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Abstract—This work proposes a novel resource allocation strat-
egy for anti-jamming in Cognitive Radio using Active Inference
(AIn), and a cognitive-UAV is employed as a case study. An
Active Generalized Dynamic Bayesian Network (Active-GDBN)
is proposed to represent the external environment that jointly
encodes the physical signal dynamics and the dynamic interaction
between UAV and jammer in the spectrum. We cast the action
and planning as a Bayesian inference problem that can be solved
by avoiding surprising states (minimizing abnormality) during
online learning. Simulation results verify the effectiveness of the
proposed AIn approach in minimizing abnormalities (maximizing
rewards) and has a high convergence speed by comparing it with
the conventional Frequency Hopping and Q-learning.

Index Terms—Active Inference, Resource Allocation, General-
ized Bayesian Filtering, Anti-jamming, Cognitive Radio.

I. INTRODUCTION

With the integration of Unmanned Aerial Vehicles (UAVs),

Wireless Communications (WCs) are more prone to terrestrial

jammers due to the high heterogeneity and dominant Line-

of-Sight (LoS) links [1]. Jammers cause damage to commu-

nication and degrade the system’s performance. Therefore, it

is crucial to develop an anti-jamming strategy to reach robust

connectivity and improve communication security.

Cognitive Radio is a key technology to accomplish in-

telligent resource management in jamming scenarios. In de-

tecting the existence of the jammers and avoiding jamming

attacks, conventional anti-jamming solutions that use fixed

transmission patterns can be used. However, they are unable

to deal with dynamic jamming patterns in complicated radio

environments with high uncertainty, and unpredictable jam-

ming behaviours [2]. Recently, Reinforcement Learning (RL)

has attracted much attention in WCs to design anti-jamming

solutions in complex environments. RL methods such as Q-

learning (QL) [3] are used to deal with different types of

jammers. However, they suffer from slow convergence if the

state and action spaces are large, which leads to anti-jamming

performance degradation. Deep-QL has been proposed in [4]

to overcome that issue and learn efficient defence policy.

RL methods are based on a reward signal coming from the

environment as a feedback to evaluate the performed action.

However, defining a proper reward function in complex and

dynamic environments is a big challenge [5]. Active Inference
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(AIn) [6] can overcome this challenging task by replacing

reward functions with prior beliefs about desired sensory

signals received from the environment. Thus, AIn agent can

learn to describe how it expects itself to behave without

getting a feedback from the environment. AIn is a promising

emerging theory from cognitive neuroscience; it provides a

theoretical Bayesian framework that supports how biological

agents perceive and act in the real world through the free-

energy principle and offers an alternative to RL.

This letter proposes an AIn framework as a novel resource

allocation strategy for anti-jamming and studies the Cognitive-

UAV based scenario. Under the AIn framework, the Cognitive-

UAV is endowed with a joint internal representation (genera-

tive model) of the external environment, encoding the physical

signal and the available physical resources jointly. This enables

encoding the dynamic interaction between the UAV and the

jammer in the spectrum. The objective is to learn the best

set of actions performed by the UAV as interaction with a

jammer that leads to the minimum surprise (positive reward).

Such a representation goes over the necessity of mapping

actions to signals’ states directly (unlike the RL approach)

and modelling them over a continuous state-space, which can

be a complicated task in RL. There are four main rationals to

use AIn approach over RL ([3], [4]): i) AIn operates in a pure

belief-based setting allowing one to seek information about

the environment and resolve uncertainty in a Bayesian-optimal

fashion. ii) AIn enables speeding up the learning process by

performing multiple updates simultaneously while adapting to

the dynamic changes in the spectrum. iii) There is a dynamic

balance between the exploration and exploitation due to the

pure belief-based mode, while RL is driven by a value function

that updates a single state action at each step. iv) In AIn
the reliance on an explicit reward signal coming from the

environment is not necessary; the reward is substituted by

Generalized Errors that can be treated as self-information to

avoid surprising states (i.e., states under attack) and reach the

equilibrium. To our best knowledge, this is the first work that
adopts AIn for anti-jamming in WCs.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a cellular-connected UAV communicating with its

respective Ground Base Station (GBS) to receive the tele-

commands during a given mission of duration T over the

Command and Control (C2) link which does not exceed a

data rate of 100 Kbps [7], while a malicious terrestrial jammer

transmits jamming signals with the intention of disturbing

the legitimate UAV communications. The jammer may adopt

Page 1 of 9 IEEE Communications Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



IEEE COMMUNICATIONS LETTERS 2

constant, random or sweep jamming patterns during a certain

experience. The UAV, GBS and jammer are denoted as 𝑢, 𝑔
and 𝑗 , respectively. The 3D coordinate of GBS and jammer are

fixed at 𝒐𝒈 = [𝑥𝑔, 𝑦𝑔, 𝑧𝑔] and 𝒑 𝒋 = [𝑥 𝑗 , 𝑦 𝑗 , 𝑧 𝑗 ], respectively,

while the time-varying coordinate of UAV at time instant 𝑡
is defined as 𝒒𝒖𝒕 = [𝑥𝑢𝑡 , 𝑦

𝑢
𝑡 , 𝑧

𝑢
𝑡 ]. The path-loss model from

the ground equipment (i.e., GBS or jammer) to UAV follows

the cellular to UAV path-loss model, which can be expressed

according to [8] as: PLe,u
t (𝑑𝑡 , 𝜃𝑡 ) = PLter (𝑑𝑡 ) + 𝜂(𝜃𝑡 ) + 𝜒(𝜃𝑡 ),

where 𝑒 ∈ {𝑔, 𝑗}, PLter
t (𝑑𝑡 ) = 10𝛼 log(𝑑𝑡 ) is the terrestrial

path-loss of the point beneath the UAV, 𝛼 is the terrestrial path-

loss exponent that depends on the propagation environment

and 𝑑𝑡 =
√
(𝑥𝑢𝑡 − 𝑥

𝑒)2 + (𝑦𝑢𝑡 − 𝑦
𝑒)2 is the 2D distance between

𝑒 and 𝑢. In addition, 𝜂(𝜃𝑡 ) = 𝐶 (𝜃𝑡 − 𝜃0) exp
(
−

𝜃𝑡−𝜃0
𝐷

)
+ 𝜂0 is

the excess aerial path-loss and 𝜒(𝜃𝑡 ) is a zero-mean Gaussian

variable with an angle-dependent standard deviation describing

the shadowing effect such that 𝜒(𝜃𝑡 ) ∼ N (0, 𝜎(𝜃𝑡 )=𝑎𝜃𝑡 +𝜎0),
where 𝐶 is the excess path-loss scaler, 𝐷 is the angle scaler,

𝜃0 is the angle offset, 𝜂0 is the excess path-loss offset, 𝑎 is the

UAV shadowing slope, 𝜃𝑡 = arctan
( 𝑧𝑢𝑡 −𝑧𝑒𝑡

𝑑𝑡

)
is the depression

angle and 𝜎0 is the UAV shadowing offset. The GBS assigns

one Physical Resource Block (PRB) to the UAV each 𝑡 where

C2 data are transmitted [9]. The set of available links is

denoted as RB={ 𝑓1, . . . , 𝑓𝑛, . . . , 𝑓𝑁 }, 1 ≤ n ≤ 𝑁 , where

|RB|=𝑁 is the total number of available PRBs that depends

on the channel bandwidth 𝐵𝑊 . To cope with the malicious

jamming, the UAV aims to learn the best allocation strategy

online by selecting the proper PRBs that are not targeted by the

jammer while interacting with the environment and sending

updated information to GBS to adapt to the environmental

dynamic changes. Denote H0 and H1 as the hypotheses of

the absence (i.e., UAV and jammer selected different PRBs)

and presence (i.e., UAV and jammer selected the same PRB)

of the jammer, respectively. The complex signal that is re-

ceived at the UAV at time instant 𝑡 and over 𝑓𝑛 is given as

𝑟𝑡 , 𝑓𝑛 = ℎ
𝑔,𝑢
𝑡, 𝑓𝑛

𝑥𝑢𝑡, 𝑓𝑛 + 𝑣𝑡 and 𝑟𝑡 , 𝑓𝑛 = ℎ
𝑔,𝑢
𝑡, 𝑓𝑛

𝑥𝑢𝑡, 𝑓𝑛 + ℎ
𝑗 ,𝑢
𝑡 , 𝑓𝑛

𝑥
𝑗
𝑡 , 𝑓𝑛

+ 𝑣𝑡 at

hypotheses H0 and H1, respectively, where 𝑥𝑢𝑡, 𝑓𝑛 denotes the

C2 signal, ℎ
𝑔,𝑢
𝑡, 𝑓𝑛

= 1/PLt
𝑔,𝑢 is the channel gain from GBS to

UAV, 𝑥
𝑗
𝑡 , 𝑓𝑛

stands for the jammer’s signal, ℎ
𝑗 ,𝑢
𝑡 , 𝑓𝑛

= 1/PLt
𝑗 ,𝑢

is the channel gain from jammer to UAV and 𝑣𝑡 is the

random noise. The corresponding SINR at the UAV is given

by 𝛾𝑡 = 𝑃𝑢𝑡 ℎ
𝑔,𝑢
𝑡, 𝑓𝑛

/(𝛼𝑃
𝑗
𝑡 ℎ

𝑗 ,𝑢
𝑡 , 𝑓𝑛

+ 𝜎2), where 𝑃𝑢𝑡 is the transmitted

power, 𝑃
𝑗
𝑡 is the jammer power, whose presence is denoted by

𝛼 which is equal to 0 under H0 and equals to 1 under H1.

The anti-jamming defense problem can be formulated as

a partially observable Markov decision process (POMDP)

since the spectrum is only partially observable to the UAV.

A discrete-time POMDP that models the relationship between

the UAV and its environment can be described as 7-element

tuple (𝑺, 𝑿,A,P𝒖
𝝉 ,P 𝒋

𝝉 ,𝚷
𝒂𝒖
𝝉 , �̃�𝒕 , 𝒇𝒏 ), where 𝑺 and 𝑿 are sets

of the environmental hidden states, A is a set of actions where

action is PRB selection (𝑎𝑡 ∈ RB), P𝒖
𝝉 and P 𝒋

𝝉 are the time-

varying transition models for UAV and jammer, respectively.

𝚷𝒂𝒖
𝝉 is the AIn-table that encodes the state-action couple and

�̃�𝒕 , 𝒇𝒏 are the observations received at each 𝑡 over 𝑓𝑛. During

the offline training, UAV learns a dynamic model M encoding

the dynamic rules that generate desired sensory signals (i.e.,

without jamming interference). During the active inference

process (i.e., online learning), UAV predicts the environmen-

tal hidden states characterized by the posterior distributions

P(𝑠∗𝑡 ∈𝑺 |𝑧𝑡∈�̃�𝒕 , 𝒇𝒏 ,M) and P(𝑥∗𝑡 ∈ 𝑿 |𝑧𝑡 ∈ �̃�𝒕 , 𝒇𝒏 ,M) based on

a prior belief (encoded in M) and infers the actions most

likely to generate preferred sensory signals (i.e., clean sig-

nals without jamming interference). Then, UAV can evaluate

the situation after receiving the current observation 𝑧𝑡 and

calculate the similarity between predictions and observations

using a probabilistic distance D (i.e., abnormality indicator).

If the similarity is high (i.e., H0), UAV can understand that the

selected action has led to desired states and to the reception

of desired signals. If the similarity is low (i.e., H1), UAV

can understand that the selected action is a bad action and

updates 𝚷𝒂𝒖
𝝉 accordingly to avoid selecting actions that lead

to surprising states (i.e., high abnormality). Therefore, while

acting and sensing the spectrum, the UAV aims to minimise

the cumulative abnormality:

min
𝑎𝑡

T∑
𝑡=1

D

(
P(𝑠∗𝑡 |𝑧𝑡 ,M) , P(𝑧𝑡 |𝑠∗𝑡 ,M)

)
. (1)

It is to note that (1) is equivalent to maximize the SINR.

III. PROPOSED ANTI-JAMMING METHOD

A. Radio Environment Representation

We assume that the environment is described by a

Generalized-state-space model, comprised of:

�̃�𝑢
𝑡, 𝑓𝑛

= F(�̃�𝑢
𝑡−1, 𝑓𝑛 ) + �̃�𝑡, 𝑓𝑛 , (2)

�̃�𝑢
𝑡, 𝑓𝑛

= 𝐴�̃�𝑢
𝑡−1, 𝑓𝑛 + 𝐵𝑈�̃�𝑢

𝑡, 𝑓𝑛
+ �̃�𝑡, 𝑓𝑛 , (3)

�̃�𝑡, 𝑓𝑛 = 𝐻�̃�𝑢
𝑡, 𝑓𝑛

+ 𝐻�̃�
𝑗
𝑡, 𝑓𝑛

+ �̃�𝑡, 𝑓𝑛 , (4)

In (2), 𝑆𝑢𝑡, 𝑓𝑛 are discrete random variables (or Generalized

superstates GSS) describing the discrete clusters of the UAVs’

C2 signals that evolve according to (2) where F(.) is a non-

linear function describing the signals’ dynamic transitions

among the discrete variables and its evolution over time at a

specific PRB ( 𝑓𝑛) and �̃�𝑡 , 𝑓𝑛 is a Generalized process noise

such that, �̃�𝑡 , 𝑓𝑛∼N(0, Σ�̃�𝑡, 𝑓𝑛
). The dynamic model in (3)

explains the dynamic evolution of the continuous random

variables �̃�𝑡 , 𝑓𝑛 (or Generalized states GS) where 𝐴∈R2𝑑,2𝑑 ,

𝐵∈R2𝑑,2𝑑 are the dynamic model and control model matrices,

respectively, and 𝑈�̃�𝑢
𝑡, 𝑓𝑛

is the control vector. The observation

model is given in (4) where �̃�𝑡 , 𝑓𝑛∈R
2𝑑 is the generalized

observations including the signals’ features in terms of 𝐼
and 𝑄 components and the 1𝑠𝑡 -order temporal derivatives ( �𝐼,
�𝑄) where 𝑑 is the space dimensionality. We assume that

each sensory signal is a linear combination of one hidden

GS (�̃�𝑢
𝑡, 𝑓𝑛

) affected by additive random noise in a normal

situation (i.e., under H0) and by additional interference (�̃�
𝑗
𝑡 , 𝑓𝑛

)

caused by the jammer in an abnormal situation (i.e., under

H1). �̃�𝑢
𝑡, 𝑓𝑛

and �̃�
𝑗
𝑡 , 𝑓𝑛

are the UAV’s GS and the jammer’s GS

(that is caused by 𝑆
𝑗
𝑡 , 𝑓𝑛

), respectively. 𝐻∈R2𝑑,2𝑑 maps hidden

states to observations, 𝑓𝑛 is the 𝑛-th PRB where 𝑓𝑛∈RB and

�̃�𝑡 , 𝑓𝑛∼N(0, Σ�̃�𝑡, 𝑓𝑛 ).
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predictive messages
diagnostic messages

generalized errors

abnormality indicators

Users’ hidden states

Jammers’ hidden states

Fig. 1. Graphical representation of the proposed Active-GDBN. The top-
level of the hierarchy stands for the active states (𝑎𝑢

𝑡−1) representing the
actions that the UAV can perform. The UAV can predict the consequences
of the performed actions that affect the hidden environmental states (S̃t,fn ,
X̃t,fn ) causing sensory signals (Z̃𝑡, 𝑓𝑛 ). S̃t,fn are discrete variables representing

the clusters and X̃t,fn are continuous variables representing the dynamics of
the physical signal inside a certain cluster. Edges represent the conditional
dependencies among random variables at multiple levels. Each level of the
hierarchy holds beliefs about the variables of the level below. Beliefs are
signalled via predictive messages in a top-down manner and compared against
sensory signals, resulting in multi-level abnormality indicators and generalized
errors that are fed back via diagnostic messages in a bottom-up manner.

B. Offline learning of desired observations

During training, we assume that the jammer is absent and

the UAV aims to learn the dynamics of the desired obser-

vations (i.e., C2 signals without jamming interference) while

sensing the spectrum. UAV starts perceiving the surroundings

by partially sensing the spectrum, supposing that no signals

are present and observations are subject to a stationary noise

process that evolves according to static rules. UAV relays

on (3) to predict the continuous signal’s state where the

force at sensing PRB ( 𝑓𝑛) is 𝑈�̃�𝑡, 𝑓𝑛
=0, as no rules have been

discovered yet. In case of active transmissions in 𝑓𝑛, UAV

detects abnormalities all the time and calculates the Gener-

alized Errors (GEs) projected on the GS space as follows:

ẼX̃u
t,fn

=
[
�̃�𝑢
𝑡, 𝑓𝑛

, P( �E�̃�𝑢
𝑡, 𝑓𝑛
)
]
=

[
�̃�𝑢
𝑡, 𝑓𝑛

, 𝐻−1Ẽ�̃�𝑡, 𝑓𝑛

]
, where �E�̃�𝑢

𝑡, 𝑓𝑛
is

the difference between predictions and observations that cap-

ture the dynamics of the signals present inside the spectrum

and should be applied to �̃�𝑢
𝑡, 𝑓𝑛

and Ẽ�̃�𝑡, 𝑓𝑛
=�̃�𝑡 , 𝑓𝑛 −𝐻�̃�

𝑢
𝑡, 𝑓𝑛

. GEs

can be clustered in an unsupervised manner using the Growing

Neural Gas (GNG) to learn the top level of abstraction

(semantic level). GNG produces a set of GSS (or clusters) en-

coding the GEs into discrete regions described by the set �̃�𝒖
𝒇𝒏

,

such that: �̃�𝒖
𝒇𝒏

={𝑆𝑢1, 𝑓𝑛 , 𝑆
𝑢
2, 𝑓𝑛 , . . . , 𝑆

𝑢
𝑀, 𝑓𝑛

}, where 𝑀 is the total

number of clusters associated with a specific PRB. Analysing

the signal’s dynamic transitions among the GSS and how

they vary with time allows estimating the time-varying transi-

tion probabilities 𝜋𝑢
𝑖 𝑓𝑛 | 𝑗 𝑓𝑛 ,𝜏

=P(𝑆𝑢𝑡, 𝑓𝑛=𝑖 |𝑆𝑢𝑡−1, 𝑓𝑛= 𝑗 , 𝜏) which is

encoded in the time-varying transition matrix Π𝑢
𝑓𝑛 ,𝜏

where

𝑖, 𝑗∈�̃�𝒖
𝒇𝒏

. Moreover, each discrete variable 𝑆𝑢𝑚, 𝑓𝑛∈�̃�
𝑢
𝑓𝑛 is asso-

ciated with statistical proprieties as generalized mean �̃��̃�𝑢
𝑚, 𝑓𝑛

and covariance Σ�̃�𝑢
𝑚, 𝑓𝑛

. During offline learning, UAV has been

trained to learn and encode the dynamic rules that generate

desired sensory signals (i.e., without jamming attacks) using

multiple observations (over multiple RBs).

C. Active Inference stage (online learning)

The hierarchical dynamic models formulated in terms of

stochastic processes as defined in (2),(3),(4) are structured in

an Active Generalized Dynamic Bayesian Networks (Active-

GDBN) depicted in Fig.1. The Active-GDBN allows to solve

the POMDP to find the best set of actions by predicting the

situation the UAV could encounter in the future, conditioned

on the actions it executes. Thus, AIn provides a way, through

planning as inference, to form beliefs about the future and

describe the causal relationship among actions, hidden states

and outcomes at multiple levels.

1) Initialization: P𝒖
𝝉 and P 𝒋

𝝉 are the 𝑁×𝑁 time-varying

matrices encoding the possible transitions among the 𝑁 avail-

able resources performed by the UAV and encoding the UAV’s

belief about the possible actions that the jammer can perform,

respectively. Since there is no a priori information concerning

the jammer’s behaviour inside the spectrum, the probability

entries in both P𝒖
𝝉 and P 𝒋

𝝉 are initially assigned equal values:

P𝒖
𝝉 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

P(Π𝑢
𝑓1 | 𝑓1 ,𝜏

) . . . P(Π𝑢
𝑓1 | 𝑓𝑁 ,𝜏

)

.

.

.

.
.
.

.

.

.
P(Π𝑢

𝑓𝑁 | 𝑓1 ,𝜏
) . . . P(Π𝑢

𝑓𝑁 | 𝑓𝑁 ,𝜏
)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,P 𝒋

𝝉 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P(Π 𝑗
𝑓1 | 𝑓1 ,𝜏

) . . . P(Π 𝑗
𝑓1 | 𝑓𝑁 ,𝜏

)

.

.

.

.
.
.

.

.

.

P(Π 𝑗
𝑓𝑁 | 𝑓1 ,𝜏

) . . . P(Π 𝑗
𝑓𝑁 | 𝑓𝑁 ,𝜏

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(5)

where P(Π𝑢
𝑓𝑟 | 𝑓𝑞 ,𝜏

)= 1
𝑁 , P(Π 𝑗

𝑓𝑟 | 𝑓𝑞 ,𝜏
)= 1

𝑁 ∀𝑟, 𝑞∈RB. 𝚷𝒂𝒖
𝝉 ∈R𝑁,𝑁

is a time-varying matrix encoding the probabilistic de-

pendencies between states and actions representing the

link 𝑎𝑢𝑡−1→𝑆𝑢𝑡−1, 𝑓𝑛 in the Active-GDBN that describes

P(𝑎𝑢𝑡−1= 𝑓𝑖 |𝑆
𝑢
𝑡−1, 𝑓𝑘 ) and defined as:

𝚷𝒂𝒖
𝝉 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

P(𝑎1 = 𝑓1 |�̃�
𝑢
𝑡−1, 𝑓1

) . . . P(𝑎𝑁 = 𝑓𝑁 |�̃�𝑢
𝑡−1, 𝑓1

)

.

.

.

.
.
.

.

.

.
P(𝑎1 = 𝑓1 |�̃�

𝑢
𝑡−1, 𝑓𝑁

) . . . P(𝑎𝑁 = 𝑓𝑁 |�̃�𝑢
𝑡−1, 𝑓𝑁

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (6)

where P(𝑎𝑢𝑡−1= 𝑓𝑖 |𝑆
𝑢
𝑡−1, 𝑓𝑘 )=

1
𝑁 ∀𝑖, 𝑘∈RB. UAV’s action depends

on the state-action couple encoded in Π𝑎𝑢
𝜏 and on its belief

about the presence of the jammer in the radio spectrum

encoded in P
𝑗
𝜏 .

2) Action selection process: Initially, UAV performs ran-

dom sampling to select the actions during the 1𝑠𝑡 iteration

as every possible action has the same probability ( 1
𝑁 ) of

being chosen. The selected action 𝑎𝑢𝑡−1 indicates what will be

the next hidden state 𝑆𝑢𝑡, 𝑓𝑛 according to P(𝑆𝑢𝑡, 𝑓𝑛 |𝑆
𝑢
𝑡−1, 𝑓𝑛 , 𝑎

𝑢
𝑡−1).

𝑆𝑢𝑡, 𝑓𝑛 encodes the predicted cluster of the model and the

activated PRB ( 𝑓𝑛).

In the successive iterations, first, UAV predicts the future

activity of the jammer implicitly according to P𝑢
𝜏 . Then, it can

adjust the action selection step by skipping the risky resources

(i.e., resources expected with high probability to be targeted by

the jammer in the near future). The action selection procedure

depends on a certain policy adopted by the UAV according to:

𝑎𝑢∗𝑡−1 = argmax�̃�𝑢
𝑡−1, 𝑓𝑘

,P𝑢
𝜏 (�̃�

𝑢
𝑡−1, 𝑓𝑘

) 𝜋(𝑎
𝑢
𝑡−1), (7)

where 𝜋(𝑎𝑢𝑡−1)=P(𝑎𝑢𝑡−1 |𝑆
𝑢
𝑡−1, 𝑓𝑘 ) is a specific row in Π𝑎𝑢

𝜏 and

P𝑢
𝜏 (𝑆

𝑢
𝑡−1, 𝑓𝑘 ) is a specific row selected from (P𝑢

𝜏 ) represent-

ing the dynamic model associated with (𝑆𝑢𝑡−1, 𝑓𝑘 ) where the

jammer’s transitions are implicitly encoded. The model has

prior belief about how a certain state (𝑆𝑢𝑡−1, 𝑓𝑘 ) will evolve
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into another (𝑆𝑢∗𝑡 , 𝑓𝑘 ) depending on the chosen action (𝑎𝑢∗𝑡−1)

according to: P(𝑆𝑢∗𝑡 , 𝑓𝑘 |𝑎
𝑢∗
𝑡−1, 𝑆

𝑢
𝑡−1, 𝑓𝑘 ), where 𝑆𝑢∗𝑡 , 𝑓𝑘 is the expected

state associated with the selected action.
3) Perception and joint state-prediction: After selecting

the action that indicates the chosen PRB, UAV can rely

on the corresponding transition matrix (Π𝑢
𝑓𝑟 | 𝑓𝑞 ,𝜏

) to per-

form the predictions by employing the Modified Markov

Jump Particle Filter (M-MJPF) [9], that uses a combina-

tion of Particle Filter (PF) and a bank of Kalman Fil-

ters (KFs). PF starts by propagating 𝐿 particles equally

weighted based on the proposal density encoded in Π𝑢
𝑓𝑟 | 𝑓𝑞 ,𝜏

,

such that: <𝑆𝑢,𝑙𝑡 , 𝑓𝑛
,𝑊 𝑙

𝑡>∼<𝜋
𝑢
𝑖 𝑓𝑛 | 𝑗 𝑓𝑛 ,𝜏

, 1
𝐿>. For each particle

𝑆𝑢,𝑙𝑡 , 𝑓𝑛
, a KF is employed to predict �̃�𝑢

𝑡, 𝑓𝑛
. The prediction

at this level is driven by the higher level as pointed out

in (3) (where 𝑈�̃�𝑢
𝑡, 𝑓𝑛

=�̃��̃�𝑢,𝑙
𝑡, 𝑓𝑛

) which can be expressed as

P( �̃�𝑢
𝑡, 𝑓𝑛

| �̃�𝑢
𝑡−1, 𝑓𝑛 , 𝑆

𝑢
𝑡, 𝑓𝑛

). The posterior probability associated

with �̃�𝑢
𝑡, 𝑓𝑛

is given by: 𝜋( �̃�𝑢
𝑡, 𝑓𝑛

)=P( �̃�𝑢
𝑡, 𝑓𝑛

, 𝑆𝑢𝑡, 𝑓𝑛 |�̃�𝑡−1, 𝑓𝑛 ).
Once a new sensory signal is received, diagnostic messages

propagate in bottom-up to adjust the expectations and update

belief in hidden variables. Thus, the posterior can be updated

using: P( �̃�𝑢
𝑡, 𝑓𝑛

, 𝑆𝑢𝑡, 𝑓𝑛 |�̃�𝑡 , 𝑓𝑛 )=𝜋( �̃�
𝑢
𝑡, 𝑓𝑛

)𝜆( �̃�𝑢
𝑡, 𝑓𝑛

). In addition,

the likelihood message 𝜆(𝑆𝑢𝑡, 𝑓𝑛 ) can be used to update the

particles’ weights according to: 𝑊 𝑙
𝑡=𝑊

𝑙
𝑡𝜆(𝑆

𝑢
𝑡, 𝑓𝑛

), where:

𝜆(𝑆𝑢𝑡, 𝑓𝑛 )=𝜆( �̃�
𝑢
𝑡, 𝑓𝑛

)P( �̃�𝑢
𝑡, 𝑓𝑛

|𝑆𝑢𝑡, 𝑓𝑛 )=P(�̃�𝑢𝑡, 𝑓𝑛 | �̃�
𝑢
𝑡, 𝑓𝑛

)P( �̃�𝑢
𝑡, 𝑓𝑛

|𝑆𝑢𝑡, 𝑓𝑛 ),

and P( �̃�𝑢
𝑡, 𝑓𝑛

|𝑆𝑢𝑡, 𝑓𝑛 )∼N (𝜇�̃�𝑢
𝑚
, Σ�̃�𝑢

𝑚
) denotes a multivariate

Gaussian distribution. Also, GE (Ẽ�̃�𝑢
𝑡, 𝑓𝑛

) at the superstate

level conditioned on transiting from 𝑆𝑢𝑡−1, 𝑓𝑛 can be expressed

as: ẼS̃u
t,fn

=
[
𝑆𝑢𝑡−1, 𝑓𝑘 ,

�E�̃�𝑢
𝑡, 𝑓𝑛

]
, where �E�̃�𝑢

𝑡, 𝑓𝑛
is an aleatory

variable whose probability density function is given by

P( �E�̃�𝑢
𝑡, 𝑓𝑛
)=𝜆(𝑆𝑢𝑡, 𝑓𝑛 ) − 𝜋(𝑆

𝑢
𝑡, 𝑓𝑛

) representing the new force that

can be used to update P𝑢
𝜏 and thus improve future predictions.

4) Abnormality measurements: In order to evaluate to

what extent the current signal’s evolution at the discrete

level matches the predicted one based on the learned and

encoded dynamics in the model, we used an abnormality

indicator (𝚼�̃�𝒖
𝒕, 𝒇𝒏

) based on the Symmetric Kullback-Leibler

(SKL) Divergence (𝐷𝐾𝐿) [9]. 𝚼�̃�𝒖
𝒕, 𝒇𝒏

calculates the similarity

between the two messages that represent discrete probability

distributions entering to node 𝑆𝑢𝑡, 𝑓𝑛 , namely, 𝜋(𝑆𝑢𝑡, 𝑓𝑛 ) and

𝜆(𝑆𝑢𝑡, 𝑓𝑛 ), it is associated with ẼS̃u
t,fn

and formulated as:

𝚼�̃�𝒖
𝒕, 𝒇𝒏

=
∑
𝑖∈S

P𝑟 (�̃�𝑢
𝑡, 𝑓𝑛

= 𝑖)𝐷𝐾𝐿
(
𝜋 (�̃�𝑢

𝑡, 𝑓𝑛
) | |𝜆(�̃�𝑢

𝑡, 𝑓𝑛
)
)
+∑

𝑖∈S

P𝑟 (�̃�𝑢
𝑡, 𝑓𝑛

= 𝑖)𝐷𝐾𝐿
(
𝜆(�̃�𝑢

𝑡, 𝑓𝑛
) | |𝜋 (�̃�𝑢

𝑡, 𝑓𝑛
)
)
,

(8)

where P𝑟 (𝑆𝑢𝑡, 𝑓𝑛 ) is the probability of occurrence of each super-

state picked from the histogram at time instant 𝑡 and calculated

as follows: P𝑟 (𝑆𝑢𝑡, 𝑓𝑛 )=
𝑓 𝑟 (�̃�𝑢

𝑡, 𝑓𝑛
=𝑖)

𝑁 , where 𝑓 𝑟 (.) is the frequency

of occurrence of a specific superstate 𝑖, 𝑁 is the total number

of particles propagated by PF, and S is the set consisting of all

winning particles, such that: S =
{
𝑖 |P𝑟 (𝑆𝑢𝑡, 𝑓𝑛 ) > 0

}
, 𝑖 ∈ 𝑺𝒖

𝒇𝒏
.

Likewise, it is possible to understand how much the obser-

vation supports the predictions at the GS level using:

𝚼�̃�𝒖
𝒕, 𝒇𝒏

= − ln
(
BC

(
𝜋( �̃�𝑢

𝑡, 𝑓𝑛
), 𝜆( �̃�𝑢

𝑡, 𝑓𝑛
)
) )
, (9)

where BC(.) =
∫ √

𝜋( �̃�𝑢
𝑡, 𝑓𝑛

)𝜆( �̃�𝑢
𝑡, 𝑓𝑛

)𝑑�̃�𝑢
𝑡, 𝑓𝑛

is the Bhat-

tacharyya coefficient and 𝚼�̃�𝒖
𝒕, 𝒇𝒏

is associated with ẼX̃u
t,fn

.

5) Updating of action selection process: After acting in the

environment, UAV can save the consequence of the chosen

action (i.e., the transition from 𝑆𝑢𝑡−1, 𝑓𝑘 to 𝑆𝑢∗𝑡 , 𝑓𝑘 ) in P𝑢
𝜏 and

evaluate how much the sensory outcomes support predictions

and thus evaluate if the performed action was good or bad by

using the abnormality measurements defined in (8) and (9). In

addition, it is possible to calculate the GE (Ẽ𝑎𝑢
𝑡−1

) during ab-

normal situations to adapt UAV’s strategy in selecting actions

and understand how it should behave in the future to avoid the

jammer. Ẽ𝑎𝑢
𝑡−1

is the difference between observation and expec-

tation which can be expressed as: Ẽ𝑎𝑢
𝑡−1
=

[
𝑎𝑢∗𝑡−1,

�E𝑎𝑢
𝑡−1

]
, where

�E𝑎𝑢
𝑡−1

depicts an aleatory variable representing the new force

that should be applied to update 𝝅(𝑎𝑢𝑡−1) and its probability

density function is given by P( �E𝑎𝑢
𝑡−1
)=𝜆(𝑎𝑢𝑡−1) − 𝝅(𝑎𝑢𝑡−1) that

can be used as a metric alternative to the reward in RL. 𝜆(𝑎𝑢𝑡−1)

is the diagnostic message travelling from 𝑆𝑢𝑡, 𝑓𝑛 towards 𝑎𝑢𝑡−1
and defined as: 𝜆(𝑎𝑢𝑡−1)=𝜆(𝑆

𝑢
𝑡, 𝑓𝑛

)P(𝑆𝑢𝑡, 𝑓𝑛 |𝑎
𝑢
𝑡−1) representing a

discrete probability distribution that holds information about

the observed sensory signal and encoding the probabilities

about how the states 𝑆𝑢𝑡, 𝑓𝑛 belonging to the available frequen-

cies change based on the evidence, it is given by:

𝜆(𝑎𝑢𝑡−1) =

{
P𝜏−1(𝑆

𝑢
𝑡−1, 𝑓𝑛 ) − 𝛾

∗, if 𝑎𝑢𝑡−1 = 𝑎𝑢∗𝑡−1,

P𝜏−1(𝑆
𝑢
𝑡−1, 𝑓𝑛 ) +

𝛾∗

𝑁−1 , if 𝑎𝑢𝑡−1 ≠ 𝑎𝑢∗𝑡−1,
(10)

where 𝛾 depends on the GE (ẼS̃u
t,fn

), that is: 𝛾=𝛾∗ if Ẽ�̃�𝑡, 𝑓𝑘 ≥th,

and 𝛾=0 if Ẽ�̃�𝑡, 𝑓𝑘
<th, where th is the threshold indicating

whether the radio situation is normal or abnormal and the

value of 𝛾∗ depends on the abnormality indicators defined in

(8) and (9). Hence, GE (Ẽ𝑎𝑢
𝑡−1

) is proportional to ẼS̃u
t,fn

due to

the messages propagated from lower level towards the higher

levels, such that Ẽ𝑎𝑢
𝑡−1

= 𝑓 (Ẽ�̃�𝑢
𝑡, 𝑓𝑛
). When the UAV get surprised

by the sensory outcomes after performing a certain action, it

can use the prediction error signal to update its belief about

the jammer’s transition model to improve future actions. The

core idea is that the user occupying a piece of the spectrum

should minimize the abnormality (surprise) associated with

finding itself in unlikely states (states under attack). Jammer’s

dynamic model (P
𝑗
𝜏 ) can be updated following:

P
𝑗
𝜏 (. , 𝑆

𝑗
𝑡 , 𝑓𝑛

) = P 𝑗
𝜏−1(. , 𝑆

𝑗
𝑡 , 𝑓𝑛

) − P( �E𝑢𝑎𝑡−1 ), (11)

In an abnormal situation, the user and jammer share the same

RB, which means they performed the same action. Thus,

the user should update Π𝑎𝑢
𝜏 by decreasing the probability of

selecting that action as follows:

𝜋∗(𝑎𝑢𝑡−1) = 𝜋(𝑎𝑢𝑡−1) + P( �E𝑢𝑎𝑡−1 ), (12)

and update P𝑢
𝜏 by decreasing the probability of transiting to

𝑆𝑢𝑡, 𝑓𝑘 from 𝑆𝑢𝑡−1, 𝑓𝑘 after choosing action 𝑎𝑢∗𝑡−1 using the GE

(ẼS̃u
t,fn

) following:

P𝑢
𝜏 (𝑆

𝑢
𝑡−1, 𝑓𝑘 , 𝑆

𝑢
𝑡, 𝑓𝑛

) = P𝑢
𝜏−1 (𝑆

𝑢
𝑡−1, 𝑓𝑘 , 𝑆

𝑢
𝑡, 𝑓𝑛

) + P( �E�̃�𝑢
𝑡, 𝑓𝑛
). (13)
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Fig. 2. Performance comparison of cumulative reward and abnormality (SKL) with the proposed AIn, FH and QL under different jamming strategies.
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Fig. 3. Performance comparison of cumulative SINR with the proposed AIn, FH and QL under different jamming strategies.

IV. RESULTS AND DISCUSSION

To evaluate the performance of the proposed AIn approach

for anti-jamming, following three types of jammers are con-

sidered in the simulation: 1) Constant jammer that acts on

statistically pre-configured channels; 2) Sweep jammer that

attacks by sweeping among the available PRBs at each time

slot; and 3) Random jammer that selects uniformly random

actions to attack the available PRBs. The simulation settings

are as: BW=10MHz; FDD; sub-carrier spacing of 15 KHz;

number of PRBs per BW is 50; sampling frequency of 1.92
MHz; 𝑁𝐹𝐹𝑇 of 128; 7 OFDM symbols per slot; normal CP;

SNR of 15𝑑𝐵; QPSK for C2 and jamming signal; jamming

to signal power ratio (JSR) of 6dB; and a total of 200 radio

frames. In addition, the propagation environment is a typical

suburban, mean aerial speed is 4.8m/s, BS height is 30m,

UAV height is 60m and the channel model parameters [8] are

𝛼=3.04, 𝜎0=8.52, 𝐶=−23.29, 𝜂0=20.70, 𝜃0=−3.61, 𝐷=4.14,

𝑎= − 0.41, 𝜎0=5.86, where a perfect CSI is assumed. Also,

we consider a jamming hit rate (JHR) of JHR=40%. C2 data,

jamming signals and UAV trajectory are generated as in [9].

Let us compare the performance of AIn in terms of cu-

mulative abnormality (defined in (8)) and cumulative reward

with that of random Frequency Hopping (FH-random) and Q-

Learning (QL), as illustrated in Fig. 2. Here, the objective

of AIn is to minimize abnormality while that of QL is to

maximize reward. Thus, the reward is considered in AIn
approach just for the sake of comparison with QL. We consider

a binary reward which is equal to −1 under H1 and +1 under

H0. Nevertheless, the relationship of these metrics is opposites

to one another. For a fair comparison with QL, we use

time-varying q-tables to deal with the dynamic environmental

changes. The exploration process in QL follows the 𝜖-greedy

policy with 𝜖 = 1 decaying to 0. It can be seen from the

figure that AIn outperforms QL and FH-random under different

jamming strategies while AIn converges faster than QL due to

its capability in discovering jammer’s policy and performing

multiple updates. Fig. 3 depicts the cumulative SINR under

different jamming patterns achieved by the proposed AIn and

compared it with FH-random and QL. By observing Fig. 2

and Fig. 3, we can notice that minimizing the abnormality

(or maximizing the reward) leads to maximizing the SINR

where the time needed to reach the convergence is equivalent

to that in Fig. 2 and AIn beats both the FH-random and QL.

This means that avoiding surprising states minimizes the ab-

normality and maximises reward and SINR. AIn outperforms

FH and QL due to its ability to characterize the jammer

and discover its attacking strategy, explaining how the UAV

should act in the environment. Since AIn operates in a pure

belief-based setting. It can evaluate whether the action was

correct or wrong and also understand how to correct those

actions using the errors by performing multiple updates to

the AIn-table, which speeds up the learning process and reach

convergence faster. In contrast, QL performs single updates to

the q-table without being able to explain how to correct the

wrong actions, hindering the learning process. While FH can

not reach convergence as it is always selecting random actions.

V. CONCLUSION
This letter has proposed a novel resource allocation strategy

using Active Inference for anti-jamming in a Cognitive-UAV

scenario. Simulated results have indicated that the proposed

method outperforms conventional Frequency Hopping and Q-

Learning in terms of learning speed (convergence). Further

research will explore performance improvements by facing

smart reactive jammers in fully-observable environments.
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