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Abstract—Molecular communications rely on diffusive prop-
agation to transport information, which is attractive for a
variety of nano-scale applications. Due to the long-tail channel
response, spatial-temporal coding of information may lead to
severe inter-symbol interference (ISI). Classical linear signal
processing in wireless communications is usually operating with
high complexity and high signal-to-noise ratios, whereas signal
processing in molecular communication system requires oper-
ating in opposite conditions. In this work, we propose a novel
signal processing paradigm inspired by the biological principle,
which enables low-complexity signal detection in extremely noisy
environments. We first propose a non-linear filter inspired by
stochastic resonance, which is found in a variety of biological
systems, and it can significantly improve the output SNR by
converting noise to useful signals. Then, we design a non-coherent
detection method, one which exploits the generally transient trend
of observed signals (i.e. quick-rising and slow-decaying) rather
than hidden channel state information (CSI), thus excluding
CSI estimation and involving only summations. Implementation
issues are also discussed, including parameters configuration and
adaptive threshold. Numerical results show that the proposed
bio-inspired scheme can improve the performance remarkably
over classical approaches. Even compared with the optimal
linear methods, the required SNR of the proposed scheme can
be reduced by 7dB, which reaffirms why it can be used in
noisy biological environments. As the first attempt to design
bio-inspired molecular signal detectors, the proposed non-linear
processing paradigm may provide the great promise to the
emerging nano-machine applications.

Index Terms—Molecular communications, CSI-independent,
non-linear signal processing, stochastic resonance, transient fea-
ture, non-coherent detector

I. INTRODUCTION

OLECULAR communication is the foundation of cell-
to-cell interaction in multi-cellular organisms [2]-[4].
In recent years, inspired by a variety of biological commu-
nication systems (e.g. pheromone signaling [1]), telecommu-
nication engineers have been developing bio-inspired systems
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to enable robust information transfer in various adverse envi-
ronments [2], [6], [9], [11]. These molecular communication
systems are in direct contrast to man-made (or artificial)
telecommunication system, which relies on complex signal
processing and information modulation on electromagnetic
waves (EMW) [5]. As such, molecular communications con-
stitute a new framework of information transportation, which
is more effective in harsh biological environments where
EMW signaling cannot propagate efficiently through complex
structures or fluid mediums. By replacing EMW carrier with
a set of chemical molecules, the information transmission
can be realised with low energy levels. Furthermore, low-
complexity electronic implementation is possible through the
development of new family of signal processing techniques
[7], [8]. Together these make molecular communications an
enabling technique to future nano-medicine or nano-surgery
applications [9], [10].

The first prototype systems capable of generalised infor-
mation encoding was developed in [6]. Thereafter, initial ap-
proaches to develop robust signal processing techniques have
focused on evolving classical EMW-based signal detection
schemes [13]-[15]. In [13], coherent detection techniques,
such as maximum a posteriori (MAP) detector and maximum
likelihood (ML) scheme, are applied to combat the diffusion
propagation by fully utilising channel state information (CSI)
[15]. Such linear detectors, (i.e. relying on summation and
multiplication), would achieve the promising (or even opti-
mal) performance [14]. As far as emerging applications (i.e.
nano-machine communications) are concerned, however, the
aforementioned methods may become less attractive.

On one hand, acquiring unknown CSI of diffusive channel
is usually resource demanding, in terms of both time and
energy. Various techniques, such as machine learning, have
been suggested, all of which involve a large computational
burden and potentially a large number of training data sets.
On the other hand, in order to mitigate serious inter-symbol
interference (ISI) aroused by a long-tail diffusive channel
response, the computational complexity tends to be unaf-
fordable [16]. Thus, the low-complexity detector becomes a
promising alterative. For example, in [17] the energy detection
is developed. In [18], as one special case of optimal coherent
ML detector, a fixed-threshold based non-coherent detector
is designed, which obtains the promising performance in the
case of negligible ISI (e.g. low data-rate). For many realistic
applications with serious ISI, such a fixed-threshold detector
may become invalid. Last but not least, the above linear
processing techniques usually require high signal-to-noise



IEEE TRANSACTIONS ON SIGNAL PROCESSING

ratios (SNR) to achieve the desired performance. This tends
to be the greatest obstacle when applying existing schemes
to molecular communications which operates in noisy and
disturbing biological environments.

Over the past two decades, there is growing recognition
that the answer to robust noisy signal detection may lie in
naturally biological mechanisms [19], [20], which remain quite
different from the aforementioned artificial signal processing
techniques. For example, the biologically dynamical process
could amplify cell signaling in noisy environments, by cre-
ating a stochastic resonance (SR) effect. This attractive SR
mechanism is characterized by a bi-stable nonlinear dynam-
ical system, whereby the noisy signal serves as an input
force. After altering the potential function of this nonlinear
dynamical system, the output transits between two stable states
synchronous to a weak bias (i.e. input signal), with the aid of
noise. Thus, the output SNR is significantly enhanced.

Inspired by this, we propose a novel CSI-independent non-
linear signal processing scheme for molecular communica-
tions, whereby we leverage non-linear biological principles
and design a simple yet effective detection algorithm. Our
nonlinear detector uses the SR technique to improve detection
SNREs (i.e. involving nonlinear operation, not only addition and
multiplication), and exploits the transient features of filtered
waveform to detect signals. Note that, the resulting non-
coherent detector, which was firstly proposed in [7], [16],
excludes the CSI estimation and the complex equalization,
thereby more attractive to molecular communications. To sum
up, our contributions are summarised as follows.

1. We propose a non-linear signal filter to improve the
detection SNR by constructively exploiting random noise. In
contrast to a linear filter, our emphasis is not just to filter out
noise, but also tune it into useful component of output signals.
When the SR mechanism is established, the output response
becomes a noise-reduced while signal-enhanced version of the
input force, and the output SNR will be improved.

2. We develop a CSl-independent and non-coherent sig-
nal detector. Rather than focusing on CSI acquisition and
channel equalisation, we resort to certain inherently transient
features of filtered waveforms. Three independent metrics
are thereby constructed. Distinguished from previous non-
coherent schemes which only exploits the partial feature (e.g.
local convexity [16]) and is vulnerable to noise, we designed
a robust CSI-independent framework by completely utilizing
the whole transient features of received signal. Except for the
exclusion of CSI, our compound metric even provides diversity
gain, as these sub-metrics reflect the same information whilst
involving independent noise.

3. We discuss the implementation issues of our proposed
non-linear non-coherent signal detector. Different from the
conference version [22], detailed structures of both non-linear
filter and non-coherent detector are studied. For a non-linear
filtering process, the practical parameter configurations of
potential function are investigated, in both cases of known
and unknown noise variance. For a CSI-independent detector,
a blindly adaptive threshold scheme is designed to derive final
decision from the constructed metric, which is shown to be
effective even when CSI remains unknown.
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Fig. 1. (a) A shared schematic structure of both EMW-based communications
and molecular communications. (b) In the stage of information demodulation,
usually the signal filtering (e.g. band-pass filter) and signal detecting (e.g.
envelop detection) will be implemented.

4. We evaluate the detection performance of our proposed
method. Various effects in implementation are studied via
numerical simulations, including algorithm parameters and
transmission configurations. It is shown that the output SNR
after a non-linear filter will be enhanced, by constructively
utilising random noise (rather than treating it as a destructive
component as usual). Furthermore, with the CSI independent
signal detector, the performance can be significantly improved
even when comparing with that of optimal coherent detec-
tor. Our non-linear non-coherent detector constitutes a novel
model-free signal processing paradigm, which is inspired by
long-standing biological concepts that are distinguished from
those known techniques in EMW-based communications. It
will be not only of great promise to molecular communications
in harsh biological environments, but potentially open a new
perspective for EMW-based communications.

The rest of this article is structured as follows. In Section
II, a general system model is established, and existing co-
herent detectors are briefly introduced. In Section III, a non-
linear filtering scheme relying on SR is studied, including its
principles, configurations and implementations. Then, the non-
coherent detection scheme is designed in Section IV. In Section
V, numerical simulations are provided to validate our scheme.
We finally conclude this study in Section VI.

The notations used in this work are summarized as follows.
The n x 1 dimensional vector is denoted by X, «1, and the
M x N matrix is Xprx n; |z] is the absolute value of variable
z, and (z) gives the conditional and ensemble averaging over
noises; Of (x;t)/dx gives the partial derivative of f(z;¢) on x,
while 92 f (z;t)/0x? gives the second-order partial derivative,
and V f(x,y, z;t) is the Laplace operator in cartesian coordi-
nates; ()T denotes the transpose; ® denotes the convolution
operation; diag(-) gives a block matrix having the arguments
along its main diagonal; A denotes one specific set; E(-) is
the ensemble average.

II. SYSTEM MODELS

A. Molecular Communications

A generalized model for the MC system is shown in Fig.
1-(a) [23], [24], which involves three following components.
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1) Information source: An information source may be
either a single cell/organism in a biological system, or a simple
hardware transmitter in man-made system. Rather than EMW
carriers, it emits a certain amount of chemical molecules to
carry the information. The information will be encoded (or
modulated) by amplitude (i.e. concentration) or phase (i.e.
interval), as in biological systems. Taking the amplitude mod-
ulation (AM) for example [4], [25], in each symbol duration
T} a transmitter will release a short impulse molecules with a
duration 7},, which contains a total of () molecules at time &
if the binary symbol ay, € A= {0,1}is1 (k=0,1,---,00).
Otherwise, in the case of «; = 0, there is no molecule
released, i.e.,

s(t) =@ - Zak X rect (tTTp/2 — ka) Y]
k=0

p

Here, a rectangular pulse shaper rect(-) is adopted. In a
biological system, the binary information symbol may lead to
quite different cell responses, e.g. “1” for cell proliferation and
“0” for cell death [3].

2) Propagation channel: In contrast to EMW-based com-
munications, a propagation channel for molecular messengers
is characterized by random diffusion [26]. Taking the 1-D
free diffusion for example, according to the Fick’s second law
[27], the decay of molecular concentration (or channel gain)
is proportional to its flux, i.e.

1 Op(x;t)
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and C is the constant diffusion coefficient, which is specified
by the Einstein relation, i.e. C' = 6:513: . Here, kg = 1.38 x

10~23J/K is the Boltzmann constant [26]; T is the temperature
in Kelvin; «y is the viscosity of the propagation media; R,, is
the radius of molecular particle.

Subjected to the initial condition p(z,y,2;0) =
5(x)0(y)d(z), the analytical solution of above partial
differential equation (PDE), which accounts for the expected
concentration for a given travelling time ¢ > 0 and a
transmitter-receiver distance d, reads [28], [30]:

h(t;d) = x exp[—d?/(4tC)]. 3)

1

(4nCt)3/?

Note that, here the Passive receiver with an expected chan-
nel response h(t;d) is considered, which is used to establish
a common system model for other counterpart methods (e.g.
MAP and MMSE). As we will see later, our developed
non-coherent detector should be independent of any specific
receptor and channel response, owning to its CSI-independent
nature. So, it is readily applicable to other types of receiver
with various CSI, e.g. the absorbing receiver [32], [33], the
passive receiver with enzymes [35], the absorbing receiver
with enzymes [34] and ligand receptor with binding effect
[36]. In this study, rather than the property of different
receivers, we are specially interested in the design of robust
non-coherent detector that could be generalised to various CSI.

3) Information sink: The sink is a receptor of information-
modulated molecular messenger. As in EMW-based wireless
communication systems, the additive noise is considered, and
the received signal is modeled as:

y(t) = s(t) @ w(t) + (1) @

Here, we consider a linear system model [13], and the
notation ® denotes the convolution [31]; w(t) = rect](t —
T,/2)/T, — kT,] ® h(t) (for clarity, the other variable d is
omitted here) gives the equivalent channel between the binary
information source {cy} and a nano-receiver, as in Fig. 1-(a).
z(t) denotes the additive noise term.

B. Equivalent Signal Model

At receiver, a detector firstly samples the molecular con-
centration with the Nyquist rate R = 1/T, = 1/T}, [31], i.e.
T = Ty. After doing so, the discrete signal is written as

Yk = leo X We—1 + 2k, )

where Y = y(k:Tb), Wp = w(ka—lTb) and Zk = Z(k‘Tb>. For
a causal system, we have wi_; = 0 if £ — [ < 0. Without the
loss of generality, the synchronization has been accomplished
accurately [29], and we further have:

I

Yk = Qpwi + E QWE—1-1 + 2k-
I=k—1

(6)

Owing to the long-tail diffusion channel response, serious
ISI is inevitable. As in Eq. (6), I is referred to as the memory
length, which specifies the ISI length from previous intervals.
When the passive receiver is used, / may tend to be an
unbounded value. For the other cases, a finite value may be
assumed. In the following analysis, a truncated memory length
is considered.

1) Signal-dependent noise: As one important feature in the
MC system, the additive noise would become dependent of
the received signal, owing to the imperfect sampling/counting
process at the receptor [13], [21], [33], [37] (or more simply,
the random Brownian movement of molecular messengers
[38]). That means, the noise variance is no longer a constant
as in EMW-based wireless communication systems, but keeps
proportional to the expected concentration at the current time
index k. Accordingly, we adopt the following signal-dependent
noise model, i.e.,

yr = Poisson (s1,) + A (0,1s%), sp = Zz:o oqWg—y, (7)

where sj is the expected time-dependent concentration; 1 is
the scaled parameter related with the diffusion coefficient C
and the the radius of the receptor space [21].

Note that, the binomial distribution is originally used in
modeling the received noise. l.e., Ny interfering molecular
particles may arrive at the receptor independently with an
equal probability pr. For the ease of analysis, this statisti-
cal distribution can be approximated by a Poisson distribu-
tion [21], [38] (e.g. N is large and pp is small) or a Gaussian
distribution [13], [22] (e.g. Ngrpr is relatively large).
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(a) The power spectrum of received noisy signals y(t), as well as the output signal x(¢) after the non-linear filtering. Note that, the power spectrum

has been normalized by the maximum value. The SNR is configured to 5dB. (b) Top: Time waveform of the received noisy signal and noiseless signals.
Bottom: The output of both linear and non-linear filter considered by this work. Here, a window-based finite impulse response (FIR) filter is studied. A Kaise
window is used and the ripple of passing band 0.01. Three FIR filter orders are considered, i.e. N = 10, N = 60 and N = 70.

2) Signal-independent noise: Despite the theoretic signif-
icance of signal-related noise in MC systems, it may arouse
additional difficulties. Except for the complex CSI estimation,
the well-designed adaption mechanism should be integrated to
deal with this non-stationary noise. More importantly, it would
be infeasible to exactly know the time-varying noise variance
(as the received signal itself is uncertain before detection).

In contrast, our non-coherent detector requires the little in-
formation on CSI and noise, by focusing on the slow-changing
transient shape of received signal (corrupted by the additive
noise). So, it could be applicable to both signal-dependent
and signal-independent noises. In fact, the signal-independent
noise would permit the designing of more robust non-coherent
signal detector. With the simplified signal-independent noise
(with a variance o2), the received signal is reformulated as:

yi, = Poisson (s3,) +.4(0,0?).

C. Linearly Coherent Detection

1) MAP detector: For convenience, a vector expression
of received signal is formatted as y = Wa + z, where
Y = [yo,y1, - ,yx]’; W denotes a circulant channel matrix
constructed from w, while z is the noise vector. In general,
the MAP detector aims to maximize the posterior probabil-
ity density function (PDF) of unknown information symbols
conditioned on received samples, i.e.,

a = P(aly,W),
MAP = arg aneli)fi (aly, W)
K K
p— . . . . J— . . 8
arg max I plerlaok—1) - [ pwrlyor—1, c0x). ®)
k=0 k=0
Given the i.i.d Gaussian noise, the likelihood densities
P(Yk|Yo:k—1, @o:;) Will follow the normal distribution [13]. Tt
is noteworthy that, in the above coherent MAP, the accurate
estimation of CSI [12] will be indispensable in evaluating the

likelihood function or mitigating the ISI [15]. As seen, the
complexity of such an MAP scheme comes from the sequential

computation of likelihoods [16]. When a binary information
source with the equal prior probability is considered, the MAP
scheme tends to be an ML detector.

2) MMSE detector: Another popular linear detector is
inspired by the MMSE criterion [31], which aims to minimize
the covariance matrix of detection errors, i.e.,

AMMSE = arg mix E [(a —a)(a-— d)T} . 9)
acAK

Based on the linearly Gaussian model as in eq. (4), the
MMSE estimation is derived via:

anvvse = E(alr),

=E(a) + W' (WL.W' +T.) ' (y — Wa), (10
where [E(-) represents the ensemble average; I', =
diag{[o?, -+ ,02]} is the K x K diagonal matrix with its

elements are all 03. In the above MMSE scheme, the accurate
CSI will be also indispensable.

D. Nonlinear DFE Detector

Different from a linear MAP detector, a decision-feedback
equalizer (DFE) belongs to the sub-optimal and nonlinear
detector, which is composed of a feed-forward filter and a
feedback filter [13], [18]. Denote the coefficient vectors of
feed-forward and feedback components with f, € RZ*! and
g, € RE*! (L and B respectively denote the tap length of
feed-forward and feedback filters), then the detected symbol
of time k is:

L—-1 B
Qg = E fezk—q + E 9qOk—q—1-
q=0 q=1

Unlike both MAP and MMSE detectors, the DFE method
estimates the optimal coefficients vector f, and g, without
explicitly knowing the channel response w(t). To do so, it
exploits a group of training symbols ) (which consumes
additional time and energy resource) to update the filter

(1)
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coefficients [40], e.g. via the normalized least-mean-square
(Norm-LMS) algorithm,

£ (k) = £,(k — 1) + po/[[m (K)]]3 - e(k)my (k)
g, (k) = gy (k — 1) + p/|lmy (k)][3 - e(k)my (k),

12)
(13)

where m¢(k) and mg(k) denote the received signal vector
and the decision bits vector in a feedback filter, respectively;
e(k) = o}, —my(k) is the error and p € (0, 1) is the step size.

III. NONLINEAR FILTERING

A. Non-linear vs Linear Filtering

In order to suppress background noise, a filtering process
will be necessary. When the useful frequencies are known
as a priori, the well-studied linear filter, e.g. finite impulse
response (FIR) filter, can be applicable, which filters out the
high-frequency noise and passes only the low-frequency useful
signal. As noted, there is a compromise in the designing of
linear filter, whereby the temporal sharp transitions will be
smoothed at the same time of suppressing high-frequency
noise, as shown in Fig 2. (b), which may degrade detection
performance to some extent. More importantly, such linear
schemes may incur the high complexity to implementation
(e.g. requiring dozens of delayed taps and multipliers).

Inspired by the biological and physical concepts, a non-
linear filter scheme, in contrast, may be premised on specific
stochastic PDE (SPDE), which has the great potential of
suppressing useless noise whilst enhancing useful signal. We
focus on such a nonlinear dynamical mechanism and the
filtered signal was demonstrated in Fig 2. (b), where the subtle
features of molecular signaling are preserved at the same time
of mitigating useless noise. From this perspective, a non-linear
filter will be of great promise to molecular communications,
whereby the biological noise (aroused by random disturbances
and variations of bio-activities) is extremely strong, whilst
signal distortions may lead to disastrous consequences.

In the following, we will exploit the non-linear SR to
process the received noisy signal. First, we simply show the
underlying physical principles. Then, we discuss the related
implementation issues of our non-linear filter.

B. Stochastic Resonance

The SR concept was originally proposed when studying
the periodically recurrent ice ages [41], [42]. It provides an
intriguing statistical explanation on the average periodicity
around 10° year, which is a direct result modulated by a weak
force, i.e., the period of earth’s orbital eccentricity. Despite
weak effects of the external force, the output response would
be amplified by internal noise. With the periodical bias from
external force and the aid of noise, the outcome states would
hop coherently among two-stable states (i.e. cold and warm)
[43], [44]. Inspired by this, a new scheme to deal with noise
was established. Surprisingly, an extra dose of noise could help
rather than hinder the performance improvement.

1) Basic Principle: Consider the bi-stable dynamical sys-
tem characterized by a double-well potential function V (z):

V(z) = —a/2- 2% +b/4-2*, (14)

which has two minima located at x,,, = j:m, correspond-
ing to two stable states, see Fig. 3-(a). The potential barrier,
with a height of AV = a2 /4b, is located in the middle of two
stable states, and an unstable local maximum at x;=0.

Just imagine if one heavily-damped particle (e.g. with a
mass m and the viscous friction ) is put in this double-well
potential V' (x), it would randomly jump across the potential
barrier and transit to another stable state, subject to internal
noise forcing. The transitional rate, as a reciprocal of mean
first passage time (MFPT), is given by the Kramers rate [44]:

ro = 0T o ex _AV
07 Tony P D )’

where D denotes the variance of internal noise. Two squared
angular frequencies wq and wy, evaluated respectively at the
minima x,, and the barrier z;, are given by:

wy = ‘d2V(x)/dx2|x=$m’ = 2a,

5)

- ’d2V(m) jds?|,

(16)

= a.

If further superimposing a weak periodic force, e.g. Ay X
cos(2t 4+ ¢), onto the above stochastic dynamical system,
then the motion of the Brownian particle will be governed
by the Langevin equation. For a large friction coefficient ~,
the underlying dynamical system reads:

de(t) 1 dV(x)

where €2 and ¢ denote the frequency and phase of external
periodic force; £(¢) accounts for internal random fluctuation,
which is modeled by white Gaussian noise!, with an auto-
correlation function (£(¢ + 7)£(¢)) = 0(7), where d(-) is the
Dirichlet-function.

It is seen that the output z(t) is closely related with
a double-well potential V(z). A simple illustration of the
dynamical system behavior is given by Fig. 3. The periodical
external force alters the potential barrier AVL, rendering the
state transition from one side to the other much easier. With
the suitable dose of noise, the system outcomes may transit
coherently among two stable states. Once the synchronized
rhythm between the noise-induced transition and the periodic
input is accomplished, the outcome is significantly enhanced,
by transforming part of noise to the output signal. To establish
this SR, the average waiting time To(D) = 1/r¢ between two
noise-induced transitions should be equivalent to a half of the
input periodicity T = 27/€Q, i.e.,

™

1

To(D) = =T = =. 18

o(D) ola =74 (18)

IFor the simplicity of analysis, the signal-independent Gaussian noise with
a constant variance is widely used [44], [45]. It is noted that, however,
any additive noise can be utilized to enhance the system output, regardless
of the noise distribution or the time-dependence of noise variance. For the
non-stationary noise, yet the optimal operation of the nonlinear SR would
require the adaption of parameters, according to the time-dependent noise
characteristics.
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Fig. 3.

(a) The double-well potential of the non-linear dynamical system, i.e.

, V() = —a/2 x 22 + b/4 x x*. Without the bias of external forcing, the

outcome state will cross the potential barrier to switch among two stable states x,, = ++/a/b. (b) In the case of a right-biased forcing, the left states will
be more stable, and transition from right to left will occur more frequently, while the reverse transition will be hindered. (c) Similarly, in the presence of a

left-biased forcing, the transition from right to left will be hindered.

20 T T

18L N SNR

12} 4

10} % R

Output

Fig. 4. The non-monotonic relationship between the output SNR/SAF and
the noise variance in a non-linear SR system.

2) Main Results: A detailed statistical analysis on non-
linear SR can be found in survey literatures [44], [45]. Here,
we focus only on the main results relevant to our non-linear
filter scheme for molecular signaling.

Output response: When the above eq. (18) satisfies, the
expected output of the nonlinear dynamical system, given the
initial conditions g = x(t)|t=¢, and ¢ = 0, is:

tog@m<x(t)|xo,to> = (D) x cos[Qt — ¢(D)]. (19)

Here, () gives the conditional and ensemble averaging of
x(t) over noises [45]. From eq. (19), we note that the output
response is also a periodic signal, sharing the same frequency
with the weak input forcing, i.e. {2. However, the amplitude
and phase are mediated by the noise variance D as well as
the underlying potential function (a and d), i.e.,

_ 2rg
Z(Ag, D :Axanxi, 20
( 0 ) 0 / \/W ( )
@(D) = arctan(£2/2rp). 21

Output SNR: The SNR of output signal is given by [44]:
A e (%)
vap: " “P\D )

After passing through the non-linear dynamical system, a
weak periodic (or quasi-periodic) input would be reinforced

SNR =

(22)

Piese - 4 Fope
1= ] 00| o 0000*[ dv,
INa=C7Na°C*(VNa7E)XP3~ Piose
o . dt
] i
£ | “‘t"“ a, (1= Pyer ) b Poper
3 d
£ o Vi dP ;
3 ; ‘éltm =2, (1 Pyose ) D, Pocee
® Py @ sodium ion Lipid bilayer lon channel
Fig. 5. Biological SR mechanisms in the voltage-gated ion channels in

cell membrane. Here, the famous Hodgkin-Huxley (HH) model of the Na
channel is considered. The voltage potential is determined by the famous
Nernst equation, i.e., Vg = 62 - 10g(Cout/Cin), Where Coue and Cy, denote
the concentration of Na ions in outside and inside of cell membrane. The ion
channels, which is highly selective for Na, will be opened with the probability
Popen (e.g. the right ion channel) and closed with a probability Fejose (€.g. the
left ion channel).

if provided a proper noise, leading to the increased output
SNR. As in Fig. 4, the optimal noise variance exists which
maximizes the output SNR 7. By the way, we can define the
ratio between the output and input amplitude as the spectrum
amplification factor (SAF), and there also exists the other
optimal noise variance maximizing this SAF.

Here, the SNR in (22) characterizes only the ratio of output-
spectrum power between the resonance frequency (i.e. £2)
and the background noise. This is slightly different from the
common SNR definition in analyzing communication systems.
Note that, we only use the SNR definition in (22) to analyse
the nonlinear SR filtering procedure. In the later analysis of
the detection performance in molecular communications, we
will focus on the common definition on SNR, i.e. the ratio
between signal power and noise power.

C. Practical Implementation

Rather than directly detecting signal as in the case of binary
pulse amplitude modulation (BMAP) [49], here we employ the
non-linear SR mechanism to denoise molecular signals.

1) Analog domain implementation: When it comes to
multi-scale molecular communications, e.g. from nano-scale
(e.g. tens of nm [13]) to micro-scale (e.g. tens of um [32],
[34]) and maro-scale (e.g. several meters [5], [6]), the non-
linear SR mechanism will be implemented as a part of signal
receptor (see also Fig. 1-b), as a special nonlinear filter. The
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implementation structure in the analog domain is shown by
Fig. 6 (as for traditional linear FIR filters, once the coefficients
have been determined, the physical implementation of such
analog SR structures is straightforward). As seen, after the
diffusive propagation and noise contamination, a received
signal y(t) (or yg) will be directly fed to a well-tuned SR
system. Then, its output x(¢) (or xy) would be treated as a
noise-reduced and signal-enhanced version of received signal.

From the analog structure, the SR mechanism can be
realized simply, which, for example, involves a differentiator,
an adder, two amplifiers and a power operator. Compared
with traditional linear filters, the computation complexity (e.g.
long-tap linear convolution) would be effectively reduced by
our SR-based nonlinear filter. More importantly, in contrast to
linear filters which only removes part of noise (accompanying
useful signal out of the pass-band), such a nonlinear filter
can even convert noise into target signals and thereby greatly
enhance the output SNR.

In the biological context, non-linear SR mechanisms occur
widely [46] and have more elegant realizations. For example,
relying on the kinetics of successive chemical reactions (i.e.
involving a group of differential equations), ion channels of
cell membrane can amplify the signaling in vitro even in
harsh biological environments with the help of noise effects, as
illustrated by Fig. 5. Note that, other non-bistable systems are
also demonstrated to exhibit SR effects (amplifying signal via
noise), e.g. involving excited state. Examples include electron
paramagnetic resonance and etc., see ref. [44] for details.

Although the controllable chemical reactions provide the
insight for the future realization of SR-inspired signal process-
ing, at the current stage we focus on its engineered applica-
tion (i.e. multi-scale molecular communication via diffusion),
targeting at an alternative signal detector inspired by such
biological mechanisms. And, the chemical-reaction realization
of nonlinear SR process is out of the scope of this work, which
remains an open issue for future studies.

2) Digital domain Implementations: In other molecular
communications, the digital implementation would be prefer-
able, e.g. when developing a non-linear filter in small-size
chips. In this case, one has to solve the SPDE in Eq. (17),
probably with the aid of iterative computation. To accomplish
this, we employ the fourth-order Runge-Kutta method (RKM)
[47], which numerically approximates the solution.

Relying on the mean value theorem of difference (MVTD),
the RKM manages to approximate the next output Tpy; =
x[(k + 1)At] via the current one z = x(kAt), ie., Tpyr1 —
zg = 2'(e)At with € € [kAtL, (kK + 1)At]. Let p = At, then
the derivative 2/(e) will be estimated via a weighted average
of four increments, ie., 1 = f(tx,zr) = dV(x)/dx, q¢o =
f Etk + 5o + Smg, a3 = f(te+5,2p+ 5q2) and ¢4 =

[ (t + 5,21 + §q3), via the following equation:
Tyl = T + % X (q1 + 2q2 + 2q3 + q4), (23)
where each increment term is calculated via:
q1 = p x (azy — bxy +yp), (24)

3
g2 = p X [a-(mk-i-q;)—b'(xk-i-q;) +yk+1}, (25
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Fig. 6. A schematic structure of SR-based non-linear filter, which is
implemented in the analog domain.

g5 = p x {a-(zk+q22)—b-(zk+q;)3+yk+1}, (26)

qa=pX |:a'($k+(123)—b'<33k+(§)3+yk+1:|- (27)

As seen, the iteration step p should be related to a sampling
time. The higher the sampling rate, the smaller the iteration
step, and the smaller the residual error (e.g. roughly measured
by o(p®)). Thus, a compromise should be made between the
estimation accuracy and the processing speed, as a small p
may lead to slow update and immature convergence result.

D. Output Analysis

The output signal after non-linear filtering is shown in Fig.
2-(b). We note that the output noise has been suppressed
effectively. And moreover, in contrast to the outputs of a
linear filter where the local disjunction of input signals may
have been smoothed out, subtle transient features that are
of significance to subsequent information demodulation are
perfectly preserved.

In addition, we observe from Fig. 7 that the output response
may have been expanded, compared with an input narrow
pulse, i.e. w(t). It should be noteworthy that, in the context
of signal detection, most previous works focus on the zero-
mean and single-frequency input signal or BPAM signals [49],
where the output signal directly corresponds to the detection
result. Unfortunately, here the molecular signal is neither zero-
mean nor involving only single-frequency signal, and thus its
output has been rarely analysed in the literature, including
our conference version [22]. In the following, we provide
a profound theoretical and numerical analysis on the output
response after the non-linear filtering process.

First, we expand the input signal y(¢) into Fourier series:

Ny Ny
y(t) ~ A+ Z Ay cos(nft) + Z Bpsin(ndt),  (28)
n=1 n=1

where Ny > 1 denotes the analysis order; A2 T% OTQ y(t)dt,
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Fig. 7. The output response after the non-linear filtering. In analyzing the

dispersed response, the Fourier-series order is N;=8. (Top): Normalized input
response. (Bottom): Normalized output response.

while other coefficients of Fourier series are computed via:
To
A, =2/Tq % / y(t) - cos(nQt)dt,
0

T
B, =2/Tq % / y(t) - sin(nQdt)dt.
0

Then, from the previous analysis, each periodic component
of frequency n{) produces also a periodic output component
with the same frequency, with its amplitude and phase deter-
mined by:

27’0

Ve +n202

@n(D) = arctan(nf)/2ry).

Tp(Ap, D) = A2, /D x

Here, we have D = 03. Since the input signal is weak,
then the mutual coupling among such frequencies can be
reasonably ignored. Thus, the output signal is approximated
by a summation of N; single-frequency terms, i.e.,

x(t) ~ Zf: Tn(Ap, D) x cos[nQt — ¢, (D)]+

n=0
Ny

> Zn(Bn, D) x sin[nt — ¢, (D)].

n=0

(29)

From previous eqs. (20) and (21), we find that the higher
the input frequency, the smaller the output amplitude, and the
larger the additive phase. To this end, the dispersion effect will
occur after molecular signals have passed through a dynamical
SR system, and the output response will be stretched. From
the numerical result in Fig. 7, the dispersion response derived
from our theoretical analysis agrees with the observed output.

E. Parameters Adaption

In order to achieve the promising performance, the param-
eters of non-linear SR system should be properly tuned [48],

[49], when the noise variance D is perfectly known. Intuitively,
in order to assist the outcome state crossing a potential barrier,
the following relationship is supposed to meet:

AV =a?/4b < D.

As suggested, the amplitude of input periodic forcing will
also affect the behaviors of SR systems [48], which should
satisfy the following constraint:

Ap < \/4a3/(27b). (30)
Thus, considering a special case of Ay = 0.5 x y/4a3/(27b)

and AV = D, the feasible parameters can be configured as:

27 x (240)2 a?

16D 4D’ GD

Note that, for the concerned molecular signal (which is
always positive), we would approximate the signal amplitude
with Ag ~ E{y(t)}. Meanwhile, it may become impossible
to know a realistic noise variance. As an alternative, one may
tend to the performance optimization in the case of high SNRs
(e.g. SNR*=4dB), and then the noise variance in the above Eq.

SNR*

(31) will be prescribed to D = Dey = 107710 x Ag.

IV. CSI-INDEPENDENT DETECTION

After the non-linear filtering, we then recover unknown in-
formation via a simple CSI-independent and non-coherent de-
tector. The main motivation of our designed CSI-independent
detector will be two-fold. First, the estimation of diffusion
channel responses inevitably consumes considerable time or
energy resources, and more importantly, subsequent coherent
detection (i.e. MAP or MMSE) even becomes computationally
unaffordable for nano-machines. Second, although the additive
noise has been suppressed effectively via the non-linear filter-
ing, the output dispersion response will be quite different from
an input response and, consequently, the coherent detection
may be intractable even CSI (i.e. w(t)) can be available.

A. Metric Construction

In our non-coherent detection framework, the decision met-
ric will be constructed directly from the filtered waveform
z(t) (or x,), which completely excludes the estimated CSI.
Since the analytic expression of output response is intricate,
the following analysis focuses on the whole transient feature
of z(t). To be specific, we firstly construct three decision
sub-metrics by respectively exploring: (1) the local geometry
shape in each symbol, (2) the transient property among two
adjacent symbols, and (3) the energy difference between two
symbols. Note that, such a transient-feature based detection
concept is also inspired by biological mechanisms in cell
signaling, for example, the different concentration gradient
slopes may represent different information and thereby trigger
various biological responses [50].
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1) Local geometry shape: Taking the kth interval with
M = Tyfs samples for example, see Fig. 8-(a), in the case
of Hy (i.e. ax=1) the output response x(n) will firstly arise
until its maximum (located at M, £ kM + M.y, then it will
decay slowly. Thus, the output response in a region R, will be
higher than both its left neighbor region R and right neighbor
Rs. In practice, we will specify the width of peak convexity
region Ro to be M/4+1, i.e. the half length is Ly = M/8 (see
Fig. 8-a). Different from our previous convexity metric [16],
the first sub-metric excludes the inflection point information
and is defined as:

1 M, +Lo
b=t S
Wo+1 ,_ &,
1 ] M, —Lo—1 (k+1)M—1
2 M e o1 | 2t D
n=kM n=Mz+Lo+1

(32)

It is easily noted that, in the case of H; (i.e. ap=1), cx,1 will
be larger than 0. Otherwise, noted also from Fig. 8-(a), it may
become smaller than O in the other case of Hj (i.e. ax=0). So,
it can be indeed used as a metric to justify whether there are
new molecules (i.e. a=1) arriving at a receptor at the current
symbol interval.

2) Transient shape among symbols: When it comes to
two successive slots k and k + 1, the transient shape at the
beginning of the next symbol (i.e. kM) will be quite different
in two cases (i.e. H; and Hj), see Fig. 8-(b). To be specific,
in the case of Hy (a;=0), the output response will continue
to decay in the following time. In contrast, for H; (ai=1)
an obvious inflection may occur. To exploit such a transient
pattern, another sub-metric is formulated as:

1 kM+Ly
T
2ot b O !
- — L1
1 1 kM—L;,—1 kM+Lq,+Lo
2 2Ls+1 Z " "
n=kM—L,—Lo n=kM+L,+1

(33)

where L1 and Lo represent respectively the width of transient
sub-region and neighboring sub-regions within R4 (see Fig.
8-b). L is practically configured to a small value, e.g. L1 = 1.

3) Energy difference: Except for the above two geometry
sub-metrics, another differential metric developed in [7] can
be also applicable, which utilizes the concentration difference
induced by the new arrived molecules and exploits the slow-
decay property of diffusion channels. Thus, the third sub-
metric is specified as:

(k+1)M kM

1
DRI S

n=kM+1 n=(k—1)M+1

k3 =77 (34)

Finally, our compound non-coherent metric is defined as:
(35)

As elaborated above, the designed sub-metrics are consis-
Qk:O

S NiGi=

ap=1

Ck = Ck,1 + Ck,2 + Ck,3-
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Fig. 8. Non-coherent metrics based on the geometry characteristic of the
filtered response. (a) The local convexity metric, in each symbol duration
[kM + 1,(k + 1)M], will be larger than zero in the case of Hjp, as
demonstrated by the R region of the green solid curve. In contrast, it will
be smaller than zeroes in the case of Hp, as shown by the R4 region of the
red dotted curve. (b) The transient metric among two adjacent symbols. In the
case of H1, the inflection transient shape can be observed, while the smooth
decay transient shape will be observed in the case of Hp.

1,2, 3), where )\; are detection thresholds. More importantly,
with the independent noise samples, the combination of the
above three sub-metrics may even provide certain diversity
gain in detection performance.

Of course, the weighted metric combination, rather than
the above equal ratio combination (ERC), will obtain the
additional gain. One can refer to ref. [53] for more details,
whilst our emphasis in this work is put on the nonlinear
detection process and hence an ERC scheme is used.

B. Detection Threshold

The mean of the above non-coherent metric in the case
of Hy, ie. E(cyx|Hy1,tg — —o0) = Ej, will be related with
the specific shape of an output response x(n) as well as the
ISI. As the noise samples of various discrete time remains
independent, c;, will be Gaussian distributed when the sample
size M is sufficiently large (e.g. >20), according to the central
limit theorem (CLT). Conditioned on different cases (i.e. H;
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or Hy), the likelihood densities of our designed metric are:

plek|Hi, to = —00) ~ AN (Ey,02),
p(cx|Ho, to = —00) ~ A (Ep, 02).

(36)
(37

Here, By = E(cx|Ho,top — —o0) and the distribution
variance o2 will be related with the sample size M, and the
residual noise variance in z; (whose value is hard to determine
even we can know the noise variance o2).

Then, a threshold A can be derived according to certain
criterion, e.g. the minimum detection errors (MDE), with

which the estimation of unknown symbols is derived via:

. { L, (38a)
ap =

0, (38b)
Taking the equal prior information symbols for example, i.e.

p(Hy) = p(Hp) = 0.5, the optimal threshold under an MDE
criterion is supposed to meet:

Ck’Z)H
cr < A

A
Aopt = arg ){161%}{11 p(Hy) X / p{c(x)|H1,t0 — —oo}dc(ac)

— 00

+p(Hp) % /p{c(a:)|H0,t0 — —oo }dc(x) (39)
A

Replacing the Gaussian likelihood distributions of Eqs. (36)-
(37) into the above equation?, then the optimal threshold is
determined by:

Aopt = 0.5 X (E1 + Eo) = p(H1) - By + p(Hy) - Eo,

= /000 c(z)p{c(z)|ty — —oo}de(x). (40)

C. Threshold Estimation

An analytic form of the above threshold can be hardly
obtained, due to the non-analytic response xj and the noise
variance af of the non-coherent metric. Alternatively, at the
kth interval we may evaluate the threshold adaptively, by
utilizing the constructed non-coherent metric c¢;.;. One direct
approach is to update the threshold adaptively according to:

1 k
A= (1= B) x A + 8% & Z}c’:l cw,  (41)
where 3 is a forgotten parameter which is ranged in [0.9, 0.99];
an initial threshold estimation can simply be set to A\g = 0. It
is shown that, as an iteration number k increases, the estimated
threshold will converge to its real value, i.e.,

. 1
Ak = Zk’:l e = Eler),
= p(Hy) x E(ck|Hy) + p(Ho) x E(cx|Ho),

= Aopt- (42)

2Here, even if the additive noise z(t) is not Gaussian distributed, the
likelihood density may be still approximated via a Gaussian distribution (when
M is large). This is because the construction of CSI-independent sub-metrics
involves the summation of many independent noise samples.

D. Implementation Considerations

1) Implementation: The proposed scheme involves three
successive steps: (1) SR-based nonlinear filtering, (2) non-
coherent metric computation and (3) threshold-based detec-
tion. For each component, we have discussed the implemen-
tation structure from an engineering point of view, e.g. both
the analog implementation of nonlinear filtering in Fig. 6 and
the digital implementation in eqs. (23)-(27).

One important problem in real application is the selection
of CSl-independent metrics. Here, we only construct three
metrics by fully utilizing the transient feature of received
signals. Yet, its optimality can be hardly justified, since it
utilizes no knowledge of CSI and we have no criterion to
strictly define the optimality. In fact, such transience-based
information detection has been widely emerged in biological
process [3], [50] (e.g. different transient patterns or slopes may
lead to different responses), whereby the reliability and low-
complexity would be the primary goal (rather than the opti-
mality). In the presence of the perfect CSI, then the achievable
lower bound of our non-coherent method is obtained by the
MAP detector, which is able to exploit the whole information
rather than the local transient features.

2) Implementation Complexity: Based on the above anal-
ysis, the complexity of our proposed scheme involves three
parts. At the nonlinear filtering stage, the main computation
comes mainly from the approximated solution of Eq. (17).
According to Egs. (23)-(27), for each sampling time k, total 27
multiplications are required (when the digital implementation
is used). In the second stage, for each symbol 6 multiplications
are required to calculate a decision variable, see Eqs. (32)-(34).
In the final stage, 3 multiplications are required to update the
threshold, see Eq. (41). Thus, the total complexity is roughly
measured by O(K M), which is significantly lower than the
coherent MAP and MMSE detectors (if the complicated CSI
estimation is further considered) [13], [16].

V. NUMERICAL RESULTS

In this Section, we evaluate the detection performance of
our proposed CSl-independent non-linear signal processing
scheme. In the numerical simulation, we configured the diffu-
sion constant to C' = 89.4 x 1072m?/s, and the transmitter-
receiver (T-R) distance is d = 20 x 10~%m [39]. The sampling
time is T = 1/fs = 2 x 10710 sec, and the symbol interval
of binary information is 7.5 x 1072 sec (i.e. the discrete
samples within each symbols duration is A/=45). Note that,
in the following the SNR is defined as the ratio of signal
and noise power, which differs from eq. (22). The mean value
of received signals was estimated by averaging the arrived
molecular messengers.

A. Adaptive Threshold

In the first simulation, we studied the designed adaptive
threshold mechanism. As in Fig. 2-(b), the output SNR of
filtered signals after passing a nonlinear dynamical system)
will be remarkably improved, by constructively utilizing ran-
dom noise. Then, the non-coherent detection metrics will
be constructed via Egs. (32)-(35). When the input SNR is
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and the decision results. Here, the input SNR is configured to 8dB.

configured to 8dB, the adaptive threshold obtained from 25
independent realizations are plotted in Fig. 9. It is seen that
the threshold can be acquired numerically via the decision
variable ¢, (k =0,1,2,--- , K — 1), and its convergence can
be achieved after around 30~40 symbols (leading to a short
start-up time). It is shown that, from Fig. 10, unknown binary
signals can be detected correctly via this automatic threshold.
That is, with the proposed non-coherent decision variable and
the adaptive threshold, our method is able to exclude the
explicit CSI and its complex estimation process.

B. Parameters Configuration

We then investigated the influences of the parameter con-
figuration in non-linear detector. When the channel noise
is exactly known by a molecular receptor, the promising
detection performance can be attained by properly configuring
the parameters in Fig. 6 (analog implementation) or Egs.
(23)-(27) (digital implementation). In the absence of exact
noise variance, one can configure the potential parameters
according to a predefined SNR. The detection performance
with various predefined SNRs (i.e. the real noise variance
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—— Unknown noise: SNR'=-2dB
—— Unknown noise: SNR'=-1dB
—#A— Unknown noise: SNR'=0dB
—%— Unknown noise: SNR'=1dB
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Fig. 11. BER performance with various parameter configurations. (a) Effects

from the configuration of the double-well potential, i.e. a and b, in the
presence of various predefined SNRs. (b) Influences from the scaling factor
(or the iteration step).

is unknown) is plotted in Fig. 11-(a). When the predefined
SNR is too small (e.g. SNR*=-2dB), it results in a much
larger noise variance Doy = 107SNR7/10 5 Ay and thereby
specifies a higher potential barrier AV, which may prohibit
the noise-aided transition among two stable states. While a
too large predefined SNR (e.g. SNR*=5dB) leads to the small
noise variance D,y and much lower potential barrier AV,
which facilitates in excess the noise-aided transitions (also
see Fig. 4). From simulation analysis, the feasible range of
a predefined (or realistic) SNR will be SNR* € [1, 4]dB.
Without losing the generality, in following analysis we assume
the noise variance remains unknown, which is then estimated
via the proper predefined SNR*=4dB. Note that, in this case
the detection performance may be slightly degraded, compared
with a known noise variance. Even so, the off-line parameter
configuration of our proposed method is feasible in practice.

We also studied the influence of an iteration step (i.e. p)
for the RKM method when numerically solving a nonlinear
SR system. As indicated, a small iteration step p leads to
the smaller residual error of nonlinear filtering and thereby
the better detection performance, as shown in Fig. 11-(b).
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Fig. 12. (a) The expected molecular concentrations or CIRs of different types
of receiver. Here, the diffusion constant is D = 89.4 x 10~ 12 m?/s, the T-R
distance is d = 30 x 10~ %m and the sampling time is Ts = 1 x 107!
sec. Other specific parameters can be found in refs. [32], [34], [36]. (b) BER
performance of our proposed non-coherent detector in the presence of various
CIRs (M = 45). When applied to other receivers, no further adjustment was
made to the designed non-coherent detector.

Here, we assume the iteration step has been normalized by
a sampling time, i.e. p = p/M. From the numerical result
in Fig. 11-(b), if a scaling factor u is reduced from 2 to 0.5,
the rough detection gain of 3dB can be obtained. However,
such a parameter should be configured carefully in practice.
E.g., if further reducing the scaling factor to 0.25, then an
error floor will occur, by seriously deteriorating the detection
performance. Thus, in the high SNR region (e.g. SNR>6dB), a
too small iteration step can’t help but degrade the performance.
This is because, with time-varying input signals, the iterative
computation may be far from convergence when using a too
small step, which may hence produce inaccurate output.

C. Practical Considerations

As noted from the designing of our non-coherent detector,
it should be independent of a specific type of receiver, e.g.
passive receiver, absorb receiver, passive/absorb receiver with
enzyme, or ligand receptor with binding behaviors. In essence,
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Fig. 13. Detection performance of our proposed non-coherent detector with

different signal noise modeling.

it detects unknown information directly via the transient trend
of dynamical molecular concentration; whist such a trend of
first-rising-then-decaying is prevalent in various receivers of d-
ifferent CIRs, as in Fig. 12-(a). Therefore, our new scheme can
be directly extended to other types of receivers (note that, in
this case the algorithm configuration needs no further change).
From Fig. 12-(b), it is also seen that the Passive receiver can
be used as the benchmark in performance evaluation, as it has
the slowest rising and decay profile, thereby resulting in the
most serious ISI and the largely degraded BER.

Meanwhile, our designed non-coherent detector is also inde-
pendent of various additive noises. As discussed, the signal-
independent noise can be used in designing the robust non-
coherent detector, whereby neither the statistical distribution
(i.e. Gaussian or Non-Gaussian) nor the time-varying variance
is required. As expected, it is thereby applicable to signal-
dependent noise. From Fig. 13, the BER performance in the
case of signal-dependent noise will be degraded slightly in the
same SNR. This is mainly because, with the signal-dependent
noise, the nonlinear SR mechanism should be adapted accord-
ing to the time-varying noise variance, in order to produce
the optimal performance. However, this should result in the
less robust detector in practical MC systems. In contrast, the
signal-independent noise allows to the design of non-optimal
yet robust non-coherent detector, which could operate well
even in the presence of signal-dependent noise.

Besides, we note that, in the case of imperfect timing,
the detection performance of our non-coherent detector will
be slightly affected. From Egs. (32)-(35), the only required
information is the deviated location of peak concentration,
i.e. My,qz- SO, in practice we can reasonably assume the
symbol duration can be known as a priori, whist the imperfect
synchronization may lead to another deviated sample sequence
(with another deviated peak). Yet, the location of maximum
peak concentration can be directly estimated. Even when
the deviated estimation of the peak concentration occurs, the
detection performance will be slightly degraded, as shown in
Fig. 14. Thus, as one inherent merit, this CSI-independent
detector is essentially immune to imperfect timing.
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Fig. 14. Detection performance of our proposed non-coherent detector with
different accuracy of timing.

Lastly, although we focus on the concentration modulation
method in the analysis, our developed nonlinear and non-
coherent detector is readily applicable to other modulation
formats, e.g. timing or molecular-type modulations. Taking
the molecular-type modulation for example, after the reception
of molecule messengers, two separated signals would be ob-
tained, e.g. by using the type-specific sensors. Thus, such two
signals can be processed successively, e.g. including nonlinear
filtering and non-coherent detection, and finally, we obtain
the detection result by combining two outputs. Similarly, our
method can be also applied to the timing modulation method.

D. Performance Comparison

Finally, we study the detection performance of our scheme
and other methods. In this simulation, we consider the existing
linear (e.g. MAP) and nonlinear (i.e. DFE), coherent (based
on CSI estimation) and non-coherent (without CSI estimation)
detectors for the comprehensive comparison. For the MAP
scheme, we assume the diffusive CSI w(t) has been perfectly
estimated, which of course consumes the considerable time
(e.g. dedicated pilots carrying no information is required
to estimate CSI) and computation resource (e.g. frequently
computing likelihood functions). In the simulation, the sample
interval is set to M=45. For the non-coherent detector [16],
the local smoothing length is set to 12 samples.

From Fig. 15, we may firstly note that, in the linear
processing framework, the MAP detector obtains the optimal
performance (whereby the perfect CSI was assumed), as it
has fully exploited the statistics of observations as well as
CSI. However, it requires an accurate CSI estimation and
complex computation (even with a truncated ISI length, e.g.
I = 30), which thereby becomes less attractive, especially
in low-power and low-complexity applications (e.g. nano-
machines). The linear non-coherent detector, developed in
ref. [16] and relying similarly on the convexity shape of
molecular concentration, will effectively alleviate the compu-
tation burden, and hence is more applicable in low-complexity
scenarios. It is seen that both two linear detectors acquire

BER
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Proposed scheme (without C, 3)

10°} —<— Linear coherent: MAP + perfect CSI
—</— Linear coherent: MMSE + perfect CSI
—{— Linear non-coherent

————— Nonlinear DFE: training-based

10,4 Low-bound: linear method
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Fig. 15. Detection performance of various linear/non-linear and coherent/non-
coherent schemes.

satisfactory performances only in high SNRs (e.g. >12dB),
which, unfortunately, becomes impractical in noisy biological
environments that are ubiquitous in nature. Besides, for such
linear detectors, an un-achievable low bound on BER is also
provided, which corresponds to the theoretical performance of
OOK modulation in Gaussian channel (i.e. the ISI effect has
been completely removed). Due to the residual ISI, there is yet
an obvious gap between linear methods and this low-bound.

We then evaluated the performance of nonlinear DFE [13],
[18]. In the simulation, we set the step size in norm-LMS
to u = 0.04, the tap length of feed-forward and feedback
filter are L = 10 and B = 9, respectively. The training
length is 2000 symbols. From Fig. 15, we found that the
nonlinear DFE is inferior to the linear MAP. This is because,
despite the nonlinear mechanism, the DFE would estimate the
inexplicit channel response and is thereby sub-optimal. One
major merit of nonlinear DFE is that the detection complexity
will be noticeably reduced, yet at the expense of the energy-
demanding training symbols.

In comparison with aforementioned schemes, our proposed
nonlinear non-coherent detector may provide the great promise
to molecular communications. For one thing, it excludes com-
plicated CSI estimations and complex computations. Further
considering the non-linear mechanism that can be accom-
plished via biological activities (as in Fig. 5), e.g. successive
chemical reactions [51] or analog feedback controlling [52],
the implementation will be very simple, which greatly facil-
itates the emerging nano-scale communications. For another,
the random noise can be now utilized constructively (after con-
verted to useful signals), which further contributes to improve
the output SNR. Thus, the nonlinear filtering dramatically
outperforms the existing linear filtering schemes. From the
numerical result in Fig. 15, a rough detection gain of 7dB can
be achieved by the proposed nonlinear non-coherent detector.
Hence, our new paradigm is of significance to molecular
communications, especially in harsh biological conditions.

Besides, we note that the designed compound metric, which
involves both the convexity sub-metric (i.e. cg 1) and the
difference sub-metric (i.e. cy,3), can outperform the single
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convexity metric (i.e. ¢x,1), as in Fig. 15. This indicates that,
even without a multiple-input multiple-output configuration
that will be hardly deployed in open diffusive environments,
a certain degree of detection diversity can be achieved via the
well-designed sub-metrics.

To this end, we argue that, after the long-term self-adaption
and evolution, biological systems have created their own
elegant processing mechanisms. Although some of them re-
main largely elusive, such methods, e.g. usually nonlinear
and complex, have made great successes in various noisy
biological environments. In some applications, applying the
common concepts/techniques developed for artificial commu-
nication systems directly to molecular communication will be
proved of little avail, or even might trigger just the opposite
effect (e.g. increased complexity and limited performance).
Our proposed nonlinear filter and non-coherent detector, as
one of the first attempt to process molecular signals from
an entirely biological point of view, have got the remarkable
achievements.

VI. CONCLUSIONS

Molecular communications constitute a new framework of
multi-scale information transfer. The underlying communica-
tion process faces the challenge of robust signal detection
in complex diffusive channels. Applying existing techniques
developed for telecommunications (usually linear or CSI-
dependent) directly will be infeasible to the envisaged low-
complexity nano-scale applications, whereby SNR is low and
the diffusion channel is unknown. Inspired by the biological
principles, we proposed a non-linear non-coherent signal pro-
cessing framework with the low implementation complexity.
The concept of SR is exploited to perform non-linear filtering,
which can both filter out noise and transform the noise into
useful signals via tailored non-linear dynamics. Thus, the
output SNR will be significantly improved, and we shown the
significant improvement over coherent optimal detector.

To complement the SR detector, we also design a novel non-
coherent scheme, which fully utilises the transient features of
filtered responses. The results show the reliable detection of
molecular signals can be accomplished with a relatively low
complexity, while the detection performance can be improved
dramatically compared with the optimal coherent detector used
in telecommunications. Despite the great potential, many open
topics on such nonlinear and non-coherent detectors, e.g. the
designing of non-coherent metrics, the optimal combination
of multiple metrics, the maximum enhancement of output
SNR and the achievable/unachievable lower bound on BER,
remain unsolved and may be investigated in future. Even so,
we argue that our new nonlinear processing scheme opens up
the new prospect for the designing of biological information
detection techniques, which are oriented to noisy biological
environments and may shed light on improving the design of
EMW-based communications.
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