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Abstract—The integration of Cognitive Radio (CR) with Un-
manned Aerial Vehicles (UAVs) is an effective step towards
relieving the spectrum scarcity and empowering the UAV with
a high degree of intelligence. The dynamic nature of CR and
the dominant line-of-sight links of UAVs poses serious security
challenges and make the CR-UAV prone to a variety of attacks
as malicious jamming. Joint jammer detection and automatic
jammer classification is a powerful approach against the physical
layer threats by identifying multiple jammers attacking the
network that realize a crucial stage towards efficient inference
management. This paper proposes a novel method for joint
detection and automatic classification of multiple jammers at-
tacking with different modulation schemes. The method is based
on learning a representation of the radio environment encoded
in a Generalized Dynamic Bayesian Networks (GDBN) whilst
multiple GDBN models represent various jamming signals under
different modulation schemes. The CR-UAV performs multiple
predictions online in parallel and evaluates multiple abnormality
measurements based on a Modified Markov Jump Particle Filter
(M-MJPF) to select the best-fit model that explains the detected
jammer and recognize the modulation scheme accordingly. The
simulated results demonstrate that the proposed GDBN-based
method outperforms both Long Short-Term Memory (LSTM)
and Convolutional Neural Network (CNN) in terms of classifica-
tion accuracy and achieves a higher degree of explainability of its
own decisions by interpreting causes and effects at hierarchical
levels under the Bayesian learning and reasoning processes.

Index Terms—Cognitive Radio, Unmanned Aerial Vehicles,
Dynamic Bayesian Network, Bayesian Filtering, Modulation
Recognition.

I. INTRODUCTION

The advent of the Unmanned Aerial Vehicles (UAVs) and

its recent rapid growth in a myriad of applications have got

plenty of interest to be leveraged in the fifth-generation (5G)

technology [1]. Owing to the dynamic deployment flexibility,

high mobility and strong Line-of-Sight (LoS) communication

links of UAVs, they are regarded as an important complement

to the terrestrial networks from the sky [2]. However, UAV-

based communications will face several problems such as

spectrum scarcity due to the explosively increasing number
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of connected UAVs [3], energy-efficiency due to the on-board

limited battery lifetime [4], [5] and physical layer security

(e.g. jamming attacks) due to the open nature of ground-to-air

wireless channels and the dominant LoS propagation links [6].

Cognitive Radio (CR) is considered as one of the most promis-

ing solutions that can tackle the aforementioned problems

due to its capability in pursuing its own goals autonomously,

learning the radio environment, monitoring and predicting

the environmental changes and infer the appropriate action

that can be performed [7]. A series of recent studies have

investigated the integration of CR and UAVs (i.e. Cognitive

UAV Radios) for different aspects such as, communication

capacity and Quality of Service (QoS) improvement [8], [9],

collision avoidance stability [10], trajectory optimization [11],

energy harvesting [12], spectrum scarcity [13], energy effi-

ciency optimization [14], [15], interference coordination [16],

data dissemination [17], joint sub-carrier and power allocation

[18], [19], and for secure communications [20].

UAV communications are susceptible to jamming attacks

by terrestrial malicious nodes distributed over a large area

on the ground that can exploit the strong LoS channels to

launch powerful attacks and interfere with the UAV resulting

in communication failure [21]. In addition, smart jammers

equipped with cognitive capabilities can pose more security

threats. They can sense the radio spectrum and discover the

UAV’s transmission policy to update their attack strategy and

force the UAV to learn wrong behaviours and take misleading

actions. Thus, enhancing the physical layer security is of great

concern to ensure reliable communications and successfully

deploy cognitive UAV Radios. This work focuses on the joint

detection and classification of multiple jammers attacking the

UAV’s control and command link. Jammer detection is the

first essential step to determine the radio situation, while

jammer classification is an important stage towards an efficient

interference management solution [22].

In our previous investigations ([23], [24], [25]), we intro-

duced the concept of Self-Awareness (SA) in CR to empower

the radio with a brain for high-level intelligence. The SA mod-

ule allows the radio to reach the capability of learning a rep-

resentation of the radio environment encoded in a generative

dynamic model to be stored in the radio’s brain. The generative

model describes in a probabilistic manner how a given signal

might have been generated by predicting new data samples

and inferring the hidden states that caused the observed

signal. This allows the radio to evaluate the situation through

different abnormality measurements at multiple hierarchical

levels and understand if the situation is normal or abnormal
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(e.g. detecting normal and jamming signals). If an abnormality

is detected, the radio can characterize it to discover the new

rules and encode them incrementally in a new dynamic model.

However, an important question that needs to be addressed

here is when the radio must learn a new model based on the

current experience? Abnormality detection is not enough to

answer this question. In contrast, abnormality classification is

an indispensable functionality towards this understanding by

comparing multiple abnormality signals generated by multiple

models already learned in previous experiences and evaluating

how much the current situation differs from them.

In this work, we extend the SA module by adding the Ab-

normality Classification functionality to jointly detect and clas-

sify multiple jammers according to their modulation scheme.

Initially, the Cognitive-UAV begins with null memory without

any a priori knowledge about the radio environment, supposing

that no signals present and observations are due to a stationary

noise process, i.e., a process evolving according to static

rules. Then the Cognitive-UAV starts to build up knowledge

about the environment by exploiting the Generalized Errors

(i.e. prediction errors) at the state level to discover the real

dynamic rules of how the signals (related to the commands)

are behaving inside the radio spectrum. These errors can be

clustered in an unsupervised manner to learn the corresponding

reference Generalized Dynamic Bayesian Network (GDBN)

model under a normal situation (i.e. where the jammer is

absent). The cognitive-UAV can use the acquired reference

GDBN model in future experiences to predict the commands

that it is supposed to receive under normal circumstances

by employing a Modified Markov Jump Particle Filter (M-

MJPF). Consequently, it can detect any jamming attack using

abnormality measurements at hierarchical levels as well as

calculating the new Generalized Errors once an abnormality

is detected. This computational scheme assumes that the

cognitive-UAV generates probabilistic predictions continually

on what commands come next based on the rules encoded

in the reference model and compares those predictions at

different hierarchical levels with the UAV’s real communi-

cations stimuli that lead to the computation of hierarchical

Generalized Error signals. These Generalized Error signals are

of great importance to understand why the current dynamic

model can not explain the current radio situation and how we

can update the model to adapt to the abnormal situation. In

addition, those errors can be informative enough to understand

the cause behind the abnormality and provide a way to extract

the jammer’s signal. Exploiting the Generalized Errors allows

extracting the jammer’s signal and guides the cognitive-UAV

to learn a separated GDBN model for each detected jammer.

In this way, the cognitive-UAV’s brain consists of a reference

GDBN model representing the command signals that the UAV

is expecting to receive in a typical radio situation and a set of

multiple GDBN models representing the jammers’ behaviours

incrementally learned in previous experiences under different

modulation schemes in abnormal radio situations. The link

between the reference model and the other ones is described

by the Generalized Errors provided by the reference model and

used by the set of models as observations. In other words, the

UAV uses the reference model to infer the hidden states of

the radio environment, detect abnormalities in case of attack

and calculate the Generalized Errors. Those errors can be used

as observations by the other set of models (representing the

jammers) while performing multiple predictions in parallel to

evaluate the best GDBN model (inside the set) that better

explains the current observation (i.e. Generalized Error pro-

vided by the reference model) and recognize the modulation

scheme of the jammer consequently. The classification task is

formulated in terms of objective function that maximizes the

Bayesian model evidence (or marginal likelihood), which is

the probability of observing signals conditioned to a model

generating those signals or to minimize the surprise (i.e.

abnormality). This means that we will test different hypotheses

(i.e. models) and weighting them to select the model that has

the greatest evidence and minimum surprise (i.e. abnormality).

The main contributions of this work are as follows: i) we

propose an efficient learning mechanism within the Growing

Neural Gas (GNG) to capture the dynamic transitions of the

radio signal modulated under certain modulation scheme; ii)
we formulate the modulation classification problem in terms

of an objective function that aims to minimize the surprise

(i.e. abnormality) by testing different models learned by the

radio and weighting them to select the model that causes the

minimum surprise and thus that better explains the modula-

tion scheme of the detected jamming signals; iii) extensive

simulations verify that the proposed GDBN-based framework

for automatic jamming signal classification performs with

superiority classification accuracy than LSTM and CNN; iv)
the GDBN models can achieve higher interpretability than

Deep Learning-based models since they can explain the predic-

tions explicitly at hierarchical levels and use the abnormality

measurements and Generalized Errors as self-information to

keep learning by understanding incrementally.

II. RELATED WORK

Radio Signal Classification is an important task in many

communications systems [26]. It is mainly based on Auto-

matic Modulation Classification (AMC) that servers as an

intermediate step between signal detection and signal de-

modulation. AMC is widely used in both civil and military

fields and finds applications in Cognitive Radio (CR) for

efficient spectrum management, and secure communications

[27], [28]. Traditional approaches for modulation classification

include Likelihood-Based (LB) approach and Feature-Based

(FB) approach [29], [30], [31]. The LB approach is based

on comparing the likelihood ratio of the received signal with

a threshold. The LB is optimal in the Bayesian sense by

minimizing the probability of false classification. However, it

is computationally complex and requires an estimation of pa-

rameters (e.g. channel parameters) to calculate the likelihood

probability, which is not always possible in real radio scenarios

as in CR. Also, the performance degrades in the presence of

phase and frequency offset. The FB approach does not require

an estimation of parameters, and it is based on some features

as the variance of the centered normalized signal amplitude,

phase and frequency. Thus it is less complicated compared

to the LB approach and easy to use. Even though it is sub-
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optimal, however, a proper design allows achieving optimal

performance.

Deep learning-based methods for AMC are extensively

investigated in the literature. In [28], a Long Term Short

Memory (LSTM) is used for this purpose where the data-

augmentation methods (i.e. rotation, flip, and Gaussian noise)

are studied to cope with small datasets by expanding the data

and thus improving the robustness of deep learning models and

classification accuracy as well. However, expanding the dataset

might lead to several problems as increasing latency which is

vital in some applications as vehicular communications. An

improved Convolutional Neural Network (CNN)-based auto-

matic modulation classification network (IC-AMCNet) is pro-

posed in [32] where different types of layers as convolutional,

dropout and Gaussian noise are applied for regularization and

to overcome the overfitting issue. In addition, a small number

of filters is used in each layer to reduce the processing time.

Authors in [33] proposed a gated recurrent, residual network

(GrrNet) for modulation classification consisting of a ResNet

extractor module, fusion module and GRU-based classification

module. However, both [32], and [33] used supervised training

by feeding the networks with the signal features along with

the labels that indicate the modulation scheme of the input.

This may require a significant effort to label large amounts of

training examples that can be expensive and time-consuming.

Interesting research has been conducted in [34] to study the

visualization methods for deep learning-based radio modu-

lation classifiers (based on CNN and LSTM) and thus to

understand the modulation classification mechanism for better

interpretability. However, such visualization techniques do not

exploit the extracted radio features in an unsupervised way,

allowing the radio to encode the dynamic changes between

different modulation schemes, which enhance the learning and

perception processes of the radio.

In [35], a compressive convolutional neural network (CCNN)

is proposed for AMC where different regular constellation

images and contrast-enhanced grid constellation images are

generated from received signals and used as network inputs.

In addition, a compressive loss constraint is proposed to train

the CCNN to capture high-dimensional features as well as

utilizing the intra-class compactness and inter-class separabil-

ity to enhance robustness performance for a different order

of modulations. Simulation results showed the superior clas-

sification compared with RNN, DNN and CNN. Other works

also converted the radio signal into images, e.g. Choi-Williams

time-frequency distribution (CWD) image [36], Feature Point

(FP) images [37], Contour Stellar Image (which gets more

color feature compared to the Constellation Diagram) [38],

amplitude spectrums of bispectrum (ASB) images [39], cyclic

spectrum images [40]. The studies mentioned above have

obtained promising results in modulation classification. How-

ever, they require high computational processing to convert

signals to images that can be unfeasible in the UAV scenario,

and they might lose important information and ignore crucial

details by passing from time-frequency representation to image

representation.

In this article, we propose a novel GDBN-based method

for AMC which has a high degree of interpretability that

can determine and associate causes and effects at hierarchical

levels thanks to the underlying Bayesian learning and rea-

soning processes. In addition, it achieves a high degree of

explainability of its own decisions where hidden variables used

in the generalized model make it possible to draw explicit

causal dynamic probabilistic relationships among continuous

signals and their symbolic higher-level counterparts to study

how significance each parameter in contributing to the final

decision.

III. SYSTEM MODEL

The system model depicted in Fig. 1 consists of a cellular-

connected UAV, Base Station (BS), a UAV operator, and

multiple terrestrial jammers aiming to attack the Command

and Control (C2) link by sending false commands to alter the

trajectory and take control of the UAV. The jammers are smart;

they can identify and locate the resources allocated to the UAV

by the BS inside the radio spectrum and attack consequently

using different modulation schemes. The propagation model

is shown in Fig. 2. We assume that the ground-to-UAV link

is always a Line-Of-Sight (LOS) under an Additive White

Gaussian Noise (AWGN) channel condition. The 3GPP path

loss model defined in [41] is adopted under the RMa-AV

scenario. The BS sends continuously a Radio Frame of 10
ms to the active users already synchronized with BS in the

cell and allocates a specific number of sub-carriers to each

user for a predetermined slot which are organized in Physical

Resource Blocks (PRBs). We assume that the BS follows the

third allocation scheme for UAV command & control (C2) data

as mentioned in [42], since the 3GPP specifications require a

maximum of 100 kb/s for C2 data, latency of 50 ms, and inter-

arrival time (also known as Transmission Time Interval TTI)

UAV 
Operator

Jammer 1

Jammer 2

Jammer 3

Jammer

Cognitive UAV

Base 
Station

Command & Control (C2) link
Jamming link

Fig. 1. Illustration of the system model.
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Fig. 2. Illustration of the Propagation Model including the Operator, Jammer
and the UAV.
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Fig. 3. Physical resource allocation
and RF structure.
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Fig. 4. Timing of the PRBs and RVs
received by the UAV.

of 100 ms for efficient management of a UAV [43]. The UAV

is equipped with a GPS receiver and RF antenna which are

supposed to be synchronized, i.e. the UAV receives one PRB

and measures the 3D position (by the GPS receiver) every 50
ms. The Pitch, Yaw, and Roll commands are transmitted over 9
consecutive sub-carriers (frequency domain) within 1 OFDM

symbol (time domain) in each PRB received by the UAV,

where we call these Resource Elements (REs) as a Resource

Vector (RV) as shown in Fig. 3 and Fig. 4. The remaining

sub-carriers and OFDM symbols of the PRB are related to

other information sent to the UAV. In our study, the data is

extracted after the OFDM receiver block. More precisely, after

the FFT where at this level the UAV can scan all the Resource

Elements (REs) of the time-frequency grid and capture the IQ

data without any extra hardware. In our study, we considered

the RVs solely because we aim to analyze the command

signals only. However, this can be simply extended in future

investigations to consider the whole PRB.

IV. PROPOSED AUTOMATIC JAMMING MODULATION

CLASSIFICATION

A. Radio Environment Representation

In our approach, we use a generalized state-space model to

represent the radio environment. We assume, that the observed

signal �̃�𝑡 is a linear combination of one latent generalized state

�̃�𝑡 that represents the direct cause of the observation and a

multivariate generalized Gaussian noise �̃�𝑡 (�̃�𝑡 ∼ N(0, Σ�̃�𝑡 ))

and defined as follows:

�̃�𝑡 = 𝐻�̃�𝑡 + �̃�𝑡 , (1)

where 𝐻 ∈ R𝑑×𝑑 is the matrix that maps hidden states to

observations. The generalized observation �̃�𝑡 ∈ R
𝑑 comprises

the signal’s states in terms of 𝐼 and 𝑄 components and the

corresponding first-order temporal derivatives ( �𝐼, �𝑄), where 𝑑
is the space dimensionality and it is equal to the total number

of sub-carriers where the commands are transmitted.

The evolution of the hidden generalized states �̃�𝑡 can be

approximated as a linear combination of the previous state

�̃�𝑡−1 which is guided by the deep hidden cause 𝑆𝑡 and

formulated as follows:

�̃�𝑡 = 𝐴�̃�𝑡−1 + 𝐵𝑈�̃�𝑡
+ �̃�𝑡 , (2)

where 𝐴 ∈ R𝑑×𝑑 and 𝐵 ∈ R𝑑×𝑑 are the dynamic model and

control model matrices while 𝑈�̃�𝑡
is the control vector and �̃�𝑡

is the generalized process noise such that �̃�𝑡 ∼ N(0, Σ�̃�𝑡 ). The

generalized superstates are discrete variables that explain the

discrete regions of the signal. The evolution of these variables

is expressed in the following form:

𝑆𝑡 = 𝑓 (𝑆𝑡−1) + �̃�𝑡 , (3)

where 𝑓 (.) is a non-linear function that describes the relation-

ship between the previous superstate and the current super-

state, realizing the dynamics of how the signal is transiting

among the discrete regions and its evolution over time.

B. Learning Stage

We propose to learn a GDBN as a representation of the

radio environment. GDBN can model dynamic processes de-

scribing the signal’s temporal evolution at hierarchical levels.

GDBN provides a graphical structure representing hidden and

observed states in terms of random state variables encoding the

conditional dependencies among them and specifying a com-

pact parameterization of the model. Two sets of parameters can

represent it. The first includes the number of nodes in each

time slice and the corresponding topology, while the second

set consists of the conditional probability distributions (CPDs)

described by edges of the network. Learning a GDBN consists

of parameter learning and structure learning. The former is the

process of learning the distributions of discrete or continuous

hidden variables in the GDBN, while the latter uses data to

learn the links among random variables in the GDBN. Both

parameter and structure learning depends on the generalized

state-space model in question. The proposed GDBN consists of

three levels. The discrete level stands for the discrete variables

describing the discrete regions of the signal. The medium level

stands for the continuous states encoded inside each discrete

region, and the bottom level stands for the observation.

Reference GDBN

Initial GDBN

predictive messages

diagnostic messages

generalized errors

GNG

CLA

abnormality indicator

Fig. 5. Schematic that illustrates the process of learning incrementally by
exploiting the generalized errors. The cognitive-UAV starts perceiving the
environment using an initial GDBN model with a static assumption about
the signal’s evolution. While the cognitive-UAV is predicting and sensing the
environment, it can calculate the generalized errors ( �̃��̃�𝑡

) and stored them to
perform the clustering after finishing the current experience.

The cognitive-UAV aims to learn and encode the radio

environment representation in a GDBN under a normal radio

situation. Initially, it starts with null memory without prior

knowledge about the surrounding radio environment assuming

that signals are evolving according to static rules. Thus, the

cognitive-UAV starts perceiving the radio environment using

an initial GDBN (consisting solely of the observation and

state levels) on which an Unmotivated Kalman Filter (UKF)

is employed (i.e., a null force filter with a static assumption
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about the environmental states) to predict the continuous signal

using the following equation:

�̃�𝑡 = 𝐴�̃�𝑡−1 + �̃�𝑡 , (4)

and then interpreting the received generalized observations �̃�𝑡
that comprises the variable and its generalized coordinates of

motion coming from the receiver. In fact, since the signals

inside the radio spectrum are following a certain dynamic

behavior, the cognitive-UAV will detect abnormalities all the

time and calculate the generalized errors (𝜀�̃�𝑡
) which are the

differences between predictions and observations and it is

expressed as:

𝜀�̃�𝑡
= �̃�𝑡 − 𝐻�̃�𝑡 . (5)

The UKF works by predicting the generalized states (�̃�𝑡 ),
projecting this into the measurement space and taking the

difference between the current observed generalized measure-

ment (�̃�𝑡 ) and the predicted one. This difference is known

as innovation, which is computed in the measurement space.

Thus, to project this difference back to the generalized state-

space we must use the following formula:

𝜀�̃�𝑡
= 𝐻−1𝜀�̃�𝑡

= 𝐻−1(�̃�𝑡 − 𝐻�̃�𝑡 ) = 𝐻−1 �̃�𝑡 − �̃�𝑡 . (6)

The generalized errors (𝜀�̃�𝑡
) that capture the real dynamics

of the signal are used as input to an unsupervised clustering

technique, the Growing Neural Gas (GNG) (refer to Fig. 5).

GNG encodes the generalized errors into discrete regions

described by a set of neurons or superstates S, such that:

S = {𝑆1, 𝑆2, . . . , 𝑆𝑀 }, (7)

where 𝑀 is the total number of neurons. After obtaining the

neurons, we analyzed how the signal is transiting between

them to learn the transition matrix Π by estimating the

transition probabilities 𝜋𝑖 𝑗 = 𝑃(𝑆𝑡 = 𝑖 |𝑆𝑡−1 = 𝑗) over a period

of time (i.e. the training time), where 𝑖, 𝑗 ∈ S. The 𝑀 × 𝑀
transition matrix is defined as:

Π =

⎡⎢⎢⎢⎢⎢⎣
𝜋11 . . . 𝜋1𝑀
...

. . .
...

𝜋𝑀1 . . . 𝜋𝑀𝑀

⎤⎥⎥⎥⎥⎥⎦
. (8)

Thus, the generalized superstates (S̃) can be expressed in terms

of current discrete variable 𝑆𝑡 and the corresponding event 𝑒
𝑖 𝑗
𝑡

in the following way:

𝑆𝑡 = [𝑆𝑡 �𝑆𝑡 ] = [𝑆𝑡 𝑒
𝑖 𝑗
𝑡 ] . (9)

An event can be described as a change at the discrete level

(i.e., the transition from a certain superstate to a new one),

such that:

𝑒
𝑖 𝑗
𝑡 = (𝑆𝑡−1 = 𝑖, 𝑆𝑡 = 𝑗) | 𝑖 ≠ 𝑗 . (10)

The null event can be defined as 𝑒0
𝑡 when 𝑖 = 𝑗 . Furthermore,

since the radio environment is dynamic and varies with time,

estimating the temporal (i.e., time-varying) transition matrix

Π𝜏 is of great interest. Π𝜏 encodes not only the possible

transitions (transition probabilities) at the discrete level but

also when those transitions or events will occur (i.e., the time

required for a particular event to occur) and defined as:

Π𝜏 =

⎡⎢⎢⎢⎢⎢⎣
𝜋11,𝜏 . . . 𝜋1𝑀,𝜏
...

. . .
...

𝜋𝑀1,𝜏 . . . 𝜋𝑀𝑀,𝜏

⎤⎥⎥⎥⎥⎥⎦
, (11)

where 𝜋𝑖 𝑗 ,𝜏 = 𝑃(𝑆𝑡 = 𝑖 |𝑆𝑡−1 = 𝑗 , 𝜏) realizing a new condition

in transiting to the new superstate 𝑆𝑡 = 𝑖 after being in

𝑆𝑡−1 = 𝑗 for a certain time (i.e., 𝜏). It is worth noting

that as the dynamics of the signal become faster the time 𝜏
become smaller. So, the time-varying transition matrix encodes

how transition probabilities vary with time; some probabilities

increase and others decrease as time evolves, allowing to keep

tracking the dynamic changes in the environment.

Each discrete variable 𝑆𝑚 (𝑆𝑚 ∈ S) is associated with

specific statistical properties as covariance matrix Σ�̃�𝑚 and

generalized mean value �̃��̃�𝑚 defined as:

�̃��̃�𝑚 = [𝜇�̃�𝑚 , �𝜇�̃�𝑚 ], (12)

that consists of the mean value 𝜇�̃�𝑚 describing the average of

all the data samples encoded in this superstate in terms of 𝐼
and 𝑄 as well as the average of the corresponding derivatives

(i.e. �𝜇�̃�𝑚).

C. Testing Stage

GDBN can decompose data with complex and non-linear

dynamics into segments that are explainable by simpler dy-

namical units. The Modified Markov Jump Particle Filter

(M-MJPF) (which is an evolved version of the MJPF in-

troduced in [44]) is a specific class of switching dynamic

systems employed on the learned GDBN model to discover

the dynamical units and explain their switching behaviour and

their dependency on both observations and discrete/continuous

hidden states during the real-time process. The M-MJPF uses

a combination of Particle Filter (PF) to predict the generalized

superstates at the discrete level and a bank of Kalman Filters

(KFs) at the continuous level to predict the generalized states.

The M-MJPF within the Bayesian Filtering framework pro-

vides two probabilistic inference modes: predictive or causal

inference (top-down) and diagnostic inference (bottom-up).

The predictive inference is based on passing predictive mes-

sages in a top-down manner, where predictions are performed

based on the acquired knowledge in previous experience.

The diagnostic inference is based on propagating likelihood

messages after receiving the real measurement in a backward

manner from bottom to up, where the likelihood messages

evaluate how much the observation matches the predictions

at hierarchical levels to update the belief in hidden variables

accordingly. PF relies on a proposal density encoded in the

learned transition matrix to sample a set of particles realizing

the predicted superstates at the discrete level. Initially, PF

propagates 𝑁 equally weighted particles (<.>) associated with

a specific superstate, such that:

< 𝑆𝑛𝑡 ,𝑊
𝑛
𝑡 >∼< 𝜋(𝑆𝑡 ), 1/𝑁 >, 𝑛 ∈ 𝑁. (13)

It is worth noting that in our scenario, there is no need to use

a large number of particles since the discrete level consists
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of a finite number of discrete regions. Thus, it is sufficient to

use few particles to represent the posterior accurately (unlike

the continuous space which may need a huge number of

particles to represent the posterior correctly). After that, a

KF is employed for each particle (.𝑛) to predict �̃�𝑡 . The

prediction at this level (continuous level) is guided by the

prediction performed at the higher level as pointed out in (2)

and can be expressed in terms of the conditional probability

𝑃( �̃�𝑡 | �̃�𝑡−1, 𝑆𝑡 ). In (2), the control vector (𝑈�̃�𝑡
) which realize

the dynamic flow of the signal starting from the previous state

is encoded in the generalized mean value defined in (12),

hence 𝑈�̃�𝑡
= �𝜇�̃�𝑚 which by the way depends on the predicted

generalized superstate (𝑆𝑡 ) at the discrete level. The posterior

probability associated with the predicted generalized state is

given by:

𝜋( �̃�𝑡 ) = 𝑃( �̃�𝑡 , 𝑆𝑡 |�̃�𝑡−1) =
∫

𝑃( �̃�𝑡 | �̃�𝑡−1, 𝑆𝑡 )𝜆( �̃�𝑡−1)𝑑�̃�𝑡−1,

(14)

where 𝜆( �̃�𝑡−1)=𝑃(�̃�𝑡−1 | �̃�𝑡−1). Accordingly, a message back-

ward propagated from the bottom-level to the higher levels

once a new evidence �̃�𝑡 is received can be exploited to adjust

the expectations in hidden variables and estimate the posterior

probability 𝑃( �̃�𝑡 , 𝑆𝑡 |�̃�𝑡 ) which is defined as:

𝑃( �̃�𝑡 , 𝑆𝑡 |�̃�𝑡 ) = 𝜋( �̃�𝑡 )𝜆( �̃�𝑡 ). (15)

Consequently, the likelihood message 𝜆(𝑆𝑡 ) is propagated

towards the top-level to update the belief in the hidden discrete

variable by updating the weights according to:

𝑊𝑛
𝑡 = 𝑊𝑛

𝑡 𝜆(𝑆𝑡 ), (16)

𝜆(𝑆𝑡 ) is a discrete probability distribution represented by:

𝜆(𝑆𝑡 ) = 𝜆( �̃�𝑡 )𝑃( �̃�𝑡 |𝑆𝑡 ) = 𝑃(�̃�𝑡 | �̃�𝑡 )𝑃( �̃�𝑡 |𝑆𝑡 ), (17)

where 𝑃( �̃�𝑡 |𝑆𝑡 ) ∼ N (𝜇�̃�𝑚 , Σ�̃�𝑚 ) denotes a Gaussian distri-

bution with mean 𝜇�̃�𝑚 and covariance Σ�̃�𝑚 . While, 𝜆( �̃�𝑡 ) ∼
N (𝜇�̃�𝑡

, 𝑅) denotes a Gaussian distribution with mean 𝜇�̃�𝑡
and

covariance 𝑅. The multiplication between 𝜆( �̃�𝑡 ) and 𝑃( �̃�𝑡 |𝑆𝑡 )
can be estimated by calculating the Battacharyya distance

(𝐷𝐵) as follows:

𝐷𝐵
(
𝜆( �̃�𝑡 ), 𝑃( �̃�𝑡 |𝑆𝑡 = 𝑆𝑘 )

)
= −𝑙𝑛

∫ √
𝜆( �̃�𝑡 )𝑃( �̃�𝑡 |𝑆𝑡 = 𝑆𝑘 )𝑑�̃�𝑡 ,

(18)

where 𝑆𝑘 ∈ �̃�. The vector 𝐷𝜆 containing all the 𝐷𝐵 values

between 𝜆( �̃�𝑡 ) and all the superstates in the set �̃� is here

estimated as:

𝐷𝜆 =

[
𝐷𝐵

(
𝜆( �̃�𝑡 ), 𝑃( �̃�𝑡 |𝑆𝑡 = 𝑆1)

)
, . . . ,

𝐷𝐵
(
𝜆( �̃�𝑡 ), 𝑃( �̃�𝑡 |𝑆𝑡 = 𝑆𝐿)

) ]
.

(19)

Therefore, the vector 𝜆(𝑆𝑡 ) in terms of probability can be

computed as:

𝜆(𝑆𝑡 ) =

[
1/𝐷𝜆 (1)

1/
∑𝐿
𝑙=1 𝐷𝜆 (𝑙)

, . . . ,
1/𝐷𝜆 (𝐿)

1/
∑𝐿
𝑙=1 𝐷𝜆 (𝑙)

]
(20)

After updating the weights, particles with very low weights

are abandoned while particles with high weights are kept and

multiplied so that all particles have equal weight; this process

is known as sequential importance resampling (SIR). The logic

of the M-MJPF is reported in Algorithm 1.

Algorithm 1: M-MJPF

Input: �̃�𝑡 , N, 𝑇 , Π, Π𝜏 , 𝑆𝑚 : ( �̃��̃�𝑚 ,Σ�̃�𝑚 ) ∀ 𝑆𝑚 ∈ S
1 for each t ∈ T do
2 for each n ∈ N do
3 Prediction at Discrete Level:
4 𝑊𝑛 = 1

𝑁 ← particle weight
5 if 𝑡 = 1 ← initial state then
6 Sample: �̃�1 from initial prior density 𝑃( �̃�1)
7 �̃�𝑡 = �̃�1 ← current state

8 Estimate: 𝑆𝑛𝑡 from 𝑃( �̃�𝑡 |𝑆
𝑛
𝑡 )

9 else ← remaining states
10 𝑆𝑛𝑡 ∼ 𝜋𝜏 (𝑆𝑡−1)
11 if 𝑆𝑛𝑡 = 𝑆𝑛

𝑡−1 then
12 𝜏𝑛 = 𝜏𝑛 + 1 ← time elapsed in 𝑆𝑛𝑡

13 else
14 𝜏𝑛 = 1

15 Prediction at Continuous Level:
16 𝑈�̃�𝑡

= 𝑈�̃�𝑛
𝑡
← Control Vector

17 𝑃𝑡−1 |𝑡−1 = Σ�̃�𝑛
𝑡
← Covariance matrix

18 �̃�𝑡 = 𝐴�̃�𝑡−1 + 𝐵𝑈�̃�𝑡
← state

19 𝑃𝑡 |𝑡−1 = 𝐴𝑃𝑡−1 |𝑡−1𝐴
ᵀ + Σ�̃�𝑡 ← covariance

20 Calculate: 𝜋( �̃�𝑡 ) using (14)

21 Current Observation �̃�𝑡 :
22 𝜆( �̃�𝑡 ) = 𝑃(�̃�𝑡 | �̃�𝑡 ) ← diagnostic msg1
23 Calculate: 𝜆(𝑆𝑡 ) using (17) ← diagnostic msg2
24 Abnormality measurements:
25 Calculate: KLDA using (21)
26 Calculate: CLB using (25)
27 Calculate: CLA using (27)
28 Generalized Errors:
29 Calculate: �̃�

[1]
�̃�𝒕

, �̃�
[2]
�̃�𝒕

using (31), (32)

30 Calculate: �̃�
[1]
�̃�𝒕

, �̃�
[2]
�̃�𝒕

using (29), (30)

31 Calculate: �̃��̃�𝒕
using (24)

32 Update Belief in hidden variables:
33 𝐾𝑡 = 𝑃𝑡 |𝑡−1𝐻

ᵀ (𝐻𝑃𝑡 |𝑡−1𝐻 + Σ�̃�𝑡
)−1 ← Kalman gain

34 ˆ̃𝑋𝑡 = �̃�𝑡 + 𝐾𝑡𝜀
[1]
�̃�𝑡

← updated state

35 �̂�𝑡 |𝑡 = (1 − 𝐾𝑡𝐻𝑃𝑡 |𝑡−1) ← updated covariance

36 𝑊𝑛 = 𝑊𝑛 × 𝜆(𝑆𝑡 ) ← update particles weight

37 SIR resampling

Output: KLDA, CLA, CLB, 𝜀
[1]
�̃�𝑡

, 𝜀
[2]
�̃�𝑡

, 𝜀
[1]
�̃�𝑡

, 𝜀
[2]
�̃�𝑡

, 𝜀�̃�𝑡

D. Hierarchical Abnormality measurements and Generalized
errors

We have seen that predictive and diagnostic reasoning can

be used to estimate a joint posterior at different hierarchical

levels. An additional process can be done here to evaluate the

differences between two messages arriving at a given node

and:

• estimate the surprise (i.e. the abnormality) using a proper

probabilistic distance (e.g. Bhattacharyya distance, Kull-

back–Leibler divergence).
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• calculate the generalized errors by subtracting the

stochastic variables related to predictions and observa-

tions.

1) Discrete Level: this level describes the signal’s evolution

at a high level of abstraction. In order to evaluate to what

extent the current signal’s evolution matches the predicted one

based on the learned and encoded dynamics in the reference

GDBN, we used the Symmetric Kullback-Leibler Divergence

(𝐷𝐾𝐿) to calculate the similarity between the two messages

(that represent discrete probability distributions) entering to

node 𝑆𝑡 , namely, 𝜋(𝑆𝑡 ) and 𝜆(𝑆𝑡 ) which is formulated as:

𝐾𝐿𝐷𝐴 =
∑
𝑖∈S

𝑃𝑟 (𝑆𝑡 = 𝑖)𝐷𝐾𝐿
(
𝜋(𝑆𝑡 ) | |𝜆(𝑆𝑡 )

)
+

∑
𝑖∈S

𝑃𝑟 (𝑆𝑡 = 𝑖)𝐷𝐾𝐿
(
𝜆(𝑆𝑡 ) | |𝜋(𝑆𝑡 )

)
,

(21)

where 𝑃𝑟 (𝑆𝑡 ) is the probability of occurrence of each super-

state picked from the histogram at time instant 𝑡 and calculated

as follows:

𝑃𝑟 (𝑆𝑡 ) =
𝑓 𝑟 (𝑆𝑡 = 𝑖)

𝑁
, (22)

where 𝑓 𝑟 (.) is the frequency of occurrence of a specific

superstate 𝑖 and 𝑁 is the total number of particles propagated

by PF and S is the set consisting of all the winning particles,

such that:

S =
{
𝑖 |𝑃𝑟 (𝑆𝑡 ) > 0

}
, 𝑖 ∈ S. (23)

In addition, the generalized errors (𝜀�̃�𝑡 ) associated with the

abnormality indicator (21) allows to understand how the jam-

mer affected the discrete level of the reference model. Thus,

after detecting the jammer at the discrete level using (21),

it is possible to explain why we noticed a high abnormality

by calculating the difference between the diagnostic message

𝜆(𝑆𝑡 ) and the predictive message 𝜋(𝑆𝑡 ), such that:

𝜀�̃�𝑡 = 𝜆(𝑆𝑡 ) − 𝜋(𝑆𝑡 ), (24)

2) Continuous Level: this level describes the continuous

evolution of the signal guided by the evolution at the discrete

level. Measuring the distance between the predictive message

𝜋( �̃�𝑡 ) and 𝑃( �̃�𝑡 |𝑆𝑡 ) using 𝐷𝐵 defined as:

𝐶𝐿𝐵 = − ln
(
BC

(
𝜋( �̃�𝑡 ), 𝑃( �̃�𝑡 |𝑆𝑡 )

) )
, (25)

where

BC =
∫ √

𝜋( �̃�𝑡 )𝑃( �̃�𝑡 |𝑆𝑡 )𝑑�̃�𝑡 , (26)

is the Bhattacharyya Coefficient. 𝐶𝐿𝐵 allows evaluating if the

predictions at the continuous level match the predictions at the

discrete level and thus explains if the signal’s dynamics at both

the discrete and continuous level evolve according to the rules

learned before in a way that it can explain the received signal.

Moreover, it is possible to understand how much the obser-

vation supports the predictions using the second abnormality

detector at this level defined as:

𝐶𝐿𝐴 = − ln
(
BC

(
𝜋( �̃�𝑡 ), 𝜆( �̃�𝑡 )

) )
, (27)

where

BC =
∫ √

𝜋( �̃�𝑡 )𝜆( �̃�𝑡 )𝑑�̃�𝑡 . (28)

The abnormality indicators mentioned above can be used to

evaluate the radio situation and discover if something wrong

occurred in the radio environment that violates the dynamic

rules learned in previous experience. However, computing the

generalized errors at the continuous level allows discovering

the new force (related to the detected jammer) present in

the surrounding environment and understanding how much it

changed the evolution at the continuous level. The generalized

errors at this level are based on the difference between the

lateral predictive message 𝜋( �̃�𝑡 ) and the hierarchical messages

coming from the bottom level that are projected on the discrete

space and on the continuous space. As mentioned before

(in Section IV-B), the generalized error (𝜀 [1]
�̃�𝑡

) projected on

the continuous space and associated with (27) is defined as

follows:

𝜀 [1]
�̃�𝑡

= 𝐻−1𝜀 [1]
�̃�𝑡
. (29)

On the other hand, it would be possible to calculate the

Generalized Errors 𝜀 [2]
�̃�𝑡

(associated with (25)) between the

continuous and the observation level by subtracting the poste-

rior from the real measurement that is projected on the discrete

level and formulated in the following way:

𝜀 [2]
�̃�𝑡

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�̃�
(
argmax
�̃�𝑡 ∈𝑺

𝜆(𝑆𝑡 )
)
− �̃�𝑡 𝑖 𝑓 𝑆𝜋𝑡 = 𝑆𝜆𝑡

�̃�
(
argmax
�̃�𝑡 ∈𝑺

𝜆(𝑆𝑡 )
)
− �̃�

(
argmax
�̃�𝑡 ∈𝑺

𝜋(𝑆𝑡 )
)

𝑖 𝑓 𝑆𝜋𝑡 ≠ 𝑆𝜆𝑡

(30)

where 𝑆𝜋𝑡 = argmax
�̃�𝑡 ∈𝑺

𝜋(𝑆𝑡 ) is the expected superstate and

𝑆𝜆𝑡 = argmax
�̃�𝑡 ∈𝑺

𝜆(𝑆𝑡 ) is the observed superstate. The distinction

between these errors at the continuous level is that the first

(𝜀 [1]
�̃�𝑡

) is used by KF to correct the predictions and adapt to

the new situation during the testing phase, while the second

(𝜀 [2]
�̃�𝑡

) is used off-line after finishing the experience to discover

the dynamic behaviour of the detected jammer that can be

encoded in a new dynamic model.

3) Observation Level: at this level we can calculate two

generalized errors as well. The first one is related to the dif-

ference between actual measurement and prediction projected

on the measurement space (as mentioned before) and defined

as:

𝜀 [1]
�̃�𝑡

= �̃�𝑡 − 𝐻�̃�𝑡 . (31)

On the other hand, since we know which superstates of the

model are affected by the jammer (from the discrete level),

calculating the distance from the superstates’ centroid allows

to extract the source of the cause (jammer) that affected the

shift noticed at higher levels. So, 𝜀 [2]
�̃�

can be calculated in the

following way:

𝜀 [2]
�̃�𝑡

= �̃�𝑡 − 𝐻�̃�(argmax
�̃�𝑡 ∈𝑺

𝜆(𝑆𝑡 )), (32)

which represent the jammer’s signal. This can be explained by

the fact that the received signal �̃�𝑡 in an abnormal situation

consists of both the normal signal that the UAV is supposed to
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Reference GDBN Jammer GDBN

GNG

KLDA

CLB

CLA

predictive messages

diagnostic messages

generalized errors

abnormality indicators

Fig. 6. Schematic that illustrate the process of learning a separated model
of the detected jammer under the 𝑘-th modulation mode by exploiting the
Generalized Errors. Also, it illustrates the relationship between the reference
GDBN and the jammer’s GDBN under the 𝑘-th modulation scheme. The
reference GDBN model acts as the generative model that infers the direct
cause and deep cause of its own observations and as the process of generating
observations for the jammer’s model.

receive and the jamming signal. So, subtracting the received

jammed signal from its estimated superstate (at the top level)

gives the new force signal (i.e. jammer). It is important to

recall that estimating the new emergent force is possible since

we represented the random hidden variables in generalized

coordinates of motion (including the state per se and the

corresponding temporal derivative).

E. Extract jammer and learn the corresponding dynamic
model

The generalized errors at the continuous level and the

observation level can be used to extract the jammer’s dynamic

rules as well as the jammer’s signal, which can be used to

learn the corresponding dynamic model by clustering those

errors following the same approach seen before (to learn the

reference GDBN model) for each jamming signal under the

𝑘-th modulation scheme (see Fig. 6). The generalized errors

representing the jamming signal under the 𝑘-th modulation

scheme are clustered using GNG, which provides a set S(k)
of discrete regions as mentioned before. Following the same

mechanism we used to learn the reference model, i.e., estimat-

ing the transition matrix Π(𝑘) , time-varying transition matrix

Π(𝑘)
𝜏 and the statistical properties of each super-state in S(k) ,

we obtain a set SM of jamming dynamic models describing

the jammers dynamic behaviours under different modulations,

such that:

SM = {M1,M2, . . . ,M𝐾 }. (33)

However, here we propose to learn additional statistical prop-

erties for each 𝑆 (𝑘)𝑚 ∈ M𝑘 (where M𝑘 ⊂ SM), namely, a set

�̃�
�̃� (𝒌)
𝒎

of conditional generalized mean values defined as:

�̃�
�̃� (𝒌)
𝒎

=
[
�̃�
�̃�
(𝑘)
𝑚 |�̃�

(𝑘)
1
, �̃�

�̃�
(𝑘)
𝑚 |�̃�

(𝑘)
2
, . . . , �̃�

�̃�
(𝑘)
𝑚 |�̃�

(𝑘)
𝑀

]
, (34)

where the conditional control vectors (𝑼
�̃� (𝒌)
𝒎

) are encoded such

that:

𝑼
�̃� (𝒌)
𝒎

=
[
𝑈
�̃�
(𝑘)
𝑚 |�̃�

(𝑘)
1
,𝑈

�̃�
(𝑘)
𝑚 |�̃�

(𝑘)
2
, . . . ,𝑈

�̃�
(𝑘)
𝑚 |�̃�

(𝑘)
𝑀

]
, (35)

and a set 𝚺
�̃� (𝒌)
𝒎

of conditional covariance matrices defined as:

𝚺
�̃� (𝒌)
𝒎

=
[
Σ
�̃�
(𝑘)
𝑚 |�̃�

(𝑘)
1
,Σ

�̃�
(𝑘)
𝑚 |�̃�

(𝑘)
2
, . . . ,Σ

�̃�
(𝑘)
𝑚 |�̃�

(𝑘)
𝑀

]
. (36)

This additional information allows understanding not only the

dynamic random changes at the discrete level (through the

transition probabilities encoded in the transition matrix) but

also to discover and represent the force that generated those

changes and the rules by which the signal is shifting among

them. This realizes the key to predict the dynamic changes of

different modulation modes efficiently.

Algorithm 2: AJC

Input: �̃�𝑡 , 𝑁 𝑇 , Π, Π𝜏 , �̃�𝑚 : ( �̃��̃�𝑚 , Σ�̃�𝑚
) ∀ �̃�𝑚 ∈ S ←

Reference GDBN Model
N, Π(𝑘) , Π(𝑘)

𝑡 , �̃�
(𝑘)
𝑚 : ( �̃�

�̃�
(𝑘)
𝑚

, Σ
�̃�
(𝑘)
𝑚

) ∀ �̃�
(𝑘)
𝑚 ∈ M𝑘 (where M𝑘 ⊂ SM )

← Jammers GDBN Models
1 for each t ∈ T do
2 Predict normal commands and detect jammer using M-MJPF

(Algorithm 1):
3 [KLDA, CLA, CLB, �̃�

[1]
�̃�𝑡

, �̃�
[2]
�̃�𝑡

, �̃�
[1]
�̃�𝑡

, �̃�
[2]
�̃�𝑡

, �̃��̃�𝑡 ] = M-MJPF(�̃�𝑡 , N, 𝑇 ,

Π, �̃�𝑚 , �̃��̃�𝑚 , Σ�̃�𝑚
)

4 if KLDA > 𝜓 | | CLA > 𝜓 ← Jammer is present then
5 Predict jammer dynamics:
6 for each k ∈ SM ← available jammers’ models do
7 for each n ∈ N do
8 Prediction at Discrete Level:
9 𝑊𝑛 = 1

𝑁 ← particle weight
10 if 𝑡 = 1 ← initial state then
11 Sample: �̃� (𝑘)

1 from initial prior density 𝑃 (�̃�
(𝑘)
1 )

12 �̃�
(𝑘)
𝑡 = �̃�

(𝑘)
1 ← current state

13 Estimate: �̃� (𝑘)𝑛,𝑡 from 𝑃 (�̃�
(𝑘)
𝑡 |�̃�

(𝑘)
𝑛,𝑡 )

14 else ← remaining states
15 �̃�

(𝑘)
𝑛,𝑡 ∼ 𝜋𝜏 (�̃�

(𝑘)
𝑛,𝑡−1)

16 if �̃� (𝑘)𝑛,𝑡 = �̃�
(𝑘)
𝑛,𝑡−1 then

17 𝜏𝑛,𝑘 = 𝜏𝑛,𝑘 + 1 ← time elapsed in �̃�
(𝑘)
𝑛,𝑡

18 else
19 𝜏𝑛,𝑘 = 1

20 Prediction at Continuous Level:
21 𝑈

�̃�
(𝑘)
𝑡

= 𝑈
�̃�
(𝑘)
𝑛,𝑡 |�̃�

(𝑘)
𝑛,𝑡−1

← Conditional Control Vector

using (35)
22 𝑃𝑡−1|𝑡−1 = Σ

�̃�
(𝑘)
𝑛,𝑡 |�̃�

(𝑘)
𝑛,𝑡−1

← Conditional Covariance

matrix using (36)

23 �̃�
(𝑘)
𝑡 = 𝐴�̃�

(𝑘)
𝑡−1 + 𝐵𝑈�̃�

(𝑘)
𝑛,𝑡

← state

24 𝑃𝑡 |𝑡−1 = 𝐴𝑃𝑡−1|𝑡−1𝐴
ᵀ + Σ�̃�𝑡 ← covariance

25 Calculate: 𝜋 (�̃� (𝑘)
𝑡 ) using (14)

26 Estimate the current observation �̃�
[2]
�̃�𝑡

using (32):

27 𝜆(�̃�
(𝑘)
𝑡 ) = 𝑃 ( �̃�

[2]
�̃�𝑡
|�̃�

(𝑘)
𝑡 ) ← diagnostic msg1

28 Calculate: 𝜆(�̃� (𝑘)𝑡 ) using (17) ← diagnostic msg2
29 Abnormality measurements:
30 Calculate: 𝑨𝒃𝒏𝒌 using (37)
31 Update Belief in hidden variables:
32 ˆ̃𝜀 [2]

�̃�𝑡
= ( �̃�

[2]
�̃�𝑡

− 𝐻�̃�
(𝑘)
𝑡 ) ← Kalman innovation

33 𝐾𝑡 = 𝑃𝑡 |𝑡−1𝐻
ᵀ (𝐻𝑃𝑡 |𝑡−1𝐻 + Σ

�̃�
[2]
�̃�𝑡

)−1 ← Kalman gain

34 ˆ̃𝑋𝑡 = �̃�𝑡 + 𝐾𝑡 ˆ̃𝜀 [2]
�̃�𝑡

← updated state

35 �̂�𝑡 |𝑡 = (1 − 𝐾𝑡𝐻𝑃𝑡 |𝑡−1) ← updated covariance

36 𝑊𝑛 = 𝑊𝑛 × 𝜆(�̃�
(𝑘)
𝑡 ) ← update particles weight

Output: S𝐴𝑏𝑛

F. On-line Automatic Jamming modulation Classification
(AJC)

In order to recognize the correct modulation scheme of

the detected jammer (i.e. current observation), the UAV will

perform multiple predictions in parallel using the learned and

stored models in SM during the training process and the

corresponding statistical properties (defined in (34), (35) and
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(36)). Thus, at each time instant 𝑡, we have multiple predictions

related to multiple GDBN models, where each model M𝑘

explains the dynamics of the jammer modulated under the k-th
modulation scheme (refer to Fig. 7). The UAV can evaluate

which of these predictions explain the current radio situation

by using the abnormality measurement defined in (27) applied

to the jammer model and defined as:

𝐴𝑏𝑛𝑘 = − ln
(
BC

(
𝜋( �̃� (𝑘)

𝑡 ), 𝜆( �̃� (𝑘)
𝑡 )

) )
, (37)

where

BC =
∫ √

𝜋( �̃� (𝑘)
𝑡 )𝜆( �̃� (𝑘)

𝑡 )𝑑�̃� (𝑘)
𝑡 . (38)

A set of abnormalities S𝐴𝑏𝑛 is available at each time instant

𝑡, such that:

S𝐴𝑏𝑛 (𝑡) = {𝐴𝑏𝑛1, 𝐴𝑏𝑛2, . . . , 𝐴𝑏𝑛𝐾 }. (39)

The classifier at the UAV is supposed to recognize correctly the

modulation scheme of the received signal from a set (S𝑚𝑜𝑑)

of candidate modulations denoted by integer values, such that:

S𝑚𝑜𝑑 = {1, . . . , 𝐾}. (40)

Then, the modulation classification can be made by comparing

GDBN K

GDBN 2
GDBN 1

Extracted 
jammer

Models learned and stored 
in the UAV’s brain

Modified 
Bayesian Filtering

Set of abnormality 
signals

Classifierreference GDBN

Hierarchical abnormality 
measurements

Hierarchical generalized 
errors Modified 

Bayesian Filtering

C2 data

Fig. 7. GDBN-based Jamming Modulation Classification Framework.

between all the abnormality values and selecting the index of

the minimum abnormality in the set S𝐴𝑏𝑛 (𝑡) to recognize the

modulation scheme, which is given by:

�̂� (𝑡) = argmin
1≤𝑘≤𝐾

{S𝐴𝑏𝑛},where �̂� (𝑡) ∈ S𝑚𝑜𝑑 . (41)

The probability of correct classification 𝑃𝑐𝑐 can be used as a

performance metric to evaluate the classification task, and it

is expressed as follows:

𝑃𝑐𝑐 =
1
𝑇

𝑇∑
𝑡=1

𝑃( �̂� (𝑡) = 𝑘 (𝑡) |𝑘 (𝑡)), (42)

where 𝑇 is the total testing time and 𝑃( �̂� (𝑡) = 𝑘 (𝑡) |𝑘 (𝑡))
is the probability that the modulation scheme is correctly

predicted as 𝑘 (𝑡) at time (𝑡). The AJC method is summarized

in Algorithm 2.

V. SIMULATION RESULTS AND DISCUSSION

A. Simulation setup

The proposed framework for joint detection and classifica-

tion of multiple jammers is evaluated using simulated data.

The UAV trajectory is simulated based on [45]. We study

the relationship between the commands and the velocities of

the UAV to generate the appropriate bits and consequently

generate the LTE signal according to the 3GPP specifications

[46] and the important parameters defined in Table I. Similarly,

the altered trajectory is extracted from the jammed LTE signal.

TABLE I
SIMULATION PARAMETERS

Parameter Value

BW 1.4 MHz
Duplex mode FDD

Δ 𝑓 15 kHz
Number of PRBs per BW 6

Sampling frequency 1.92 MHz
𝑁𝐹𝐹𝑇 128

OFDM symbols per slot 7
CP length normal

SNR [-20 dB, . . . , +20 dB]
C2 Modulation QPSK

Jammer Modulation
S𝑚𝑜𝑑 = {BPSK, QPSK, 8-PSK, 16-QAM,

32-PSK, 64-QAM, 256-QAM}
Jamming to Signal Power Ratio (JSR) 6 dB

Channel AWGN
Total Radio Frames 600

The UAV flight time is 𝑇 𝑓 𝑙𝑖𝑔ℎ𝑡=30s consisting of 600 samples

(aka, 600 sets of commands corresponding to 600 OFDM

symbols in time domain (Fig. 8-a)). In addition, the UAV

extracts the RV from the received PRB every 50 ms, where the

RV contains a set of commands transmitted over 9 consecutive

sub-carriers in 1 OFDM symbol. Each set of commands will

indicate the movement of the UAV in the 3D space.

The output of the digital modulators for both the normal signal

and the jammers is normalized based on the average power.

The considered situations are:

(i) Reference Situation: representing the normal behaviour

(without attacks) of the signal related to the original commands

sent by the operator (see Fig. 8-a) which is used to learn

the reference GDBN model. The UAV trajectory during this

situation is depicted in Fig. 8-c.

(ii) Abnormal Situation: during this situation the jammer

uses 2 configurations. The first one (used in Section V-B) is

related to the jammer who is attacking continuously all the

sub-carriers starting from time (in terms of OFDM symbols)

𝑡 = 300 till 𝑡 = 600 in different radio experiences adopting one

modulation scheme from S𝑚𝑜𝑑 in each experience. While the

second (used in Section V-C) is related to the jammer who is

attacking from 𝑡 = 1 till 𝑡 = 300 to evaluate the classification

performance after learning the jamming models.

B. Learning Reference Model and jamming Models

Initially, the UAV starts perceiving the radio environment

and predicting the environmental states using an initial GDBN

model, supposing that the signals’ dynamics are static. Such an

assumption leads to high abnormalities all the time since the

UAV fails to predict the actual states of the signals. Exploiting

the Generalized Errors calculated during the abnormal situa-

tion (using (6)) allows the UAV to discover the real dynamics

by clustering those errors in an unsupervised manner and store

them in the reference GDBN model. After that, the UAV

equipped with the reference GDBN can accurately predict

the future states of the commands at multiple sub-carriers
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Fig. 8. The received commands and the corresponding trajectories during
different situations. (a) Received commands at multiple sub-carriers during
normal situations. (b) An example of the received commands at multiple
sub-carriers under jamming attacks (BPSK jammer SNR=14dB). (c) UAV
trajectory in a normal situation. (d) UAV trajectory under jamming attacks.
Blue and red colors represent the trajectory without and with jammer attacks,
respectively.
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Fig. 9. Abnormality indicator at the continuous levels (defined in (27)) using
the initial GDBN model and the reference GDBN model.

without being surprised anymore by the observations. Fig. 9

verifies this where we can observe a high abnormality signal

all the time by using the initial GDBN (due to the lack of

knowledge about the environmental dynamics) and a quasi-

zero abnormality signal by using the reference GDBN that

encodes the dynamic rules of the signals allowing by that the

UAV to perform correct predictions and so avoid surprising

states.
After learning the reference GDBN model when the jam-

mers are absent and by facing a new radio experience, the

cognitive-UAV can predict the future commands that it is

expecting to receive at multiple sub-carriers and consequently

detect any jamming attacks at different hierarchical levels us-

ing the abnormality measurements (KLDA and CLA) defined

in (21) and (27). We evaluate the detection performance of

the proposed approach for multiple jammers with different

modulation schemes in different radio conditions by varying

the SNR from −20 dB to +20dB as shown in Fig. 10. It can

be observed that the cognitive-UAV is capable of detecting

the jammer efficiently at the continuous level (through the

CLA) with high probability and high accuracy even at very

low SNR values regardless of the modulation scheme adopted

by the jammer. From the figure, we can also observe that

the performance of detecting the jammer at the discrete level

(through KLDA) degrades as the SNR decrease, this is due to

the fact that the signal dynamics at low SNR become faster and

thus the transitions among the discrete variables are speedy

which make it difficult to capture the dynamic transitional

rules efficiently. However, the advantage of detecting the

abnormality at multiple hierarchical levels is that when the

performance degrades at the discrete level, we can rely more

on the continuous level for better performance.
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Fig. 10. Performance of detecting multiple jammers modulated under different
modulation scheme as varying the SNR. (a) Probability of Detection at
hierarchical levels. (b) Detection Accuracy at hierarchical levels

We showed that it is possible to extract and estimate the

jamming signal after detecting its malicious activities on the

ongoing communication by exploiting the generalized errors

defined in (32). Fig. 11 shows some examples of the I/Q

time domain plot of the extracted jammers under different

modulation schemes at sub-carrier 𝑓1 and 10dB SNR. Fig. 12

shows the scatter plots of the extracted jammer and the

corresponding ground truth.
The estimated jamming signals in different radio experi-

ences are used to learn separated GDBN models encoding the

jamming behaviours under different modulation schemes. Af-

ter employing the unsupervised method (GNG) to cluster the

extracted jammers, we obtain a set of GDBN models forming

the set SM as defined in (33). In this way, the UAV’s brain

consists of the reference model that describes what commands

the UAV is expecting to receive under normal circumstances

and another set of models (SM) representing the dynamic

behaviour of multiple jammers using different modulation
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(a) Jammer BPSK
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(d) Jammer 16-QAM
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(f) Jammer 64-QAM
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(g) Jammer 256-QAM

Fig. 11. I/Q time domain plot of the extracted jamming signals (based on

�̃�
[2]
�̃�𝑡

defined in (32)) under different modulation schemes and SNR=10 dB at

sub-carrier 𝑓1 and of the ground truth jamming signals.

schemes. In this way, the UAV predicts the future commands

using the reference model, calculates the abnormality measure-

ments and the generalized errors. If an abnormality is occured,

the UAV will perform multiple predictions in parallel and

calculates the corresponding abnormality measurements. The

UAV compares among the multiple abnormality measurements

and pick the index of the minimum one which is associated

with the index of the jamming models in the SM to recognize

the modulation scheme of the detected jammer.

C. Online Classification Process

In Fig. 13, we showed the classification accuracy of the

proposed GDBN for each modulation scheme in the candidate

set (S𝑚𝑜𝑑). We can observe that GDBN achieves high classifi-

cation accuracy for most of the modulation schemes, especially

at 𝑆𝑁𝑅 > 5𝑑𝐵. The low accuracy at low SNRs (𝑆𝑁𝑅 < 0𝑑𝐵)

for the majority of the modulation schemes in SM can be

explained by the fact that at low SNR the data samples of each

modulation are concentrated around the origin (in the complex

IQ plane), and the dynamics at low SNR become very fast

which makes it difficult to discover and capture these dynamic

rules that are encoded in the GDBN model in an efficient way.

Some examples of the resultant confusion matrices at various

SNR ratios are exhibited in Fig. 14.
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(e) Jammer 32-PSK
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(f) Jammer 64-QAM
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(g) Jammer 256-QAM
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Fig. 12. Scatter plot of the extracted jamming signals (based on �̃�
[2]
�̃�𝑡

defined

in (32)) and the corresponding ground truth at sub-carrier 𝑓1 and 10 dB SNR.
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Fig. 13. Performance evaluation of the proposed GDBN-based framework:
Probability of correct classification for each modulation scheme versus SNR.
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Fig. 14. Confusion matrices for the proposed GDBN method at various SNR
values.
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Fig. 15. Performance comparison between the GDBN, LSTM and CNN:
Probability of correct classification for each modulation scheme versus SNR.

In addition, we compare the performance of the proposed

GDBN with the Convolutional Neural Network (CNN) and

the Long Short Term Memory (LSTM). We followed the

same approach used to learn the GDBN (thus using the same

state vector used as input to the GNG to learn the GDBN)
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Fig. 16. Performance comparison between the GDBN, LSTM and CNN:
Overall probability of correct classification versus SNR.

for both CNN and LSTM for a fair comparison. For CNN,

we used the same configuration (i.e. same number of layers)

employed in [47], but with different input, here we used a state

vector consisting of IQ components and the corresponding

derivatives. While the LSTM used here has 3 layers, one

LSTM layer, one fully connected layer, and finally, a dense

softmax layer that maps the classified features to one of the

available modulations schemes in S𝑚𝑜𝑑 . Fig. 15, shows the

performance comparison between the proposed GDBN, LSTM

and CNN. It can be seen that the GDBN outperforms the

other techniques in the majority of the available modula-

tion schemes. This can be understood better by plotting the

overall comparison performance, i.e., the average probability

of correct classifications among all the 𝑃𝑐𝑐 related to each

modulation. The overall comparison is depicted in Fig. 16, and

it shows that the proposed GDBN beats LSTM and CNN, espe-

cially at 𝑆𝑁𝑅 > 5𝑑𝐵. This means that the proposed approach

succeeded to learn the dynamic proprieties (at hierarchical

levels) of the signal under a certain modulation scheme, which

allows predicting the future behaviour of the signal based on

the rules encoded in that model. In addition, LSTM and CNN

perform the supervised learning by using the input vector

along with the labels of each modulation scheme during the

learning process, while in the case of GDBN, we followed

an unsupervised approach to learn the model. Also, we have

seen that GDBN allows to learn the relationships among the

random variables (at hidden layers) in the network explicitly

and evaluate the situation using abnormality measurements

which can be used as self-information by the radio itself to

extract new features and learn emergent rules representing new

radio situations incrementally. This is difficult in LSTM and

CNN, where the dependencies between the hidden variables at

multiple layers are viewed as a black box, so results can not

be explained. This limitation impacts the capability of learning

by understanding which is crucial in CR to learn continually

while observing the environment.

Furthermore, we analyzed the performance of the proposed

framework to automatically classify the detected jammers by

changing the number of neurons (i.e. the number of superstates
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(a) BPSK
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(b) QPSK
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(c) 8-PSK
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(d) 16-QAM
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(e) 32-PSK
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(f) 64-QAM
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(g) 256-QAM
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Fig. 17. Performance evaluation in terms of classification accuracy of the
proposed GDBN method using different number of neurons (𝐿) to learn the
jamming models.

representing the discrete level of the model) used to learn the

jamming models. It is to note that in the previous results,

we used a fixed number of neurons (𝐿 = 4) also when we

compare with other methods. Considering the influence of the

number of neurons on the classification process in addition to

the influence of the SNR ratio is of great importance. We

applied Bayesian optimization to improve the classification

performance by using different 𝐿 values (related to 𝐿 models)

and finding the model that returns the best classification

accuracy (𝑃𝑐𝑐). The performance comparison of the jammer’s

GDBN models with a different number of neurons is shown in

Fig. 17. It is clear that increasing the number of neurons (𝐿)

improves the classification accuracy, especially for high order

modulations (i.e., 32-PSK, 64-QAM and 256-QAM). This can

be explained by the fact that having a high number of constel-

lations can not be represented efficiently by few neurons since

it deteriorates the capture of the dynamic transitions of the

data samples under the high order modulations. At low SNR

ratios, the confusion between different schemes is high due to

the high interference caused by the channel, leading to low

classification accuracy. Fig. 18 shows the overall probability

of correct classification and gives a clear idea of how the

performance changes as changing the 𝐿 parameter.
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Fig. 18. Performance evaluation in terms of overall classification accuracy
of the proposed GDBN method using a different number of neurons (𝐿) to
learn the jamming models.

VI. CONCLUSION

We proposed a novel method for joint detection and classi-

fication of jamming attacks in a Cognitive-UAV-based radio

application. The method is based on learning a dynamic

model representing the radio environment under normal cir-

cumstances encoded in a GDBN model. The acquired knowl-

edge encoded in the dynamic model can be used during the

online phase to predict what the cognitive-UAV is supposed to

receive, evaluate hierarchical abnormality measurements and

generalised errors to explain the current situation by differen-

tiating between normal and abnormal situations (i.e., jammer

detection) and extract the jamming signal by exploiting the

errors to encode it incrementally in a new GDBN model.

Thus, in future experiences, if the cognitive-UAV detects a

jamming attack, it can perform multiple predictions in parallel

using the M-MJPF and selects the best model that explains the

current situation to recognize the modulation scheme of the

detected jammer. Simulation results showed that the proposed

method achieves high probabilities in detecting jammer and

high accuracy in classifying them and outperforms LSTM and

CNN in classifying multiple jamming signals. In addition,

the proposed approach provides interpretable results where

multiple abnormality measurements and generalised errors can

be used as self-information to keep learning incrementally. Our

future objectives include optimizing the proposed approach to

achieve high classification accuracy at low SNR and study-

ing the interaction between the cognitive-UAV and multiple

jammers to design an optimal resource allocation strategy for

anti-jamming.
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