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Abstract—We propose a novel semi-centralized framework for
Internet-of-Things (IoT) networks with non-orthogonal multiple
access to maximize the energy efficiency (EE) of two types of
clients, namely grant-based (GB) and grant-free (GF). We use a
proximal policy optimization algorithm to maximize the EE of GB
clients and a multi-agent deep Q-network to optimize resource
allocation for GF clients aided by a gateway node. The proposed
algorithm combines the advantages of fully centralized and fully
distributed frameworks to compensate for their shortcomings
(complexity and long learning time). The numerical results show
that the proposed algorithm enhances the EE of GB clients by
6% and 11.5%, respectively, compared with the fixed power
allocation and random power allocation strategies. Moreover, the
results demonstrate a 47.4% increase in the EE of GF clients over
the benchmark scheme. Additionally, we show that the increase
in the number of GB clients has a significant impact on the EE
of GB and GF clients.

Index Terms—Non-orthogonal multiple access, resource allo-
cation, Internet-of-Things, deep reinforcement learning.

I. INTRODUCTION

Non-orthogonal multiple access (NOMA) is considered a
promising solution to provide massive connectivity to the in-
creasing number of Internet-of-Things (IoT) clients, one of the
important use cases of massive machine-type communication
(mMTC) [1]. IoT clients are characterized by a small data rate,
long battery life, sporadic transmission and different quality
of service (QoS) requirements [2]. Therefore, the energy
efficiency (EE) for such devices requires more attention, and
it is vital for networks with NOMA to allocate resources
more efficiently and appropriately [3]. In conventional NOMA
transmissions, the communication between the sender and
receiver is based on four-way handshakes, which are known as
grant-based (GB) transmission. GB transmission is unsuitable
for IoT scenarios because of the long latency and signal
overhead. Later, the grant-free (GF) scheme was introduced
by removing the handshaking process from the GB scheme.

Recently, another multiple access scheme, known as the
semi-grant-free (SGF) NOMA [4], was proposed; here, two
types of clients (GF and GB) share the same time/frequency re-
source block. SGF-NOMA improves the connectivity through
GF transmission and fulfils the QoS requirements of GB
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clients via GB communication. However, to secure the QoS
of GB clients, SGF-NOMA schemes suffer from EE and
complexity problems.

In existing work [3–8], the authors have optimized the
transmit power for only GF or GB clients, with the main focus
on successive interference cancellation (SIC) order. Moreover,
they used either the conventional optimization methods or deep
Q-network (DQN) algorithm, which can only handle discrete
actions. According to authors in [3], DQN is not effective
with continuous action spaces because discretization increases
action space exponentially. Furthermore, the discretization of
action space also throws away information that could be
vital in finding a solution to the problem. In other words, it
triggers a quantization error for those tasks with continuous
actions (e.g., power allocation). Therefore, algorithms such
as proximal policy optimization (PPO) are preferable with
continuous action spaces and can be used to solve these
issues. The authors in [4] proposed two SGF methods to
limit the admitted GF clients to the same resource block
(RB) reserved by GB clients. The proposed scheme ensures
the QoS of GB clients while GF clients transmit with fixed
power without considering the channel gain or location of
the clients. Adaptive power allocation for GB clients was
proposed in [5] using a conventional optimization approach
to enhance the outage performance of GF clients without
considering the impact of path loss. The work given in [6]
assumed a homogeneous distribution of clients, and only
the first two GF clients with the largest channel gain were
admitted to ensure the GB clients’ performance. The work
given in [7] used stochastic geometry to analyze the ergodic
rate and outage performance while considering a dynamic
threshold for admitting GF clients. Recently, multi-agent deep
reinforcement learning (MA-DRL) based SGF-NOMA was
proposed in [8], where only the transmit power of GF clients is
optimized and GB clients transmit with a fixed power. The SIC
process used in the above-mentioned schemes has a significant
impact on the performance of GB/GF clients in terms of EE.
Because GB and GF clients share the same RB at the same
time, this adds to the complexity and energy consumption
of these clients. In addition, direct access (to the BS) is
the focus of existing work due to its simplicity. However,
path loss increases with increasing distance, resulting in low
energy efficiency and reduced rates. To overcome the effect
of distance-dependent path loss, in the existing work, the
source node needs to transmit at higher power [9]. However,
IoT users have small processing and limited transmit power
capability, which makes it impractical to communicate over a



2

long distance.
Therefore, the this paper aims to take advantage of GB

clients as a gateway node to improve the EE of delay-tolerant
GF clients and improve the EE of GB clients via the PPO
algorithm. The main contributions are as follows:
• We propose a new optimization framework where the GF

client transmits its signal to the serving GB client, which
is known as a gateway node, via the NOMA protocol.
Furthermore, we formulate the EE of both the GF and
GB clients as an optimization problem.

• To jointly optimize the transmit power of GB and GF
clients, we propose a semi-centralized framework that
avoids the disadvantages of fully centralized and fully
distributed RL algorithms. In particular, we use the PPO
algorithm on the BS side (centralized part) to determine
the optimal power levels for GB clients. However, consid-
ering the computational limitations of GF clients; a multi-
agent deep Q-network (MA-DQN) algorithm (distributed
part) is utilized on the GF client side.

• The experimental results show that our proposed scheme
outperforms the random and fixed power allocation meth-
ods and the conventional GF transmission without a
gateway node in terms of EE. Moreover, we show that
the number of GB clients has a strong correlation with
the EE of both types of clients.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a NOMA IoT network with a single BS located
at the center of a circle with a radius R. Two types of clients,
namely GB1 (represented by X={1, 2, . . . , NX}) and GF2

(listed as F={1, 2, . . . , NF }) transmit their data in an uplink
manner, which is given in Fig. 1(a). The GF clients send
their data to the GB client acting as a cluster head (CH)
[10] to reduce the impact of the path loss with the distance
d, here given by d−α on the energy constrained GF clients.
The GB clients transmit their data to BS via W sub-channels.
The locations of the GB and GF clients are modeled as two
homogeneous Poisson point processes with densities λGB and
λGF . Hence, the number of GB and GF clients follows a
Poisson distribution [8].
A. Signal Model

The GB and GF clients transmit their data in a slotted
manner. More specifically, the CH j ∈ X receives the
combined signal from the NF GF clients in time slot t, which
can be expressed as follows:

yj(t) =

W∑
w=1

NF∑
i=1

√
Pw,i(t)hw,i(t)sw,i(t) + n0, (1)

where sw,i, hw,i, and Pw,i denote the transmitted signal,
channel gain, and transmit power of i-th GF client on sub-
channel w, respectively. Here, n0 represents the additive
Gaussian noise with variance (0, σ2). The channel decoding
order is, Pw,ihw,i(t) ≥ · · · ≥ Pw,NF

hw,NF
(t). The signal-to-

interference-plus-noise ratio (SINR) for GF client i ∈ F can
be given as follows:

1We assume that GB clients are delay sensitive and have enough processing
capability to act as cluster head.

2The GF clients are delay tolerant, e.g, a sensor for temperature monitoring.

γw,i(t)=
Pw,i(t)|hw,i|2(t)∑NF

i=i+1 Pw,i+1(t)|hw,i+1|2(t)+σ2
. (2)

The data rate of each GF client is calculated as follows:

Rw,i(t) = B log
(
1 + γw,i(t)

)
≥ εF , (3)

where B is the bandwidth of sub-channel w and εF is the
target data rate threshold for F clients.

The EE of the GF clients can be calculated as follows:

EEF (t)
∆
=

∑W
w=1

∑NF

i=1 Rw,i(t)

ς(t) + ϑF (t)
, (4)

where ς(t) =
∑W

w=1

∑NF

i=1
pw,i(t) and ϑF (t) is the circuit

power consumed by F clients similar to [11].
In the next time slot (t+1), the BS receives the combined

signal from the CHs and other GB clients as follows:

yBS(t+1)=

W∑
w=1

NX∑
j=1

√
Pw,j(t+1)gw,j(t+1)sw,j(t+1)+n0,

where sw,j , gw,j , and Pw,j represent the transmitted signal,
channel gain, and transmit power of j-th GB client, respec-
tively. We consider channel gain based decoding order at the
BS; that is, the BS decode the GB client with strong channel
gain in the first stage of SIC G = {g1 ≥ g2 ≥ · · · ≥ gNX

}.
Similarly, the SINR for GB clients can be shown as follows:

γw,j(t+1)=
Pw,j(t+1)|gj,w|2(t+1)∑NX

j=j+1 Pw,j+1(t+1)|gw,j+1|2(t+1) + σ2
. (5)

The data rate of each GB client is calculated as follows:
Rw,j(t+1) = B log

(
1 + γw,j(t+1)

)
≥ εX , (6)

where εX is the target data rate threshold for X clients.
The EE of GB clients in time slot (t+1), we have

EEX (t+1)
∆
=

∑W
w=1

∑NX

j=1 Rw,j(t+1)

ϱ(t+1) + ϑX (t+1)
, (7)

where ϱ =
∑W

w=1

∑NX

j=1pw,j and ϑX is the circuit power
consumed by X clients. Based on equations (4) and (7), the
EE of the system can be given as follows:

EE=EEF (t) + EEX (t+1). (8)

B. Cluster Head and Sub-channel Selection (GF clients)
In time slot t, each GF client is allowed to select at

most one sub-channel and one GB client as a CH. The
following variables are used for CH and sub-channel selection,
respectively:

ci(t) =

{
1, if i-th GF client selects j-th client as CH
0, otherwise,

bw,i(t) =

{
1, if i-th GF client selects sub-channel w
0, otherwise.

C. Sub-channel selection for GB clients

We use the following binary variable for GB clients to select
sub-channel as follows:

mw,j(t+1) =

{
1, if j-th client selects sub-channel w
0, otherwise.
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Fig. 1: Sub-figure (a) shows the system model. Sub-figure (b) represents the flow chart
of the proposed algorithm.

D. Problem Formulation

Our aim is to maximize the EE by optimizing m, b, c, and
P . Therefore, the optimization problem can be formulated as,

maximize
m,b,c,P

T∑
t=1

W∑
w=1

NX∑
j=1

NF∑
i=1

EE (9)

s.t. Pw,i(t), Pw,j(t+1) ≤ Pmax, ∀w, i, j, t, (9a)
NX∑
j=1

ci(t) ∈ {1, 0}, ∀i, t, (9b)

W∑
w=1

bw,i(t) ∈ {1, 0}, ∀i, t, (9c)

W∑
w=1

mw,j(t+1) ∈ {1, 0}, ∀j, t, (9d)

W∑
w=1

Rw,j(t+1) ≥ εX , ∀j, t, (9e)

W∑
w=1

Rw,i(t) ≥ εF , ∀i, t, (9f)

where (9a) is the maximum transmit power limit of clients.
Constraint (9b) shows that GF clients can select only one
cluster head at time slot t. Constraints (9c) and (9d) show
that GF and GB clients are allowed to select at most one
sub-channel in a given time slot t. Constraints (9e) and (9f)
represent the minimum required data rate of GB and GF clients
to ensure successful SIC, respectively.

III. SEMI-CENTRALIZED ML FRAMEWORK FOR EE

Machine learning (ML) algorithms for resource manage-
ment are based on a centralized or distributed framework. In
particular, in a centralized framework, a central entity (e.g.,
BS) is responsible for resource allocation, whereas, in the
decentralized framework, resource allocation is handled by
multiple agents (e.g., IoT clients). The downside of the former
is increased computational complexity (CC) arising from the
overwhelming demand, and the downside of the former is
the lengthy learning/training time required to converge to
optimality as a result of non-stationarity. To alleviate these
challenges, we have designed a semi-centralized framework
that minimizes the CC and reduces the learning time. The
work flow of the proposed algorithm is given in Fig.1(b). Next,
we formulate the EE problem as a Markov decision process
(MDP) problem with the semi-centralized framework.

Remark 1. This model can be used for orthogonal multiple
access-NOMA (OMA-NOMA) scenarios for some applications,
for example, the GB clients (enhanced Mobile Broadband
(eMBB) client) can transmit using OMA, whereas GF clients
can transmit using NOMA (mMTC client).
A. MDP Elements with a Semi-Centralized Framework

An MDP consists of a tuple of
(
N ,S,A, and R(.)

)
, where

N is the number of agent(s) (BS, GF clients), S is the set
of states, actions are denoted by A, and R(.) is the reward
function. To start the learning process, RL agents interact with
the environment to maximize the long-term reward following
some policy π.
• Agent(s): The BS︸ ︷︷ ︸

Centralized Part

and GF clients︸ ︷︷ ︸
Decentralized part

• State: Channel gain (GB)︸ ︷︷ ︸
Centralized part

and data rate (GF)︸ ︷︷ ︸
Decentralized part

• Action (BS): Transmit power︸ ︷︷ ︸
Centralized part

• Action (GF client): Sub-channel, transmit power, and CH︸ ︷︷ ︸
Decentralized part

• Reward: The BS as an agent receives the EE of the GB
clients as a reward, whereas, the i-th GF client receives
the EE of the GF clients as a reward signal, as given
below.

ri(t)=

{
EEF (t), if EEF (t)≥EEF (t−1)

0, otherwise,
(10)

rBS(t+1)=

{
EEX (t+1), if EEX (t+1)≥EEX (t)

0, otherwise.
(11)

Remark 2. The PPO uses two deep neural networks (DNN)
and handles a continuous action space, which increases
the complexity; therefore, the PPO is used on the BS side.
In contrast, the IoT clients are resource and computation
constrained and can handle discrete actions; hence, such
algorithms cannot be applied to IoT clients.

Algorithm 1 Semi-Centralized Framework for EE NOMA Systems
1: Initialize hyperparameter ▷ MA-DQN
2: for Episode = 1: Ne do
3: for iteration at time step (t) = 1: Te do
4: for agent = 1: I do
5: Input si(t), take ai(t), receive ri(t) using (10) and si(t+1)
6: Store si(t), ai(t), ri(t), si(t+1) to replay memory
7: end for
8: end for
9: Sample mini-batches from memory and minimize the loss using (13)

10: end for
11: Initialize policy parameters ▷ PPO
12: for Episode = 1: Ne do
13: for actor = 1, 2, . . . , N do
14: Run policy πθold

for Te time steps
15: Calculate advantage estimates Â1, . . . , ÂT

16: end for
17: Optimize L (14) w.r.t θ with Ne and mini-batch size M ≤ Te θold ← θ

18: end for

For the decentralized part (GF clients act as agents), we
define a Q-function as the expected cumulative discounted
reward to find the optimal policy π∗, which can be given as
follows:

Qπ
i (si, ai) = Eπ[Re(t)

∣∣si(t) = s, ai(t) = a], (12)
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where Re is the discounted reward Re=
∑Ne

n=0 β
nr(t+n+1).

The conventional Q-learning algorithm maintains a Q-table
for each agent to store the corresponding Q-values of the Q-
function, which is computationally expensive because of large
state and action spaces. Therefore, DQN with weights θ is
used for the Q-function approximation Qπ

i (si, ai; θ). The DQN
consists of a primary network used to evaluate the primary Q-
value and a target network for target Q-value estimation. The
weights of the primary network are updated in every learning
step, while the weights of the target network are updated
after a fixed number of training iterations. To train the Q-
network, stochastic gradient descent (SGD) is used to update
the weights and minimize the loss between the primary and
target Q-network.

L(θ) = (yi(t)−Qi(t)(si(t), ai(t)))
2, (13)

where yi(t) = ri(t) + maxai
Q(si(t+ 1), ai; θ).

For the centralized part (agent BS), we apply the PPO
algorithm to find the optimal transmit power for GB clients.
The PPO is a policy gradient method that utilizes the actor-
critic method and can be used in environments with continuous
action space. In the stochastic policy, the actor maps an
observation to an action, and the critic calculates the reward for
the given observation. A stochastic gradient ascent optimizer
is used to update the policy, and an SGD technique is used to
fit the value function. The loss function can be calculated as
follows:

L(θ) =

Ê(t)[min
(
r(t)(θ)Â(t), clip

(
r(t)(θ)1−ϵ, 1+ϵ

)
Â(t)

)
],

(14)

where Ê(t) represents the empirical expectation over time
steps and θ represents the policy parameter. The Â(t) is the
estimated advantage at time step (t), r(t) denotes the ratio of
the probability under the new and old policies. This equation
has two parts; first it minimizes the loss of conservative policy
iteration (min(r(t)(θ)Â(t)), and in the second part, we have
(clip(r(t)(θ)1−ϵ, 1+ϵ)Â(t)), where we clip the policy ratio
between 1+ϵ and 1−ϵ.

B. Proposed Semi-Centralized Algorithm

To maximize the EE of GF clients, each GF client and BS
acts as an agent to find the optimal policy. The details of the
algorithm are given in Algorithm-1. In the distributed part, we
initialize the network and training parameters before the start
of agents training. All agents (GF clients) jointly explore the
environment using a ϵ-greedy policy. The agents receive states
from the environment, and they take a joint action. Based on
the action taken, agents obtain a reward and next state from
the environment. All agents save experiences to their replay
memories (line 6). To train the primary network, all the agents
randomly sample mini-batches from the memory and compute
the loss (line 9). For the centralized part (line 11), first, we
initialize the policy parameters. We run the policy πθold for
Te time steps to calculate the advantage estimates. Finally, we
calculate the loss with respect to θ using a mini-batch of size
M and update θold with θ (line 17).

C. Complexity

The complexity results from a number of GB NX and GF
NF clients connecting to BS via sub-channel W . The total
number of all clients (GB and GF) is denoted as N̂ . At
each time step t, the CC of the proposed algorithm is given
by, O

[
Ne × Te

(
(NW

X ) + NF

)]
. In contrast, the CC of the

centralized framework can be given by, O
[
Ne × Te(N̂W )

]
.

For example, if we have five GB clients and five GF clients
in a centralized framework, the complexity is increased expo-
nentially. On the other hand, in our proposed algorithm, the
complexity is distributed among the BS and GF clients.

IV. SIMULATION RESULTS

In this section, we evaluate the performance of both the GB
and GF clients. The parameters given in Table I are used to
obtain the simulation results.

TABLE I: Simulation Parameters
GB clients (3− 15) GF clients (3− 15)
Power levels [0.1, ..., 0.9] W [12] Sub-channels 3 [12]
Sub-channel bandwidth 10 KHz [12] α 2.8
Min rate (GB clients) 10 bps/Hz [12] Episodes 300
Min rate (GF clients) 4 bps/Hz Learning rate 0.001 [12]
DNN activation ReLU Optimizer Adam

0 50 100 150 200 250 300
0

5

10
106

PPO (Single agent)

0 50 100 150 200 250 300
No. of Episodes

1

1.5

2

2.5

3R
ew

ar
d

107

Multi-Agent DQN

Convergence point

Convergence point

Fig. 2: Shows the convergence of the PPO and MA-DQN.

Fig. 2 shows the convergence of the PPO algorithm at the
BS side to allocate the power to GB clients and the MA-DQN
algorithm for the GF clients to find the optimal power level.
The centralized agent, i.e., the BS, finds the optimal power
level for each GB client after 100 episodes, as seen in the top
sub-figure of Fig. 2. Compared with the decentralized MA-
DQN, the PPO converges quickly. However, for a large number
of GB clients, the PPO may require more training time because
of the continuous action space. The bottom sub-figure shows
the convergence of MA-DQN. There is a fluctuation in the
reward because the actions of one agent affect other agents in
the environment. Therefore, MA-DQN requires more episodes
for convergence.
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Fig. 3 provides a comparison of the EE of GB clients and
GF clients with other methods. The top sub-figure shows the
EE of GB clients, and it can be observed that the proposed
scheme outperforms the fixed power allocation and random
power allocation methods. Because the BS identifies the
accurate power levels according to the client channel gain,
maintaining the QoS requirements of those GB clients with
a minimum power consumption. In contrast, in the other
two methods, clients transmit power without considering the
channel gain, which increases intra-cluster interference, hence
recording a low EE. The EE of GF clients is depicted in
the bottom sub-figure of Fig. 3. For comparison, we use the
conventional GF method as a benchmark, where the clients
directly transmit their data to the central BS. It is observed
that our proposed scheme performs well when compared with
the benchmark scheme, fixed power selection,and random
power selection methods. Unlike the benchmark scheme, the
GF clients in our proposed scheme transmit their data to
the nearest cluster head, which requires a minimum transmit
power and enhances the EE.

Fig. 4 shows the trade-off between the number of GB clients
and EE of both types of clients. It can be observed that the
EE of GF clients increases with the number of GB clients.
Because the GF clients have an increased choice in cluster
head selection, they transmit to their nearest cluster head.
On the other hand, as the number of GB clients increases,
it decreases the EE of GB clients because this increases the
number of clients in each cluster, which increases the intra-
cluster interference. To achieve the required data rate threshold
with increased interference, GB clients are required to transmit
with high transmit powers.

Fig. 4: The EE of GF and GB clients w.r.t increasing GB clients.

Fig. 5 compared the proposed method with the centralized
and distributed framework in terms of EE and CC. Fig. 5
(a) represents the total network EE w.r.t a different number
of episodes. It is concluded that the fully centralized method
provides the highest EE. However, as the number of episodes
increases the EE of the proposed method approaches the EE of
centralized method. Because distributed methods need a long
learning time to fully explore the environment. From Fig. 5 (b),
it can be seen that the complexity of the centralized model is
increasing exponentially as the number of clients increases. In
our proposed framework, the complexity is distributed between
the BS and GF clients. In a fully distributed model, all the
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Fig. 5: Performance Comparison: Sub-figure (a) Network EE. Sub-figure (b) CC.

clients are independently searching for resources without any
centralized entity (BS), which reduces the CC. However, a
fully distributed framework requires a long learning time to
reach the Nash Equilibrium. On the other hand, the centralized
method can easily find the optimal resources for users but at
the cost of a high CC.

V. CONCLUSION

In this letter, we have proposed a low-complexity semi-
centralized framework for NOMA networks to avoid the disad-
vantages of fully centralized and fully distributed systems. The
proposed scheme improves the EE of GB and GF clients and
outperforms the fixed and random power allocation methods.
The EE of GF clients surpasses the EE of the conventional
GF scheme where no group head exists.

REFERENCES

[1] W. Ahsan, W. Yi, Z. Qin, Y. Liu, and A. Nallanathan, “Resource
allocation in uplink NOMA-IoT networks: A reinforcement-learning
approach,” IEEE Trans. Wireless Commun., vol. 20, no. 8, pp. 5083–
5098, 2021.

[2] Z. Ding, “Harvesting devices’ heterogeneous energy profiles and QoS
requirements in IoT: WPT-NOMA vs BAC-NOMA,” IEEE Trans. Com-
mun., vol. 69, no. 5, pp. 2837–2850, 2021.

[3] Y. Zhang, X. Wang, and Y. Xu, “Energy-efficient resource allocation in
uplink NOMA systems with deep reinforcement learning,” in Proc. 11th
Int. Conf. Wireless Commun. Signal Process. (WCSP), Oct. 2019.

[4] Z. Ding, R. Schober, P. Fan, and H. V. Poor, “Simple semi-grant-
free transmission strategies assisted by non-orthogonal multiple access,”
IEEE Trans. Commun., vol. 67, no. 6, pp. 4464–4478, 2019.

[5] Z. Yang, P. Xu, J. A. Hussein, Y. Wu, Z. Ding, and P. Fan, “Adaptive
power allocation for uplink non-orthogonal multiple access with semi-
grant-free transmission,” IEEE Wireless Commun. Lett., vol. 9, no. 10,
pp. 1725–1729, 2020.

[6] N. Jayanth, P. Chakraborty, M. Gupta, and S. Prakriya, “Performance
of semi-grant free uplink with non-orthogonal multiple access,” in IEEE
31st Annual Int. Symp. Personal, Indoor and Mobile Radio Commun.,
2020, pp. 1–6.

[7] C. Zhang, Y. Liu, W. Yi, Z. Qin, and Z. Ding, “Semi-grant-free NOMA:
Ergodic rates analysis with random deployed users,” IEEE Wireless
Commun. Lett., vol. 10, no. 4, pp. 692–695, 2020.

[8] M. Fayaz, W. Yi, Y. Liu, and A. Nallanathan, “Competitive MA-DRL for
transmit power pool design in semi-grant-free NOMA systems,” arXiv
preprint arXiv:2106.11190, 2021.

[9] A. Mondal, A. M. A. Junaedi, K. Singh, and S. Biswas, “Spectrum
and energy-efficiency maximization in RIS-aided IoT networks,” IEEE
Access, vol. 10, pp. 103 538–103 551, 2022.

[10] S. Han, X. Xu, L. Zhao, and X. Tao, “Joint time and power allocation
for uplink cooperative non-orthogonal multiple access based massive
machine-type communication network,” Int. J. of Dist. Sensor Net.,
vol. 14, no. 5, 2018.

[11] F. Fang, Z. Ding, W. Liang, and H. Zhang, “Optimal energy efficient
power allocation with user fairness for uplink MC-NOMA systems,”
IEEE Wireless Commun. Lett., vol. 8, no. 4, pp. 1133–1136, 2019.

[12] M. Fayaz, W. Yi, Y. Liu, and A. Nallanathan, “Transmit power pool
design for grant-free NOMA-IoT networks via deep reinforcement
learning,” IEEE Trans. Wireless Commun., vol. 20, no. 11, pp. 7626–
7641, 2021.


