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Abstract—In this paper, we propose to introduce an emergent
Self-Awareness (SA) module at the physical layer (PHY) in
Cognitive Unmanned Aerial Vehicle (UAV) Radios to improve
PHY security. SA is based on learning a hierarchical repre-
sentation of the radio environment by means of a proposed
Hierarchical Dynamic Bayesian Network (HDBN). It is shown
how the acquired knowledge from previous experiences facilitate
the radio spectrum perception and allow the radio to detect
abnormal behaviours caused by jamming attacks. Detecting
abnormalities realize a fundamental step towards growing up
incrementally the radio’s long-term memory. Deviations from
predictions estimated during abnormal situations are used to
characterize jammers at multiple levels and discover their dy-
namic behavioural rules. Besides, a proactive consequence can be
drawn after estimating the jammer’s signal to act efficiently by
mitigating its effects on the received stimuli. Simulation results
show that the introduction of the novel SA functionalities with
the proposed HDBN framework provides the high accuracy of
characterizing, detecting and predicting the jammer’s activities.

Index Terms—Cognitive Radio, Unmanned Aerial Vehicles,
Jamming, Bayesian Filtering, Dynamic Bayesian Network

I. INTRODUCTION

Recently, Unmanned Aerial Vehicles (UAVs) have attracted

the attention of the telecommunication community and indus-

try due to their remarkable features as deployment flexibility,

mobility and dominant Line Of Sight (LOS) links [1]. The

explosive number of wirelessly connected UAVs adopted in a

wide range of applications including package delivery, traffic

monitoring, and surveillance will overcrowd the radio spec-

trum resources and lead to spectrum scarcity [2]. Incorporating

Cognitive Radio (CR) in UAV communications, which we

refer to as Cognitive-UAV-Radios, has been firstly proposed to

increase the spectrum efficiency [3]. Instead, this work study

the integration of CR and UAV from the physical layer security

perspective.

CR can provide a promising solution for UAVs to achieve

the capability of reaching and maintaining connectivity with

high degree of autonomy. Learning the radio environment and
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adjusting dynamically link parameters based on observation

and previous experience are main characteristics of CR. The

cognition cycle by which CR interacts with the external

environment was first described by Joseph Mitola (the inventor

of CR) in [4] and includes the following capabilities: 1)

collect data by sensing the radio environment; 2) learn a

representation of the collected data; 3) take a decision based

on such representation to act on; 4) observe the environmental

feedback in response to the action and update the acquired

knowledge (autonomous incremental knowledge acquisition)

to improve the future decision-action process, consequently.

The cognition cycle is the fundamental building block of

radio’s cognition. However, a radio which does not subsume

a certain level of Self-Awareness (SA) can not achieve the

required cognition and thus can not be considered as CR,

according to Mitola’s declaration: “A radio which should be
termed as Cognitive must be Self-Aware”. SA as defined in [5]

is the “ability of the radio to understand its own capabilities,

i.e., to understand what it does and does not know, as well as

the limits of its capabilities”. SA is concerned with a radio’s

knowledge about itself and its environment. It is the ability

of a radio to interpret the surrounding environment according

to the knowledge encoded in its internal models and to adapt

its behaviour according to the detected environmental changes

to reach the dynamic equilibrium. An important question that
needs to be addressed is which SA representation should be
used to realize computationally the cognition cycle of the
original CR? To answer this question we are proposing to

introduce a novel SA module in CR that aims to organize

the main functionalities of the cognition cycle by learning

autonomously and incrementally emergent dynamic represen-

tations.

Another main challenge in designing CR is related to the

physical layer security, due to the shared and dynamic radio

environment that makes CR vulnerable to malicious attacks

(e.g. jamming attacks) [6]. Such attacks might affect the

system’s performance drastically by making the CR learn-

ing behaviours wrong and taking mistaken actions. Besides,

the dominant LOS links in UAV communications make the

ground-to-air and air-to-ground channels more susceptible to

terrestrial jammer threats [7]. All these motivations indicate

the necessity that the security threats need to be investigated

in Cognitive-UAV-Radios with more comprehensive solutions

in detecting and mitigating the jamming attacks at the physical

layer. Thus, the proposed SA module is specialized to enhance

the physical layer security against jamming attacks. Neverthe-

less, functionalities of the SA module are general enough for
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realizing other goals targeted by the radio and pave the road

towards full Self-Aware Radio (i.e. original CR).

The proposed SA module firstly presented in [8] and

inspired by [9], allows the radio to perform the following

functionalities: i) Learning Generative Models autonomously

by observing the occurring environmental changes; ii) Radio
Spectrum Perception by predicting the future states of the

spectrum and estimating the current states of the observed

stimuli received from the environment; iii) Abnormality De-
tection which refers to the process of noticing any deviation

from the normal situation (i.e similar to what it was learned

from previous experience); iv) Abnormality Characteriza-
tion by analyzing the new behaviour (the detected differences

which are not seen before) and characterizing it to draw up

the dynamic rules of how the new situation is evolving; v)
Incremental Learning of new representations of the occurring

environmental changes related to the detected signals which

represent new behaviour; vi) Action Selection by removing the

abnormal signal caused by a malicious user or by changing

the policies of communication (changing the configuration:

power, modulation, frequency, etc.); vii) Learning Interactive
Models by observing multiple signals related to different

sources (e.g. LTE and GPS signals) and learning the cross-

correlation between them, or by learning the causality among

different users (e.g. CR device and jammer) interacting inside

the radio spectrum. These functionalities are dependent, while

one incrementally leads to the other.

The SA module allows the radio to structure its own

memories (brain) into an emergent hierarchical layered rep-

resentation realized as a Hierarchical Dynamic Bayesian
Network (HDBN). This HDBN representation enables the

radio to predict the spectrum’s future states accurately using

Bayesian filters (e.g. Particle Filter and Kalman Filter). We

use a top-down inference prediction approach for the radio

to anticipate the received (or sensed) signals. The bottom-

up inference is used to match the predictions with the real

measurement when a stimulus is received from the environ-

ment, leading to an updated perception (understanding) of the

surrounding environment. This work will focus on the first six

functionalities, while the last one will be studied more deeply

in future investigation to keep the paper self-contained.

To summarize, our work contributes to the CR literature

since: 1) it is following a data-driven unsupervised approach

by allowing the radio to build up knowledge about the radio

spectrum from null memory. Hence, radio’s autobiographical

memories are grown up incrementally by observing real-time

data and learning autonomously from the cognition cycle. 2)
In deep learning approaches where the hidden variables are

considered as a black box which create results that are hard

to understand or decisions that are not explainable. Differ-

ently, in the proposed module hidden variables are related by

probabilistic relationships among them and with observations

which allow to analyse and study their dynamic evolution.

This improves the explainability of the learning and reasoning

process respectively. 3) it proposes a flexible SA module that

can be implemented at different radio sides (Base Station, User

Equipment) regardless of their role (receiver, transmitter or

even sensor) and the PHY-layer level at which the module

is installed (near or far the antenna). 4) to the best of our

knowledge this study is first of its kind which addresses

the detection and characterization of the jamming signals in

a probabilistic and incremental manner. 5) it is relying on

raw IQ data which are easy to extract. Also, using IQ data

provides flexibility in implementing the proposed approach in

different systems and environments.

The manuscript is organized as follows. The state of the

art is reviewed in Section II. The system model is shown in

Section III. The proposed SA module and experimental results

are presented in Section IV and Section V respectively. Finally,

conclusions are drawn in Section VI along with the future

objectives.

II. RELATED WORK

CR has attracted intensive attention from academia and

industry since its introduction in 1999 [20]. While there is

a rich literature on CR focusing on spectrum sensing and

dynamic spectrum access, there have been few studies on

the original vision of CR in being Self-Aware. As claimed

in [5], [21] and [22], the original vision of CR goes beyond

the spectrum sensing (which is, of course, one of the main

components of the cognition cycle) and aims to improve

Quality of Service (QoS) [23], Quality of Information (QoI)

[24] and optimizing the wireless users’ configuration [10].

Several recent studies (as in [10] and [11]) tried to highlight

this fact by spotting the light on the original vision of CR and

focusing on new functionalities rather than spectrum sensing,

encouraged by the recent advances in Artificial Intelligence

(AI) methods and their effectiveness in achieving detection,

classification and prediction tasks that can empower the CR

realization and support it to effectuate the desired functional-

ities. Nevertheless, the literature still lacks studies that help

to realize the original Mitola’s CR and to systematize the

functionalities of the cognition cycle and learn incrementally

through its consecutive iterations.

After 10 years of CR, a special issue [22] has been organized

to provide an overview of the achievements, developments

and challenges in this technology containing many references

dealing with three functions of the cognition cycle: sensing,

learning and decision making/action. An overview of the evo-

lution of CR and the developments on intelligent radio during

the last 20 years is provided in [12]. Authors in [10] provided

a comprehensive overview of CR and Machine Learning (ML)

to improve learning, perception and reconfiguration (compo-

nents of the cognition cycle) and achieve intelligent wireless

communications. A pathway to intelligent radio is presented

in [11], where authors asked an important question of how

to make CR more intelligent (which in our understanding is

how to achieve the original CR) and proposed a structure

based on learning and reasoning which give the radio the

perception capability with reconfigurable functions to sense

and act intelligently. However, these papers did not propose

an explicit framework to reach the required functionalities

incrementally and did not study the link between them to

make the radio growing its memories from experience to

achieve the real intelligence or cognition. The work in [13]
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Functionalities [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] This Work
Learning from Radio Environment � � � � � � � � � � �

Radio Spectrum Perception � � � � � � � � � � �
Abnormality Detection - - - - - � � � � � �

Abnormality Characterization - - - - - - - - - - �
Action Selection � � � � � - - - - - �

Incremental Learning - - - - - - - - - - �

TABLE I: General comparison with the state-of-the-art. Publications that investigate the original vision of CR and recommend the ideas to
achieve such vision without proposing an explicit framework are shaded.

discussed Game theory and reinforcement learning as learning

mechanisms that provide the radio with the capability to learn

from its past actions and those of others. In addition, an

insight into reasoning frameworks in CR is provided and

open research issues are viewed. The article concluded by

addressing several challenges that may face the introduction

of learning and reasoning in CR (e.g. complexity, reasoning

time, etc.). Therefore, an efficient reasoning approach must

select carefully the required knowledge within the cognition

cycle and intertwines reasoning with learning. In addition

to the mentioned learning and reasoning frameworks, we

are proposing a combination of probabilistic reasoning and

learning while the radio is observing the cognition cycle.

Another interesting research is presented in [14] on the op-

portunities, challenges and future vision for the realization of

a fully intelligent radio. An ML-based architecture with three

hierarchical levels is proposed which enables the cognitive

user to autonomously perceive, understand, and reason about

the unknown environment. However, this work studied these

levels independently without introducing a link among them to

achieve an incremental perception, understanding and reason-

ing of the surrounding radio environment. In addition, using

the feature as the Primary User’s (PU’s) transmit power might

affect the performance of this method in practice (different

users might have the same power level and will not allow the

radio any more to identify between them).

Understanding the wireless environment is a crucial step in

CR to achieve spectrum awareness and then SA [25]. This

includes the ability of the radio to identify different signals

(e.g. modulation classification) inside the spectrum and detect

any unexpected behaviour while monitoring it. Such tasks

support the radio to analyse and reason the radio environment

and allow it to learn efficiently. For this purpose, a deep

learning method based on Long Short Term Memory (LSTM)

for automatic modulation classification (AMC) and spectrum

anomaly detection based on an adversarial autoencoder (AAE)

are proposed in [15] and [16] respectively. Authors in [17]

proposed an unsupervised anomaly detection method for the

CR using LSTM mixture density networks applied to time

series data. Deep predictive coding neural networks for radio-

frequency anomaly detection in wireless systems have been

proposed in [18] and [19].

In this work, the proposed SA module organizes the main

functionalities (Table I) of the cognition cycle and ensures

an effective relationship among them by allowing the radio

to learn in an incremental fashion and from experience (by

observing the cognition cycle). In the considered scenario, the

radio is focusing on the goal of enhancing the physical layer

security. However, the proposed module can be adapted to

reach any goal oriented by the radio ensuring its generaliz-

ability to different radio applications.

III. SYSTEM MODEL

The system model depicted in Fig. 1 consists of a cellular-

connected UAV with a 4G antenna and GPS receiver, acting as

aerial user equipment and served by the ground Base Station

(BS). A human operator commands and controls the UAV

using the LTE cellular connectivity. Commands are sent to

the UAV through BS via the Downlink (DL) channel. We

assume that the ground-to-UAV link is always a Line-Of-Sight

(LOS) under an Additive White Gaussian Noise (AWGN)

channel condition. The 3GPP path loss model defined in [26]

is adopted under the RMa-AV scenario. We consider the DL

channel under the threat of a terrestrial jammer which aims to

send false commands to alter the trajectory and take control

of the UAV. The propagation model consisting of the LTE

downlink transmitter, receiver and jammer is shown in Fig.

2. The BS continuously sends a Radio Frame (RF) of 10 ms

duration to the active users (already synchronized with BS) in

the cell. The BS allocates a specific number of sub-carriers

to each user for a predetermined time which are referred to as

Physical Resource Blocks (PRBs). We supposed that the GPS

measures the 3D position every 50 ms and the UAV receives

one PRB every 50 ms as well (assuming that the BS follows

the third allocation scheme for UAV command & control

(C2) data as mentioned in [27]) since the 3GPP specifies that

efficient management of a UAV would require a maximum of

100 kb/s for C2 data, latency of 50 ms and inter-arrival time

(defined also as Transmission Time Interval TTI) of 100 ms

[28]. The commands (Pitch, Yaw, and Roll) are sent in the PRB

over 9 consecutive sub-carriers in the frequency domain within

1 OFDM symbol in the time domain. We call these REs as a

Resource Vector (RV) as shown in Figs. 3-4. The remaining

sub-carriers and OFDM symbols of the PRB are related to

other information sent to the UAV. For our analysis, only the

RV is considered in which we are interested in studying the

command signals. However, this can be simply extended to

consider the whole PRB in future investigation. We assume

that the jammer is smart and is aware of the transmission

protocol and the resource allocation strategy performed by

the BS. Hence, the jammer can locate and identify the PRBs

allocated to the UAV inside the radio spectrum and attacks it

consequently.

In our study, the data is extracted after the OFDM receiver

block. More precisely, after the FFT, where the output of

this block consists of all the Resource Elements (REs) which

represent the time-frequency grid. At this level, the UAV can

scan and sense the whole REs of the grid and capture the
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Fig. 1: Illustration of the system model.

OFDM signal
generation

Resource element
Mapping

Resource element
DE-Mapping

DE-Modulation
Mapping

Modulation
Mapping Precoding

LTE Downlink Transmitter
Tx signal

Jamming 
signal

LTE Jammer Channel

AWGN

OFDM 
Receiver

Rx signal
LTE Downlink Receiver

Operator 
input data

Output
data

Jammer
data

Layer 
Mapping

Modulation
Mapping Precoding

Layer 
Mapping

Resource element
Mapping

OFDM signal
generation

Precoding
Layer 

DE-Mapping

SA ModuleUAV

Fig. 2: Illustration of the Propagation Model including the Operator,
Jammer and the UAV where the SA module is installed.
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Fig. 3: LTE Physical resource allocation and RF structure.
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Fig. 4: Timing of the PRBs and RVs received by the UAV.

IQ data without any extra hardware (by exploiting the FFT).

The SA module is installed at this level too enabling the UAV

to perform all its functionalities presented in the following

section.

IV. PROPOSED SELF-AWARENESS (SA) MODULE

The proposed SA module illustrated in Fig. 5 involves

several functionalities that allow building up knowledge about

the radio environment and reach the goal oriented by the

radio (in the considered system model the radio is the UAV
augmented with the SA module). These functionalities are

dependent, the one leads to the other in an incremental way

and without any external supervision. The SA functionalities

are discussed in details here below.

A. Learning Generative Dynamic Models

One of the most promising approaches towards developing

algorithms that can analyze and understand data are

Generative Models [29]. Generative Models are statistical

models that aim to learn the joint distribution over a set of

random variables from which data samples can be generated

from that distribution. In this work, we propose to learn

a generative model consisting of a Hierarchical Dynamic

Bayesian Network (HDBN) [30], due to its ability to

represent joint distributions of random variables at different

abstraction and temporal levels. HDBN extends the standard

Bayesian Networks by introducing the temporal slices

where relationships among nodes at the same time instant

provide causal links between different abstraction levels and

links between consecutive slices represent causal temporal

probabilities. The relationship among variables associated

with nodes encoded through conditional probabilities is

represented by directed edges. HDBN models provide also

graphically decomposition of the joint probability directly

related to causal relationships among different hidden

and observable variables at consequent temporal instants.

Therefore, the capability of learning such models from data

is equivalent to be capable of generating data sequences

at various abstraction levels (hierarchical inference) and

temporal levels (temporal inference) coherent with the joint

model. So, this makes it possible to individuate in learned

models conditional distribution describing the dynamics (both

linear and non-linear) over time as well as the semantic rules

to associate hidden discrete symbols to variables describing

continuous signals. The proposed HDBN whose graphical

representation is depicted in Fig. 6-a can be associated with

inference mechanisms that work simultaneously at different

hierarchical levels, like switching models [31]. A main

aspect of the proposed HDBNs is that the variables they

include at all levels can be considered as Generalized random

variables as allowing both advantages in representation

and inference with dynamic systems. The concept of

Generalized coordinates proposed by Friston in [32] and

used here, implies to represent a pattern vector composed

of the random variable per se and its temporal derivative

allowing the radio to represent the dynamic rules of how

the signal is evolving with time in terms of forces and to

facilitate the prediction process. For example, the sensed

signals associated to a certain radio situation are represented

by nodes at the lower level of the hierarchy that can be

defined as Generalized Observations (Z̃), such that: Z̃t =[
If1 , . . . , Ifd , Qf1 , . . . , Qfd︸ ︷︷ ︸

Zt

,

Żt︷ ︸︸ ︷
İf1 , . . . , İfd , Q̇f1 , . . . , Q̇fd

]
,

where Z̃t ∈ Z̃, d is the number of the sensed sub-carriers,

and I , Q are in-phase and quadrature components of the

sensed signal at different sub-carriers and İ , Q̇ are the

corresponding derivatives. Such variables are connected with
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Fig. 5: The Proposed Self-Awareness (SA) Module.

hidden generalized states that are considered as the causes

that generate observations and their changes.

At the very beginning (first iteration in Fig. 5) radio’s

brain is empty (m = 0). The radio is assumed to start as

a quasi white blackboard where only knowledge describing a

static condition assumption is available. Such initial generative

model consists of a simplified HDBN of only two levels where

the linear dynamic model assumes that generalized continuous

variables of the environment (i.e. the state and its derivative)

are not changing. The inference mechanism associated with

such an HDBN uses a simpler Bayesian Filtering based on an

Unmotivated Kalman Filter (UKF) (i.e. a KF that assumes that

changes are only due to Gaussian noise). In UKF, predictions

can be done using the following dynamic model:

Xt = Xt−1 + vt (1)

where Xt are the predicted states and vt is a Gaussian

noise. The temporal innovations (deviations from the predicted

derivatives) of a signal that violates the UKF assumption of

static sequences (i.e. null derivative) can be calculated as:

Ẋt = H−1
(Zt−HXt−1

Δt

)
, where Δt is the sampling time and

H is a matrix that maps hidden states to observations. The

estimated elements Xt and Ẋt can be considered equivalent to

filtered observations derived from I and Q radio signal features

and they can be seen as a data series describing forces that

caused violations of static hypothesis defined as Generalized

errors (X̃) expressed as:

X̃t =
[
Xt Ẋt

]
(2)

where X̃t ∈ X̃. The HDBN model (m = 1) can be trained by

using unsupervised clustering techniques (e.g. Growing Neural

Gas (GNG), Self Organizing Maps (SOM)) to group those

errors. Here, we employ the GNG algorithm that receives the

Generalized errors X̃ provided by the UKF model defined in

(2) and produces a set of superstates (or clusters) S in which

X̃ are encoded, such that: Sm = {Sm
1 , Sm

2 , . . . , Sm
L }, where

Sm
k ∈ Sm and L is the total number of superstates associated

to the first model (m = 1). Additionally, each superstate

is associated with mean value (μSm
k

) and covariance matrix

(ΣSm
k

) of the set of hidden filtered X̃t samples clustered inside

Sm
k , so providing the P (X̃t|Sm

t ) link in the HDBN.

Within a slice learned, vertical links describe causal rela-

tionships between mt, S
m
t , X̃t and Z̃t at a given time instant t.

Besides, links between variables at consecutive time instants

allow representing conditional temporal probabilities among

generalized variables starting from obtained superstates related

to model m, i.e. dynamic causality that drives changes in the

signal. In particular, the LxL transition matrix Π defined as:

Π =

⎡
⎢⎣π(S

m
t = Sm

1 )
...

π(Sm
t = Sm

L )

⎤
⎥⎦ =

⎡
⎢⎣π11 . . . π1L

...
. . .

...

πL1 . . . πLL

⎤
⎥⎦ (3)

that embeds the dynamic causal models at the discrete level

is learned by estimating the transition probabilities πij =
P (Sm

t = j|Sm
t−1 = i), i, j ∈ Sm over a period of time. Such a

probability allows the HDBN to embed knowledge describing

the discrete dynamics of the signal, namely transitions from

superstate i to superstate j as time evolves. To extend the

concept of generalized variables to also include higher HDBN

levels, generalized superstates S̃ can be defined as follows:

S̃m
t = [Sm

t
˙Sm
t ] = [Sm

t E(Sm
t |Sm

t−1)], where, Sm
t stands for

the current superstate and E(Sm
t |Sm

t−1) represents the event

of transiting to Sm
t ∈ Sm and conditioned to be in Sm

t−1 in

the previous time instant.

The dynamic causal models represented in the HDBN and

formulated in generalized superstates S̃m (hidden discrete vari-

ables) and generalized states X̃ (continuous hidden variables)

have the following forms:

S̃m
t = f(S̃m

t−1,mt−1) + wt = f(πm
ij ) + wt (4)

X̃t = g(X̃t−1, S̃
m
t−1,mt−1) + wt = AX̃t−1 +BUS̃m

t−1
+ wt

(5)

The discrete non-linear function f(.) determines the super-

states temporal evolution based on the learned Π at the discrete

level. On the other hand, the continuous linear function g(.)
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(a)

Top-down inference

Bottom-Up inference

Generalized 
errors

KLDA

CLA

discrete level Abnormality

continuous level Abnormality

(b)

Fig. 6: (a) The Proposed Hierarchical Dynamic Bayesian Network (HDBN). (b) Abnormality measurements and generalized errors at
hierarchical levels estimated during the real-time inference.

determines the state temporal evolution at the continuous

level of the HDBN. Both f(.) and g(.) are subject to a

process noise wt which is assumed to be drawn from a

zero multivariate normal distribution with covariance σt such

that wt ∼ N (0, σt). In (5), A = [A1 A2]
ᵀ is a dynamic

model matrix where A1 = [I2d 02d] and A2 = [02d 02d]. In

addition, B = [I2d 02d]
ᵀ is the control model and US̃m

t
is

the vector parameter describing the dynamics that the signal

is expected to follow, when its states belong to a given cluster

S̃m
t and it is defined as the mean of generalized states’

derivative in the cluster, i.e. μ(S̃m
t ). So, Π encodes not only

transitions between clusters but also jumps between different

linear models (different US̃m
t

vectors) at the continuous level.

The observation model stands for the bottom level of the

HDBN and it is defined as:

Z̃t = h(X̃t) + vt = HX̃t + vt (6)

where Z̃t is the observable signal, h(.) is a linear function that

maps the hidden generalized state to the observed data and vt
is the measurement noise which is assumed to be zero mean

Gaussian noise with covariance Rt such that vt ∼ N (0, Rt).
In (6), H = [H1 H2] is the observation matrix where H1 =
[I2d 02d], H2 = [02d 02d].

The model level in the HDBN showed in Fig. 6-a links the

set of models (m > 1) stored in the radio’s long term memory

that are learned in previous experiences related to different

radio situations (m > 1 depicts the successive iterations in

Fig. 5). Such hierarchical representation provides the radio

with the capability of predicting not only the dynamics of the

continuous states (the direct cause of the observation/bottom

level) but also to maintain coherent knowledge between

discrete and continuous variables as well as to predict the

dynamics at higher levels of abstractions enabling by that

an anticipatory process in explaining the behaviour inside the

radio spectrum deeply (at higher levels).

B. Radio Spectrum Perception

Classical probabilistic inference approaches (e.g. Belief

propagation) make it possible to use Probabilistic Graphical

Models (PGMs) like an HDBN for online predictions and

estimations. However, here we employ a Modified Bayesian

Filtering to integrate within such inference operation also mul-

tilevel abnormality measurements. It is known that prediction

and estimation related inference in multilevel HDBNs like

switching models [31] can be based on a combination of

Particle Filter (PF) and Kalman Filter (KF). This allows in-

ferring the radio environmental states at different hierarchical

levels. Markov Jump Particle Filter (MJPF) firstly proposed

in [33] is the type of inference methods that can be here

applicable and from which a Modified Bayesian filtering block

can be derived and used as shown in Fig. 5. The inference

process concerning prediction and estimation within an MJPF

considers the generative model of the HDBN by using its

specific components, i.e. dynamic and likelihood inter-level

models to parametrize the PF and the KF based on local

generative properties required in their algorithmic steps (i.e.

the knowledge acquired and stored in the radio’s memory is

used to drive the inference). In fact, the switching variables

of the MJPF can be considered as a finite number of discrete

superstates variables associated with the activated model and

learned as described in the previous section. Moreover, the

corresponding dynamics for each superstate is related to the

linear model at the continuous level where the velocity (the

average derivative component of the superstate in question) is

encoded. PF is employed by the radio to perform superstate

predictions due to its ability in dealing with non-linearity,

while KF is employed to perform state predictions due to

the linear relationship between the continuous variables of the

dynamic model at the continuous level.

However, to allow Modified MJPF model to perform addi-

tional functionality, namely multilevel abnormality prediction,

the local information flow of conditional generative predic-

tions in the HDBN must be enriched by additional inference

operations than those included in a classical MJPF. To under-

stand the extension here proposed, it can be useful to recall

that in hierarchical Bayesian models as MJPF, an inference

can be described as a distributed message passing between

nodes where top-down component of generative nature can be

associated with both predictivity on temporal links (from slice

to slice) and on hierarchical abstraction messages (within a

slice or intra-slice). Generative nature in HDBNs also allows

generating data series in a bottom-up way, i.e. messages from

lower nodes to higher-level nodes. Thus, depending on the

direction of message passing, a prognostic or predictive (top-

down) component of inference can be distinguished from a

diagnostic (bottom-up) one.

Temporal and semantic switching predictive top-down mes-

sages (π(X̃t), π(S̃m
t )) depend on the knowledge learned in
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dynamical models within an HDBN. The bottom-up inference

is based on likelihood models and consists of passing messages

(λ(X̃t), λ(S̃m
t )) in a feed-backward manner to adjust the

expectations (predictions provided by top-down messages)

given a sequence of observations. Thus, the availability of

synchronous top-down messages and bottom-up messages in

classical Bayesian inference allows changing the belief in hid-

den variables in a distributed way by updating the belief using

messages coming from connected variables. MJPF consists of

two steps, prediction and update at each time instant t. In the

prediction step, PF relies on the transition matrix as a proposal

to predict the next superstate (S̃m∗
t ) as mentioned in (4), by

propagating a set of particles each being associated with a

specific superstate and a weight W ∗
t = 1/N , where N is the

total number of particles at each t. Then for each particle (.∗), a

KF is used to predict the continuous state as pointed out in (5).

This prediction depends on the hypothesized superstate as (5)

can be written as a conditional probability P (X̃t|X̃t−1, S̃
m∗
t ).

Accordingly, the posterior probability associated with the

predicted state is:

π(X̃t) = P (X̃t, S̃
m∗
t |Z̃t−1) =

∫
P (X̃t|X̃t−1, S̃

m∗
t )

P (Z̃t−1|X̃t−1)︷ ︸︸ ︷
λ(X̃t−1) dX̃t−1 (7)

In the update step, the posterior probability P (X̃t, S̃
m∗
t |Z̃t)

is corrected by using the message (λ(X̃t)) backward prop-

agated from the current observation Z̃t, in the following

way: P (X̃t, S̃
m∗
t |Z̃t) = π(X̃t)λ(X̃t). After that, the message

λ(S̃m
t ) backward propagated from the bottom level towards

the discrete level can be used to update the belief in S̃m
t , that

can be calculated as:

λ(S̃m
t ) = λ(X̃t)P (X̃t|S̃m

t ) = P (Z̃t|X̃t)P (X̃t|S̃m
t ) (8)

where P (X̃t|S̃m
t ) ∼ N (μS̃m

k
, ΣS̃m

k
) denotes a Gaussian

distribution with mean μS̃m
k

and covariance ΣS̃m
k

. While,

λ(X̃t) ∼ N (μZ̃t
, R) denotes a Gaussian distribution with

mean μZ̃t
and covariance R. The multiplication between

λ(X̃t) and P (X̃t|S̃m
t ) can be obtained by calculating the

Battacharyya distance (DB) as follows:

DB

(
λ(X̃t), P (X̃t|S̃m

t = S̃m
k )

)
=

− ln

∫ √
λ(X̃t)P (X̃t|S̃m

t = S̃m
k )dX̃t (9)

where S̃m
k ∈ S̃m. The vector Dλ containing all the DB values

between λ(X̃t) and all the superstates in the set S̃m is here

estimated as:

Dλ =
[
DB(λ(X̃t), P (X̃t|S̃m

t = S̃m
1 )), . . . ,

DB(λ(X̃t), P (X̃t|S̃m
t = S̃m

L ))
]

(10)

Therefore, the vector λ(S̃m
t ) in terms of probability is:

λ(S̃m
t ) =

[
1/Dλ(1)

1/
∑L

l=1 Dλ(l)
, . . . ,

1/Dλ(L)

1/
∑L

l=1 Dλ(l)

]
(11)

After calculating λ(S̃m
t ) and unlike [33], herein the weight

W ∗
t of the particle S̃m∗

t is updated using W ∗
t = W ∗

t λ(S̃
m∗
t )

and then normalized by considering the Sequential Importance

Resampling (SIR) technique.

In classical MJPF, predictive and diagnostic messages are

at the basis of Bayesian updating, i.e. are used to estimate

an updated joint posterior at different levels. However, some

information is lost in this process, namely an evaluation

according to some probabilistic metric of the differences

between two messages arriving at a given node. In fact, in such

difference, i.e. the surprise or abnormality can be estimated

based on the difference of expectation w.r.t evidence coming

from data on a given variable. The following section defines

how this is here obtained to provide Self-Aware radio with a

general basis for abnormality detection.

C. Abnormality Detection

In the modified approach here proposed, classical Bayesian

inference is enriched by another capability correlated to exploit

and describe differences between top-down and bottom-up

messages incoming into a generic node of the HDBN that

provide hierarchical abnormality signals as shown in Fig. 6-b.

1) Kullback-Leibler-Divergence Abnormality (KLDA) at
Discrete Level: in this case the abnormality is defined as a

distance between the messages entering to node S̃m
t , namely

the predictive (π(S̃m
t )) and the diagnostic (λ(S̃m

t )) messages.

Differences between the probability profiles of predictive

support and evidence indicate that involved components of the

generative model used to predict radio environment dynamics

do not fit current observations, i.e. provide to the radio an

awareness signal indicating whether and how much the current

surrounding environment is behaving in a way different to the

rules learned in the generalized model. Since these two mes-

sages represent discrete probability distributions, Kullback-

Leibler-Divergence (KLD) is here proposed as probability

distance measurement to calculate the difference between them

as follows:

KLDA = DKL

(
π(S̃m

t )||λ(S̃m
t )) +DKL(λ(S̃

m
t )||π(S̃m

t )
)

(12)

To computationally apply this distance in the run time of the

MJPF, at each time instant t and after the updated process

(KF) and resampling (PF) the histogram of the particles is

extracted and the relative frequency of each particle is used to

approximate the local new prior over S̃m
t as follows:

p(S̃m
t = i) =

y(S̃m
t = i)

N
i ∈ S (13)

where y(.) is the frequency (or number of occurrences of

superstate i in the histogram) and N is the total number of

particles. It is worth to note that λ(S̃m
t ) is the same for all

the particles propagated by PF at time instant t. As π(S̃m
t )

is available as a row vector related to S̃m
t picked from the

transition matrix, the predictive message can be approximated

by selecting the row to be used in the KLDA depending on

the updated prior histogram previously introduced. Lets define

S as the set of the winning particles (whose entries in the

histogram is greater than zero), where:

S = {i|p(S̃m
t = i) > 0} i ∈ S (14)
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DKL is calculated between λ(S̃m
t ) and the rows of the

transition matrix π(S̃m
t ) related to the winning particles S

(that are the most probable before update). Therefore, (12)

becomes:

KLDA =
∑
i∈S

[
p(i)

L∑
j=1

πij log(
πij

λj
)
]
+

∑
i∈S

[
p(i)

L∑
j=1

λj log(
λj

πij
)
]

(15)

The space of the predicted discrete variables can be divided

into two sub-sets. One corresponding to the normality region

ΩN , and the other to its complement (ΩA), that can be

interpreted as the subset of unexpected super-states, i.e. outside

the model’s trusted prediction area. ΩN can be defined as

the sub-set that contains the most probable particles (with

high frequency of occurrence in the histogram) and satisfy

the following condition:∑
i∈ΩN

p(s̃t = i) ≥ ζ (16)

while, ΩA is the sub-set that contains the less probable

particles (with low frequency of occurrences) and satisfy the

following condition:∑
i∈ΩA

p(s̃t = i) ≤ 1− ζ (17)

where, ΩN ⊂ S, ΩA ⊂ S while p(.) and S are defined in (13)
and (14), respectively. ζ is the acceptance ratio that varies from

0 to 1. It is possible evaluating to what extent the probability

mass function of the evidence message falls in the region ΩN

and its complement to 1 in ΩA. A value α can be used to

indicate the amount of support (i.e. the probability mass of

λ(S̃m
t ) in the normality region). The KLDA defined in (12)

covers the global discrete state space, however by dividing the

discrete space into two regions we can rewrite KLDA as:

KLDA = KLDN +KLDA =∑
i∈ΩN

p(s̃t = i)×
[
DKL

(
π(S̃m

t = i)||λ(S̃m
t )

)
+

DKL

(
λ(S̃m

t )||π(S̃m
t = i)

)]
+

∑
i∈ΩA

p(s̃t = i)×
[
DKL

(
π(S̃m

t = i)||λ(S̃m
t )

)
+

DKL

(
λ(S̃m

t )||π(S̃m
t = i)

)]
(18)

KLDN measures the similarity between the set of particles

with the highest prior probability and the probabilistic evi-

dence, while KLDA measures the similarity with low prob-

ability predictions. The abnormal situation can so be defined

as:

KLDN > KLDA, (19)

From (18),

KLDA = KLDA −KLDN (20)

After substituting (20) in (19) we have: KLDN > KLDA −
KLDN . Thus, KLDA < 2(KLDN ). In addition, during a

normal situation KLDN is supposed to be small due to the

fact that the observation often votes for the most probable

particles, thus:

KLDN ≤ (1− ζ)α (21)

where α is the support mass expected by λ(S̃t) to consider a

prediction as not associated with abnormalities. Therefore the

normal situation occurred if:

KLDA < (1− ζ)α (22)

2) Abnormality at Continuous Level: At this level, the

abnormality indicator can be defined as a distance between

different probabilistic messages incoming to node X̃t. It

is based on the Bhattacharyya distance (DB) between the

predictive message π(X̃t) and the diagnostic message λ(X̃t)
incoming from the observation level. Thus, the continuous

level abnormality (CLA) is defined as:

CLA = DB(π(X̃t), λ(X̃t)) =

− ln

∫ √
P (X̃t, S̃m∗

t |Z̃t−1)P (Z̃t|X̃t)dX̃t (23)

π(X̃t) is distributed according to a multivariate Gaussian

and it has the following probability density function (PDF):

P (π(X̃t)) =

1√
(2π)d|Σπ|

exp
[
− 1

2
(x̃t − μπ)

TΣ−1
π (x̃t − μπ)

]
(24)

The shape of π(X̃t) is characterized by the covariance matrix

Σπ and the Mahalanobis distance (DM ) of each data sample

x̃t from the distribution’s centroid. Thus, a good generative

model can generate data samples x̃t that lie in the confidence

region almost of the time. The confidence region is often

represented as an ellipsoid around the data samples that satisfy

the following condition:

(x̃t − μπ)
TΣ−1

π (x̃t − μπ) ≤ χ2
d (25)

where (x̃t − μπ)
TΣ−1

π (x̃t − μπ) is the Squared Mahalanobis

distance and χ2
d is the quantile function of the chi-squared

distribution with d degrees of freedom. Then,{
x̃t ∈ RN , if (x̃t − μπ)

TΣ−1
π (x̃t − μπ) ≤ χ2

d

x̃t ∈ RA, if (x̃t − μπ)
TΣ−1

π (x̃t − μπ) > χ2
d

(26)

where RN is the normal region and RA is the abnormal

region. From the Mahalanobis distances we can obtain the

upper (x̃UB
t ) and lower (x̃LB

t ) bounds of π(X̃t). The area of

each region can be written as:

RA =∫ x̃LB
t

−∞

1√
(2π)d|Σπ|

exp
[
− 1

2
(x̃t − μπ)

TΣ−1
π (x̃t − μπ)

]
dx̃t+∫ +∞

x̃UB
t

1√
(2π)d|Σπ|

exp
[
− 1

2
(x̃t − μπ)

TΣ−1
π (x̃t − μπ)

]
dx̃t,

(27)
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RN =∫ x̃UB
t

x̃LB
t

1√
(2π)d|Σπ|

exp
[
− 1

2
(x̃t − μπ)

TΣ−1
π (x̃t − μπ)

]
dx̃t,

(28)

where the performance of the generative model depends upon

these regions. A good generative model can generate more

data samples that lie in RN , such that, RN > RA.

On the other side, the message (λ(X̃t)) tells if the real signal

matches the predicted signal. Thus, we aim to study how much

the diagnostic message supports the predictive message gener-

ated by the generative model. This can be done by calculating

the product between the two messages and then integrating it

to obtain the corresponding area. After that we must see if

the calculated area belongs to the normal or the abnormal

region defined in (27) and (28) respectively, to make the

correct decision. We propose to employ the DB to calculate the

similarity between the two messages. The analytical advantage

of using DB is due to its ability in measuring the overlap

area between the two distributions through the Bhattacharyya

coefficient (BC) and then converting it to a distance metric.

The BC is divided into 3 regions as follows:

BC =

∫ +∞

−∞

√
π(X̃t)λ(X̃t)dX̃t =

BC1
A︷ ︸︸ ︷∫ x̃LB

t

−∞

√
π(X̃t)λ(X̃t)dX̃t +

BCN︷ ︸︸ ︷∫ x̃UB
t

x̃LB
t

√
π(X̃t)λ(X̃t)dX̃t +∫ +∞

x̃UB
t

√
π(X̃t)λ(X̃t)dX̃t︸ ︷︷ ︸
BC2

A

(29)

where BCA is the overlap that falls inside the abnormal region

RA (i.e. BCA ⊂ RA) and BCN is the overlap that falls in

the normal region RN (BCN ⊂ RN ). The normal situation

occurred if:

BCN > BCA (30)

BCA is the overlap between π(X̃t) and λ(X̃t) inside the region

RA, which can be written as:

BCA =

∫ x̃LB
t

−∞

√
π(X̃t)λ(X̃t)dX̃t+

∫ +∞

x̃UB
t

√
π(X̃t)λ(X̃t)dX̃t

(31)

According to the product rule:

BCA =

∫ x̃LB
t

−∞

√
π(X̃t)dX̃t .

∫ x̃LB
t

−∞

√
λ(X̃t)dX̃t+∫ +∞

x̃UB
t

√
π(X̃t)dX̃t .

∫ +∞

x̃UB
t

√
λ(X̃t)dX̃t (32)

Then, according to the Cauchy–Schwarz inequality:

(BCA)
2 ≤

∫ x̃LB
t

−∞
π(X̃t)dX̃t .

∫ x̃LB
t

−∞
λ(X̃t)dX̃t+∫ +∞

x̃UB
t

π(X̃t)dX̃t .

∫ +∞

x̃UB
t

λ(X̃t)dX̃t

≤ Qx̃LB
t

(X̃t) . [β1(1− α)] +Qx̃UB
t

(X̃t) . [β2(1− α)]

(33)

Since π(X̃t) is a symmetric multivariate Gaussian we have:

x̃LB
t = x̃UB

t = T . Therefore,

BCA ≤
√

QT (X̃t) . [β1(1− α)] +QT (X̃t) . [β2(1− α)]
(34)

where α is the area of λ(X̃t) falling inside the normal region

RN and (β1 + β2) = 1.

From (29):

BCN = BC − BCA (35)

After substituting in (30), we have: BC > 2(BCA). Hence, the

normal situation occurred if:

BC >

√
QT (X̃t) . [β1(1− α)] +QT (X̃t) . [β2(1− α)]

(36)

D. Abnormality Characterization

In the previous functionality, message-passing in the HDBN

from slice to slice is exploited to calculate the abnormality

measurements, while here the message-passing in the same

slice (intra-slice) will be used to calculate the Generalized

Errors (as shown in Fig. 6-b) from which the jammer can be

characterized at multiple levels by means of machine learning.

1) Jammer Characterization at Discrete Level: At this

level, the radio can characterize the abnormal situation by

analysing the superstates’ evolution based on the predictive

messages (π(S̃m
t )) and that based on the diagnostic messages

(λ(S̃m
t )). In this way two sets of superstates (Sπ and S

λ)

are created, the first one contains the predicted superstates

while the second contains the observed superstates. At each

time instant tj (the time when the jammer is detected) these

superstates can be obtained as follows:⎧⎪⎪⎨
⎪⎪⎩
S̃π
tj = argmax

S̃m
tj
∈S

y(S̃m
tj )

S̃λ
tj = argmax

S̃m
tj
∈S

λ(S̃m
tj )

(37)

where y(S̃m
t ) is defined in (13), S̃π

tj ∈ S
π and S̃λ

tj ∈ S
λ.

Comparing between S̃π
tj and S̃λ

tj can help to understand how

the jammer is affecting the superstates evolution. If S̃λ
tj is

not equal to S̃π
tj , this means that the jammer shifts the signal

from S̃π
tj to S̃λ

tj , otherwise the signal is manipulated by the

jammer but kept in the expected superstate. In other words, the

radio expects (predicts) that the signal’s sample (i.e. OFDM

symbol) will fall in a certain superstate based on the dynamic

rules learned in previous experience (related to model m).

However, during attacks, the jammer shifts the signal’s sample
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to another superstate or even manipulate the sample but keeps

it inside the predicted superstate (the case when S̃π
tj =S̃λ

tj ). This

cross-correlation between the predictive support π(S̃m
tj ) and

the diagnostic support λ(S̃m
tj ) allows the radio to understand

the jammer’s effect on the superstates (at discrete level) of the

learned dynamic model and to discover the jammer’s strategy

or the dynamic rules it is following to attack the signal.

2) Jammer Characterization at Continuous Level: Charac-

terizing the attack at the continuous level helps the radio to

understand the jammer’s force in terms of I and Q values and

how much the jammer shifted the signal from one superstate

to the other or from a specific superstates’ centroid. This

depends on the characterization done before at the discrete

level. The characteristics at the discrete level can be forwarded

towards the continuous level to calculate the generalized errors

as follows:

Dtj =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Generalized Error 1 (ε1
X̃tj

)︷ ︸︸ ︷
μ
(
argmax
S̃m
tj
∈S

λ(S̃m
tj )

)
− X̃λ

tj if S̃π
tj = S̃λ

tj

μ
(
argmax
S̃m
tj
∈S

λ(S̃m
tj )

)
− μ

(
argmax
S̃m
tj
∈S

π(S̃m
tj )

)
︸ ︷︷ ︸

Generalized Error 2 (ε2
X̃tj

)

if S̃π
tj �= S̃λ

tj

(38)

where Dtj is the generalized error containing the I and Q
values and the corresponding derivatives at multiple sub-

carriers. In (38), if the jammer manipulates the signal but keep

it in the same superstate (the expected one), the generalized

error is equal to the mean value of (S̃λ
tj ) subtracted from the

generalized state associated with the most probable superstate

in π(S̃tj ). Otherwise, if the jammer shifts the signal from one

superstate to another one, the generalized error is equal to the

mean value of the current superstate (S̃λ
tj ) subtracted from the

mean value of the predicted superstate (S̃π
tj ). The I-Q voting

theory is employed to vote for the most probable IQ values

encoded in Dtj and obtained from (38). The radio will vote

to similar Dtj values, where the votes along with Dtj and the

corresponding superstates (the predicted ones) will be stored

in a cell to be used later on. To understand how much the

jammer shifted the signal with respect to the center of the

expected superstate, the radio picks the Dtj value which has

the maximum number of votes from the cell stored during the

real-time process and extract consequently the corresponding

derivatives that realize the jammer’s force (Ujammer).

3) Jammer Characterization at Observation Level (Obser-
vational Characterization): the characteristics obtained at the

discrete level are forwarded towards the observation level to

calculate the generalized error at this level (εZ̃t
) and explain

such error as well. From the higher level, the radio can know

which superstates of the model are affected by the jammer.

Calculating the distance from the superstates’ centroid allows

to extract the source of the cause (jammer) that affected the

shift noticed at higher levels. So, εZ̃t
can be calculated in the

following way:

Z̃J
t =

Generalized Error 3 (εZ̃t
)︷ ︸︸ ︷

Z̃t −Hμ(argmax
S̃t∈S

λ(S̃t)) (39)

which represent the jammer’s Generalized State (Z̃J
t ) from

which the radio can extract the jamming signal.

E. Incremental Learning of new models

The information obtained in the previous steps will be used

here to incrementally learn the new model at two hierarchical

levels, at the discrete level by updating the transition matrix

of model (m = 1) and at the continuous level by updating the

linear model associated to the reference model (m = 1).

1) Update Transition Matrix: The difference between vari-

ables whose belief is given by λ(S̃m
t ) and π(S̃m

t ) denotes

the discrete Generalized Error (ε(S̃m
t )) which represents the

innovation provided at the discrete level by PF. As mentioned

before λ(S̃m
t ) is a vector containing L elements and it is the

same for all the particles propagated by the PF at time instant

t. π(S̃m
t ) is a 1xL vector picked from the transition matrix and

ε(S̃m
t ) is a KxL matrix where K is the total number of the

elements in set S which is defined in (14). Therefore ε(S̃m
t )

can be defined as:

ε(S̃m
t ) =⎡

⎢⎣ ε1
...

εK

⎤
⎥⎦ =

⎡
⎢⎣λ1 − πSk1, λ2 − πSk2, . . . λL − πSkL

...
...

...
...

λ1 − πSK1, λ2 − πSK2, . . . λL − πSKL

⎤
⎥⎦
(40)

where Sk denotes the k-th element (superstate) in the set

S. ε(S̃m
t ) is a zero-mean vector which contains positive

and negative elements. At each time instant, tj (i.e., when

the jamming attack takes place, which is obtained from the

abnormality signal classification), the ith row vector related

to the winning particle extracted from the transition matrix is

updated following:

Π
′
tj = Π+ ε(S̃m

tj ) =⎡
⎢⎣ π11 + ε1(1) π12 + ε1(2) . . . π1L + ε1(L)

...
...

...
...

πK1 + εK(1) πK2 + εK(2) . . . πKL + εK(L)

⎤
⎥⎦ =

⎡
⎢⎣π

′
11 . . . π

′
1L

...
. . .

...

π
′
K1 . . . π

′
KL

⎤
⎥⎦ (41)

After considering the whole time where we detect jamming

signal, the updated transition matrix will be:

Π
′′
= E

[
Π
′
tj , . . . ,Π

′
tj+e

]
(42)

where Π
′′

denotes the mean value of all the saved versions of

the updated transition matrix Π′ and tj + e is the time instant

when the jammer ends the attack.
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2) Update Dynamic Model: after characterizing the jammer

at the continuous level to learn the rules it followed to attack

the commands, we can update the dynamic rules of the original

dynamic model by adding the jammer’s force. Therefore, the

updated dynamic model which represents the new situation

(signal + jammer) can be written as follows:

X̃t = AX̃t−1 +B
(
US̃m

t−1
+ Ujammer

)
+ wt (43)

where A, B and wt are the same as in (5) and Ujammer is

obtained from jammer characterization at continuous level in

Sec.IV-D2. In this way by using the updated dynamic model

(m+1), the radio will be able to predict the jammer’s effect

on the commands in terms of I and Q values at multiple sub-

carriers.

3) Relation b/w incremental learning and the detected ab-
normalities: Abnormalities are the surprising patterns in the

observation that are previously not seen. Detecting abnormali-

ties means that the radio is surprised by the new measurement.

This surprise is due to the fact that the radio was expecting

to receive signals that are generated according to the dynamic

model encoded in its brain but in fact, improbable signals are

received. The analytical meaning of incremental learning is

related to the Free-energy principle [34]. The objective is to

minimize the free-energy (i.e. the prediction error amount) by

continuous correction of the dynamic model that represents

the radio environment. This can be done by encoding a new

probabilistic representation or by updating the current version

of that representation. According to [34], the free-energy can

be defined as a function of sensory data (observations) and

dynamic model states (prediction):

F(Z̃,M) =< L(t) >q −H(t) (44)

where the free-energy comprises the energy (<·>) expected

under a certain density q (that consists the statistical param-

eters of the generative model) and its entropy H. L is the

dynamic model encoded in the radio’s brain that generates

expected data samples and their causes. In the proposed

framework (the generative model as HDBN), the free-energy

can be reduced after calculating the generalized errors between

top-down and bottom-up messages passing among hierarchical

levels and consequently learning an appropriate model (M)

that optimize the predictions about hidden states generating

observations (Z̃) and thus minimizing the free-energy. Hence,

the solution is given by:

M = argmin
M

F(Z̃,M), (45)

which leads to the following optimization problem expressed

in terms of abnormality measurements defined before:⎧⎪⎪⎪⎨
⎪⎪⎪⎩
π(S̃m

t ) = argmin
π(S̃m

t )

(
DKL

(
π(S̃m

t )||λ(S̃m
t )

)

π(X̃t) = argmin
π(X̃t)

−ln

[
BC

(
π(X̃t(S̃

m
t )), λ(X̃t(S̃

m
t ))

)]
(46)

The objective is to improve the radio’s predictive ability at

hierarchical levels. Prediction at the discrete level can be

optimized if the measurement votes for the most probable

particles (generated by the PF) all the time as discussed in

Subsection IV-C1. During abnormal situation, the most proba-

ble particles are not voted by the observation providing by that

a high DKL as shown in (19). This means that the dynamic

transition matrix (π(S̃m
t )) must be changed in a way that it

will be supported by the observation (λ(S̃t
m
)) which leads

to minimize the KLDN defined in (18), and thus the overall

KLDA will decrease. The rules of how the dynamic transition

matrix must be updated is shown in Subsections IV-D1 and

IV-E1. At the continuous level, the abnormality measurement

can be optimized if the overlap area between the prediction

π(X̃t) and the measurement λ(X̃t) in the normal region RN

is quasi-1 as discussed in Subsection IV-C2. During abnormal

situation the overlap is very small (especially when the jammer

attacks with high power). Thus, the prediction must be shifted

towards the measurement, maximizing by that the overlap in

the normal regions (RN ) and minimizing it in the abnormal

region (RA). Such shift realize the jammers power which

can be learned during the jammer characterization process

discussed in Subsection IV-D2 and consequently update the

linear dynamic model as shown in Subsection IV-E2.

F. Action Selection

The jammer characterization done in the previous step at

different hierarchical levels allows the radio to understand

the jammer’s nature of how (power), when (time) and where

(frequency) it is attacking the commands. This offers several

benefits to the radio including self-decision and self-action

that support the radio to enhance the physical layer security.

After extracting the jammer’s signal the radio can suppress

the jammer from the current observation and then overcome

the issue of false commands or high error probabilities. This

self-correction of the jammed signal realizes an auto-defence

technique against the attacker threat without the help of other

entity in the network. This reduces the time to act against the

jammer, rather than sending feedback and then waiting for a

response which increases the time of action during the real-

time process. The Generalized Error defined in (39), produces

the generalized state vector of the jammer (Z̃J
t ), which by the

way can be fed to an unsupervised technique to be clustered

allowing the radio not only to study statistically the effect

of the jammer on the received commands (interaction b/w

jammer and user) but also to study how the jammer’s dynamics

are evolving with time using probabilistic reasoning. This

can be very useful when the jammer changes the strategy

of the attacks, e.g. changes the output power while attacking

the radio (to be investigated in future work). Regrading the

proposed scenario we supposed that the jammer’s output power

will not change during the attacks. Thus, we supposed that

there is only one cluster (superstate) of the jammer’s dynamic

model which encodes all the components of the Z̃J
t . As done

before after obtaining the superstates of the normal signal

(commands) we can calculate the mean and covariance of the

stand-alone superstate of the jammer from which the jammer’s

control vector (Ujammer) can be obtained. In addition, the

radio can extract (or estimate) the jammer’s signal from the

Z̃J
t at multiple sub-carriers. Z̃J

t consists of the signal and
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the noise and can be expressed as: Z̃J
t = Ĵt + wt, thus,

the jammer’s signal can be estimated using: Ĵt = Z̃J
t − ŵt

where Ĵt is the estimated signal of the jammer extracted

from Z̃J
t , and ŵt can be estimated using the reference model

(m = 1). After extracting the jammer’s signal, the radio can

decide to suppress its effect (internal action) from observation

before entering to the demodulator and decoder blocks. The

observation that represents the jammed signal can be expressed

as: Zt = Yt + Jt +wt; where Zt is the jammed signal, Yt the

normal signal, Jt the jammer’s signal and wt is the channel’s

noise. Therefore, the corrected signal Z†t will be decomposed

as:

Z†t = Zt − Ĵt = Zt − Z̃J
t + ŵt (47)

V. EXPERIMENTAL RESULTS

We conduct an extensive Monte Carlo simulation to evaluate

the performance of the proposed framework using simulated

data. Firstly, the trajectory of a quadcopter UAV is simulated

based on [35]. A relationship between the commands and

velocities of the UAV at different angles (Pitch, Yaw and

Roll) is studied to generate the appropriate bits for simulating

the LTE signal. Similarly, the altered trajectory is also ex-

tracted from the jammed signal. The LTE signal is generated

according to the 3GPP specifications [36], and the important

parameters are defined in Table II. The flight time of the UAV

is Tflight = 30s consisting of 600 samples due to the fact

that the position is measured by the GPS every 50 ms. In

addition, the UAV receives a PRB every 50ms and extracts the

RV that contains a set of commands sent over 9 consecutive

sub-carriers in 1 OFDM symbol. Thus, during the Tflight the

UAV will receive 600 sets of commands, corresponding to 600
OFDM symbols in time domain (Fig. 4). Each received set of

commands indicate how the UAV will move in the 3D space.

The normal signal and the jammer are QPSK modulated. The

output of the QPSK modulator for both is normalized based

on the average power. The normal signal has average power

PS = 1W . While the average power of the jammer is PJ .

TABLE II: LTE simulation parameters

Four different situations are considered, the first one is related

to the Reference Situation representing a normal behaviour of

the signal that carries original commands sent by the operator

as shown in Fig. 7-a. The corresponding UAV trajectory is

depicted in Fig. 8-a. The remaining situations are concerning

the smart jammer behaviours in attacking the commands who

has an average power PJ = 1W , and they are listed as follows:

Situation 1, the jammer is attacking consecutively starting

from time (in terms of OFDM symbols) t = 200 till t = 400
as shown in Fig. 7-b, where the altered UAV trajectory during

the jamming attacks is shown in Fig. 8-b. In Situation 2,

the jammer behaves in a dynamic fashion by attacking from

t = 1 till t = 200, and from t = 400 till t = 600 as shown

in Fig. 7-c, while, Fig. 7-d (Situation 3) illustrates a faster

dynamic behaviours of the jammer.

Initially, the radio (UAV) does not have any knowledge

(null memory) about the surrounding environment. Thus, at

the beginning stage which is the first iteration exhibited in

Fig. 5, the UAV predicts the future states of the spectrum

supposing that the signals’ states are static and do not change

with time by employing UKF. Such an assumption leads to

high abnormalities all the flight time since the UAV fails

to predict the real states of the signal, as shown in Fig. 9-

a. Accordingly, based on these predictions and by using the

innovations (derivatives) produced by the UKF, the UAV will

form and store the generalized errors. Then it will perform

an unsupervised clustering method (the GNG algorithm) in

an offline manner to learn and memorize the first gener-

ative model which represent the dynamics of the received

commands during the normal situation. After that, the UAV

is capable to predict the future states of the commands at

multiple sub-carriers. This can be verified by calculating

the abnormality signal during the normal situation. If the

abnormality is quasi-zero, i.e. the learned model succeeded to

capture the dynamic rules of the signal and allowed the UAV

to perform correct predictions as shown in Fig. 9-b where the

abnormality at the continuous level defined in (23) is showed.

Testing new observations Zt and predicting eventually, could

follow the same rules with which the dynamic model has

been learned from previous experience (reference situation)

when the jammer was absent or could deviate due to the new

rules caused by the jammer. Thus, in Situation 1, the UAV

can detect any attack while predicting the future states of the

commands and receiving the observations as shown in Fig. 10-

a-b. As well as extracting the jammer’s signal (Fig. 11-a)

and act accordingly by mitigating its effect on the received

commands (Fig. 11-b) which leads to auto-correction of the

altered trajectory in Fig. 8-c.

After this situation, the UAV can study the new behaviour

(detected jammer) and learn incrementally a new dynamic

model which represents the interaction of the jammer and the

normal signal (commands). Facing a new situation (Situation

2), where the same jammer (detected before) is attacking the

commands allow the radio to recognize it and predict its

future activity inside the radio spectrum since it has already

learned the rules of attacking. In this situation the UAV’s

memory contains two dynamic models: the UAV will i) switch

between these models; ii) and select the best one that fits the

observation. Fig. 10-c-d shows the abnormality measurements

related to the reference model (learned during the reference

situation) and that related to multiple models (reference model

and the one learned incrementally that represents the situation

where the jammer is ON). As expected the abnormality at

both levels is decreased, which means that the UAV succeeded

to learn the dynamic rules of the jammer in attacking the

commands. Additionally, another new experience (Situation

3) has been tested by considering fast dynamics of attacking

the commands by the same jammer. Fig. 10-e-f, confirms that

the UAV has been succeeded in characterizing the jammer in

question and learn its model incrementally, and then to predict

its effect in future situations.

Further experiments are tested to validate the proposed

approach, by varying the Jamming-to-Signal-Ratio (JSR) from
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Fig. 7: Received Commands at multiple sub-carriers at different situations
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Fig. 8: UAV Trajectories.
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Fig. 9: Abnormality Measurements at the continuous level
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Fig. 10: Jammer Detection at hierarchical levels during different situations
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(a) Jammer’s signal
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Fig. 11: Jammer extraction and jammer suppresion after
characterizing the jamming attacks

−15dB to +15dB. In all these experiments the jammer attacks

dynamically all the 9 sub-carriers in frequency domain and

certain OFDM symbols in time domain. Particularly, from

t = 1 till t = 150, from t = 200 till t = 350, and from

t = 400 till t = 550. In order to evaluate the performance

of the proposed framework in detecting the jamming attacks

referring to the reference model learned by the UAV, we used a

range of confidence thresholds to build the corresponding ROC

curves illustrated in Fig. 12-a along with the Area Under Curve

(AUC) (Fig. 12-b) and Accuracy (ACC) (Fig. 12-c). The ROC

curves show that the MJPF filtering on the reference model

provides high detection probability (Pd) at both levels even

when the jammer attacks with very low power. For example,

with JSR = -5 dB, the probability of detection is almost 100%

for both KLDA and CLA measurements. The high detection

probabilities can be explained by the fact that the predictions

performed at the higher level of the HDBN using PF were pre-

cise and accurate almost of the time considered in the analysis.

The probability of detecting the jammer at the discrete level

is calculated by using: Pd = Pr
{

KLDA > (1 − ζ)α
}

. We

estimated the acceptance ratio (ζ) as ζ = 0.8 after observing

the predicted superstates and the observed ones. This also

implies that the learned model is accurate in predicting the

discrete variables as can be observed from Fig. 10-a where

the KLDA signal is quasi-zero (i.e. observation matches the

prediction) in the time instants when the jammer is OFF.

Directly estimating α is difficult here since the UAV does

not has any prior knowledge about the jammer. However, it

can be estimated by supposing that half of the probability

mass function of the observation (λ(S̃t)) falls in the normality

region and the other half in the abnormality region (the concept

of α is discussed in Section IV-C1). Thus, we set α = 0.5. In

this case, the threshold is adapted to different situations. On

the other hand, the probability of detecting the jammer at the

continuous level is calculated by using: Pd = Pr

{
CLA >

√
QT (X̃t) . [β1(1− α)] +QT (X̃t) . [β2(1− α)]

}
. In the

numerical results, we chose QT = 0.2 which is estimated

after observing the CLA signal during normal situation shown

in Fig. 9-b where the abnormal signal is quasi-0 implying that

the learned generative model is accurate to predict continuous

variables. Also here α is the area of λ(X̃t) falling inside

the normal regions as discussed in Section IV-C2 and it is

difficult to estimate it as claimed before so we set α = 0.5
while β1 = 1 and β2 = 0. In addition, a comparison with

the traditional Energy detector (ED) is provided as shown

in Fig. 12 that shows how the proposed approach beats the

Energy detector (ED) in detecting the jammer at different

JSRs.

The characterization of the jammer is performed by the

UAV during the first interval (from 1 to 150 OFDM symbols)

and the successive periods are used to validate if the UAV

succeeded to capture the dynamics of such attacks. This

capability can be verified by calculating the Root Mean Square

Error (RMSE) of the abnormality measurements (KLDA and

CLA) and comparing these errors in two cases. The first case

(m = 1) is when the UAV relay on the reference model (the

first dynamic model) while the second case (m > 1) is based

on switching between the reference model and the one learned

incrementally which encodes the dynamic rules of the jammer

in question. RMSE is the difference between prediction and

evidence realizing the prediction accuracy, high RMSE means

that the evidence does not match the prediction while low

RMSE stands for the fact that prediction matches the evidence.

Also, RMSE depends on the abnormality level which increases

as the jammer’s power increase as shown in Fig. 13 (blue

curves). In the second case, by switching between two models

the UAV can predict the jammer’s effect in future OFDM

symbols and cause a decrement of the RMSE respectively.

This can be seen in Fig. 13 (red plots) where the RMSE of

KLDA (Fig. 13-a) and RMSE of CLA (Fig. 13-b) converge

and are somehow stable and decreased with respect to the

RMSE related to the reference model. This implies that the

abnormality level is stable too since the UAV is predicting

correctly the jammer’s activity and not detecting unexpected

behaviours any more (not surprised any more).

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a general framework for Cogni-

tive UAV Radios by introducing an emergent data-driven Self-

Awareness (SA) module to enhance the physical layer security.

This module allows the radio to build up its own memories

incrementally by observing the stimulus received from the

radio environment and learning with reasoning a hierarchical

representation of such observation. The radio augmented with

SA is capable to predict the radio environment and identify any

abnormality within a received signal. The SA module is also

capable of characterizing the abnormal situation caused by a

jammer while studying the rules of how (Power), when (Time)

and where (Frequency) the jammer is attacking. Additionally,

an incremental learning process is proposed for the radio to

learn a new model that represents the new situation, decide

and act efficiently by suppressing the jamming signal. All
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Fig. 12: Performance comparison between the SA module (KLDA, CLA) and Energy detector (ED): ROC curves (a) and the
corresponding AUC (b) and ACC (c)
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Fig. 13: RMSE comparison versus JSR by using only the reference model (blue curves) and switching between two models (red curves).
(a) RMSEs of KLDA. (b) RMSEs of CLA

these tasks are performed by the radio itself in an incremental

approach without any external supervision, and the proposed

framework is generalized enough to be employed in differ-

ent radio applications. We show that the proposed HDBN

framework accurately characterizes the jammer’s behaviours

in different situations while the probability of detection is

significantly high even at low Jamming-to-Signal-Ratio. The

results also show that after learning the jammer’s behaviors,

the UAV with the proposed framework can correctly predict

the future activities of the jammer, which can eventually help

in mitigating any future attacks. In the future, we will analyse

the jammer classification in a more practical multiple jammers

scenario as well as introducing interactive learning models

between the jammer and the user to design an anti-jamming

technique.
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