contains three steps, i.e., (1) a coarse detection used
to identify the rough (inaccurate) PU state, (2) the statistical
estimation of fading gain, and (3) PF-based PU state estimation.
To be specific, the Step (1) is firstly applied to obtain a rough
perception of unknown PU state. If there is no PU signal or the
observation involves nothing about the fading channels, then
only the a priori TPM will be utilized to identify the most
probable fading state of the current slot, with the help of the
estimated state of the last slot. Otherwise, the MAP estimation
of αn will be derived. Subsequently, Steps (2) and (3) will be
executed iteratively in order to further refine the estimations of
two hidden states (i.e., α̂n and ŝn). Thus, the iterative scheme
may realize joint estimations even when the fading gain become
disappeared in the case of sn = 0.

1) Coarse Detection: As the information involved by ob-
servations may vary dramatically with different PU states, the
coarse detection procedure is designed to obtain a rough estima-
tion of unknown PU state. On this basis, subsequent estimation
methodologies for fading channel can be then determined. To
accomplish this, we may specify a threshold by

τCD = M ×
[
B2σ2

u × E
(
α2
n

)
+ σ2

z

]
, (30)

where B2 denote the average power of PU signals, which may
be usually normalized to 1 without losing generality. Thus, the
threshold is associated with the samples size M , the expected

fading gain E(α2
n)

Δ
=
∑K−1

k=0 α2
kπk as well as the noise variance

σ2
z . Relying on the rough threshold, the initial estimation on PU

state, denoted by in, is derived by

in =

{
1 τCD ≤ yn, (31a)
0 τCD > yn. (31b)

2) Estimation of Fading Gain: As mentioned, the estima-
tion strategy for fading gains relies heavily on different initial
estimations of PU states based on two practical considerations.
First, the likelihood information is unavailable in the absence of
PU signals (i.e., sn = 0). In such a case, the MAP estimation of
fading gain may become infeasible and, consequently, only the
prior TPM can be utilized to update αn. Second, for the slow
time-varying channel with its dynamic amplitude remaining
invariant in several sensing periods temporarily, the estimated
fading gain can be further refined by fully utilizing historical
observations in the case of sn = 1. Therefore, the designed
sensing algorithm is event-triggered (i.e., initial PU state) and
information-driven (i.e., historical observations).
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(1) If we have in = 0, then there is little innovation infor-
mation can be utilized in the sensing slot n′ in which state
transitions of fading gains may occur, i.e., n′ = �n/L	, expect
for the a priori transitional probability. In such a case, we may
directly obtain the estimation of αn by using

α̂n′ = arg max
αn′∈A

p (αn′ |α̂n′−1) . (32)

In the other remaining slots n = (n′ + l)(1 ≤ l < L), the
fading gain will be assumed to be unchanged, i.e., we have
α̂n′+l = α̂n′ .

(2) If we have in = 1, then in the sensing slot n′ = �n/L	 in
which the transition of fading gain may occur, the observation
(i.e., the summed energy) and the related likelihood could be
fully exploited. Thus, we may obtain the estimation of fading
gain by maximizing the a posteriori probability

α̂n′ = arg max
αn′∈A

p(αn′ |yn′ , in′ = 1, α̂n′−1)

= arg max
αn′∈A

p(yn′ |αn′ , in′ = 1)p(αn′ |α̂n′−L). (33)

The likelihood term in eq. (33) follows a non-central chi-
square distribution with M DoF theoretically, conditional on
the estimated initial PU state in′ = 1. Thus, we may have:

p(yn′ |αn′ , in′ = 1) ∼ χ2
M (κ0), (34)

where κ0 =
∑M

m=1 |α̂n′un′,m|2 denotes the noncentral param-
eter which may be associated with the estimated fading channel
gain.

Then, in the following slots n = (n′ + l)(1 ≤ l < L), we
may make full use of the past observations to further modify
the estimation of fading gains. More specifically, in subsequent
slots, based on the historical information we may redefine an
accumulated observation yn,l by

yn,l =

M∑
m=1

αn′un,m + zn,m)2 +

l−1∑
ln=1

yn′,ln . (35)

It is expected from eq. (35) that, with more information
from observations exploited, the estimation of fading gain
will become more accurate. Notice that, such an accumulated
observation yn,l (1 ≤ l < L) also follows the non-central chi-
square distribution, but with the accumulated degree increased
to Ml, i.e.,

p(yn,l|αn′ , in = 1) ∼ χ2
Ml(κl) (36)

where the noncentral parameter is κl =
∑M(l+1)

m=1 |α̂n′un,m|2.

3) Particle Filtering Based PU State Estimation: Although
an initial estimation of PU state (i.e., in) has be derived during
the first stage (i.e., coarse detection), such a rough estimation
unfortunately ignores the time-varying fading gain and, there-
fore, may usually become inaccurate. Thus, in our iteratively
implemented sensing scheme, after the sequential computation
of fading gain, the PU state will be further modified recursively
based on PF. Notice that, such an estimated PU state, which
is treated as a soft-output, will be employed subsequently by
Step (2) to further revise the fading gain. After the total R times
of successive refinement of fading gain α̂n and PU state ŝn, the
final estimation of PU state will be derived.

Within an SIS processing framework, the a posteriori prob-
ability is numerically updated in time via a group of updated
particles x(i)

0:n and the associative weights w(i)
0:n (i = 0, 1, 2, . . . ,

I − 1). In the nth sensing slot, the innovation information car-
ried by the new observation yn can be incorporated effectively
with the historical knowledge. Thus, the Bayesian statistical
inference can be accomplished properly and, consequently, the
PU state can be estimated by maximizing the approximated
posterior density.

In practice, after updating the fading gain, building on the
new observation yn we may derive the new particles from
the importance distribution, i.e., x(i)

n ∼ π(xn|x(i)
0:n−1, α̂n′ , yn).

In this investigation, the optimal importance distribution is
specified by

π
(
xn|x(i)

0:n−1, α̂n′ , yn

)
Δ
= p

(
xn|x(i)

0:n−1, α̂n′ , yn

)
=p(yn|α̂n′ , xn)pn,q

(
xn|x(i)

n−j , xj∈[n−q+1,n−1]=1⊕xn−q

)
(37)

After sampling from the importance distribution, the as-
sociated weights (i.e., the probability pass of new parti-
cles) should be updated accordingly. For the optimal im-
portance distribution, particle weights should be recursively
updated by

w(i)
n = w

(i)
n−1 × p(yn|x(i)

n−1, α̂n). (38)

The likelihood term in eq. (38), conditioned on the estimated
fading gain and the past derived particles x

(i)
n−1, can be given

by eqs. (39) and (40), shown at the bottom of the page. λ =
Mα̂2

n′/(σ2
u + σ2

z).

p (yn|α̂n, xn−1= 0)∝ p(yn|α̂n, xn = 0)p
(
xn= 0|x(i)

n−1 = 0
)
+ p(yn|α̂n, xn = 1)p

(
xn = 1|x(i)

n−1 = 0
)

=
1

2M/2Γ (M/2)
yM/2−1
n exp

(
−yn
2

)
×p00(q)+

(yn
λ

)M−2
4

exp

(
−yn+λ

2

)
IM

2 −1(
√
λyn)×[1−p00(q)] , (39)

p(yn|α̂n, xn−1= 1)∝ p(yn|xn = 1, α̂n)p
(
xn=1|x(i)

n−1=1
)
+ p(yn|xn = 0, α̂n)p

(
xn = 0|x(i)

n−1 = 1
)

=
(yn
λ

)M−2
4

exp

(
−yn+λ

2

)
IM

2 −1(
√
λyn)×p11(q)+

1

2M/2Γ (M/2)
yM/2−1
n exp

(
−yn
2

)
×[1−p11(q)] (40)



LI et al.: SPECTRUM SENSING FOR CR IN TIME-VARIANT FLAT-FADING CHANNELS 2673

Based on the new derived particles and the associated
weights, we may finally obtain the estimation of PU state by
using the asymptotical MAP criterion in eq. (41), if the particles
size I is sufficiently large.

ŝn = max
sn∈S

p(sn|y0:n, s0:n−1, α̂n′), (41)

where the a posteriori density can be numerically approximated
by using eqs. (42) and (43).

p(sn = 0|y0:n, s0:n−1, α̂n′) � p
(
sn = 0|y0:n, s(i)0:n−1, α̂n′

)
=

∑
i∈X0

w
(i)
n∑I

i=1 w
(i)
n

,X0 =
{
i|x(i)

n = 0
}
, (42)

p(sn = 1|y0:n, s0:n−1, α̂n′) � p
(
sn = 1|y0:n, s(i)0:n−1, α̂n′

)
=

∑
i∈X1

w
(i)
n∑I

i=1 w
(i)
n

,X1 =
{
i|x(i)

n = 1
}
. (43)

D. Implementations

Based on the elaborations above, the implementation flow
of the proposed sensing algorithm, which jointly estimates the
fading gain and PU state based on a formulated DSM, is plotted
in Fig. 2.

Step 1: Based on the current observation yn, the coarse
detection is conducted. Thus, the initial estimation of
PU state (i.e., in) would be obtained from eq. (31),
by comparing yn with τCD.

Step 2: Depending on different in, the fading gain is up-
dated. In specific, in the case of in = 1, the channel
amplitude is estimated by maximizing the a pos-
teriori probability as in eq. (33), and, if possible,
by also integrating the historical information (i.e.,
yn′:n); while for in = 0, only the a priori transitional
probability can be utilized as in eq. (32).

Step 3: Based on the Bayesian sequential detection, the PU
state is derived by using an SIS approach. In this
process, presumed on the estimated fading gain, the
posterior probability of PU state is approximated
numerically via I discrete particles with evolving
weights as in eqs. (41)–(44). Subsequently, the es-
timated PU state will be further employed by Step 2
(i.e., in = ŝn) to iteratively refine α̂n.

From the schematic algorithm flow, it is worth noting that
there may contain two counters in this proposed spectrum
sensing algorithm.

1) The first counter l is mainly concerned with the second
phase, i.e., the MAP estimation of fading gain. Such a
counter is reset to 0 each time the state transition of
fading gain occurs. Then, as the increasing of the sensing
slot index, the counter l is also increased to record the
number of accumulated observations, which is of great
importance to determine the DoF of the accumulated
observation yn,l. More specifically, after the evaluation
of yn,l and the refinement of fading gain, the counter l
should be updated by l = l + 1.

Fig. 2. Algorithm flow of the proposed joint estimation based spectrum
sensing algorithm for TVFF channels.

2) The second counter q is used by the third phase, i.e., the
PF-based PU state estimation. Since the a priori state
transitional probability is practically related the lasting
slots q of the current state, another counter is required
to dynamically determine the state transition probability
in subsequent slots. If ŝn = ŝn−1, this counter will be
updated by q = q + 1; and otherwise, it will be reset to
q = 0.

E. Complexity

The complexity of the presented algorithm mainly involves
the following three parts. For the first stage (i.e., Coarse Detec-
tion), the number of multiplications in calculating yn is O(M).
Then, during the second phase (i.e., Estimation of Fading
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Gain), given the K-state FSMC model, the estimation of fading
gain has to exhaustively evaluate the total K possible tran-
sitional probabilities. Taking the 1st order FSMC model into
account, the number of feasible transitional states will decrease
to K1 = 3. Given the computations of likelihood distributions,
the complexity is thereby measured by O[K1 ×K(nb)], where
nb is the number of digital-bits of precision. In order to evaluate
the involved mathematical functions (e.g., the Gamma func-
tion), in practice we may have K(nb) ∝ (log(nb))

2 [45]. For
the third stage (i.e., PU State Estimation), the numbers of in-
volved multiplications will become proportional to the adopted
particle size I and, therefore, the complexity is measured by
O[I ×K(nb)]. Further considering multiple iterations R, the
complexity of the proposed algorithm, which may be measured
roughly by the total numbers of multiplications, is given by
O[M +R× (K1 + I)×K(nb)]. In contrast, the traditional
ED has a lower complexity of O(M). Another widely used
sensing scheme, known as the covariance absolute value (CAV)
detection, has a complexity of O(KaM +K2

a) [16], where Ka

accounts for the smoothing factor (10 < Ka < 15). When the
sampling size M is large, we have (Ka ×M) > [M +R×
(K1 + I)×K(nb)] > M , i.e., the new method is slightly more
complex than ED while less complex than the CAV scheme.

IV. NUMERICAL SIMULATIONS AND

PERFORMANCE EVALUATIONS

In this section, we will evaluate the presented new algorithm
in realistic TVFF channels. ED is used for comparative analysis
since the summer-energy is adopted by our new DSM and
estimation process.

A. Iteration Number R

We firstly evaluate the performance with different numbers
of iterations (i.e., R). In the simulation, the samples size
M is set 10, the transitional rates (λ, μ) are configured to
((1/10TF ), (1/5TF )), the static duration L is 50 and the repre-
sentative partitioned number of TVFF is K = 5. We note from
Fig. 3 that such an iterative scheme may noticeably improve
the sensing performance. Specifically, an SNR gain of 3 dB can
be archived in high SNRs by using 3 iterations. However, noted
from the complexity analysis, further more iterations (e.g.,
R = 4) proved of little avail, but with a significantly increased
complexity. Thus, R = 3 can be suggested to enhance
performance while also maintaining an affordable complexity.

B. Particle Size I

This second experiment is devoted to evaluating the per-
formance under different particle size (i.e., I). In the simu-
lation, the samples size M is set 10, (λ, μ) are configured
to ((1/10TF ), (1/5TF )), the static duration L is 50 and the
representative partitioned number of TVFF is K = 5. We may
note from Fig. 4 that, with the increasing of the number of
random particles, the sensing performance may be enhanced.
For example, a detection gain of 1.8 dB may be acquired in
high SNRs region, when I is increased from 3 to 20.

Fig. 3. Sensing performance of the presented joint estimation algorithm under
different iteration number R. Notice that, K = 5, M = 10, L = 50, and
(λ, μ) = ((1/10TF ), (1/5TF )).

Fig. 4. Sensing performance of the presented joint estimation algorithm under
different particle size I . Notice that, K = 5, M = 10, L = 50, and (λ, μ) =
((1/10TF ), (1/5TF )).

C. Representative State K

We may now investigate the influence from the partitioning
levels of fading gains (i.e., K). In this experimental simu-
lation, we configure the static slots duration L to 20, the
transitional rates (λ, μ) to ((1/10TF ), (1/5TF )) and the sample
size M to 10.

In practice, K may be configured to 2 ∼ 1000. Notice that,
however, a compromise between the representative accuracy
and the implementation complexity should be made in practical
designs. That is, the larger K is, the more accurate the FSMC
model is, yet the higher the complexity is. As suggested, a
partitioning size of K ≥ 8 may be usually sufficient for most
realistic applications [33]. As far as this specific problem is
concerned, such a parameter may have an insignificant impact
on the sensing performance. As demonstrated by numerical re-
sults in Fig. 5, the performances with K = 5, 8, 10 are basically
comparable. The reason is easy to follow, i.e., with the proposed
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Fig. 5. Sensing performance of the presented joint estimation algorithm under
differentK. Notice that,M=10,L=20, and (λ, μ)=((1/10TF ), (1/5TF )).

DSM-based sensing algorithm, the fading gain could be esti-
mated jointly in time. So, even with quite different partition
numbers (i.e., 5 ∼ 10), the overall estimation errors (especially
for the sensing performance) would be affected insignificantly.
Therefore, in the following experimental demonstrations, K
may be configured to 5.

D. Doppler Frequency Shift fD

As an indicator of the changing rate of fading channels,
the maximum Doppler frequency shift fD (or the static slots
duration of αn, i.e., L) will affect the sensing performance
of the designed algorithm. In order to simulate time-varying
fading channels, in the experiment the partitioned number is
K = 5 and the distribution variance is σ2 = 0.1. By providing
a random initial state, a realization of TVFF channel may be
then generated from a specific TPM which is calculated from
eqs. (10)–(13). The samples size M is set 10, the transitional
rates (λ, μ) are configured to ((1/10TF ), (1/5TF )).

For realistic slow-varying channels, fD may be assumed to
smaller than 100 Hz. Thus, three typical configurations of L
are considered in the experiments, i.e., L = 10, 20, and 50. It is
seen that the proposed algorithm, relying on joint estimations
of time-varying fading gain and PUs state, can dramatically
improve the sensing performance when operating in realistic
TVFF channels. It is observed from Fig. 6 that a smaller L, cor-
responding to a relatively faster change rate of fading channel,
may obtain less gain compared with ED. Taking L = 10 for ex-
ample, the achieved gain with regard to ED is about 6 dB when
the probability of detections PD surpasses 0.95. In comparison,
the SNR benefit of the proposed method may even increase to
10 dB when L is increased to 20. Meanwhile, it is noted that,
since the threshold configuration of ED can hardly exploit the
underlying memory information of time-varying fading chan-
nels, L seems to have little impacts on its sensing performance.

This result is mainly contributed by the designed estimation
reinforcement procedure of fading gains. To be specific, the
updating of fading gain is essentially based on an initial PU
state and subsequent Bayesian estimations by using accumu-
lated observations. If the channel changes too fast, due to the

Fig. 6. Sensing performance of the presented joint estimation algorithm under
different L. Notice that, K=5, M=10, and (λ, μ)=((1/10TF ), (1/5TF )).

Fig. 7. Sensing performance of the presented joint estimation algorithm under
different M . Notice that, K=5, L=20, and (λ, μ)=((1/10TF ), (1/5TF )).

shortened static length L, further refinements on the estimation
of fading gain via the L-segment observations may become
weakened. Accordingly, the errors in the initial estimation of
PU state will become predominant. As a consequence, the
estimation accuracy of the fading gain in the presence of a small
L may be degraded, accompanying the achieved sensing gain.

E. Sampling Size M

As the adopted sensing strategy is based on a periodic-
sensing framework, i.e., the sensing slot is followed by a
transmission stage, the samples size M should be properly con-
figured, in order to obtain a competitive sensing performance
while maintaining the transmission efficiency of SUs. In this
simulation, we configure the steady slots duration L to 20,
the transitional rates (λ, μ) to ((1/10TF ), (1/5TF )) and the
partitioning size K to 5.

Firstly, it is observed from Fig. 7 that the sensing perfor-
mance of the joint estimation-based new algorithm is noticeably
superior to ED in the presence of time-varying fading effects.
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The detection gains of the new scheme may even approach
6 dB in the high SNRs region with a high detections proba-
bility PD (i.e., PD = 0.98). Besides, it is seen that increasing
the samples size M is an effective way to enhance detection
performances of both two methods. With a larger samples
size M , more sufficient information of received signals can
be utilized and, therefore, more accurate estimations may be
derived. For example, if M is increased from 10 to 20, a
detection gain of 2.5 dB will be achieved by the new algorithm
in high SNRs region (i.e., PD > 0.99), and this sensing gain
may be further enlarged to 3.5 dB in the moderate SNRs region
(i.e., PD > 0.9). Nevertheless, it should be noteworthy that the
increasing of samples size implies the decrease of transmission
efficiency, as the sensing-transmission period (i.e., TF ) is fixed.
In practice, the sensing time will also be prolonged with a
large M . Therefore, this parameter configuration should be
compromised in accordance with specific scenarios.

F. Comparative Analysis

In this experiment, the covariance-based sensing scheme is
investigated for the purpose of comparative analysis, which is
proven to be relatively robust to slow-varying fading effects
[16]. In the CAV method, the smoothing factor is chosen to
12, and the threshold is calculated by maximizing the total
probability of detections, like in eq. (17). For the DSS based
new scheme, the static length is L = 20.

In typical scenarios, the received signal is considered to
be correlated. Note that, in practice, either a narrow-band PU
signal (e.g., generated by over-sampling techniques) or the
correlated noise (e.g., produced from band-pass filtering) may
arouse the temporal correlations. In the simulation, the BPSK
scheme is adopted with each symbol modulated by a Gaussian
shaper p(m) of Ns samples. It is seen from experimental sim-
ulations that, with realistic TVFF gains, the proposed method
is superior to the CAV method. When the sampling size M is
300 and Ns = 11, a detection gain of 2 dB can be achieved by
the new scheme, as shown by Fig. 8. The main reason of this
advantage is that, although the two methods are all premised on
the statistical analysis, the CAV method may unfortunately fail
to make the best of the time-varying property, accompanying
the underlying memory of fading channels which may be further
exploited to enhance the detection performance.

In some other specific applications, unfortunately, the cor-
relations of PU signals may become insignificant. In such
situations, the CAV method, which essentially utilizes the sta-
tistical correlation of PU signals [5], [16], may fail to detect
PU signals unfortunately. In comparison, from Fig. 8, the
sensing performance of the DSS-based method will be basically
unaffected. Therefore, the new method may relieve specific
statistical assumptions on received signals and may hence have
more widespread applications.

G. Practical Considerations

In the analysis, a total detection probability is adopted, i.e.,
P (H0)(1− Pf ) + P (H1)Pd. Notice that, the threshold-based
techniques (e.g., ED), which are usually applied to another

Fig. 8. Sensing performance of different methods in the presence of TVFF
channels. Notice that, K = 5, L = 20, and (λ, μ) = ((1/10TF ), (1/5TF )).
For CAV method, the averaging length is set to 12.

Fig. 9. The detection probability and the false-alarm probability of two
summed-energy based sensing schemes. Notice that, K=5, M=10, L=20,
and (λ, μ) = ((1/10TF ), (1/5TF )).

different criterion, i.e., the Neyman–Pearson criterion, seems
to be no longer suitable to the proposed joint estimation-based
sensing scheme. With a new Bayesian MAP approach and the
objective of maximizing the compound probability PD, the
false-alarm probability would also become not fixed.

Taking SNR = 8 dB for example, it may be concluded from
Fig. 7 that the false alarm probability Pf of the proposed
scheme is smaller than (1− 0.99)/P (H0) = 0.02, and smaller
than (1− 0.906)/P (H0) = 0.19 for ED. Furthermore, we may
investigate Pd and Pf separately under the same configuration.
From the numerically derived results in Fig. 9, when SNR is
set to 4 dB, the detection probability of the new method is
Pd = 0.962 and the false alarm probability is Pf = 0.052. In
comparison, the detection probability of ED is Pd = 0.953 and
the false alarm probability is only Pf = 0.218. When SNR =
8 dB, Pd = 0.997, and Pf = 0.004 for the new scheme, while
Pd = 0.993 and Pf = 0.132 for ED. By dramatically reducing
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Fig. 10. The detection probability for a target Pf = 0.1. Here, M = 100,
K = 5, L = 20, and (λ, μ) = ((1/10TF ), (1/5TF )). For CAV method, the
averaging length is set to 11.

false-alarms, the proposed scheme may promote the spectrum
utilization of unused primary bands significantly. Therefore, the
SU’ throughput of the new method is superior to ED. Note that,
however in low-SNR regions (e.g., SNR ≤ 0 dB), the advantage
of the new method seems to be insignificant.

Although the new scheme is premised essentially on a
Bayesian MAP criterion, its performance could also be eval-
uated under another criterion (i.e., the Neyman–Pearson crite-
rion) like some classical algorithms. Since the estimated fading
channel cannot be fully exploited by setting a simple threshold
according to a predefined Pf , the detection probability Pd of
our new method will become comparable to ED in such a
case. This is easy to understand, as the observation in our new
DSM is actually the summed-energy as in eq. (14). Even so,
as another extra gift of sensing process, it should be noted that
the recovered fading channel (e.g., with the estimation MSE =
0.008 when SNR = 10 dB and M = 100) may be of great
significance to subsequent optimizations or strategy selections.
Based on numerical experiments, we may also consider the
CAV method for comparisons, where a predefined Pf is set to
0.1 and the over-sampling factor is Ns = 10. It is seen from
simulation results in Fig. 10 that, given a comparable Pf , the
proposed scheme may surpass the CAV method as far as the
single Pd is considered. To be specific, a detection gain of larger
than 2 dB could be acquired by the new method when Pd > 0.9.

V. CONCLUSION

In this paper, we developed a new spectrum sensing algo-
rithm for realistic TVFF channels within the framework of
Bayesian statistical inference. By fully utilizing the dynamic
behaviors of both PU state and the time-variant fading gains, a
novel DSM is formulated to thoroughly characterize the sensing
problem. On this basis, an iteratively implemented scheme
is designed and the spectrum sensing is efficiently realized
by estimating the time-varying fading gain and unknown PU
state jointly. The sensing performances of this design scheme,
with various different parameter configurations, are thoroughly
investigated. Experimental simulations have validated the new
algorithm. The proposed DSM and joint estimation algorithm
may provide a promising solution for spectrum sensing in more
realistic TVFF channels, which can significantly enhance the
sensing performance even in distributed CR networks where the
cooperative sensing may become infeasible.

APPENDIX

EXTENSION TO COMPLEX SIGNALS

(1) We firstly consider the case of H1. For clarity, the
mth complex signal in the nth slot is denoted by u(n,m) =
uc(n,m) + jus(n,m) and the complex fading gain is α(n) =
αc(n) + jαs(n), the received signal may be written to:

y(n)=

M−1∑
m=0

|[αc(n) + jαs(n)]× [uc(n,m) + jus(n,m)]

+ [zc(n,m) + jzs(n,m)]|2

=

M−1∑
m=0

[αc(n)uc(n,m)− αs(n)us(n,m) + zc(n,m)]2

+

M−1∑
m=0

[αc(n)us(n,m)+αs(n)uc(n,m)+zs(n,m)]2

= ys(n) + yc(n), (44)

where j =
√
−1 is the imaginary number. The component

ys(n) may be further reformatted as eq. (45), shown at the
bottom of the page.

When the sample size M is large (e.g., M > 100), it suffices
to prove that the first term ys,1(n) may tend to be a constant
(if the complex signals of constant modulus are considered,
e.g., QPSK), which is basically independent of different time

ys(n) =

M−1∑
m=0

[
α2
c(n)u

2
c(n,m) + α2

s(n)u
2
s(n,m)− 2αc(n)uc(n,m)αs(n)us(n,m)

]
︸ ︷︷ ︸

ys,1(n)

+

M−1∑
m=0

z2s(n,m)

︸ ︷︷ ︸
ys,2(n)

+ 2×
M−1∑
m=0

[αc(n)uc(n,m)− αs(n)us(n,m)]× zc(n,m)

︸ ︷︷ ︸
ys,3(n)

(45)
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indexes n. The second term, according to the central limit
theorem (CLT), will become a Gaussian random variable,
with the mean and variance specified by E{ys,2(n)} and
V{ys,2(n)|αc(n), αs(n)}, respectively. The third term ys,3(n),
as the summation of M independent random variables, is also
a Gaussian variable, whose mean and variance are denoted
by E{ys,3(n)|αc(n), αs(n)} and V{ys,3(n)|αc(n), αs(n)},
repetitively.

In practice, we may easily note the cross-correlation function
between ys,2(n) and ys,3(n) equals approximately to zero, i.e.,

Rys,3,ys,3
(n′)

Δ
= E{ys,2(n)ys,3(n− n′)} → 0 (for n′ ≥0). It is

therefore considered that the second term and the third term
remain also independent of each other. Thus, ys(n) is also a
Gaussian variable, i.e.,

p (ys(n)|αc(n), αs(n), H1) ∼
N{E{ys(n)|αc(n),αs(n),H1},V{ys(n)|αc(n),αs(n),H1}} ,

(46)

with its mean and variance determined by

E {ys(n)|αc(n), αs(n), H1}
= E {ys,1(n)|αc(n), αs(n), H1}+ E {ys,2(n)}

=
M−1∑
m=0

{
α2
c(n)E{u2

c(n,m) + α2
s(n)E

{
u2
s(n,m)

}
− 2αc(n)αs(n)E [uc(n,m)us(n,m)]}+Mσ2

z

(a)
= MEs

[
α2
c(n) + α2

s(n)
]
+Mσ2

z , (47)

and

V {ys(n)|αc(n), αs(n), H1}
= V {ys,2(n)}+ V {ys,3(n)|αc(n), αs(n), H1}

= E

⎧⎨
⎩
[
M−1∑
m=0

z2s(n,m)− σ2
z

]2⎫⎬
⎭

+ 4E

{{
M−1∑
m=0

[αc(n)uc(n,m)− αs(n)us(n,m)]

× zc(n,m)

}2}

= 4Mσ4
z + 4Mσ2

zE
2
s ×

[
α2
c(n) + α2

s(n)
]
, (48)

respectively, where Es denotes the average power of in-phase
components, i.e.,

Es
Δ
= E

{
u2
c(n,m)

}
= E

{
u2
s(n,m)

}
. (49)

In eq. (47), (a) holds for the two independent components,
i.e., E{uc(n,m)us(n,m)} = 0. Note that, for other signals of
non-constant modulus (e.g., M-QAM), the first term ys,1(n)
may also become a Gaussian variable when M is large, however
the above analysis may be carried out in a similar manner.

Similarly, the term yc(n) is also a Gaussian variable, whose
mean and variance is equivalent to that of ys(n). Given yc
and ys(n) involve a group of same noise variables, then the
likelihood distribution of observation y(n) is also a Gaussian
variable, i.e.,

p (y(n)|αc(n), αs(n), H1) ∼
N{E {y(n)|αc(n), αs(n), H1},V {y(n)|αc(n), αs(n), H1}} ,

(50)

where the mean and variance are specified by eqs. (51) and (52),
respectively.

E{y(n)|αc(n), αs(n),H1}=2×E{ys(n)|αc(n), αs(n),H1} ,
(51)

V{y(n)|αc(n), αs(n),H1}=2×V{ys(n)|αc(n), αs(n),H1} .
(52)

(2) When the PU signal is absent (i.e., H0), then the likeli-
hood function p(y(n)|H0) will also follow a central chi-square
distribution. Note that, with the complex signal, however the
DoF of relative distributions will become 2M accordingly.

Thus, the likelihood densities involved in eqs. (33) and
(37)–(40) may be easily obtained and, from the algorithm
elaborations, the proposed algorithm can be extended to com-
plex signals. Meanwhile, it is noted that the complexity
may be slightly increased due to additional computations of
eqs. (47) and (48).
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