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Deep Sensing for Future Spectrum and Location
Awareness 5G Communications

Bin Li, Shenghong Li, Arumugam Nallanathan, Senior Member, IEEE, and Chenglin Zhao

Abstract—Spectrum sensing based dynamic spectrum sharing is
one of the key innovative techniques in future 5G communications.
When realistic mobile scenarios are concerned, the location of
primary user (PU) is of great significance to reliable spectrum
detections and cognitive network enhancements. Given the dy-
namic disappearance of its emission signals, the passive locations
tracking of PU, nevertheless, remains dramatically different from
existing positioning problems. In this investigation, a new joint
estimation paradigm, namely deep sensing, is proposed for such
challenging spectrum and location awareness applications. A ma-
jor advantage of this new sensing scheme is that the mutual
interruption between the two unknown quantities is fully con-
sidered and, therefore, the PU’s emission state is identified by
estimating its moving positions jointly. Taking both PU’s unknown
states and its evolving positions into account, a unified math-
ematical model is formulated relying on a dynamic state-space
approach. To implement the new sensing framework, a random
finite set (RFS) based Bernoulli filtering algorithm is then sug-
gested to recursively estimate unknown PU states accompanying
its time-varying locations. Meanwhile, the sequential importance
sampling is used to approximate intractable posterior densities
numerically. Furthermore, an adaptive horizon expanding mech-
anism is specially designed to avoid the mis-tracking aroused by
the intermittent disappearance of PU. Experimental simulations
demonstrate that, even with mobile PUs, spectrum sensing can
be realized effectively by tracking its locations incessantly. The
location information, as an extra gift, may be utilized by cognitive
performance optimizations.

Index Terms—5G, dynamic spectrum sharing, deep sensing, PU
localization, dynamic state-space model, recursive estimation.

I. INTRODUCTION

W ITH the capability of promoting spectral utilization
by accessing licensed primary bands opportunistically,

cognitive radios (CRs) based dynamic spectrum sharing is
considered as a key feature of future 5G communications
[1]. To implement CRs, spectrum sensing is one principal
constituent for the intelligent mitigation of harmful inferences
to primary user (PU) [2], [3], which aims to identify the
bandwidth availability or PU’s unknown emission states in
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real-time [4]–[6]. Given emerging CR applications (e.g., LTE-
U and 802.11n), furthermore, the location information of PU
may be of particular importance to both reliable spectrum
sensing and enhancement of CR network performance [7]–[9].
A new spectrum sensing paradigm with the joint PU’s locations
estimation, therefore, would definitely provide a great promise
to practical deployments of 5G communications, which has yet
been rarely considered and remained still as a major challenge.

For the first task, i.e., spectrum sensing, various algorithms
have been developed [2], [5], [6]. Traditional techniques, e.g.,
energy detector (ED) [10], matched filter (MF) detection [11]
and cyclostationary feature detection [12], may in practice have
different advantages and requirements [5]. Recent new sensing
schemes include wavelet analysis [13], compressive sensing
[14], covariance sensing [15] and probabilistic property-based
sensing [16]. It is noteworthy that, by focusing on typical non-
mobile CR applications (e.g., dynamic access of TV-bands)
[17], unfortunately none of such methods have taken fully
PU’s dynamic positions into the sensing process. As far as the
moving locations of PU are concerned, the received signals or
observations will show remarkable fluctuations. Such a result-
ing special reception uncertainty in practice may easily make
most existing schemes unattractive.

For the second task, i.e., location awareness, it should be
noteworthy that the passive positioning of PU remains in sharp
contrast to classical localization paradigms either of wireless
sensor networks (WSNs) [18], or with externally aided systems
(e.g., UWB or GPS) [19]. For the locations estimation in the
context of dynamic spectrum access (DSA), there are following
three challenges in the localization of PU. First, there is little
information to be utilized, as a PU is endowed with the absolute
priority on primary spectrum in which it is not bound to cooper-
ate with secondary users (SUs). Thus, only the received signal
strength (RSS) can be practically available during such passive
location applications [20], while the time of arrival (ToA) infor-
mation assumed by [21] may become impractical. Second, the
PU’s emission states will alter dynamically and, therefore,
the received signals may be also disappeared intermittently,
making the PU’s position tracking even tougher. Third, in most
instances, there may be no externally aided systems for typical
CR networks.

The two tasks, in the considered spectrum sensing and
location tracking scenario, may further become mutually in-
terrelated. It may become even impossible to justify whether
there contains PU’s signals in current observation, let alone the
inference or tracking of its moving positions in realistic CR
applications. Most existing works, unfortunately, fail to con-
sider such coupling influences, especially the tracking of PU’s
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dynamic locations under a silent state where it doesn’t emit any
electromagnetic signals [22]–[24]. For example, the Cramér-
Rao bound of RSS-based PU positioning is investigated, which
may be of theoretical significance, yet without considering the
mutual interruption between sensing and localization [23]. The
tracking of mobile PU, with a special emphasis on identifying
malicious SUs in CR networks, is studied by [24], which,
similarity, places little concerns on the important feature of
CRs, i.e., detecting PU’s states under the reception uncertainty
and the reacting interruption on localization. To the best of our
knowledge, joint spectrum sensing and positions tracking in the
context of dynamic spectrum sharing (e.g., with PU’s unknown
emission states) has virtually not been reported in the open
literature.

In this investigation, a promising deep sensing (DS)
paradigm is designed for realistic spectrum and location aware-
ness scenarios. To sum up, the main contributions of this work
are the following four-folds.

1) The locations tracking of PU with unknown emission
states is investigated, and a new DS framework is pro-
posed, which estimates PU’s locations at the same time
of detecting its spectral occupancy. In particular, with this
new scheme, the tracking of PU’s positions will not be
interrupted even when its emission has been suspended.
Such a DS paradigm, therefore, is in contrast to either
traditional sensing methods that ignores the mobile PU, or
other positioning algorithms which fail to consider PU’s
dynamic emission states.

2) A novel mathematical formulation for spectrum sensing,
relying on a dynamic state-space model (DSM) approach,
is proposed to characterize the considered complex DS in
the presence of mobile PUs. A distinct innovation of this
new DSM, which may differentiate it from conventional
sensing models or separate positioning models, is that the
PU’s unknown emission state is treated as another hidden
state to be estimated, other than its varying positions. The
mutual coupling relations, as a consequence, can be fully
embodied. Given the limited information available in CR
networks, the strength of summed-energy (i.e. RSS) is
utilized to estimate the two hidden states recursively. It
is noteworthy that such a DSM may be generalized to
other scenes, e.g., the spectrum and location awareness
application with time-varying fading propagations, which
hence provides great promises to various different CR
applications.

3) The major difficulty in solving the formulated DS prob-
lem, which may make existing sensing or localization
algorithms invalid, is that either sensing or positioning
procedure will easily become failure due to interruptions
from the other one. The third contribution, accordingly,
is that a flexible joint estimation algorithm is developed.
The DS process, involving a PU’s emission state and
the other associated state (i.e., PU’s unknown locations),
is modeled as a Bernoulli random finite set (BRFS).
Within the Bayesian inference framework, a recursive
algorithm is then designed to estimate the PU’s existence
state accompanying its dynamic positions. The sequential
importance sampling (SIS) technique is also adopted to

Fig. 1. A typical spectrum sensing scenario with K = 4 collaborative SUs and
one random moving PU (e.g., a mobile terminal). The green-solid lines denote
the 1st-phase sensing process, while the red-dash lines account for the 2nd-
phase report process.

approximate related posterior distributions numerically,
which are in practice non-analytical and computationally
intractable. To avoid the mis-tracking when a PU turns
off, a horizon expanding mechanism is further integrated
which will adaptively adjust the prior uncertainty of sub-
sequent inference process. Consequently, the suggested
scheme may realize joint spectrum sensing and location
estimation effectively.

4) Both the performances of spectrum sensing and dynamic
localization, with the moving PU of unknown emission
states, are investigated. It is demonstrated by numeri-
cal experiments that, with estimated PU’s locations, the
reception uncertainty is calibrated and, therefore, the
promising sensing performance is obtained even in re-
alistic mobile scenarios. Meanwhile, the PU’s location
will be insistently tracked irrespective of its emission
states, i.e., even it turns off. As an extra gift of sensing
process, the recovered PU’s locations will be utilized
for further CR enhancement. The spectrum and location
awareness DS scheme, which may be extended to other
applications, puts an insight into spectrum sensing and
will provide a brand-new idea of spectrum sharing in
future 5G communications.

The rest of this article is structured as follows. In Section II, a
DSM for joint spectrum sensing and PU’s positioning is formu-
lated. A Bayesian approach is then introduced in Section III,
and a flexible algorithm is proposed, which is premised on
RFS and would estimate PU’s emission states and its locations
jointly. A numerical approach is further suggested, which may
implement Bayesian estimations effectively. Numerical experi-
ments and performance evaluations are provided in Section IV.
Finally, we conclude this investigation in Section V.

II. SYSTEM MODEL

With the joint objective of spectrum sensing and PU local-
ization, a cooperative scenario is concerned by this work, as
illustrated by Fig. 1. For simplicity, K collaborative SU nodes
are assumed to be located on a 2-D grid. The position of each
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node, denoted by bk = [x′
k, y′

k]T
(k = 1, 2, · · · , K), is known

by a data center (maybe an access point or the base station).
To realize spectrum sensing and locations tracking jointly, a
two-stage scheme is used. In the 1st stage, the kth SU node
will intercept nearby wireless environments at each discrete
time n, and obtain a local observation zn,k. In the 2nd stage,
all SU nodes will report their observations toward to a data
center. The data center will analyze the observation vector
zn = [zn,1 zn,2 · · · zn,K]T , and estimate the emission state of PU
sn accompanying its position (xn, yn).

A. DSM for Deep Sensing

In the consideration of more complex spectrum and location
awareness scenario, a new DSM is established as follows.

sn = S(sn−1), (1)

vn = V(vn−1, u1), (2)

θn = �(θn−1, u2), (3)

ln = L(ln−1, vn, θn), (4)

zn = Z (ln, sn, wn(m)) . (5)

Here, eqs. (1)–(4) are referred to as dynamic equations, while
eq. (5) accounts for the measurement equation.

1) The transitional function S(·) : R
1 → R

1 specifies
stochastic evolutions of PU’s emission states sn ∈ S =
{0, 1} of the nth time as a 1st-order Markov process.

2) Two transitional functions V(·) : R
1 → R

1 and �(·) :
R

1 → R
1 describe two random behaviors of PU’s move-

ment speed vn and orientation θn, which are driven inde-
pendently by random noises u1 and u2, respectively.

3) Another transitional function L(·) : R
2 → R

2 specifies
the dynamics of PU’s moving positions ln = [xn, yn]T .

4) The observation function Z(·) : R
M → R

1 gives the cou-
pling relationship between two hidden states (i.e., sn and
ln) and the measurement zn,k ∈ Z(Z ∈ R

1).

For the ease of analysis, three assumptions are made to the
established DSM model.

1) A common periodic sensing frame is adopted [5], [24],
and the PU’s emission state is assumed to be quasi-static.
I.e., sn will remain unchanged in one sensing duration Ts,
but allowed to change among different durations.

2) The static Gaussian channel is considered. In this case,
the observation zn,k is related only with the distance
between the moving PU and the kth SU. The random
measurement noise of the mth sample at the nth discrete
time, denoted by wn(m), is further assumed to be the i.i.d.
zero-mean additive white Gaussian noise (AWGN), with
a variance of σ 2

w, which is independent of two hidden
states.

3) The PU is assumed to be slowly moving. Its position
ln = [xn, yn]T , therefore, will remain invariant during
each sensing duration Ts. That is, ln is also independent
of the sample index m = 0, 1, · · · , M − 1.

Next, we will elaborate on each equation.

B. Dynamics of PU State

It is shown that the evolution of PU’s emission states over
time can be modeled by a finite state machine S = {S0, S1},
i.e., a two-state Markov transitional process [25]–[27]. If a PU
is in the active emission state S1 at the current sensing slot n,
then it will stay in S1 with a survival probability

ps � Pr{sn+1 = 1|sn = 1},
and jump into the sleep state S0 with a probability 1 − ps in the
next time slot n + 1. If it is currently in the sleep state S0, it will
change to S1 with a birth probability pb:

pb � Pr{sn+1 = 1|sn = 0},
and then, may stay in S0 in next slot with a probability of 1−pb.

In practice, it is further assumed that the above probabilistic
property is stationary, i.e., the dynamical transition is only
related with specific wireless services, while keeping invariant
for a given application in all the time (or at least, in a long period
N). The statistical transitional probability matrix (TPM) of PU
states may be defined as:

P =
[
(1 − pb) pb,

(1 − ps) ps.

]
. (6)

C. Dynamic of PU’s Positions

We firstly study the statistic behaviors of the speed and
orientation of a moving PU. In this analysis, both of them are
assumed to follow the random walking process. That is, given
the moving speed vn−1 and orientation θn−1 of the (n − 1)th
discrete time, then these two random variables at time n can be
independently updated by:

vn = vn−1 + u1, u1 ∼ N
(

0, σ 2
v

)
, (7)

θn = θn−1 + u2, u2 ∼ E
(

0, σ 2
θ

)
, (8)

where σ 2
v and σ 2

θ denote two variances of random PU’s speed
and orientation, respectively. It is noted that a Gaussian random
noise, i.e., N (0, σ 2

v ), and the other Laplace random noise,
i.e., E(0, σ 2

θ ), are assumed as two driven terms of the random
walking. The above a priori movement statistics are related
with different PU’s types (e.g., mobile human or vehicular) and
operating scenarios (e.g., indoor or outdoor).

With the adaption equations of PU’s speed and orientation
θn, the dynamic evolution of its positions is specified by:

xn = xn−1 + vn × cos(θn), (9)

yn = yn−1 + vn × sin(θn), (10)

where xn and yn denote the horizon and vertical location axes
of the PU at the nth discrete time.

D. Statistics of Observations

For realistic CR applications, the sensing observation based
on summed-energy (i.e., RSS) is adopted in the analysis [5],
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[10]. In practice, the sensing problem will be formulated as the
following two-hypothesis problem, i.e.,

zn,k �
M∑

m=1

[
γk

√
Esbn(m)d−α/2

n,k δ(sn − S1) + wn(m)
]2

(11a)

=
⎧⎨
⎩
∑M

m=1 w2
n(m), H0,∑M

m=1

[
γk

√
Esbn(m)d−α/2

n,k + wn(m)
]2

, H1,

(11b)

where δ(·) denotes the Dirichlet function; zn,k is the RSS of
the kth SU device; dn,k is the geographic distance between
the kth SU and the moving PU at time n; α denotes the path-
loss attenuation constant which is typically larger than 2; γk

accounts for the receiving gain of the kth SU contributed by
antennas or other processing; M = Tsfs denotes the samples
size and fs represents the sampling frequency. H0 and H1
correspond to two hypotheses, respectively, i.e., the absence
and presence of PU’s signals; bn(m) denote a sequence of PU’s
information symbols, with m = 1, 2, · · · , M. For simplicity,
the real-valued binary phase shift keying (BPSK) signal is
assumed, e.g., bn(m) ∈ B = {+1,−1}, with an emission power
of Es.

As suggested, with a moving PU, the uncertainty in observa-
tions may become more obvious. From eq. (11), expect for PU’s
emission state (i.e., sn ∈ S), the observation is also related with
unknown PU-SU distances

dn,k � ‖ln − bk‖2 =
√(

xn − x′
k

)2 + (yn − y′
k

)2
. (12)

Conditioned on K distances dn,k and PU’s emission state sn,
each component likelihood density, i.e., p(zn,k|dn,k, sn), then
follows a central chi-square distribution with the degrees of
freedom (DoF) of M under H0, and a non-central chi-square
distribution with M degrees under H1.

As M is usually very large (e.g., M � 100), the likelihood
functions in the data center may be approximated by Gaussian
densities, based on an assumption of i.i.d. noise, i.e.,

p(zn|ln, sn = 1) =
∏K

k=1
p(zn,k|ln, sn = 1), (13a)

p(zn|ln, sn = 0) =
∏K

k=1
p(zn,k|sn = 0). (13b)

Alternatively, an equal gain combination (EGC) scheme may
be also suggested in the data center, i.e., Zn �

∑K
k=1 zn,k. It is

easily derived that the combined observation Zn still follows a
Gaussian distribution, i.e., Zn ∼ N (E(Zn|ln, sn), V(Zn|ln, sn)),

and its mean and variance, in the case of H1, are respectively
given by:

E(Zn|ln, sn = 1) =
K∑

k=1

E(zn,k|ln, sn = 1), (14)

V(Zn|ln, sn = 1) =
K∑

k=1

V(zn,k|ln, sn = 1). (15)

Similar forms can be ready for H0. The involved means and
variances are evaluated via:

E(zn,k|ln, S1) = M ×
(

K∑
k=1

γ 2
k Esd

−α
n,k + Kσ 2

w

)
, (16a)

V(zn,k|ln, S1) = 4M ×
(

K∑
k=1

γ 2
k Esd

−α
n,k σ 2

w + Kσ 4
w

)
, (16b)

E(zn,k|S0) = MKσ 2
w, (16c)

V(zn,k|S0) = 4MKσ 4
w. (16d)

III. DEEP SENSING

A. MAP Estimation of DS

Due to the inflexibility in dealing with joint position estima-
tions, the classical Neyman-Pearson (NP) criterion may become
less attractive to the considered DS scenario. This is mainly
because, other than PU’s unknown emission states, its moving
positions need also to be estimated.

To perform this joint task, a Bayesian stochastic approach
is designed for the formulated DS problem. Based on the
established DSM, the maximum a posteriori (MAP) criterion
is applied which would estimate the joint posterior PDF of
two unknown states recursively, as in eq. (17), shown at the
bottom of the page. Here, s0:n � {s0, s1, · · · , sn} denotes the
trajectory of PU’s emission states until the nth discrete time,
l0:n and z0:n account for two trajectories of the varying positions
and RSS observations, respectively. πn|n−1(ln|ln−1) represents
the prior transitional density of the moving positions ln. With
the dynamic equations (7) and (8), the other two transitional
densities in (17) are specified by:

p(vn|vn−1) ∼N
(
vn − vn−1, σ

2
v

)
,

p(θn|θn−1) ∼E
(
θn − θn−1, σ

2
θ

)
.

For clarity, we further denote the two hidden states by one
state vector, i.e., Sn � {sn, ln}. As an effective tool to derive
the estimations of hidden states, the well-known two-step algo-
rithm, i.e., first predict and then update, can be suggested, which
may theoretically acquire the optimal posterior distribution of
Sn in a recursive manner.

(l̂n, ŝn) = arg max
ln∈R2,sn∈S

p(l0:n, s0:n|z0:n)
∣∣πn|n−1(ln|ln−1), p(vn|vn−1), p(θn|θn−1), p(sn|sn−1) (17)
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1) Predict Stage: Let pn−1|n−1(Sn−1|z1:n−1) denotes the
posterior density at time n − 1. Given the assumed 1st-order
Markov chain and a priori distribution of S0, i.e., p(S0), the
1st-step prediction pn|n−1(Sn|z1:n−1) may be obtained:

pn|n−1(Sn|z1:n−1)

=
∫

φn|n−1(Sn|S1:n−1)pn−1|n−1(Sn−1|z1:n−1)dSn−1, (18)

where the traditional density φn|n−1(Sn|S1:n−1) is given by:

φn|n−1(Sn|S1:n−1) = φn|n−1(Sn|Sn−1)

(a)= p(sn|sn−1) × πn|n−1(ln|ln−1).

Here, (a) holds for the independent evolutions between PU’s
emission states and its locations.

2) Update Stage: To refine the inaccurate predicted density
derived only from a priori knowledge, new measurements
zn accompanying the likelihood density ϕn(zn|Sn) would be
utilized. Thus, the Bays update is applied, i.e.,

pn|n(Sn|z1:n) = ϕn(zn|Sn)pn|n−1(Sn|z1:n−1)∫
ϕn(zn|Sn)pn|n−1(Sn|z1:n−1)dSn

. (19)

With the above predict-and-update propagation, the target
joint density pn|n(Sn|z1:n) may be estimated recursively.

The classical sequential estimation framework, unfortu-
nately, may become infeasible for the DS process which takes
PU’s varying positions. First, note from eq. (11), the dynamic
distance dn,k may disappear completely from the energy ob-
servation zn,k, when a PU turns off (i.e., H0 or sn = S0). Let
alone the Bayesian inference of unknown positions, the related
likelihood involving PU-SU distances may be unavailable in
such a case, making the tracking of PU’s dynamic locations
very tough. Second, without a deterministic PU’s position, the
estimation of PU states will become inaccurate due to the result-
ing reception uncertainty (especially for energy-based sensing
method, e.g., ED). Third, even if the likelihood function could
be utilized when a PU is on (i.e., H1 or sn = S1), the involved
marginal integration seems still to be analytically intractable
and computationally prohibitive to many practical uses.

B. Bernoulli Random Finite States

The dynamic appearance (or disappearance) of PU’s signals
is used to be treated directly as another separate random state
(i.e., sn) [3], [5], [6], [26], [27], other than the PU’s dynamic
position (i.e., ln). As mentioned, such a traditional simple and
intuitive formulation, however, will lead to great difficulties in
joint estimations. In this investigation, from a more attractive
perspective, the whole dynamic behaviors of two hidden states
are structured into one unified random process FFF , which is
referred to as RFS [28].

1) Cardinality of RFS: The RFS may be considered, in
essence, as a special stochastic set whose elements (including
the number of elements) will be changed randomly [29]. In
contrast to classical random vectors, now the cardinality (i.e.,
the number of elements) of the RFS FFF , which is denoted

by c = |FFF |, also becomes a random process. Apart from the
c-element joint distribution p(F1, · · · , Fc), {F1, · · · , Fc}∈R

c,
a cardinality distribution κ(c) = Pr{|FFF | = c}(c ∈ N0) is partic-
ularly specified to characterize an RFS.

Given the considered spectrum sensing scene with one mo-
bile PU,1 we will have either FFFn = {ln ∈ R

2} or FFFn = ∅,
i.e., c = 1 and |FFFn| ∈ {0, 1}. Accordingly, one binary existence
variable λn is used to token the random appearance or disap-
pearance of PU signals. If a PU emits signals (i.e., H1) at time
n, then we have λn = 1 and otherwise, λn = 0 (i.e., S0 or H0).
Obviously, λn is a random Bernoulli variable, which may either
be empty (with probability 1 − q) or have a single element (with
probability q). Thus, the random cardinality of such a Bernoulli
RFS is

κ(c) =
{

1 − q if FFFn = ∅ or λn = 0, (20a)

q if FFFn = {ln} or λn = 1. (20b)

2) PDF of RFS: According to the Mahler’s theorem
[28], [29], the finite set statistics (FISST) PDF denoted by
p(FFFn), may be conveniently employed to describe the prob-
abilistic behaviors of an RFS, like other traditional random
variables, i.e.,

p (FFFn = {F1, · · · , Fc}) = c!κ(c)p(F1, · · · , Fc). (21)

With the set integration
∫

p(FFFn)δFFFn on FFFn (rather than the
marginalization as in a common random variable), it is seen that
p(FFFn) can be indeed used as a PDF, i.e.,∫

FFFn

p(FFFn)δFFF

= p(∅) +
∞∑

c=1

1

c!
∫

{F1,··· ,Fc}∈Rc
p(F1, · · · , Fc)dF1 · · · dFc

≡ 1.

In the presence of a realistic mobile PU, the singleton state
associate with the PU’s appearance (i.e., |FFFn| = 1) corresponds
actually to its dynamic positions ln. With the cardinality distri-
bution κ(c) and the state distribution PDF p(ln), the FISST PDF
is simplified to:

p(FFFn) =
{

1 − q if FFFn = ∅, (22a)

q × p(α) if FFFn = {ln}. (22b)

Note that, for the special case where the cardinality c is larger
than 1, we will have p(FFFn) = 0.

3) Dynamic Transitions of RFS: Based on the new DSM, the
dynamic transitional behaviors of Bernoulli RSFFFFn also follow
a 1st-order Markov process. That is, for two possible cardinal-
ities at the time (n − 1), the prior transitional probabilities will
be determined by:

φn|n−1(FFFn|∅) =
{

1 − pb if FFFn = ∅, (23a)

pbbn|n−1(ln) if FFFn = {ln}, (23b)

1In this analysis, we consider only one single PU to be detected and tracked.
The generalization to multiple PUs is straightforward.
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and

φn|n−1 (FFFn|{ln}) =
{

1 − ps if FFFn =∅, (24a)

psπn|n−1(ln|ln−1) if FFFn ={αn}, (24b)

respectively, where bn|n−1(ln) refers to as the birth density, which
accounts for the initial density of a singleton state {ln} when the
PU object is re-activated or re-emitting, i.e., p(ln|qn−1|n−1 = 0)

[30]. The birth density should be designed properly to achieve
good performance, which will be discussed in subsequent
Section III-E. Based on eqs. (7)–(8), the transitional density of
PU’s dynamic locations, i.e., πn|n−1(ln|ln−1), is given by:

πn|n−1(ln|ln−1) = 1√
2πσv

exp

{
− (‖ln − ln−1‖2 − vn−1)

2

2σ 2
v

}

× 1

2σ 2
θ

exp

[
−|ang(ln − ln−1) − θn−1|

σ 2
θ

]
, (25)

where ang(·) denote the angle of a displacement vector, i.e.,

ang(ln − ln−1) = tan−1
(

yn−yn−1
xn−xn−1

)
.

With the RSS observations zn, the likelihood distribution,
denoted by ϕ(zn|ln), is easily derived, i.e.,

ϕ(zn|FFFn) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
N {E(zn|ln, sn = 1), V(zn|ln, sn = 1)}

if FFFn = {ln}, (26a)

N {E(zn|sn = 0), V(zn|sn = 0)}
if FFFn = ∅. (26b)

4) Estimations of RFS: For the formulated RFS FFFn, once
two related distributions, i.e., the posterior density of PU’s
appearance and a posteriori spatial PDF of moving locations
FFFn = {ln}, are determined, then we may easily obtain the
FISST PDF pn|n(FFFn|z1:n) [31].

More specifically, the posterior density of the PU’s appear-
ance is denoted by:

qn|n � Pr {FFFn = {ln}|z1:n} , (27)

and a posteriori spatial PDF of FFFn = {ln}, i.e.,

fn|n (FFFn = {ln}) � p(ln|z1:n). (28)

C. RFS Estimation With Sequential MAP

Rather than estimating two hidden states separately as in the
previous works [26], [34], RFS will deal with one unified ran-
dom variableFFFn, which, however, will tune on-off dynamically.
With the new RFS framework, therefore, two hidden states
need not to be derived independently. By casting the stochastic
DS problem into an RFS which may effectively handle the
coupling interruption between PU’s positions and its emission
states, the PU’s dynamic states can be then estimated jointly via
the Bernoulli random cardinality. So, the first two problems in
designing DS algorithms may be addressed.

A generalized two-stage recursive framework may be ap-
plied, even for the established RFS. However, notice that a ma-
jor difference between the generalized propagation of RFS and
traditional sequential estimation (i.e., eqs. (18), (19)) is that,

rather than the distribution marginalization, the set integration
(i.e., δFFFn) will be used in RFS, i.e.,

pn|n−1(FFFn|z1:n−1) =
∫
FFFn

φn|n−1(FFFn|FFF1:n−1)pn−1|n−1

× (FFFn−1|z1:n−1)δFFFn−1,

pn|n(FFFn|z1:n) = ϕn(zn|FFFn)pn|n−1(FFFn|z1:n−1)∫
FFFn

ϕn(zn|FFFn)pn|n−1(FFFn|z1:n−1)δFFFn
.

Most existing schemes, unfortunately, fail to address RFS
estimations under a sequential MAP criterion [2], [5], [26]. To
solve the above generalized Bayesian inference and thereby de-
rive the estimation of Bernoulli RFS FFFn, a particular stochastic
algorithm should be designed, with which the posterior PDFs
of RFS would be recursively estimated based on the formulated
DSM and measurements z1:n.

D. Bernoulli Filtering for BRFS

Much similar to traditional Bayesian prediction-update pro-
cess, the two posterior densities, i.e., pn|n(FFFn|z1:n) and fn|n(FFFn),
will be propagated recursively.

1) Prediction Stage: With the prior transitional property, the
1-step predicting densities of the two terms, i.e., qn|n−1 and
fn|n−1(ln), will be derived from the 1st-order transitions. Based
on the above analysis, the predicted posterior FISST PDF at
time n is easily expanded to:

pn|n−1(FFFn|z1:n−1)

=
∫
FFFn

φn|n−1(FFFn|FFFn−1)pn−1|n−1(FFFn−1|z1:n−1)δFFFn−1

= φn|n−1(FFFn|∅)pn−1|n−1(∅|z1:n−1)

+
∫

φn|n−1(FFFn|ln−1)pn−1|n−1(ln−1|z1:n−1)dln−1. (29)

Considering the first case FFFn = ∅ (i.e., the PU turns off)
and the underlying relation pn|n−1(∅|z1:n−1) = 1 − qn|n−1, the
predicted posterior FISST PDF will be easily derived via some
manipulations on (29), i.e.,

qn|n−1 = 1−[(1 − pb)×(1 − qn−1|n−1)+(1 − ps) × qn−1|n−1
]

= pb × (1 − qn−1|n−1) + ps × qn−1|n−1. (30)

Checking the other caseFFFn = {ln} (i.e., the PU turns on), we
may derived the predicted posterior FISST as in (31), by sim-
ilarly utilizing the relationship pn|n−1({ln}|z1:n−1) = qn|n−1 ×
fn|n−1(ln).

fn|n−1(ln) = pb(1 − qn−1|n−1)bn|n−1(ln)
qn|n−1

+ psqn−1|n−1 × ∫ πn−1|n−1(ln|ln−1)fn−1|n−1(ln−1)dln−1

qn|n−1
.

(31)
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It is seen that, from the physical implications of eq. (30)
and (31), both the predicted density qn|n−1 and the spatial
density fn|n−1(ln) may involve two components, i.e., the birth
component of a new PU and the survival component of an
already existed PU. 1) The first birth term is specified basically
by the transition or switch of a disappeared PU (i.e., pb); and
2) the second survival one is contributed essentially by the
continuation of an appeared PU (i.e., ps).

2) Update Stage: According to different PU’s emission
states, two cases will be studied separately. For the first case
FFFn = ∅, the update equation is given by:

pn|n(∅|z1:n) = ϕn(zn|∅)pn|n−1(∅|z1:n−1)/p(zn|z1:n−1).

Based on the set integration operation, the prediction term in
the denominator tends to:

p(zn|z1:n−1) =
∫
FFFn

ϕn(zn|FFFn)pn|n−1(FFFn|z1:n−1)δFFFn

= ϕn(zn|∅)pn|n−1(∅|z1:n−1)

+
∫

ϕn(zn|ln)pn|n−1(ln|z1:n−1)dln. (32)

Replacing the underlying identical relations pn|n−1(∅|z1:n−1)=
1 − qn|n−1 and pn|n−1(ln|z1:n−1) = qn|n−1 × fn|n−1(ln) into
eq. (32), we obtain

p(zn|z1:n−1) = (1 − qn|n−1)ϕn(zn|∅)

+ qn|n−1

∫
ϕn(zn|ln)fn|n−1(ln)dln. (33)

Further checking the updating equation, then the recursive
refinement of the posterior existence density qn|n is derived by:

qn|n = qn|n−1
∫

rn(zn|ln)fn|n−1(ln)dln
(1 − qn|n−1) + qn|n−1

∫
rn(zn|ln)fn|n−1(ln)dln

, (34)

where rn(zn|ln) accounts for the likelihoods ratio between two
hypothesis under the current measurement zn, i.e.,

rn(zn|ln) � ϕn(zn|ln)/ϕn(zn|∅). (35)

For the second case FFFn = {ln}, the underlying constraint
pn|n(ln|z1:n) = qn|n × fn|n(ln) may be applied similarly. By fur-
ther interpreting the analytical form of updated density qn|n, the
recursive update of the spatial PDFs will be finally obtained from:

fn|n(ln) = rn(zn|ln)fn|n−1(ln)∫
rn(zn|ln)fn|n−1(ln)dln

. (36)

With the above generalized two-stage propagation, the joint
estimation of two posterior densities, i.e., the probability of
existence qn|n and the spatial PDF fn|n(ln), would be derived.
Combined with two predict parts, i.e., qn|n−1 and fn|n−1(ln),
then the Bernoulli RFS FFFn may be estimated recursively.

Note from the above analysis, despite a single RFS FFFn, the
appearance of PU’s emission signal (i.e., qn|n) will be estimated
jointly with its positions (i.e., ln). The presented scheme is
thereby different from other existing techniques [26], [27], in

which two hidden states are treated as two separate quantities
and are estimated independently. Except for the generality and
effectiveness, the new scheme, within the unified DS paradigm,
may obtain attractive sensing and tracking performance by
jointly acquiring two hidden states.

E. Implementation of Bernoulli Filtering

It should be emphasized that the estimation of PU’s locations
may involve the marginalization on the continuous distribution,
e.g., the predict density fn|n−1(ln) in eqs. (31), which may be
computationally intractable. To cope with this problem, the SIS
based numerical approximation approach is suggested alterna-
tively for the considered problem, which may also realize the
Bayesian inference.

1) Particle Filtering: Based on the simulated Monte-carlo
method, PF manages to approximate complex realistic distri-
butions via a group of random discrete measures (i.e., par-
ticles) x(i)

n|n−1 with evolving probability masses (or weights)

w(i)
n|n−1(i = 1, 2, · · · , I) [32].

To be specific, a proposal density ρ(xn|n−1|x(i)
1:n−1, z1:n−1),

which is related with the target posterior density fn|n−1(x),
will be specified firstly, from which total I discrete simulated
particles will be drawn, i.e., x(i)

n|n−1 ∼ ρ(xn|n−1|x(i)
1:n−1, z1:n−1).

Subsequently, with discrete particles measures, the target dis-
tribution fn|n−1(x) would be approximated numerically via

f̂n|n−1(x) 
∑I
i=1 w(i)

n|n−1δ(x − x(i)
n|n−1), where the associated

importance weight w(i)
n|n−1 are updated recursively by:

w(i)
n|n−1 = w(i)

n−1|n−1

p
(

zn

∣∣∣x(i)
n|n−1

)
p
(

x(i)
n|n−1

∣∣∣x(i)
n−1|n−1

)
ρ
(

xn|n−1

∣∣∣x(i)
1:n−1, z1:n−1

) . (37)

2) Bernoulli BF: For the formulated Bernoulli RFS, a
Bernoulli PF (BPF) is suggested to approximate the predicted
density, i.e., fn|n−1(x). As seen from eq. (31), fn|n−1(x) actually
involves two components. Thus, a piece-wise proposal distribu-
tion is employed to simulate discrete particles, i.e.,

x(i)
n|n−1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

β(xn|n−1|z1:n−1),

i = I − B + 1, · · · , I, (38a)

ξ
(

xn|n−1

∣∣∣x(i)
1:n−1, z1:n−1

)
,

i = 1, 2, · · · , I − B. (38b)

In the above proposal distribution, the first B particles are
used to approximate the first term in eq. (31), while the fol-
lowing (I − B) particles are used to evaluate the second term.
With these discrete random particles, according to eq. (37), the
associative weights will be updated by:

w(i)
n|n−1 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

pb(1−qn−1|n−1)

qn|n−1

bn|n−1(xn|n−1)

B×β(xn|n−1|z1:n−1)
,

i = I − B + 1, · · · , I, (39a)

psqn−1|n−1
qn|n−1

πn|n−1

(
x(i)

n|n−1

∣∣∣x(i)
n−1

)
ξ
(

xn|n−1

∣∣∣x(i)
1:n−1,z1:n−1

)w(i)
n−1|n−1,

i = 1, 2, · · · , I − B. (39b)
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Fig. 2. Illustrations of the designed AHE process and the dynamic tracking process of realistic PU’s locations. The PU will stay in the silence state (i.e., H0 or
S0) in discrete times of [n − J, · · · , n − 1], and then enter into the emission state (i.e., H1 or S1) since the discrete time n.

The key point to implement BPF, therefore, is to design a
proposal birth density β(xn|n−1|z1:n−1) and another proposal

survival density ξ(xn|n−1|x(i)
1:n−1, z1:n−1).

a) Proposal survival-density: In practice, the proposal
survival density may be simplified. Based on the predicted
particle weights {w(i)

n−1|n−2}, the posterior density of the (n −
1)th time is firstly approximated, i.e.,

ŵ(i)
n−1|n−1 ∝ ϕn

(
zn−1

∣∣∣FFF (i)
n−1|n−2

)
× ŵ(i)

n−1|n−2. (40)

Secondly, total I − B discrete particles will be drawn from∑I
i=1 w(i)

n−1|n−1δ(x − x(i)
n−1|n−1). The updated particles of time

n − 1 will survive and, furthermore, are reserved for subsequent
time n directly [29].

b) Proposal birth-density: As a PU may turn off ran-
domly in CR scenarios, there are two practical challenges
inhering in the design of the proposal birth density. First,
the proposal birth density of the nth discrete time, which is
assumed to be identical to the a priori birth density, i.e.,
β(xn|n−1|z1:n−1) = bn|n−1(xn|n−1), will be relevant to the PU’s
emission state of the last time (n − 1), i.e., sn−1 ∈ S. This is
easy to follow, i.e., compared with the situation sn−1 = S1, the
uncertainty in estimating the nth PU’s position (i.e. ln) may
be enlarged under sn−1 = S0. Second, such an uncertainty of
PU’s locations will even vary along time, i.e., changing with
the lasting length of PU’s silence state S0. In practice, the
above difficulties, if left unchecked, may easily lead to the mis-
tracking of PU’s positions in the considered spectrum-location
awareness scenarios.

To deal with realistic challenges above and avoid the mis-
tracking of moving locations when a PU readily turns off, a
promising adaptive horizon expanding (AHE) mechanism is
particularly designed, by taking the uncertainty adaptation into
full account. For simplicity, the lasting length of sn−1 = S0 is
denoted by J, i.e., sn−j = S0 for 0 < j < J and sn−J−1 = S1.
The basic idea behind our designed AHE is that the uncertainty
of the proposal birth density would be accumulated as the
lasting length J increases, as illustrated by Fig. 2. Within the

new AHE framework, PU’s positions may be tracked via the
following two criterions.

1) After the PU enters into H0 at time (n − J), the predic-
tive position estimations in subsequent time slots (i.e.,
n − J + 1, n − J + 2, · · · , n − 1) will be derived based
on the previously estimated PU’s speed and orientation,
as shown by the Fig. 2.

2) Once the PU re-emits at time n, then its dynamic posi-
tions will be estimated by fully utilizing the likelihood
information. Correspondingly, in this situation, the birth
density of the discrete time n will be specified by:

bn|n−1(xn|n−1) ∼ fv(vn|J) × fθ (θn|J), (41)

where the two independent 1-D densities, i.e., the speed
density fv(vn|J) and the orientation density fθ (θn|J)

which are updated adaptively according to spectrum
sensing results (i.e., s1:n−1), will jointly specify a 2-D
prior density of PU’s locations. It is supposed that,
as the lasting length J of S0 increases, the cover area
of this birth density would be also expanded so as
to track the PU positions even after a long time of
silence. In practice, these two adaptive densities will be
specified as:

fv(vn|J) = 1

σv

√
2πJ

exp

[
− (vn − Jv̂n−J−1)

2

2Jσ 2
v

]
, (42)

fθ (θn|J) = 1

2Jσ 2
θ

exp

(
−|θn − Jθ̂n−J−1|

Jσ 2
θ

)
, (43)

respectively, where the term v̂n−J−1 and θ̂n−J−1 denote
the estimated PU’s speed and orientation of the (n −
J − 1)th time, which may be either derived from an
instantaneous estimation based on the (n − J − 2)th and
the (n − J − 1)th time, or the G-average estimation, e.g.,
from the (n − J − G)th time to the (n − J − 1)th time.
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In the analysis, we employ the simple instantaneous
estimation, i.e.,

v̂n−J−1 = ‖l̂n−J−1 − l̂n−J−2‖2, (44)

θ̂n−J−1 = ang(l̂n−J−1 − l̂n−J−2), (45)

Note that, after a PU enters into the emission state, then the
uncertainty of the birth density will be reduced gradually.

Based on the designed survival-density and birth-density, we
may now draw discrete particles from one unified proposal
distribution ξn|n−1(xn|n−1|x(i)

1:n−1, z0:n), i.e.,

x(i)
n|n−1 ∼ ξn|n−1

(
xn|n−1

∣∣∣x(i)
1:n−1, z0:n−1

)
,

i = 1, 2, · · · , I − B, I − B + 1, · · · , I. (46)

With the suggested survival and birth densities, the Bayesian
inference will now be numerically realized. Relying on a group
of new simulated particles x(i)

n|n−1 and the probability weights

w(i)
n|n−1 calculated from (43), the intractable integration on

fn|n−1(x) will be replaced by summations, i.e.,

∫
rn(zn|x)fn|n−1(x)dx �

I∑
i=1

rn

(
zn

∣∣∣x(i)
n|n−1

)
w(i)

n|n−1. (47)

Based on eq. (36), the term fn|n(x) will be approximated. So,
PU’s dynamic locations will be estimated via:

l̂n = arg max
xn∈R2

f̃n|n(xn), (48)

where the a posteriori probability is approximated by:

f̃n|n (x → x(j)) =
∑

i∈Xj
w(i)

n|n/
I∑

i=1

w(i)
n|n,

Xj =
{

i
∣∣∣x(i)

n|n = x(j)
}

. (49)

The unknown PU state is finally derived by comparing the
posterior existence density with a predefined threshold χ , i.e.,

λ̂n =
{

1 if qn|n ≥ χ, (50a)

0 if qn|n < χ. (50b)

where χ is configured to χ = 0.5 under a Bayesian criterion.
c) Algorithm flow: To sum up, two main parts are in-

volved by the designed spectrum-location awareness algorithm,
as illustrated by Fig. 3. (1) Based on the recursive predict-
update propagation and by utilizing observation trajectory z1:n,
the posterior existence probability qn|n and the spatial PDF
fn|n(x) are estimated. (2) In the case of qn|n < χ , the designed
AHE will be applied and, with the help of BPF, the unknown
emission state of PU will be detected and its locations will be
estimated jointly.

It is noted one counter, namely J, is used to record the
degrees of the prior uncertainty after a PU enters into the silence
state (i.e., H0), which is of practical use to the designed AHE
process. It will be clamped to 1 every time the PU transiting to
the emission state (i.e., H1). Otherwise, if the PU have resided
in H0 for one sensing period TS, then J will be updated by
J = J + 1.

Fig. 3. Schematic flow of the DS algorithm implemented by BPF.

d) Implementations: Firstly, although the PU-SU dis-
tance dn,k is involved in observations, it will not be estimated
directly by BPF. With the probable PU’s locations (or a group of
simulated particles) and K observations, the distance dn,k will
be evaluated implicitly by the data center, as the position of
each deployed SU is known as a priori.

Secondly, it should be noteworthy that, given the phase-free
RSS observations zn,k, the generalization to other modulated
signals is also straightforward [26]. From the algorithm deriva-
tions, the proposed scheme relies essentially on the dynamic
model and the related likelihoods of observations. Once the
likelihoods of various signals are available, it will be ready
for either single carrier (SC) or orthogonal frequency-division
multiplexing (OFDM) signals, even without a priori modu-
lation formats. One may refer to the previous works [26],
[34], in which the likelihoods (i.e., phase-free observations) of
unknown modulated signals have been derived.

e) Complexity: Based on the elaborations above, we may
further analyze the complexity which is roughly measured by
the total numbers of multiplication operations. Firstly, to obtain
RSS observations, O(M) multiplications are required in each
SU node. Secondly, for the implementing of BPF process, the
computation complexity may become proportional to the size
of simulated particles, i.e., I. Thus, the total complexity of this
designed DS algorithm is measured by O(MK + I).
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Fig. 4. (a) The top-left figure gives the true trajectory and the estimated trajectory of the proposed DS scheme. Here, the sampling length is M = 200 and SNR
is configured to 10 dB. (b) The top-right figure shows the prior positions of K = 9 collaborative SU nodes, which are located at the vertexes of a 2-D grid. Notice
that, these stems sign PU’s emission states along the moving trajectory. (c) The below-left figure plots the RMSE of the estimated trajectory. (d) The below-right
figure plots the statistic distribution of RMSE values.

IV. NUMERICAL SIMULATIONS

In this section, the performances of both spectrum sensing
and PU’s localization accuracy will be investigated in realistic
spectrum-location awareness applications.

1) Sensing Metric: Since a Bayesian approach is used by the
proposed scheme, the total detection probability is adopted as a
metric for sensing performance as in [27], [33], i.e.,

PD � 1 − p(H1)Pm − p(H0)Pf . (51)

Here, the false alarm Pf � Pr(H1|H0) measures the spec-
tral utilization, while the missed detection probability Pm �
Pr(H0|H1) controls the interferences from SUs to PU which is
aroused by miss detections. Such a performance metric remains
quite different from the classical NP criterion, in which a main
objective is either to minimize Pm for a target Pf , or to minimize
the Pf for a target Pm. It is noted that, as the major merit of
this new metric, the spectral utilization to unused bands and the
potential interference to PUs can be jointly taken into accounts.

2) Localization Metric: For the dynamic tracking of PU’s lo-
cations, as a common performance metric, the root mean square
error (RMSE) of estimated positions will be adopted, i.e.,

RMSE � E

⎧⎨
⎩ 1

N

√√√√ N∑
n=1

‖l̂n − ln‖2
2

⎫⎬
⎭ . (52)

A. Simulation Configurations

In the experiments, K SUs are located on the vertexes of
a 2-D grid, while a PU is moving onto this grid with its
emission states switching randomly. Such a realistic scenario

may correspond to the indoor office or an outdoor square,
where several anchor SU nodes are deployed on the borders.
In the simulation, the border length of the grid is set to 100 m.
For the case of K = 4, four SU nodes are located at (0, 0), (0,
100), (100, 0), (100, 100). For another case of K = 9, then SU
nodes are located at (0, 0), (0, 50), (0, 100), (50, 0), (100, 0),
(50, 100), (100, 50), (50, 50), (100, 100), as illustrated by the
top-right of Fig. 4. Both the initial speed v0 = 0.2 m/s and
the initial orientation θ0 = 0.5 rad are assumed to be known
by the data center. Without loss generality, the driven variance
of PU’s speed is configured to σ 2

v = 0.0002, while that of
its orientation is σ 2

θ = 0.02. The survival probability ps and
the birth probability pb are both configured to 0.5. During
the experiments, the average SNR of K SUs is obtained from
total N time slots, given the Gaussian noise variance σ 2

w, i.e.,

SNR � 1
NK

∑K
k=1
∑N−1

n=0
γ 2

k Esps

dα
k,nσ

2
w

. Here, without losing general-

ity, K receiving gains γk (k = 1, 2, · · · , K) are all configured
to 1, and the path-loss constant is set to α = 2.2. It is seen
from Fig. 4 that, when a relatively high SNR is provided (e.g.,
>10 dB), the time-varying trajectory of the moving PU would
be estimated with a high accuracy when the number of SUs is
K = 9. From numerical results shown by the below-right figure,
although the maximum RMSE is 2.49, the ratio of RMSE
exceeding 1.5 remains less than 10%.

B. Is Location Necessary?

In the first experiment, the influence from PU’s moving
positions on the spectrum sensing is investigated. The number
of SUs is still set to K = 4 and the sample size is M = 100; the
size of simulated particles are configured to I = 1000, while
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Fig. 5. Spectrum sensing performances of the DS algorithm and the tradition
sensing scheme. In the simulation, K is configured to 4, M is 100 and (pb, ps)
is set to (0.5, 0.5).

the number of birth particles is B = 500. Each curve is derived
numerically based on 10 independent realizations. For the
traditional ED scheme, it is assumed the accurate trajectory of
a moving PU remains unknown. The average receiving power,
instead, is assumed as a priori in each SU. In the data center,
the cooperative sensing scheme is used.

As shown by Fig. 5, the SNR wall will be appeared in tra-
ditional schemes without a real-time tracking of PU’s moving
positions. The probability of total detections PD will become
converged to 0.962, no matter what SNR is provided. This
SNR wall is attributed primarily to the reception uncertainty
aroused by PU’s unknown locations. Recall that the energy
observation is inversely proportional to the power of distance,
i.e., zn,k ∝ 1

d2
n,k

. Even if an active PU is moving around, the

energy observation in SUs will be changed dramatically due
to the resulting far-and-near effect. In absence of its accurate
positions, the missing detections will easily occurs when a PU
emitting signals moves far away from the SUs. In comparison,
if the PU’s locations are acquired jointly, the interrupted in-
fluence from the far-and-near effects may be calibrated when
making a decision on the existence of PU. So, the uncertainty
introduced by a PU’s mobility will be removed and, as a
consequence, the performance of the new DS scheme can be
promoted by eliminating the SNR wall.

The benefits of the PU’s localization information are not
only the enhanced sensing performance, but also more flexible
strategies of accessing primary bands. That is, if the accurate
PU’s position is perceived by SUs, then beam-forming tech-
niques, e.g., the simple beam switching in [35], can be adopted
to conduct CR transmissions even an active PU is nearby. This
indicates a full two-dimensional time-spatial usage of primary
bands and, therefore, the spectral efficiency will be improved
significantly with the PU’s localization information.

C. Sampling Length M

In the second experiment, the effects from different sampling
size M are investigated. Each curve is also derived numerically

Fig. 6. The sensing and positions estimation performance of the DS algorithm
under different M. In the simulation, K is configured to 4, (pb, ps) is set to
(0.5, 0.5).

Fig. 7. The sensing and positions estimation performance of the DS algorithm
under different number of SUs. In the simulation, the sample size M is
configured to 200, (pb, ps) is set to (0.5, 0.5).

based on 10 independent realizations. In our simulation, the
number of SUs is set to K = 4, the size of simulated particles
are configured to I = 1000, while the number of birth particles
is B = 500.

It is shown from Fig. 6 that, in practice, M will affect the
sensing performance. To be specific, the larger the sample size
M, the better the sensing performance. A rough detection gain
of 2 dB will be achieved by increasing the sampling size M
from 100 to 200. With multiple collaborative SU nodes, the
probability of total detections PD may achieve 1 when SNR
surpass 0 dB and M = 100. The RMSE curves of different M
are plotted together in Fig. 6. It is observed that the RMSE will
also be reduced by increasing M. For example, an estimation
gain of 3∼5 dB may be achieved via increasing M from
100 to 200. Thus, the localization accuracy may be promoted
effectively by adopting a larger M in low SNRs, but at the
expense of a prolonged sensing time. Notice that, in high SNR
regions (e.g., SNR > 15 dB), the improvement on localizations,
nevertheless, may become limited when increasing M.
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Fig. 8. Joint sensing and location performances of the proposed DS algorithm under different (pb, ps). In the simulation, K is configured to 4. (a) The probability
of total detections, i.e., PD; and (b) the RMSE performance.

D. Number of SUs

In the third experiment, both the sensing and localization per-
formance of the new DS scheme is investigated under different
numbers of SUs (i.e., K). The sample size is set to M = 200.
Two kinds of collaborative SUs are compared, i.e., K = 4 and
9. From Fig. 7, if K increases from 4 to 9, then an estimation
gain of 2 dB may be obtained. A very similar trend may be
observed to the RMSE curves. To be specific, when K increases
from 4 to 9, the RMSE value may decrease from 2.188 to 0.784,
when the SNR is configured to 10 dB. Thus, increasing the
number of collaborative SUs is usually an effective approach
to enhance the performances of both spectrum sensing and
PU localization. As a practical compromise, however more
SUs will lead to higher computational complexity and deploy-
ment cost.

E. PU’s Dynamic Property

Since the tracking of PU’s moving positions relies essentially
on the RSS acquired from its emission signals, the dynamic
transitional property of PU may also affect the performances
of joint estimations. In this numerical experiment, the number
of collaborative SUs is K = 4. It is seen from Fig. 8 that,
although the spectrum sensing may not be remarkably affected
by PU’s dynamic behaviors, the localization accuracy will be
influenced noticeably. To be specific, the larger the duration
ratio between PU’s emission state (i.e., S1) and silence state
(i.e., S0), the more promising the localization performance.
From Fig. 8(b), compared with a shorter PU’s emission duration
(e.g., ps = 0.3, 1 − pb = 0.8), the RMSE will be remarkably
reduced from 4.27 to 1.84 when a longer emission duration
(e.g., ps = 0.8, 1 − pb = 0.3) is considered, if the sampling size
is configured to M = 100 and SNR=10 dB. This is also easy
to understand, i.e., the tracking of PU’s locations may become
more accurate premised on more useful RSS information. Thus,
despite a lower chance of the spectral reuse when the moving

PU staying more time in the emission state, a more promising
localization performance will be obtained. As a consequence,
another dimension spatial reuse may be reinforced based on the
accurately estimated PU’s locations.

F. Practical Considerations

When the proposed DS scheme with joint location tracking
is applied to future 5G communications, some other practical
aspects should be taken into considerations.

1) Tradition positioning techniques can be premised on
ToA, time difference of arrival (TDoA), angle of ar-
rival (AoA), RSS or the hybrid information [36]. For
the location tracking of LTE-A or 3GPP-LTE, TDoA
has been widely recommended [37]–[40], as a com-
promise between the implementation cost (e.g., exclud-
ing both the precise synchronization as in ToA and
the placement of multi-antenna as in AoA) and the
localization performance. For the considered spectrum
and location awareness scenarios, the RSS informa-
tion, as mentioned, suits better due to the absence of
cooperation between PU and SUs. In real CRs, the
synchronization sequence (e.g., the positioning refer-
ence signal required by TDoA) between a base station
and mobile users are usually unavailable. As far as
the practical deployments are concerned, therefore, the
suggested RSS-based scheme seems to be more widely
applicable.

2) To sum up, the existing localization schemes for
LTE/LTE-A may be grouped into three categories [36],
i.e., Cell-ID based approach [38], the least square (LS)
scheme [37] and the PF scheme [39], [40]. With regards
to the implementation complexity, the Cell-ID method is
no-doubt the simplest, which has a constant complexity
O(1) by directly acquiring the ID number [38]. Another
commonly used LS scheme has a moderate complexity
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of O(3K3 + K2), and the PF method is more compli-
cated with a complexity of O(I), i.e., it usually meets
I  K3 [4]. When it comes to the tracking accuracy,
the average RMSE of a Cell-ID method is typically
around 20∼30 m [38], [40], and that of LS schemes
is about 10∼20 m [37], [39]. The PF scheme may
obtain the most favorable tracking RMSE, about 5∼15 m
[39], [40]. For the proposed DS algorithm, the com-
plexity and tracking performance will be comparable
to the existing PF schemes. For example, other than
the acquisition of RSS information, the computational
complexity of the BPF process (at the date center) is
also O(I). When the measured SNR is −5 dB, the av-
erage RMSE in heterogeneous LTE-A applications may
approach 13 m (with TDoA information) [40], while
the average RMSE of this proposed scheme is about
16 m. It is noteworthy that, in our new scheme, how-
ever the more general RSS information is assumed and,
furthermore, the more challenging joint detection and
estimation scenario (i.e., with a mixed objective of sens-
ing the PU’s dynamical state and tracking its positions)
is considered.

V. CONCLUSION

A new DS paradigm is proposed to realize spectrum sensing
and joint PU’s location tracking in future mobile spectrum-
sharing applications. A general DSM is firstly established to
thoroughly characterize dynamic behaviors of both unknown
PU’s states and its moving locations. Relying on the RFS,
a flexible estimation algorithm is developed, which tracks
PU’s moving positions blindly at the same time of detecting
its random emission states. To overcome the mis-tracking of
PU in realistic CR scenarios, which may be easily aroused
by the intermittent disappearances of PU’s emission signals
(or RSS information), a promising AHE scheme is designed
by updating the prior uncertainty of location estimations adap-
tively. The DS scheme is finally implemented via an SIS-based
Bernoulli PF mechanism, by numerically approximating the
analytically intractable posterior density. Experiments validate
the proposed DS scheme. By taking mutual interrelations be-
tween sensing and dynamic localization into full accounts, it is
shown that the PU’s unknown emission states can be detected
effectively even in the presence of a moving PU. Moreover, the
estimated PU’s real-time locations, as an extra benefit of sens-
ing process, may be utilized to improve network performances,
by exploiting both spectral and spatial resource in DSA scenar-
ios. The more challenging time-varying fading channels will be
investigated in the future work. The new DSM and DS scheme,
which may be further extended to other scenarios, provide a
brand-new idea for further spectrum and location awareness
5G communications.
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