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Abstract

Non-orthogonal multiple access (NOMA) exploits the potential of power domain to enhance the

connectivity for Internet of Things (IoT). Due to time-varying communication channels, dynamic user

clustering is a promising method to increase the throughput of NOMA-IoT networks. This paper develops

an intelligent resource allocation scheme for uplink NOMA-IoT communications. To maximise the

average performance of sum rates, this work designs an efficient optimization approach based on two

reinforcement learning algorithms, namely deep reinforcement learning (DRL) and SARSA-learning.

For light traffic, SARSA-learning is used to explore the safest resource allocation policy with low cost.

For heavy traffic, DRL is used to handle traffic-introduced huge variables. With the aid of the considered

approach, this work addresses two main problems of the fair resource allocation in NOMA techniques:

1) allocating users dynamically and 2) balancing resource blocks and network traffic. We analytically

demonstrate that the rate of convergence is inversely proportional to network sizes. Numerical results

show that: 1) compared with the optimal benchmark scheme, the proposed DRL and SARSA-learning

algorithms achieve high accuracy with low complexity and 2) NOMA-enabled IoT networks outperform

the conventional orthogonal multiple access based IoT networks in terms of system throughput.

Index Terms

Deep reinforcement learning, internet of things, non-orthogonal multiple access, power allocation,

SARSA learning, user clustering

I. INTRODUCTION

Internet of things (IoT) enable millions of devices to communicate simultaneously. It is

predicted that the number of IoT devices will rapidly increase in the next decades [2]. Owing to a
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large number of time-varying communication channels, the dynamic network access with massive

connectivity becomes a key requirement for future IoT networks. Recently, non-orthogonal

multiple access (NOMA) is evolved as a promising approach to solve this problem [3], [4]. The

key benefit of using NOMA is that NOMA exploits power domain to enable more connectivity

than the traditional orthogonal multiple access (OMA). More specifically, NOMA supports

multiple users in the same time/frequency resource block (RB) by employing superposition

coding at transmitters and successive interference cancellation (SIC) techniques at receivers [5].

Various model-based schemes have been proposed to improve different metrics of NOMA-IoT

networks, such as coverage performance, energy efficiency, system throughput (sum-rates), etc.

Additionally, on the importance of sum-rates, the recent work in wireless networks based on the

state of the art reflective intelligent surfaces (RIS) considered sum-rate maximization objective

function [6]. The sum-rate is an important parameter to depict the average performance of

wireless networks in detail for each user. Due to this sum-rate is widely used as significant

performance indicator in wireless networks by the research community [7] and [8]. It shows

the significance of the sum-rate maximization based objective functions. Regrading the system

design, the uncertainty and dynamic mechanisms of wireless communication environments are

difficult to be depicted by an accurate model. The dynamic mechanism involves spectral avail-

ability, channel access methods (e.g., OMA, NOMA, hybrid systems, etc.), and dynamic traffic

arrival. Especially in practical NOMA systems by allowing resource share among more than

one users the process is more dynamic, when the number of users are joining and leaving the

network in short term and long term basis. Numerous model-based techniques target to solve

dynamic behaviour of wireless networks but failed to provide long-term performance outcomes

[9], [10], [11], [12] and [13]. Moreover, due to the absence of learning abilities, to provide long

term network stability the computational complexity of traditional schemes becomes ultra-high.

This is due to the fact that, by default traditional approaches cannot extract knowledge from

any given problem (e.g, given distributions) online. Fortunately, the online learning properties of

recently developed machine learning (ML) methods are extremely suitable to handle such type

of dynamic problems [14].

A. Related Works and Motivations

1) Studies on NOMA-IoT Networks: Due to the aforementioned benefits, academia has pro-

posed numerous studies on the optimization of resource allocation in NOMA-enabled IoT
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networks. For single-cell scenarios, the authors in [10] proposed a two-stage NOMA-based

model to optimize the computation offloading mechanism for IoT networks [15]. In the first

stage, a large number of IoT devices are clustered into several NOMA groups depending on

their channel conditions. In the second stage, different power levels are allocated to users to

enhance the network performance. The comparison between uplink NOMA-IoT and OMA-IoT

is presented in [16], which considered the optimal selection of targeted data rates for each

user. Regarding downlink transmission, the similar topic was studied in [17] and [18]. Different

from others, in [19] using 2D matching theory authors performed dynamic resource allocations

considering energy efficiency for downlink NOMA. Similarly, in [12] for the massive Machine

Type Communications (mMTC) usage scenario, also known as massive Internet of Things

(mIoT) dynamic resource management is performed with Sparse Code Multiple Access (SCMA)

domain using conventional mathematical tools. The authors in [20] proposed a general power

allocation scheme for uplink and downlink NOMA to guarantee the quality of service (QoS).

In [21], NOMA scheduling schemes in terms of power allocation and resource management

were optimized to realize the massive connectivity in IoT networks. For multi-cell scenarios, the

impact of NOMA on large scale multi-cell IoT networks was investigated in [22]. To characterize

the communication distances, the authors in [23] analysed the performance of large scale NOMA

communications via stochastic geometry. It is worth noting that NOMA-IoT channels are time-

varying in the real world. Therefore, the study in [24] considered a practical framework with

dynamic channel state information for evaluating the performance of massive connectivity. The

authors in [25], [26], and [27] discussed the advantages of various NOMA-IoT applications.

Interestingly, the proposed schemes introduced artificial intelligence (AI) methods to solve some

practical challenges of NOMA-IoT systems. For both uplink and downlink scenarios, AI-based

multi-constrained functions can be utilized to optimise multiple parameters simultaneously.

2) Studies on ML-based NOMA Systems: Due to the dynamic nature of NOMA-IoT com-

munications, traditional methods may not be suitable for such type of networks [13]. Note

that ML-based methods are capable to handle the complex requirement of future wireless

networks via learning. In [28], one typical deep learning method, namely long short-term memory

(LSTM) [29], was applied for the maximization of user rates by minimizing the received

signal-to-noise-ratio (SINR). In [30], successive approximation based algorithm was proposed to

minimize outage probabilities through optimizing power allocation strategies. For next-generation

ultra-dense networks, ML-aided user clustering schemes were discussed in [31] for obtaining

Page 3 of 94 IEEE Transactions on Wireless Communications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



4

efficient network management and performance gains. Because using clustering schemes, the

entire network can be divided into several small groups, which helps to ease the resource

management [32]. Regarding AI-based cluster techniques, in [33] and [34], resources were

assigned to the most suitable user to ensure the best QoS for unmanned aerial vehicle (UAV)

networks and millimetre wave networks, respectively. It is worth noting that the optimization

of clustering is an NP-hard problem. Therefore, for such type of problems the authors in [28],

[31], and [35] recommended to use AI instead of conventional mathematical models. Currently,

realistic datasets are not available for most of the machine learning algorithms, to overcome this

designers use synthetic dataset for simulations. The data set is generated for a certain environment

so it is difficult to depict general property and online scenarios of wireless networks. Therefore,

algorithms like reinforcement learning plays very important role where data is collected online

(during simulation) to learn the given search space for the simulation requirements. There

are various Q-learning algorithm variants used for NOMA systems.Due to inefficient learning

mechanism other methods like traditional Q-learning and Multi-arm bandits (MABs) are heavily

influenced by regret (negative reward) [36] [37]. On the other hand two most powerful methods,

deep reinforcement learning (DRL) and SARSA learning created by google deep mind [38]

and by the authors in [39]. Both DRL deep mind and SARSA learning algorithms are efficient

learners. Due to unique learning behaviour DRL and SARSA tend to receive more rewards. The

main advantage of deep mind and online SARSA learning is to handle dynamic control as in

[40]. With the development of such type of RL techniques, the challenges for NOMA systems,

which are difficult to be solved via traditional optimization methods, have been reinvestigated

via RL-based approaches [41]–[43].

3) Motivations: Combining multi-user relationship and resource allocation increases the com-

plexity of NOMA-IoT systems, which also introduces new problems for optimizing power

allocation and scheduling schemes. Unlike traditional methods [21], where only one BS is

considered for small scale network with no inter-cell interference and dynamic user connectivity.

The design of schedulers should be in tandem with the large scale dynamic resource allocations

and user decoding strategies. Therefore, due to the high complexity of the problem under multi-

cell multi-user cases, AI can be a feasible option for the dynamic resource allocation [44]. For

large-scale NOMA-IoT networks, an intelligent reinforcement learning (RL) algorithm becomes

a promising approach to find the optimal long-term resource allocation strategy. This algorithm

should jointly optimize multiple criteria under dynamic network states. In this paper, our main
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goal is to address the following research questions:

• Q1: In NOMA-IoT networks, how to maximize the long-term sum rates of users for a given

network traffic density?

• Q2: How does the inter-cell interference affect the long-term sum rates?

• Q3: What is the correlation between traffic density, system bandwidth, and the number of

clusters in NOMA-IoT networks?

From above as it is known that model-free methods are suitable to address multi-constrained

long-term problem online. Therefore, in long-term there is strong correlation of mentioned

research questions with general problems of “intermittent connectivity of IoT users (continuously

joining and leaving the network), balanced resource allocations ( optimal allocations policy for

dynamic network settings) and network traffic (as the (Min-Max) number of users competing for

the resource blocks)” in wireless networks. Similarly, research Q1 for capacity maximization,

research Q2 for network scalability and, research Q3 for long-term network performance are

strongly dependent on the main problems “balancing of network resources, IoT users and, the

dynamic network behaviour”.

B. Contributions and Organization

This paper considers uplink NOMA-IoT networks, where multiple IoT users are allowed to

share the same RB based on NOMA techniques. With the aid of RL methods, we propose

a multi-constrained clustering solution to optimize the resource allocation among IoT users,

base stations (BSs), and sub-channels, according to the received power levels of IoT users.

Appropriate bandwidth selection for the entire system with different traffic densities is also

taken into consideration for enhancing the generality. Our work provides several noteworthy

contributions:

• We design a 3D association model free framework for connecting IoT users, BSs, and sub-

channels. Based on this framework, we formulate a sum-rate maximization problem with

multiple constraints. These constraints consider long-term variables in the proposed NOMA-

IoT networks, such as the number of users, channel gains, and transmit power levels. To

characterize the dynamic nature (online), at each time slot, these variables are changeable.

• We propose two RL techniques, namely SARSA-learning with ε − greedy and DRL,

to solve this long-term optimization problem. SARSA-learning is used for light traffic

scenarios to avoid high complexity and memory requirements. Heavy traffic scenarios with
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a huge number of variables are studied by DRL, where three different neuron activation

mechanisms, namely TanH, Sigmoid, and ReLU, are compared to evaluate the impact of

neuron activation on the convergence of the proposed DRL algorithm.

• We design novel 3D state and action spaces to minimise the number of Q-tables for both

SARSA and DRL frameworks. The considered action space represent switching between

RBs, which is the most efficient strategy for our networks. Based on this adequate Q-table

design, DRL is able to converge faster.

• We show that: 1) according to the time-varying environment, resources can be assigned

dynamically to IoT users based on our proposed framework; 2) for the proposed model, the

learning rate α = 0.75 provides the best convergence and data rates; 3) for SARSA and

DRL the sum-rate is proportional to the number of users; 4) DRL with the ReLU activation

mechanism is more efficient than TanH and Sigmoid; and 5) IoT networks with NOMA

provide better system throughput than those with OMA.

The rest of the paper is organised as follows: In Section II, the system model for the proposed

NOMA-IoT networks is presented. In Section III, SARSA-learning and DRL-based resource

allocation is investigated. The corresponding algorithms are also presented. Finally, numerical

results and conclusions are drawn in Section IV and Section V, respectively.

TABLE I

TABLE OF NOTATIONS

Symbol Definition

Nb, bi Number of BSs, symbol of BSs

Ns, sj Number of sub-channels (NOMA clusters), symbol of sub-channels (NOMA clusters)

Nu, uk Number of users, symbol of users

Φb Set of BSs

Φs Set of sub-channels (NOMA clusters)

Φi,j
u ,ui,j

k
Set of users connected to BS bi via sub-channel sj , user k in the set Φi,j

u

ci,j
k

(t) Clustering variable for user uk connecting to BS bi via sub-channel sj at time t

pi,j
k

(t) Transmit power for user ui,j
k

at time t

gi,j
k

(t) Channel gain for user ui,j
k

at time t
σ(t) Additive white Gaussian noise at time t
Iinter(t) Inter-cell interference at time t

γi,j
k

(t) Instantaneous SINR for user ui,j
k

at time t

Ri,j
k

(t) Instantaneous data rate for user ui,j
k

at time t

Rth
k

Rate requirement for the SIC process of user ui,j
k

Us, Ps Maximal load of each sub-channel, Maximal power for each sub-channel

T Duration of the considered long-term communication

C, P Matrix for clustering parameters, matrix for transmit power

θt Vector for DRL gradients

β1, β2 Moment estimation decay rate
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Fig. 1. Illustrating uplink NOMA resource allocation by using the optimization algorithm to efficiently cluster users for resource

blocks at the base-station side. Resource allocations-(a) presents different resource blocks in yellow, green, and blue with power

on (x-axis) and time/frequency on (y-axis) assigned to IoT users. The powers and gains of Nu users are denoted with p and g.

II. SYSTEM MODEL

In this paper, we consider an uplink IoT network with NOMA techniques as shown in Fig. 1,

where Nb BSs communicate with Nu(t) IoT users via Ns orthogonal sub-channels. we assume

Nu(t) dynamic in each time-slot in our model, however for simplicity we omit (t) for further

sections. Additionally, channel gains are also dynamic for each user at each time-slot, even for

the same user. The BSs and sub-channels are indexed by sets Φb = {b1, ..., bNb
} and Φs =

{s1, ..., sNs
}, respectively. Regarding users, the set for users severed by one BS bi ∈ Φb (i ∈

[1, Nb]) through a sub-channel sj ∈ Φs (j ∈ [1, Ns]) is defined as Φi,j
u = {u1, ..., uN i,j

u
}, where

N i,j
u is the number of the intra-set users and

Nb∑
i=1

Ns∑
j=1

N i,j
u = Nu. BSs and users are assumed to be

equipped with a single antenna. For each BS, the entire bandwidth B is equally divided into Ns

sub-channels and hence each sub-channel has B
Ns

bandwidth. In a time slot, we assume a part

of users are active and the rest users keep silence. To share knowledge, we consider fiber link

with ideal back-haul for inter BS connectivity. The defined notations in this system model are

listed in TABLE I.

Page 7 of 94 IEEE Transactions on Wireless Communications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



8

A. NOMA Clusters

Based on the principles of NOMA, more than two users can be served in the same resource

block (time/frequency), which forms a NOMA cluster. In this paper, each sub-channel represents

one NOMA cluster and N i,j
u ≥ 2 [45]. To simplify the analysis, we assume BSs contain perfect

CSI of all users. That CSI is our state space showing signalling and the channel conditions

of IoT users connected to sub-channel via base-station. Detailed explanation is present in the

section III-b and section III-c. Based on such CSI, BSs are capable to dynamically optimize the

sub-channel allocation for active users in a long-term communication. For an arbitrary user uk,

we define its clustering variable at time t as follows:

ci,jk (t) =

{
1, user uk connects to BS bi via sub-channel sj

0, otherwise
. (1)

It is worth noting that ci,jk (t) also implies the activity status of users. If user k is inactive, we obtain

that ci,jk (t) ≡ 0, ∀i, j. The set of clustering parameters is defined as Ct and ci,jk (t) ∈ Ct, ∀i, j, k.

B. Signal Model

In a NOMA cluster sj , one BS bi first receives the superposed messages from the active users

in Φi,j
u and then applies SIC to sequentially decode each user’s signal [46]. Without loss of

generality, we assume the order of channel gains is gi,j1 ≤ gi,j2 , ...,≤ gi,ju
N

i,j
u

, where gi,jk is the

channel gain for the k-th user in Φi,j
u [47]. Therefore, the decoding order in this paper is the

reverse of the channel gain order [48]. In a time slot t, the instantaneous signal-to-interference-

plus-noise ratio (SINR) for the intra-cluster user ui,j
k ∈ Φi,j

u is given by

γi,j
k (t) =

ci,jk (t)pi,jk (t)gi,jk (t)
k−1∑
k′=1

ci,jk′ (t)p
i,j
k′ (t)g

i,j
k′ (t) + Iinter(t) + σ2(t)

, (2)

where

Iinter(t) =
∑

i′∈Φb\bi

∑
k′∈Φi′,j

u

ci
′,j
k′ (t)p

i′,j
k′ (t)g

i′,j
k′ (t) (3)

and pi,jk (t) is the transmit power of the user ui,j
k (t) and the set of transmit power is given by

Pt (pi,jk (t) ∈ Pt, ∀i, j, k) [49]. The power of thermal noise obeys σ2(t) = kbTrB, where Tr

is temperature of resistors kb is Boltsmann’s constant, B is the considered bandwidth. In this
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paper we use Tt = 300 K therefore, σ2(t) ≈ 4.14× 1012 BW . The Iinter(t) represents the inter-

cell interference, which is generated by the active users served by other BSs using the same

sub-channel sj .

In uplink NOMA, the decoding of user ui,j
k is based on the SIC process of its previous user

ui,j
k+1. If the data rate of successfully completing the SIC process is Rth

k+1, when the decoding

rate of user ui,j
k+1 obeys

Ri,j
k+1(t) =

B

Ns
log2

(
1 + γi,j

k+1(t)
) ≥ Rth

k+1, (4)

the data rate of user ui,j
k is given by

Ri,j
k (t) =

B

Ns
log2

(
1 + γi,j

k (t)
)
. (5)

Otherwise, if Ri,j
k+1(t) < Rth

k+1, the decoding of all rest users ui,j
k , ..., ui,j

1 fails, namely Ri,j
k (t) =

... = Ri,j
1 (t) ≡ 0.

C. Problem Formulation

For a long-term communication with period T , the number of active users is different across

each time slot. Given the maximal load of each sub-channel Us, we assume the number of

active users are uniformly distributed in the range [2, UsNbNs] and UsNbNs ≤ Nu. Under this

condition, the average long-term sum rate can be maximized by optimizing clustering parameters

C = {C1, ...,CT} and transmit power P = {P1, ...,PT}. Therefore, the objective function is

given by

max
C,P

B

Ns
E

⎡
⎣ T∑

t=1

Nb∑
i=1

Ns∑
j=1

N i,j
u∑

k=1

log2
(
1 + γi,j

k (t)
)⎤⎦ , (6a)

s.t : gi,j1 ≤, ...,≤ gi,j
N i,j

u

, ∀i, j, t, (6b)

N i,j
u∑

k=1

ci,jk (t)pi,jk (t) ≤ Ps, ∀i, j, t, (6c)

γi,j
k (t) ≥ 2R

th
k
Ns/B − 1, ∀k, t, (6d)

2 ≤
Nb∑
i=1

Ns∑
j=1

N i,j
u∑

k=1

ci,jk (t) ≤ Nu, ∀t, (6e)
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N i,j
u∑

k=1

ci,jk (t) ≤ Us, ∀i, j, t (6f)

Nb∑
i=1

Ns∑
j=1

ci,jk (t) ∈ {1, 0} ∀k, t, (6g)

where (6b) is the ordered channel gains based on the perfect CSI. (6c) is to impose the power

constraint of each sub-channel. (6d) ensures all clustered IoT users can be successfully decoded

for maximizing the connectivity.(6e) and (6f) limits the number of clustered users for the entire

system and each sub-channel, respectively. (6g) indicates that each user belongs to only one

cluster. Problem (6a) is an NP-hard problem, even only fixed number of users per cluster is

considered instead of dynamic range, especially, in case of (6c) and (6f). The proof process is

provided in Appendix A. The proof of (6a) follows the idea in [50] and [51].

III. INTELLIGENT RESOURCE ALLOCATION

A. Markov Decision Process Model for Uplink NOMA

In this section, we formulate user clustering and optimal resource allocation for uplink NOMA

as a Markov decision process (MDP) problem. Problem transformations are shown in Fig. 2(a)

and Fig. 2(b). A general MDP problem contains single or multiple agents, environment, states,

actions, rewards, and policies. The process starts with the interaction of an agent with a given

environment. In each interaction, the agent processes an action followed by a policy π with

previous state s. After processing action according to these conditions and observed state agent/s

receives a reward r in the form of feedback to change its state st to next state st+1. A reward

can be positive (reward) or negative (penalty). It helps the agent/s to find an optimal set of

actions to maximize the cumulative reward for all interactions. Q-table acts as the brain of an

agent. The main function of Q-table is to store/memorize states s and corresponding actions

a that the agent can take according to all the states as QT
π (s, a) during trail T for the basic

RL algorithms. SARSA and DRL are two promising RL methods to solve this MDP problem.

SARSA learns the safest path, the policy π′ is learned by estimation of state-value optimization

function Q′(s, a) = Qπ(s, a), ∀s, a, but it requires more memory for complex state space. DRL

uses neural network to simplify the Q-table by reducing memory requirements to handle more

complex types of problems. Therefore, this work implements SARSA learning for light traffic.

To further reduce the impact of state-space complexity DRL is used for heavy traffic scenarios.
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Additionally, in any case when SARSA algorithm fails to provide optimal policy for any type

of network traffic during threshold trial Te then final allocation is done using DRL.

Finally to summarize, this model follows model free on policy SARSA-learning algorithm

instead of value iteration and off-policy methods for light traffic and DRL for complex networks.

The major advantage of proposed algorithms is to avoid huge memory requirements (DRL) and

learn the safest allocation policy (SARSA) for the different traffic conditions.

B. SARSA-Learning Based Optimization For Light Traffic ((2-3,2-4)-Ue’s)

As the name suggests, for this type of traffic scenarios there is less number of users joining

and leaving the network. In other words the state space is not huge as compare to heavy traffic.

Therefore, we use SARSA learning algorithm to find optimal long term policy. The traditional

Q-learning is not suitable for long term because it uses tuple of 3 (St, At, Rt) for policy learning

which doesn’t know the knowledge of next step that is not suitable for our case. Secondly,

the state space is not huge as compare to heavy traffic that require more complex control. To

efficiently utilise system resources we use SARSA learning for light traffic and DRL for heavy

traffic where the state space is huge with dynamic users. For SARSA learning, discount factor

γ, sum reward, and the number of iterations are significant hyper parameters. The details for the

flow of the information update is shown in Fig. 3. The 5-tuple (S, A, P, R, S′, A′) SARSA-

learning elements are mentioned below:

1) S, is a state space consists of finite set having dimensions Nb × Ns containing NNb×Ns
u

total number of states. Each state represents one sub-set of 3D associations among users,

BSs, and sub-channels.

2) A, is an action space consists of a finite set of actions to move the agent in a specific

environment. Actions in this model are [−1, 0,+1]. The ’-1’ is to reduce any one of the

state elements from state matrix. Similarly, ’+1’ shows an increment in any of the state

matrix elements. The last action ’0’ represents no change in the current state of the agent

(BSs). It means that actions are swap operations between sub-channels and all BSs. For

example, when an agent takes an action from (7), the first action in A means agent performs

swap operation of user between sub-channels at BS. In this model, agents have total 8

swap operations between BSs and sub-channels.
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(a)

(b)

Fig. 2. Overview for the proposed framework to the sum-rate maximization problem. Sub-figure (a) is an optimization problem

breakdown to show where RL algorithms are applied and Sub-figure (b) shows problem transformations for the users and BSs

as system states and the brain of reinforcement learning agents, respectively.
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A =

⎧⎪⎨
⎪⎩
⎛
⎜⎝−1 0

1 0

⎞
⎟⎠ ,

⎛
⎜⎝ 1 0

−1 0

⎞
⎟⎠ ,

⎛
⎜⎝0 −1

0 1

⎞
⎟⎠ ,

⎛
⎜⎝0 1

0 −1

⎞
⎟⎠ ,

⎛
⎜⎝0 0

1 −1

⎞
⎟⎠ ,

⎛
⎜⎝ 0 0

−1 1

⎞
⎟⎠ ,

⎛
⎜⎝1 −1

0 0

⎞
⎟⎠ ,

⎛
⎜⎝−1 1

0 0

⎞
⎟⎠
⎫⎪⎬
⎪⎭ . (7)

3) P, is an expected probability P a
s→s′ = Pr(s′|s, a) to change current state s into next state

s′ by taking action a. The total number of actions for an agent are (2×Nb×Ns +1) with

’8’ swap operations. These operations include ’+1’,’-1’, and ’0’ actions, the agent selects

suitable actions according to corresponding state to obtain an optimal state and action pair.

4) R, is a finite set of rewards, where the reward obtained after state s transition to next state

s′ by taking action a. Reward function is denoted by ras→s′, showing that in result of all

associations the agent will receive reward according to the conditions mentioned in reward

function.

5) Multi-constrained reward function, the short-term reward in proposed model depends on

two conditions:1) sum-rate and 2) the state of the system means the total number of users

associated to BSs and sub-channels, which is defined as S
′. The reward function can be

expressed as follows:

r(st, st+2, at) =

⎧⎪⎨
⎪⎩
r = 0, if Rst+1

≥ Rst and
∑Te

t=1(u
st
k ) =

∑Te

t=1(u
st+1

k )

r = −10, otherwise.

(8)

6) S
′, is a next state of an agent based on the previous state, action, and reward pairs of an

agent.

7) A
′, is a next possible action can be taken by an agent from state S

′.

Definition 1. The parameters of 3D state matrix S defined as Z = {1, 2, · · · , NNb×Ns
u } total

number of states with Nb × Ns dimensions
∑Z

1 S
Nb

Ns
. For all types of network traffic minimum

for Z is defined as
∑N

1 Z(ij) ≥ 2, the maximum for light traffic is
∑N

1 Z(ij) ≤ {3, 4} and for

heavy network traffic the maximum load is
∑N

1 Z(ij) ≤ 10.
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Furthermore, the optimal policy of the aforementioned parameters can be discovered by an

agent using following function:

π′(s) = argmax
a

Q′(s, a), ∀s ∈ S
′, (9)

where π′(s) represents the optimal policy. This function provides the optimal policy value for

each state s from the finite sate set after taking appropriate action a. For a better understanding,

the optimal policy can be defined:

Vπ′(st) = max
a

[
r(st, at) + γ

∑
s′

Ps→s′Vπ′(s′)

]
. (10)

For Q-table value updating that contains state and corresponding action values of an agent.

Bellmen equation is utilised to perform optimization processes. According to Bellman equation

statement, there is only one optimal solution strategy for each environment setting. Bellman’s

equation is defined as:

Q(s, a)← (1− a)Q(s, a) + α [r′ + γQ(s′, a′)] , (11)

where γ ∈ (0, 1) is a discount factor, which is a balancing factor between historical and future

Q-table values. The larger γ is the more weight for the future value and vice versa. α ∈ (0, 1)

indicates learning rate, it works like a step function (i.e., larger α contributes to fast learning but

due to minimal experience, it may result in non-convergence. Similarly, if the value of α is too

small then it will increase the time complexity of the system by leading it to a slow learning

process).

Definition 2. For Q-learning we define Qt=0(s, a) = −100 to learn greedy policy Pπ(A = a|S =

s) for all state and action pairs.

One main limitation of reinforcement learning algorithms is slow convergence due to Q(s, a)

requirement. Additionally, it is challenging with 3D state space and dynamic systems [52], [53].

Due to dynamic behaviour of IoT users the 3D state S and action space A influence learning

process more as S and A are main parts of Q-table Q(s, a). The convergence of the reward

functions r and reinforcement learning hyper parameters guide the algorithm towards optimal

policy V . In other words the choice of reward function and the values for {ε, α and, λ} are used

by reinforcement learning agent/s to avoid the random walk. The random walk in search space
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cause infinite exploration of the search space resulting no convergence. Therefore, we are able

to propose the following conclusion.

Remark 1. The selection of suitable rewards ras→s′ according to system dynamics Q(s, a) is

critical for effective convergence to find optimal Vπ′ . Consequently, following (10) altering the

reward function does not change the output of RL algorithms but the convergence towards policy

Vπ
′ is highly influenced.

It is known that the proposed protocols are capable to handle multi-constrained optimization

problems for different network traffic scenarios. We used ε− greedy SARSA-learning and DRL

algorithms to explore and exploit search space to find dynamic outcomes, so the proposed

protocols are capable to successfully obtain the optimal clustering solution. The Q-table in our

model contains solutions for all subsets (user associations) in the search space. Therefore, in

each episode Ne, only a specific subset of users will be active.

Remark 2. In reinforcement learning to find the best associations st from the set St = {s1, s2, · · · , sN}
possible states, an agent will converge towards the optimal states and actions pairing with the

Fig. 3. An illustration of the communication environment for proposed algorithm, where RL technique (SARSA) is invoked

to optimize NOMA-IoT uplink 3D associations and resource allocation. The agents in this case are the BSs. The process of

associations and resource allocation based on users activities is the state for our system.
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highest probability Pπ′ . In this way, by the increase in probabilities, the number of visits per

state-action pair and rewards increase as well.

Since an agent has limited successful visits, the achieved rewards will be as described in

Remark 1 and Remark 2. As a result, the agent successfully finds the optimal policy for the

given system by processing best actions.

1) SARSA-algorithm: Based on the above discussions, we design Algorithm 1 for step by

step significant optimization stages of the SARSA algorithm for light traffic networks. The details

of the mentioned algorithm are as follows:

Algorithm 1 SARSA-Learning Based NOMA-IoT Uplink Resource Optimization
1: Inputs for SARSA:

1) Episodes Ne

2) Explorations per trials Te

3) Learning rate α

2: Initialization for SARSA:

1) Network parameters (Nb, bi, Ns, sj , Nu, uk, Pb)
2) Q-Table Q(s, a)

3: Define number of clusters-k
4: Define range of users per cluster

5: load s = N
Nb×Ns

u and a = [−1, 0,+1]
6: Random user association to any BSs and Cluster
7: for iteration = 1:Ne do

8: st = rand()
9: for iteration = 1:Te do

10: st, at

11: compute r(st, st+1, at) =

⎧⎨
⎩
r = 0, if Rst+1

≥ Rst and sum(ust
k
) == sum(u

st+1

k
)

r = −10, otherwise.

12: update Rsum

13: update Q(s, a)← (1− a)Q(s, a) + α [r′ + γQ(s′, a′)] .
14: Update π towards greediness
15: s← s′, a← a′

16: end for

17: return optimised (c,p) (6) under constraints (6a),(6b),(6c),(6d) and (6e)
18: end for
19: Return Q-Table Q(s, a)

• Line #(1 − 7): presents initialization of the SARSA algorithm, in which the system is

initialized by initial sets of users, BSs, and sub-channels as an initial state St. After this

we define the maximum number of clusters and the maximum number of users for each

cluster. In line#4 the brain of an agent is initialized with −100 having dimensions [s× a]

as Q-table. The purpose of initialization with −100 is to show that the brain of an agent

needs training. Therefore, after training, the Q-table will contain values approaching to

zero for the best case and vice versa. Secondly, it also shows that the proposed algorithm

is targeted to solve the maximization problem, maximum Q-value means better solutions.
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Line #(5 − 6) shows SARSA-learning parameter definition and initial random association

among IoT users, BSs, and sub-channels.

• Line #(7− 17): shows key training steps based on Q-table updates via bellman equations.

From line#1, an agent performs actions according to a given state of the environment, that is

3D associations and cluster allocation. In line#8 agent picks new associations for different

active users in one episode, then for all trials agent is trying to get optimal associations with

optimal sum rate, if the associations are successful then the agent gets a reward (0) and if

it fails then negative (-10) is given as a punishment. In line#13, based on the 3D designed

5-tuple (S, A, P, R, S′, A′) values (11) is updated on-line. To perform online updates using

S, A, P, R, S′, A′ instead of S, A, P, R as (traditional Q-learning) the online learning

mechanism becomes more fast converging. In other words, the agent finds optimal long-

term online allocation policy more efficiently. Similarly, these updates are calculated for

maximum episode Ne = 500 and all the trials Te = 500 to maximize the overall long-term

average reward of the system.

Definition 3. In 3D state matrix S from the set St = {s1, s2, · · · , sN} possible states, is defined

as CSI of the proposed network that is known to both of the reinforcement learning agents.

Therefore, the reinforcement learning agent contains perfect knowledge of the CSI for the whole

network.

C. Deep Reinforcement Learning For Heavy Traffic ((2-10)Ue’s)

In general, both on-line and off-line Q-learning methods require high memory space to build

a state of the systems. However, practical systems are high in dimension and complex. Due

to this reason Q-learning is not suitable for a large action space, this is a major drawback of

conventional Q-learning methods. To overcome this, DRL method adopts a deep neural network

(DNN) Q(s, a; θ), to generate its Q-table with the help of θ by approximating the Q-values

Q(s, a) [38]. Therefore, DRL agents only need to memorize the θ weights instead of reserving

huge memory space for all possible states and action pairs. This is the main advantage to use

DNN. More specifically, in conventional Q-leaning algorithms, the optimization of Q(s, a) is

equal to the optimization of Q(s, a; θ) in DRL with low memory requirements. Similarly, θ

updates are based on history states, actions, and reward values. More specifically, these values
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are based on DRL agent interactions with the environment to learns the relationship among the

different actions and states by continuously observing given environment.

1) S, is a unique state space used as an input of DNN. Each state is a combination of multiple

sub-sets of 3D associations among users, BSs, and sub-channels. It also consists of current

rewards of the system as instantaneous and average reward from previous iterations.

2) R, is a reward of the system that is denoted by R = {ri, rl}, where ri is an instantaneous

rewards similar to SARSA algorithm and rl =
∑500

t=1 r
t
i/t denotes long-term average

rewards for the time slot t.

3) A, is a multi-dimensional matrix representing actions as A = {a1, a2, · · · , a8}. For the

DRL algorithm, the action mechanism is based on two main parts as; allocation strategies

described as switching strategy as and association strategy ai for the optimization process,

where as is a switching mechanism similar to SARSA and used for the DRL channel

switching process. The second strategy ai is a result of selected switching strategy as,

ai denotes an index of the 3D associations among users, BSs, and sub-channels. Finally,

the DRL agent uses loss function mentioned in (12) to calculate θ based on the previous

experience.

loss(θ) = 1/Ne

Ne∑
t=1

[yDRL
t −Q(st, at; θ)]

2
, (12)

where

yDRL
t = r + γmax

a′∈A
Q(s′, a′; θ

′

) (13)

and yDRL
t is the target Q-values from target DNN. For the improved training, in general

the update frequency of the target network θ
′

is performed in slow manner. Due to this

reason the target network remains fixed for the target network update threshold T
′

e.

The DRL agent uses gradient decent method as in (12) to reduce the prediction error by

minimizing the loss function. The updating of θ is provided in (16), which is based on the

outcome of new experience. The updating function for θ is defined in (18), namely DRL Bellman

Page 18 of 94IEEE Transactions on Wireless Communications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



19

equation.

θ← θ − [y′ −Q(s, a; θ)]∇Q(s, a; θ). (14)

qπ(s, a) = r(s, a) + γ
∑
s′∈S

∑
a′∈A

pss′(a)qπ(s
′, a′), (15)

qπ∗(s, a) = r(s, a) + γ
∑
s′∈S

pss′(a)max
a′∈A

qπ∗(s′, a′), (16)

where the function qπ∗(s, a) shows Q-values and the long-term reward calculations for DRL

based on the discount factor γ and below mentioned optimal DRL policy π∗.

π∗(s) = argmax
a∈A

[qπ∗(s, a)] , ∀ s ∈ S, (17)

where π∗(s) represents the optimal policy for the DRL algorithm. This function provides the

optimal policy value for each state s from finite sate set after taking appropriate action a.

Q(s, a)← (1−α)Q(s, a)+α

[
r(s, a)+γmax

a′∈A
Q(s′, a′)

]
, (18)

where Q(s, a) is showing Q-value update according to DRL Bellman equation.

s(t) = {a1(r1i , r1l ), a2(r2i , r2l ) . . . , at(rti, rtl)}. (19)

ρ(x) :

dj∑
j=0

Wj × Ij(s(t)) + ψj , (20)

where in (19), s(t) represents state of the DRL agent and equation (20) shows the activation

mechanism for each neuron layer I based on weights Wj for j − th depth of neurons with bias

term ψj . In this model, the input of the DRL algorithm is the instantaneous network observation

as st. This state is sent to the different neural network neurons with specific network Wj to

obtain the final output as a set of different Q-values for all actions. For the DRL framework the

size of output actions are similar to the SARSA. We use the replay memory as an experience for

the DRL agent to store the tuple (st, at, rt, s
′

) for all the time steps Te in an experience dataset

E with size ε. When the size ε is full, the first experience as an oldest tuple will be removed

to free some space for the new experience update. The reason for this updated experience is

to reflect the sequential exploration of the DRL framework. However, the samples distribution

is independent and identical. Therefore, to get more general output, the Wj update process is

performed on the basis of randomly sampled tuple (st, at, rt, s
′

) instead of the current tuple. This
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is because output is highly influenced by the correlated set of tuples (st, at, rt, s
′

) and variance

of the updates.

Definition 4. DRL design in this work is defined with two main elements, the first element is

target Q-network based on θ
′

. The second main element of DRL is state transition mechanism

(st, at, rt, s
′

)t∈[n]. This mechanism is used to construct mini-batch for experience reply from

dataset E to train DNN.

� �

Fig. 4. DRL structure: it shows the flow of information between target and training networks to minimize the loss function

using states, actions, rewards, and replay memory.

Remark 3. The convergence rate/speed of the proposed algorithm varies according to the initial

3D association (states) that is randomly selected. In this model, the state space means allocation

strategies that include subsets of all possible associations of active users uk = 2 ≤ Nu for each

sub-channel at the episode Ne.

Based on the above discussions, we design Algorithm 2 for step by step significant optimiza-

tion stages of the DRL algorithm for heavy traffic. The details of the mentioned algorithm are

as follows:
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1) DRL:

• Line #(1 − 2): In this stage, the parameter initialization is performed, which is a similar

initialization step like SARSA. However, instead of state action pairing, the weight matrix

is initialized for DRL to find optimal policy π.

• Line #(3) Pre-training: In this stage, initial actions are selected using uniform random

distribution as an initial state space in continuous environment. In this way initial weights

are also calculated to start the optimization process.

• Line #(4 − 18): Whole process for DRL is similar to SARSA from line #(5 − 11) with

DRL bellmen equations (12) to (19).

• Loss Calculation: The equation (12) is to calculate the loss θ that is the mean squared error

(MSE) indicating the difference of the target and predicted networks. To optimise these

values between the target network and prediction network we use Adam optimiser. The

Adam optimizer is used for the loss minimization to further improve the optimal predicted

Q-values for each episode. Therefore, the DRL framework converges faster even in huge

state space. In (13), we calculate the target Q-values based on the tuple (St, At, Rt) from

mini-batch and the mini-batch is updated after 100 iterations.

• DRL Updates: The updating function for the prediction of DRL θ and long-term reward

calculation is shown in (14) to (16), where DRL agents obtain rewards and prediction loss

after every transition from st to next state st+1 to find the greedy policy. Additionally,

γ discount factor has significant impact in search of the greedy-policy because based on

discount factor as we mentioned in the previous paragraphs, the agent selects immediate

or previous Q-values. The policy π is calculated using (17) to maximize the Q-values by

greedy search. The calculation for DRL Bellman equation is performed using states in (18).

• Sparse Activations: The ρ(x) is an activation function for DNNs sparse activations using

ReLU (ρ). The sparse activations help agents to efficiently converge by avoiding useless

neuron activations. The outcome of sparsity is shown in the results section, comparing

sparse ReLU, Sigmoid, and TanH. In (20), the activations are performed for the δj density

of neurons with j− th index, for each neuron we use state of the system as an input that is

multiplied with weight Wj of j − th density and adding bias value as λ before activation.

In next steps, current states, actions, and rewards are added to mini-batch for experience
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replay (for self-training). In #(13−15), the agent receives next states from mini-batch that

is learned in previous sections based on pre-training. Before that, the learning process of the

agent is based on pre-training but when mini-batch is full, the agent will learn the optimal

policy by experiencing replay mechanism with the help of mini-batch processing.

• Neural Networks: this paper uses the DRL that is built with two DNNs as shown in Fig. 4:

1) a training network Q(s′, a′; θ) that learns the policy and 2) a target network Q(s′, a′; θ∗)

to compute target Q-values for every update, where θ and θ∗ shows the weights of these

two networks. For the training of the DNN network, θ weights are predicted based on the

current state and action. On the other hand, θ∗ weights are based on the previous episodes

and these weights are fixed during the calculation of θ for training purpose. Additionally,

We utilize MSE loss function (12) to evaluate the accuracy of the training for the target

network. Therefore, the proposed loss function is based on θ and θ∗ to check the deviation

of the predicted DNN weights.

• Output: Finally, the output of this algorithm is the optimal policy for all clusters where

overall long-term sum rate is maximum.

Definition 5. We use ReLU activation function ρ(x) = max(x, 0) (x is the input neuron) for

DRL performance evaluations. A ReLU network of density δj and λi hidden layers with each

layer width {δj}λ+1
i=0 ⊆ N can be represented as f : Rδ0 → R

δΛ+1 for any positive number L.

f(x) = wΛ+1ρ(wΛρ(wΛ−1...ρ(w2ρ(w1ρ+ ψ1) + ψ2)...ψΛ−1) + ψΛ.

In this definition, f(x) is a function to show the construction of neural network with weights

for each layer wλ ∈ R
δλ−1

δλ
and ρ is the activation for each neuron. The mesh structure of

the neural network remains fixed in this model to learn two main neural network parameters

(wλ, ψλ)[λ∈Λ+1] in addition with the activation function ρ and the input of the neural network. In

the neural network Ψ bias terms are added with the input of the DNN as ΨΛ+1 as a shift value.

To optimise our dynamic objective function, the greedy search agent is used. With the help of

greedy search, the DRL agent receives higher rewards.

Remark 4. To avoid useless visits, greedy policy π
′

provides a balanced exploitation, because

ε − greedy exploits in the most cases and some times it processes a random action to explore

the environment in search of different solutions QNe
(s, a) = E[

∑Ne

t=1 γtrt].
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For DRL, unbalanced random actions cause huge error propagation so that this ε − greedy

is suitable to be applied for achieving efficient learning in a dynamic state space. Note that the

boundary for the policy selection is 0 ≤ ε ≤ 1. For ε close to 0 the policy becomes greedy

policy, and for ε close to 1 the agent explores more.

Algorithm 2 Deep Q-Learning Based NOMA-IoT Uplink Resource Optimization
1: Inputs for DRL:

1) Episodes Ne

2) Explorations per trials Te

3) Learning rate α

2: Initialization for DRL:

1) Network parameters (Nb, bi, Ns, sj , Nu, uk, Pb)
2) memory, hidden size, State size, action size and mini-batch

3: train DRL to find a good policy Q(Wa)
4: for iteration = 1:Ne do
5: for iteration = 1:Te do

6: st, at

7: compute r(st, st+1, at) =

⎧⎨
⎩
r = 0, if Rst+1

≥ Rst and sum(ust
k
) == sum(u

st+1

k
)

r = −10, otherwise.

8: update Q(Wa) using qπ∗(s, a) = r(s, a) + γ
∑

s′∈S

pss′(a) max
a′∈A

qπ∗ (s′, a′).

9: loss(θ) = [yDRL
t −Qt(s′, a′; θ)]

2
update using yDRL

t = r + γ max
a′∈A

Q(s′, a′; θ).

10: s← s′, a← a′

11: update mini-batch (Experience)
12: if Te > State − size then
13: get s← s′, a← a′ from mini-batch
14: end if

15: end for

16: end for
17: Return Q(Wa)

Definition 6. (Sparsity for ReLU DNN): The sparsity of the ReLU network is a weight based

sparsity denoted by κ, sparse ReLU networks are bounded by Ψ for Λi layers, Ψ > 0 . For any

hidden layer Λi, κ ∈ N, {δj}Λ+1
i=0 ⊆ N.

F(Λ, {δj}Λ+1
i=o , κ,Ψ) =

(
f : max

λ∈[Λ+1]

∥∥∥Wλ
′

∥∥∥
∞
≤ 1,

Λ+1∑
λ=1

∥∥∥Wλ
′

∥∥∥
0
≤ κ, max

j∈[δΛ+1]
‖fj‖∞ ≤ Ψ

)
,

where W
′

λ is used to represent Wλ, ψλ. The function f is from Definition 5 and fj is the j− th

element of f .

D. Complexity

The complexity of the proposed model is based on the number of BSs Nb, total number of sub-

channels Ns and the number of users communicating Nu. In proposed scheme, simulated exper-

iments are based on different examples. This paper considers Nb = 2, Ns = 2 and Nu = 3, 4, for

light traffic and 10 for heavy traffic. These examples are association decisions for the user Nu and

the sub-channel Ns at BS Nb that receives signals for NNb
u channels from users. The computation
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complexity for SARSA-learning is O(NbN
Ns
u ) operations with NNb×Ns

u × (2 × Nb × Ns + 1)

memory requirement for Q-table to simulate brain of the learning agent/s. The complexity of DRL

is O(NeTe) with smaller Q-table Q(Wj) and DRL uses 1D experience replay containing states

vector (19) instead of huge memory requirements like traditional Q-learning. The benchmark

scheme considered in this work is a memory-less method, which shows the maximum achievable

rate by exhaustively searching all possible combinations of 3D associations. Consequently, it

requires more number of operations. Due to this reason, the computation complexity increases

in exponential manner as O(NNb×Ns
u ).

TABLE II

NETWORK PARAMETERS

Load balancing factor k values per resource block 2-3,2-4,2-10
Total number of trials 500
Total number of time steps 500
Bandwidth [15− 35]kHz
Gain [1, 1.5, 2] ∗ 10−5 [54]
γδ 0.6
α 0.75, 0.1
ε 0.1
λ 0.5
Optimisers SARSA-DRL (Adam)
Deep neural network activations Sigmoid, TanH, ReLU

IV. NUMERICAL RESULTS

In this section, simulation results are provided for the performance evaluation of the proposed

multi-constrained algorithms. The proposed multi-constrained algorithms are tested under dif-

ferent network settings to solve: 3D associations among user, BSs, and sub-channels as well as

sum rate optimization with different network traffic. For simulations, we have considered two

different traffic density threshold values to analyse the impact of network load with various power

levels on the sum rate and 3D associations. Additionally, network load in our case represents

load of each resource block instead of total number of users in the network. Therefore, max

network load=10 with two RB’s for each BSs means 10 ∗ 4 = 40 users in the network. To show

the significance of available channel bandwidth, we start with a minimum channel bandwidth

of 60(kHz) and then increase it to 120(kHz) under different network traffic conditions. The

hardware and software system used for experimentation is Intel core i7-7700 CPU with 3.60

GHz frequency having 16 GB of RAM (Random Access Memory) and 64-bit operating system

(windows-10). All the experiments are simulated using Matlab version-R2019a and Python 3.6.

From Table.II for both the algorithms we used 500 episodes with 500 iterations for each episodes.

Similarly, λ[SARSA/DRL] = 0.5, γ[SARSA/DRL] = 0.6, α[SARSA/DRL] = {0.75, 0.1}, and ε−greedy
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exploration are values for the significant hyper-parameters of proposed algorithms. We used

Load balancing factor k values per resource block to show the maximum and minimum user

connectivity for each resource block. The values of channel gain for each user is defined as

[1, 1.5, 2]∗10−5 [54]. For the DRL, additional parameters are trained, such as loss MSE, activation

functions, batch-size= 500, optimisers, experience memory E = 500, pre-training length = 500,

the number and size of hidden units. We use ReLU, Sigmoid, and TanH as activation functions

with two hidden layers having density δ = 500 units. Adam optimizer is utilized for the optimal

convergence of DRL.
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(a) (b)

Fig. 5. Overview for the proposed framework to the sum-rate maximization problem. Sub-figure (a) is convergence for proposed

algorithms: DRL for heavy traffic (max scheduling up to 10 users), SARSA for medium and low traffic range ( support 2, 3,

4, and upto 10 users scheduling) and the comparison for two different learning rates (α = 0.75, α = 0.1). (b) shows long-term

comparison between the channel bandwidth, average sum rate, and power levels for the proposed SARSA, DRL and benchmark

scheme.

A. Convergence vs Sum Rate vs Traffic Density

Fig. 5(a) shows the inter-correlations among the four measures of convergence. It is apparent

from this figure that if traffic density increases then convergence is slower and vice versa. DRL

has better convergence for heavy traffic with the maximum allocation capacity/load, which makes

DRL more suitable for the scenarios with high traffic densities. Secondly, another interesting

insight is that the performance of SARSA α = 0 is better than α = 0.1 with ε − greedy.

The convergence of Adam depends on DRL θ weights as RDRL =
T∑
t=1

(
ft(θt)− ft(θ

′

)
)
. where

θ
′

= argminθ∈κ
∑T

t=1 ft(θ) and κ is feasible set for all t− 1 steps.

Definition 7. The bounded gradients of the function fDRL
t is ‖δft(θ)‖2 ≤ GDRL‖δft(θ)‖∞ ≤

GDRL
∞ , ∀θ ∈ RDRL

d . Secondly, the distance generated by the Adam optimiser is bounded as:
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‖θp − θq‖2 ≤ D, ‖θp − θq‖∞ ≤ D∞ for any p, q ∈ {1, · · · , T} with the bias terms β1, β2 ∈ [0, 1]

satisfying the
β2
1√
β2

< 1 condition. Let the learning rate of the Adam optimiser be αt = α/
√
t

and bias term βt
1 = β1λ

t−1, λ ∈ [0, 1] for each step t, for all T ≥ 1 Adam obtains the following

condition [55]:

RDRL(T ) ≤ D2/2α(1− β1)

d∑
i=0

√
Tv

′

T,i +
α(1 + β1)G

DRL
∞

(1− β1)
√
1− β2(1− γ)2

d∑
i=0

‖g1:T,i‖2

+
d∑

i=0

D2
∞G

DRL
∞

√
1− β2

2α (1− β1)(1− λ)2
(21)

The results obtained from the primary analysis of sum rate and traffic densities are shown in

Fig. 5(b) in long-term settings, it is clearly visible that the proposed model performs close to the

benchmark scheme and better than OMA.Fig. 6(a) shows short-term performance analysis be-

tween sum rates, bandwidth, and the number of iterations. This figure illustrates the performance

of DRL and SARSA according to different bandwidths, where the performance of the DRL is

better than SARSA. Interestingly it also shows that as the traffic density increases the sum rate

also increases. Therefore sum rates are proportional to the number of users/traffic density in

this case. Furthermore, from Fig. 5(b) even with light traffic conditions the sum rate of NOMA

systems is higher than OMA. Lastly, Fig. 6(b) shows the relationships among long-term users

connectivity during the simulation time. Where it is clearly visible that NOMA is more efficient

for user connectivity by serving more users than OMA. From this figure we can see that the

connectivity is improving as reinforcement learning agents, specifically DRL agent learning the

dynamic environment. The number of served users are significantly increasing after 150 episodes

of learning. As we can see the total number of served users are more than 3000 for DRL NOMA

and more than 1000 for SARSA NOMA within 200 episodes.

B. DQN Loss vs Rewards

In Fig. 7(a), the loss (MSE) for the DRL algorithm is shown, comparing three well-known

activation functions (ReLU, TanH, and Sigmoid). As it can be seen that ReLU performs better

than both Sigmoid and TanH activation functions. Sigmoid and TanH perform relatively better

only in initial steps due to less experience of the DRL agent. Therefore, when DRL agent gains

some experience after the process of exploration and exploitation of the given environment, the

outcome of the DRL algorithm is changed accordingly. The loss (y-axis) for all the activation
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Fig. 6. Overview for the proposed framework to the sum-rate maximization problem. Sub-figure (a) is short-term comparison

between the channel bandwidth, average sum rate, and different network traffic loads for the proposed DRL and SARSA. Where

(L) denotes light traffic,(M) denotes medium, and (H) is for heavy traffic. (b) shows long-term comparison between time episodes

and clustering parameter c, showing sum of connected users in long-term for the proposed SARSA, DRL and OMA scheme.

functions is decreasing according to the number of episodes (x-axis). Furthermore, this figure

also shows that the performance (loss) of the DRL algorithm is efficient when ReLU activation

is used. Fig. 7(b) provides the summary statistics of achieved average rewards for the three

different activation functions of the DRL algorithm. From the data in Fig. 7(b), it is apparent

that the DRL algorithm with ReLU outperforms Sigmoid and TanH activation functions. After

combining Fig. 7(a) and Fig. 7(b), another interesting outcome is that by the improvement of

loss function, the rewards improves as well. Therefore, the loss and reward are proportional to

each other. Lastly, DRL with the Sigmoid activations is the second best until 200 episodes and

in all the remaining cases, where the episode is greater than 200 the performance of TanH is

better than Sigmoid.

C. Clustering Time

The average clustering time in second is compared for DRL and SARSA algorithms with

different types of traffic and impact of learning rates α in Fig. 8. The learning rate is the

significant hyper-parameter of RL algorithms, which shows how long the agent spends to explore

and exploit the given environments. From the figure, it can be seen that there is no large effect

of learning rates on clustering time (y-axis) for all the scenarios with current hyper-parameters

but if it is not tuned with other hyper-parameters, learning rate can negatively influence the

learning process. Therefore, with improper tuning the learning process becomes unbalanced and
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Fig. 7. Overview for the proposed framework to the sum-rate maximization problem. Sub-figure (a) DRL loss vs number of

episodes: A comparison between DRL loss and training episodes for different activation functions (ReLU, TanH, Sigmoid). Sub-

figure (b) shows Rewards vs activation functions: A comparison between achieved rewards and episodes for different activation

functions (ReLU, TanH, Sigmoid) of DRL algorithm.

the agent can be searching for the solution for an infinite amount of time. Lastly, the clustering

time increases but not significant when max load is increased from 3 to 10.
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Fig. 8. Clustering time (mean (sec)) vs Traffic Densities for DRL and SARSA: A comparison between different traffic densities

and learning rates of the proposed algorithms.

V. CONCLUSION

This paper has proposed resource allocation for IoT users in the uplink transmission of NOMA

systems. Two algorithms DRL and SARSA in the present study have been designed to determine
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the effect of three different traffic densities on the sum rate of IoT users. In order to improve the

overall sum rate under different number of IoT users, we have formulated a multi-dimensional

optimization problem using intelligent clustering based on RL algorithms with several interesting

outcomes. Firstly, the simulation results of this study has indicated that the proposed technique

performed close to the benchmark scheme in all the scenarios. The second major finding is

that this frame work provides long-term guaranteed average rate with long-term reliability and

stability. Thirdly, it has proved that DRL is efficient for complex scenarios. Additionally, we

have proved that the sparse activations improve the performance of the DNNs when compared to

the traditional mechanisms. Therefore, DRL with sparse activations is suitable for heavy traffic

and SARSA is suitable for light traffic conditions. Furthermore, in general, both the algorithms

(DRL and SARSA) have obtained better sum rates than OMA systems. Lastly, further research

will explore performance improvements under the different scale of the networks.

APPENDIX A

PROOF OF PROBLEM (6a)

With the aid of the theory of computation complexity, we are able to use the following two

steps to prove that the problem (6a) is an NP-hard problem. Step 1: the association problem for

every subset of Φi,j
u is NP-complete. Step 2: this step is to prove the relationship of ui,j

k and the

problem in (??) is similar to our objective function. The problem (6a) in this paper is NP-hard,

following proof can be divided into two cases, namely Nu = 1 (static clustering/association) and

Nu ≥ 1 (dynamic clustering/associations).

1) For the case Nu = 1 (static clustering/association), the problem (6a) is similar to the

conventional OMA systems so that the resource management problem can be expressed

as follows:

max
C,P

E[Rsum(t)], (A.1)

s.t : 2 ≤ ci,jk (t), ∀i, k = 1, (A.2)

N i,j
u∑

k=1

ci,jk (t)pi,jk (t) ≤ Pb, ∀i, ∀j. (A.3)

The above-mentioned problem has been proved to be NP-hard in [56] for OMA systems.

2) For the case Nu > 1 (dynamic clustering/associations), even with known power allocations

we show that the problem (6a) is NP-hard since the optimal power selection for multiple
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users is NP-hard. Additionally, it is known that 3D associations are NP-hard problems [50].

Under the condition that Nu > 1, for any ui,j
k , there are more than one combinations in the

set Φi,j
u even for the 3D association problem in OMA systems. Moreover, the combinations

in NOMA is larger than those in OMA.

As a result, the decision problem of the constructed instance is NP-complete and the main

instance is NP-hard.

REFERENCES

[1] W. Ahsan, W. Yi, Z. Qin, Y. Liu, and A. Nallanathan, “Reinforcement learning for user clustering in NOMA-enabled

uplink IoT,” in IEEE Proc. of International Commun. Conf. (ICC Wkshps), Jun. 2020.

[2] D. Zhai, R. Zhang, L. Cai, and F. R. Yu, “Delay minimization for massive internet of things with non-orthogonal multiple

access,” IEEE J. Sel. Areas Commun., vol. 13, no. 3, pp. 553–566, 2019.

[3] S. R. Islam, N. Avazov, O. A. Dobre, and K.-S. Kwak, “Power-domain non-orthogonal multiple access (NOMA) in 5G

systems: Potentials and challenges,” IEEE Commun. Surveys Tuts., vol. 19, no. 2, pp. 721–742, 2017.

[4] S. K. Sharma and X. Wang, “Towards massive machine type communications in ultra-dense cellular iot networks: Current

issues and machine learning-assisted solutions,” IEEE Commun. Surveys Tuts., pp. 1–1, 2019.

[5] D. Wan, M. Wen, F. Ji, H. Yu, and F. Chen, “Non-orthogonal multiple access for cooperative communications: Challenges,

opportunities, and trends,” IEEE Wireless Commun., vol. 25, no. 2, pp. 109–117, 2018.

[6] H. Guo, Y.-C. Liang, J. Chen, and E. G. Larsson, “Weighted sum-rate maximization for reconfigurable intelligent surface

aided wireless networks,” IEEE Trans. Wireless Commun., vol. 19, no. 5, pp. 3064–3076, 2020.

[7] M. Zeng, X. Li, G. Li, W. Hao, and O. Dobre, “Sum rate maximization for irs-assisted uplink noma,” arXiv preprint

arXiv:2004.10791, 2020.

[8] D. Tse and P. Viswanath, Fundamentals of wireless communication. Cambridge university press, 2005.

[9] Z. Ding, X. Lei, G. K. Karagiannidis, R. Schober, J. Yuan, and V. K. Bhargava, “A survey on non-orthogonal multiple access

for 5G networks: Research challenges and future trends,” IEEE J. Sel. Areas Commun., vol. 35, no. 10, pp. 2181–2195,

2017.

[10] X. Shao, C. Yang, D. Chen, N. Zhao, and F. R. Yu, “Dynamic IoT device clustering and energy management with hybrid

NOMA systems,” IEEE Trans. Ind. Informat., vol. 14, no. 10, pp. 4622–4630, 2018.

[11] M. S. Ali, H. Tabassum, and E. Hossain, “Dynamic user clustering and power allocation for uplink and downlink non-

orthogonal multiple access (noma) systems,” IEEE access, vol. 4, pp. 6325–6343, 2016.

[12] L. Miuccio, D. Panno, and S. Riolo, “Joint control of random access and dynamic uplink resource dimensioning for massive

mtc in 5g nr based on scma,” IEEE Internet Things J., 2020.

[13] A. E. Mostafa, Y. Zhou, and V. W. Wong, “Connection density maximization of narrowband iot systems with NOMA,”

IEEE Trans. Wireless Commun., vol. 18, no. 10, pp. 4708–4722, 2019.

[14] D. Wang, D. Chen, B. Song, N. Guizani, X. Yu, and X. Du, “From IoT to 5G I-IoT: The next generation IoT-Based

intelligent algorithms and 5G technologies,” IEEE Commun. Mag., vol. 56, no. 10, pp. 114–120, OCTOBER 2018.

[15] F. Hussain, S. A. Hassan, R. Hussain, and E. Hossain, “Machine learning for resource management in cellular and IoT

networks: Potentials, current solutions, and open challenges,” arXiv preprint arXiv:1907.08965, 2019.

[16] N. Zhang, J. Wang, G. Kang, and Y. Liu, “Uplink nonorthogonal multiple access in 5G systems,” IEEE Commun. Lett.,

vol. 20, no. 3, pp. 458–461, 2016.

Page 30 of 94IEEE Transactions on Wireless Communications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



31

[17] Z. Ding, Z. Yang, P. Fan, and H. V. Poor, “On the performance of non-orthogonal multiple access in 5G systems with

randomly deployed users,” arXiv preprint arXiv:1406.1516, 2014.

[18] M. F. Hanif, Z. Ding, T. Ratnarajah, and G. K. Karagiannidis, “A minorization-maximization method for optimizing sum

rate in the downlink of non-orthogonal multiple access systems.” IEEE Trans. Signal Process., vol. 64, no. 1, pp. 76–88,

2016.

[19] H. Zhang, B. Wang, C. Jiang, K. Long, A. Nallanathan, V. C. Leung, and H. V. Poor, “Energy efficient dynamic resource

optimization in NOMA system,” IEEE Trans. Wireless Commun., vol. 17, no. 9, pp. 5671–5683, 2018.

[20] Z. Yang, Z. Ding, P. Fan, and N. Al-Dhahir, “A general power allocation scheme to guarantee quality of service in downlink

and uplink NOMA systems,” IEEE Trans. Wireless Commun., vol. 15, no. 11, pp. 7244–7257, 2016.

[21] D. Zhai, R. Zhang, L. Cai, B. Li, and Y. Jiang, “Energy-efficient user scheduling and power allocation for NOMA-based

wireless networks with massive IoT devices,” IEEE Internet Things J., vol. 5, no. 3, pp. 1857–1868, 2018.

[22] Y. Liu, Z. Qin, M. Elkashlan, Y. Gao, and L. Hanzo, “Enhancing the physical layer security of non-orthogonal multiple

access in large-scale networks.” IEEE Trans.Wireless Commun., vol. 16, no. 3, pp. 1656–1672, 2017.

[23] W. Yi, Y. Liu, A. Nallanathan, and M. Elkashlan, “Clustered millimeter-wave networks with non-orthogonal multiple

access,” IEEE Trans. Commun., vol. 67, no. 6, pp. 4350–4364, Jun. 2019.

[24] M. S. Ali, E. Hossain, and D. I. Kim, “Coordinated multipoint transmission in downlink multi-cell NOMA systems: Models

and spectral efficiency performance,” IEEE Wireless Commun., vol. 25, no. 2, pp. 24–31, 2018.

[25] L. P. Qian, A. Feng, Y. Huang, Y. Wu, B. Ji, and Z. Shi, “Optimal SIC ordering and computation resource allocation in

MEC-aware NOMA NB-IoT networks,” IEEE Internet Things J., vol. 6, no. 2, pp. 2806–2816, April 2019.

[26] M. B. Shahab, R. Abbas, M. Shirvanimoghaddam, and S. J. Johnson, “Grant-free non-orthogonal multiple access for IoT:

A survey,” arXiv preprint arXiv:1910.06529, 2019.

[27] L. Dai, B. Wang, Z. Ding, Z. Wang, S. Chen, and L. Hanzo, “A survey of non-orthogonal multiple access for 5G,” IEEE

Commun. Surveys Tuts., vol. 20, no. 3, pp. 2294–2323, thirdquarter 2018.

[28] G. Gui, H. Huang, Y. Song, and H. Sari, “Deep learning for an effective nonorthogonal multiple access scheme,” IEEE

Trans. Veh. Technol., vol. 67, no. 9, pp. 8440–8450, 2018.

[29] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[30] Y. Xu, D. Cai, F. Fang, Z. Ding, C. Shen, and G. Zhu, “Outage analysis and power allocation for HARQ-CC enabled

NOMA downlink transmission,” in IEEE Glob. Commun. Conf. (GLOBECOM), Dec 2018, pp. 1–6.

[31] C. Jiang, H. Zhang, Y. Ren, Z. Han, K.-C. Chen, and L. Hanzo, “Machine learning paradigms for next-generation wireless

networks,” IEEE Wireless Commun., vol. 24, no. 2, pp. 98–105, 2017.

[32] S. Bi, R. Zhang, Z. Ding, and S. Cui, “Wireless communications in the era of big data,” arXiv preprint arXiv:1508.06369,

2015.

[33] M. Y. Arafat and S. Moh, “Localization and clustering based on swarm intelligence in UAV networks for emergency

communications,” IEEE Internet Things J., vol. 6, no. 5, pp. 8958–8976, Oct 2019.

[34] J. Cui, Z. Ding, P. Fan, and N. Al-Dhahir, “Unsupervised machine learning-based user clustering in millimeter-wave-NOMA

systems,” IEEE Trans. Wireless Commun., vol. 17, no. 11, pp. 7425–7440, 2018.

[35] Y. Liu, S. Bi, Z. Shi, and L. Hanzo, “When machine learning meets big data: A wireless communication perspective,”

arXiv preprint arXiv:1901.08329, 2019.

[36] F. Li, D. Yu, H. Yang, J. Yu, H. Karl, and X. Cheng, “Multi-armed-bandit-based spectrum scheduling algorithms in wireless

networks: A survey,” IEEE Wireless Commun., vol. 27, no. 1, pp. 24–30, 2020.

[37] T. B. de Oliveira, A. L. Bazzan, B. C. da Silva, and R. Grunitzki, “Comparing multi-armed bandit algorithms and q-learning

Page 31 of 94 IEEE Transactions on Wireless Communications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



32

for multiagent action selection: a case study in route choice,” in 2018 International Joint Conference on Neural Networks

(IJCNN). IEEE, 2018, pp. 1–8.

[38] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton et al.,

“Mastering the game of go without human knowledge,” Nature, vol. 550, no. 7676, p. 354, 2017.

[39] G. A. Rummery and M. Niranjan, On-line Q-learning using connectionist systems. University of Cambridge, Department

of Engineering Cambridge, England, 1994, vol. 37.

[40] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra, “Continuous control with

deep reinforcement learning,” arXiv preprint arXiv:1509.02971, 2015.

[41] L. Xiao, Y. Li, C. Dai, H. Dai, and H. V. Poor, “Reinforcement learning-based NOMA power allocation in the presence

of smart jamming,” IEEE Trans. Veh. Technol., vol. 67, no. 4, pp. 3377–3389, 2017.

[42] Y. Liu, Z. Qin, Y. Cai, Y. Gao, G. Y. Li, and A. Nallanathan, “UAV communications based on non-orthogonal multiple

access,” IEEE Wireless Commun., vol. 26, no. 1, pp. 52–57, 2019.

[43] H. Yang, P. Du, W.-D. Zhong, C. Chen, A. Alphones, and S. Zhang, “Reinforcement learning based intelligent resource

allocation for integrated VLCP systems,” IEEE Wireless Commun. Lett., vol. 8, no. 4, pp. 1204–1207, 2019.

[44] J. Cui, Y. Liu, Z. Ding, P. Fan, and A. Nallanathan, “Optimal user scheduling and power allocation for millimeter wave

NOMA systems,” IEEE Trans. Wireless Commun., vol. 17, no. 3, pp. 1502–1517, 2017.

[45] A. Kiani and N. Ansari, “Edge computing aware NOMA for 5G networks,” IEEE Internet Things J., vol. 5, no. 2, pp.

1299–1306, 2018.

[46] Y. Liu, Z. Ding, M. Elkashlan, and H. V. Poor, “Cooperative non-orthogonal multiple access with simultaneous wireless

information and power transfer,” IEEE J. Sel. Areas Commun., vol. 34, no. 4, pp. 938–953, 2016.

[47] Qinqing Zhang and S. A. Kassam, “Finite-state Markov model for rayleigh fading channels,” IEEE Trans. Commun.,

vol. 47, no. 11, pp. 1688–1692, Nov 1999.

[48] F. Fang, Z. Ding, W. Liang, and H. Zhang, “Optimal energy efficient power allocation with user fairness for uplink

MC-NOMA systems,” IEEE Wireless Commun. Lett., pp. 1–1, 2019.

[49] X. Liu, Z. Qin, Y. Gao, and J. A. McCann, “Resource allocation in wireless powered IoT networks,” IEEE Internet Things

J., vol. 6, no. 3, pp. 4935–4945, June 2019.

[50] J. Cui, Y. Liu, Z. Ding, P. Fan, and A. Nallanathan, “Optimal user scheduling and power allocation for millimeter wave

NOMA systems,” IEEE Trans. Wireless Commun., vol. 17, no. 3, pp. 1502–1517, 2018.

[51] J. Cui, Y. Liu, and A. Nallanathan, “Multi-agent reinforcement learning-based resource allocation for UAV networks,”

IEEE Trans. Wireless Commun., vol. 19, no. 2, pp. 729–743, Feb 2020.

[52] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no. 3-4, pp. 279–292, 1992.

[53] F. S. Melo, “Convergence of Q-learning: A simple proof,” Institute Of Systems and Robotics, Tech. Rep, pp. 1–4, 2001.

[54] Q. Zhang and S. A. Kassam, “Finite-state Markov model for rayleigh fading channels,” IEEE Trans. Commun., vol. 47,

no. 11, pp. 1688–1692, 1999.

[55] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014.

[56] O. Naparstek and K. Cohen, “Deep multi-user reinforcement learning for distributed dynamic spectrum access,” IEEE

Trans. Wireless Commun., vol. 18, no. 1, pp. 310–323, 2018.

Page 32 of 94IEEE Transactions on Wireless Communications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


