Targeted Meeting Understanding at CSLI

Matthew Purver
Patrick Ehlen
John Niekrasz
John Dowding
Surabhi Gupta
Stanley Peters
Dan Jurafsky
The CALO Meeting Assistant

• Observe human-human meetings
 – Audio recording & speech recognition
 – Video recording & gesture/face recognition
 – Written and typed notes
 – Paper & whiteboard sketches

• Produce a useful record of the interaction …
A Hard Problem
A Hard Problem

- Human-human speech is hard
 - Informal, ungrammatical conversation
 - Overlapping, fragmented speech
 - High speech recognition error rates (20-30% WER)

- Overhearing is hard
 - Don’t necessarily know the vocabulary
 - … the concepts
 - … the context

- No point trying to understand *everything*
 - Target some useful things that we can understand
Speech Recognition Errors

• But remember: the real input is from ASR:

 - do you have the comments cetera and uh the the other is
 - you don't have
 - i do you want
 - oh we of the time align said is that
 - i you
 - well fifty comfortable with the computer
 - mmm
 - oh yeah that's the yeah that
 - sorry like we're set
 - make sure we captive that so this deviates

• Usually better than this, but 20-30% WER
What would be useful?

• Banerjee et al. (2005) survey of 12 academics:
 - Missed meeting - what do you want to know?
 - Topics: which were discussed, what was said?
 - Decisions: what decisions were made?
 - Action items/tasks: was I assigned something?

• Lisowska et al. (2004) survey of 28 people:
 - What would you ask a meeting reporter system?
 - Similar questions about topics, decisions
 - People: who attended, who asked/decided what?
 - Did they talk about me?
Overview

• Topic Identification
 – Shallow understanding
 – Producing topics and segmentation for browsing, IR

• Action Item Identification
 – Targeted understanding
 – Producing to-do lists for user review

• User interface & feedback
 – Presenting information to users
 – Using user interaction to improve over time
Topic Identification
Topic Identification

• Problem(s):
 - (1) Identify the topics discussed (*identification*)
 - (2) Find them/find a given topic (*segmentation/localization*)
 - Effectively summarize meetings
 - Search/browse for topics
 - Relate meetings to each other
• Neither (1) or (2) are new, but:
 - Not usually done simultaneously
 - Not done over speech recognition output
• Joint work with MIT/Berkeley (Tenenbaum/Griffiths)
 - Unsupervised generative modelling, joint inference
Segmentation vs. Identification

- **Segmentation**: dividing the discourse into a series of topically coherent segments
- **Identification**: producing a model of the topics discussed in those segments

- Both useful/required for browsing, summary
- Joint problems: try to solve them jointly
Topic Subjectivity

• Both segmentation & identification depend on your conception of topic …

• Given the job of simultaneously segmenting & identifying, humans don’t agree:
 – Kappa metric ~0.50 (Gruenstein et al., 2005)
 – Given more constraints (e.g. identify agenda items), they agree much better (Banerjee & Rudnicky, 2007)
 – But people often want different things …

• If we can model the underlying topics, we can allow people to search for the ones they’re interested in

• We’d also like to make a “best guess” at unsupervised segmentation, but it’ll never be ideal
 – Adapt a state-of-the-art unsupervised algorithm to discourse
Related Work

- Segmentation for text/monologue (broadcast news, weather reports, etc.)
 - (Beeferman et al., Choi, Hearst, Reynar, …)
- Identification for document clustering
 - (Blei et al., 2003; Griffiths & Steyvers, 2004)
- Joint models for text & monologue (HMMs)
 - (Barzilay & Lee, 2004; Imai et al.; 1997)
- Little precedent with spoken multi/dialogue …
 - Less structured, more “noisy”, interruptions, fragments
 - Less restricted domain
 - Worse speech recognition accuracy
- (Galley et al., 2003) lexical cohesion on ICSI meeting corpus (“LCSeg”)
 - Segmentation only (no topic identification)
 - Manual transcripts only (not ASR output)
What are we trying to do?

• Get amazing segmentation? Not really.
 – Human-human agreement only $0.23 \ P_k$, $0.29 \ W_D$

• 1. Add topic identification:
 – Segmentation on its own may not be that much help
 – User study results focus on topic identification
 – Would like to present topics, summarize, understand relations between segments

• 2. Investigate performance on noisier data:
 – Off-topic discussion; speech recognition (ASR) output
Topic Modelling

- Model topics as probabilistic word vectors
 - Can find most relevant topic for a given time/segment
 - ... or likely times/segments for a given topic
 - ... or both
- Learn the vectors unsupervised
 - Latent Dirichlet Allocation
 - Assume words generated by mixtures of fixed “micro-topics”
 - Basic assumptions about model distributions
 - Random initialization, statistical sampling
 - Joint inference for topics/segments
 - Extend models over time/data
A Generative Model for Topics

• A discourse as a linear sequence of utterances
 – Utterances as linear sequences of word tokens
• Words as generated by “topics”
• Discourse segments have fixed “topics”
 – Assume utterances have fixed “topics”
 – Assume segments only shift at utterance starts
A Bit More Detail

- **Topics**: probability distributions over word types
 - A fixed set of these “micro-topics”

- **Segments**: fixed weighted mixtures of micro-topics
 - An infinite possible set of these “macro-topics”
 - A “topic shift” or “segment boundary” means moving to a new weighted mixture

- We will try to jointly infer micro-topics, macro-topics and segment boundaries …

- **Extension of Latent Dirichlet Allocation (Blei et al., 2003)**
 - General model for inferring structure from data
 - Used for document clustering, hand movements etc.
• T per micro-topic
• U per utterance
• N_u per word

• θ macro-topic mixture
• $z_{u,i}$ micro-topic assignment
• ϕ micro-topic
• $w_{u,i}$ observed word
• c_u segment switch
Segmentation accuracy

- Segmentation compares well with previous work:
 - $P_k = 0.33$ (vs. 0.32 for LCSeg) on ICSI meeting corpus
- Improves if number of topics is known (from agenda)
 - $P_k = 0.29$ (vs. 0.26 for LCSeg)
- Robust in the face of ASR inaccuracy
 - $P_k = 0.27$ to 0.29 (vs. 0.29 to 0.38 for LCSeg)
- Robust to data variability
 - Tested on 10-meeting CMU corpus (Banerjee & Rudnicky)
 - $P_k = 0.26$ to 0.28, robust to ASR output
- But importantly, we are identifying topics too:
 - Word lists fit with known ICSI discussion topics
 - Lists rated as coherent by human judges
ICSI Topic Identification

<table>
<thead>
<tr>
<th>Word</th>
<th>Topic</th>
<th>Topic</th>
<th>Topic</th>
<th>Topic</th>
<th>Topic</th>
<th>Topic</th>
<th>Topic</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>technology</td>
<td>models</td>
<td>speakers</td>
<td>wouldn't</td>
<td>v_a_d</td>
<td>mikes</td>
<td>enter</td>
<td>disk</td>
<td></td>
</tr>
<tr>
<td>u_m_t_s routing transmission</td>
<td>reverberation voicing</td>
<td>overlaps alignment</td>
<td>you'd agree matter</td>
<td>worse</td>
<td>microphones record</td>
<td>construction</td>
<td>beep</td>
<td></td>
</tr>
<tr>
<td>i_p mobile packet university concerning networking</td>
<td>multi-band targets phonemes effects</td>
<td>region breath laugh native</td>
<td>depend opens others</td>
<td>t_i-digits baseline</td>
<td>collection subjects</td>
<td>constructions</td>
<td>beeps</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>backchannels laughing marks</td>
<td>feeling term opposed</td>
<td>percent italian improvement</td>
<td>wizard notes</td>
<td>belief-net object</td>
<td>gig</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>adaptation latency</td>
<td>ontology</td>
<td>display disks</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>schema</td>
<td>linux dollars</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>parser</td>
<td>laptop p_c</td>
<td></td>
</tr>
</tbody>
</table>

- Meetings of ICSI research groups
 - Speech recognition, dialogue act tagging, hardware setup, meeting recording
 - General “syntactic” topic
Where to go from here?

- Improvements in topic model robustness
 - Interaction with multiple ASR hypotheses
- Improvements in segmentation quality
 - Interaction with discourse structure
- Relating topics to other sources
 - Relation between meetings and documents/emails
- Learning user preferences
Action Item Identification
Action Item Identification

- Problem(s):
 - (1) Detect action item discussions
 - (2) Extract salient “to-do” properties
 - Task description
 - Responsible party
 - Deadline
- (1) is difficult enough!
 - Never done before on human-human dialogue
 - Never done before on speech recognition output
- New approach: use (2) to help (1)
 - Discussion of action items has characteristic patterns
 - Partly due to (semi-independent) discussion of each salient property
 - Partly due to nature of decisions as group actions
 - Improve accuracy while getting useful information
Action Item Detection in Email

• Corston-Oliver et al., 2004
 – Marked a corpus of email with “dialogue acts”
 – Task act: “items appropriate to add to an ongoing to-do list”

• Bennett & Carbonell, 2005
 – Explicitly detecting “action items”

• Good inter-annotator agreement ($\kappa > 0.8$)

• Per-sentence classification using SVMs
 – lexical features e.g. n-grams; punctuation; syntactic parse features; named entities; email-specific features (e.g. headers)
 – f-scores around 0.6 for sentences
 – f-scores around 0.8 for messages
Can we apply this to dialogue?

- 65 meetings annotated from:
 - ICSI Meeting Corpus (Janin et al., 2003)
 - ISL Meeting Corpus (Burger et al., 2002)
 - Reported at SIGdial (Gruenstein et al., 2005)
- Two human annotators
- “Mark utterances relating to action items”
 - create groups of utterances for each AI
 - made no distinction between utterance type/role
 - Annotators identified 921 / 1267 (respectively) action item-related utterances
- Try binary classification
 - Different classifier types (SVMs, maxent)
 - Different features available (no email features; prosody, time)
Problems with Flat Annotation

• Human agreement poor ($\kappa < 0.4$)
• Classification accuracy poor (Morgan et al., SIGdial 2006)
 - Try a restricted set of the data where the agreement was best
 - F-scores 0.32
 - Interesting findings on useful features: lexical, prosodic, fine-grained dialogue acts
• Try a small set of easy data?
 - Sequence of 5 (related) CALO meetings
 - Simulated with given scenarios, very little interruption, repair, disagreement
 - Improved f-scores (0.30 - 0.38), but still poor
• This was all on gold-standard manual transcripts
 - ASR inaccuracy will make all this worse, of course
What’s going on?

- Discussion tends to be split/shared across utterances & people
 - Contrast to email, where sentences are complete, tasks described in single sentences
- Difficult for humans to decide which utterances are “relevant”
 - Kappa metric 0.36 on ICSI corpus (Gruenstein et al., 2005)
 - Doesn’t make for very consistent training/test data
- Utterances form a very heterogeneous set
- Automatic classification performance is correspondingly poor
Should we be surprised?

- DAMSL schema has dialogue acts **Commit**, **Action-directive**
 - annotator agreement poor ($\kappa \sim 0.15$)
 - (Core & Allen, 1997)
- ICSI MRDA dialogue act **commit**
 - Automatic taggingarruracy poor
 - Most DA tagging work concentrates on 5 broad DA classes
- Perhaps “action items” comprise a more heterogeneous set of utterances
A Dialogue Example

SAQ: not really. **the there was the uh notion of the preliminary patent, that uh**
FDH: yeah, it is a cheap patent.
SAQ: yeah.
CYA: okay.
SAQ: **which is**
FDH: so, it is only seventy five dollars.
SAQ: and it is it is e an e
CYA: hm, that is good.
HHI: talk to
SAQ: yeah and and it is really broad, you don’t really have to define it as w as much as in in a you know, a uh
FDH: yeah.
HHI: I actually think we should apply for that right away.
CYA: yeah, I think that is a good idea.
HHI: I think you should, I mean, like, this week, s start moving in that direction. just ’cause that is actually good to say, when you present your product to the it gives you some instant credibility.
SAQ: [Noise]
SAQ: mhm.
CYA: right.
Rethinking Action Item Acts

• Maybe action items are not aptly described as singular “dialogue acts”
• Rather: multiple people making multiple contributions of several types
• Action item-related utterances represent a form of group action, or *social action*
• That social action has several components, giving rise to a heterogeneous set of utterances
• What are those components?
Action Item
Dialogue Moves

• Four types of dialogue moves:
Four types of dialogue moves:

- Description of task

Somebody needs to fill out this report!
Action Item
Dialogue Moves

- Four types of dialogue moves:
 - Description of task
 - Owner

Somebody needs to fill out this report!

I guess I could do that.
Action Item
Dialogue Moves

• Four types of dialogue moves:
 - Description of task
 - Owner
 - Timeframe

Can you do it by tomorrow?
Action Item
Dialogue Moves

- Four types of dialogue moves:
 - Description of task
 - Owner
 - Timeframe
 - Agreement
Action Item
Dialogue Moves

- Four types of dialogue moves:
 - Description of task
 - Owner
 - Timeframe
 - Agreement

Excellent!
Sure.
Sounds good to me!
Sweet!
not really. the there was the uh notion of the preliminary patent, that uh
yeah, it is a cheap patent.
yeah.
okay.
which is
so, it is only seventy five dollars.
and it is it is e an e
hm, that is good.
talk to
yeah and and it is really broad, you don’t really have to define it as w as much as in in a you
know, a uh
yeah.
I actually think we should apply for that right away.

I think you should, I mean, like, this week, s start moving in that direction. just ’cause that is actually good to say, when you present your product to the it gives you some instant credibility.
[Noise]
mhm.
right.
Define task
Define timeframe
Assign owner
Agree
Exploiting discourse structure

• Action item utterances can play different roles
 – Proposing, discussing the action item properties
 · (semantically distinct properties: task, timeframe)
 – Assigning ownership, agreeing/committing
• These subclasses may be more homogeneous & distinct than looking for just “action item” utts.
 – Could improve classification performance
• The subclasses may be more-or-less independent
 – Combining information could improve overall accuracy
• Different roles associated with different properties
 – Could help us extract summaries of action items
New annotation schema

- Annotate utterances according to their role in the action item discourse
 - can play more than one role simultaneously
- Improved inter-annotator agreement
 - Timeframe: $\kappa = 0.86$
 - Owner 0.77, agreement & description 0.73
- Between-class distinction (cosine distances)
 - Agreement vs. any other is good: 0.05 to 0.12
 - Timeframe vs. description is OK: 0.25
 - Owner/timeframe/description: 0.36 to 0.47
Structured Classifier

- Individual “dialogue act” classifiers
 - Support vector machines
 - Lexical (n-gram) features
 - Investigating prosody, dialogue act tags, syntactic & semantic parse features

- Sub-dialogue “super-classifier”
 - Features are the sub-classifier outputs over a window of N utterances
 - Classes & confidence scores
 - Currently SVM, N=10 (but under investigation)

- Performance for each “act” type compares to previous overall performance
 - ICSI data: f-scores 0.1-0.3
 - CALO data: f-scores 0.3-0.5
 - (with a basic set of features)
Subdialogue Detection Results

• Evaluation at the utterance level isn’t quite what we want
 – Are agreement utterances important? Ownership?
 – Look at overall discussion f-scores, requiring overlap by 50%
• 20 ICSI meetings, 10% cross-validation
 – Recall 0.64, precision 0.44, f-score 0.52
 – With simple unigram features only
 – Predict significant improvement …
• CALO project unseen test data f-scores 0 – 0.6
 – ASR output rather than manual transcripts
 – Little related training data, though …
Does it really help?

- Don’t have much overlapping data
 - Structured annotation is slow, costly
 - Set of utterances isn’t necessarily the same
 - Hard to compare directly with (Morgan et al.) results
- Can compare directly with a flat binary classifier
 - Set of ICSI meetings, simple unigram features
- Subdialogue level:
 - Structured approach f-score 0.52 vs. flat approach 0.16
- Utterance level:
 - Flat approach f-scores 0.05-0.20
 - Structured approach f-scores 0.12-0.31
 - (Morgan et al. f-scores 0.14 with these features)
- Can also look at sub-classifier correction: f-score improvements ~0.05
Extracting Summaries

• Structured classifier gives us the relevant utterances
 - Hypothesizes which utterances contain which information
• Extract the useful entities/phrases for descriptive text
 - Task description: event-containing fragments
 - Timeframe: temporal NP fragments
• Semantic fragment parsing (*Gemini* – joint work with John Dowding (UCSC))
 - Small grammar, large vocabulary built from *Net*
 - Extract many potential phrases of particular semantic types
 - Use word confusion networks to allow n-best word hyps
• Experimenting with regression models for selection
 - Useful features seem to be acoustic probability and semantic class
Extracting Ownership

• Sometimes people use names, but only < 5% of cases
• Much more common to volunteer yourself (“I’ll do X …”) or suggest someone else (“Maybe you could …”)
• Self-assignments: speaker
 – Individual microphones, login names (otherwise, it’s a speaker ID problem)
• Other-assignments: addressee
 – Addressee ID is hard, but approachable (Katzenmaier et al., 2004; Jovanovic et al., 2006 about 80% accuracy)
 – Also investigating a discourse-only approach
• Need to distinguishing between the two, though
 – Presence of “I” vs. “you” gets us a lot of the way
 – Need to know when “you” refers to the addressee
Addressee-referring “you”

- An interesting sub-problem of ownership detection
- Some “you”s refer to the addressee
 - “Could you maybe send me an email”
- Some are generic
 - “When you send an email they ignore it”
- Investigation in two- and multi-party dialogue
 - Only about 50% of “you” uses are addressee-referring
 - Can detect them with about 85% f-score using lexical & contextual features
 - Some dialogue acts are very useful (question vs. statement)
 - Some classes of verb are very useful (communication)
 - ACL poster (Gupta et al., 2007)
Some Good Examples

maybe you want to check out the filesystem first for yourself
John_Marlow
you want to do that over the weekend

so I'll work with John and we'll get that solved um hopefully Monday morning
Mark_Lewis
so I'll work with John and we'll get that solved um hopefully Monday morning

on Friday Friday is the summary day that's one we're going to put together a report with recommendations
John_Pedersen
on Friday Friday is the summary day that's one we're going to put together a report with recommendations

for the depends I need to get out and materials ten paper materials
Mark_Lewis
and I will do that Monday by by twelve o'clock

× ignore this one

× ignore this one
A Great Example

not an action item

create a uh uh from teal wrapper

Jim_Carpenter

and then for the week three I'm going to um

ignore this one

primtl wrapper

Jim_Carpenter

(double-click to add timeframe)
Some Bad Examples

not an action item

i don't think an action for myself um to talk to donald about

ignore this one

not an action item

there should have been a lot of e mail in that database as well

ignore this one

Where to go from here?

- Further semantic property extraction
- Tracking action items between meetings
 - Modification vs. proposal
- Extension to other characteristic discourse “patterns”
 - (including general decision-making)
- Learning for improved accuracy
- Learning user preferences
Feedback & Learning
Two Challenges:

• A machine learning challenge:
 – Supervised approach, with costly annotation
 – Want classifiers to improve over time
 – How can we generate training data cheaply?

• A user interface challenge:
 – How do we present users with data of dubious accuracy?
 – How do we make it useful to them?

• Users should see our meeting data results while doing something that’s valuable to them

• And, from those user actions, give us feedback we can use as *implicit supervision*
Feedback Interface Solution

- Need a system to obtain feedback from users that is:
 - light-weight and usable
 - valuable to users (so they will use it!)
 - can obtain different types of feedback in a non-intrusive, almost invisible way

- Developed a meeting browser
 - based on SmartNotes, a shared note-taking tool already integral to the CALO MA system (Banerjee & CMU team)

- While many “meeting browser” tools are developed for research, ours:
 - has end user in mind
 - is designed to gather feedback to retrain our models
 - two types of feedback: top-level and property-level
Meeting Browser

Action Items:

- "we're going to need somebody to make the travel arrangements right. I mean the most or uh driving down there were"
 - Laura Roslin
 - at least one week before the demo
- "I would need three slides from you as well on meeting assistant"
 - Claus Bøttger
 - on uh third week
- "and see what happens tomorrow"

Drag confirmed action items here.

- "make travel arrangements"
 - Claus Bøttger
 - two weeks

Commit these action items

Shared Notes:

- CALO Says...

 - ACTION ITEM: (CALO at 10:42): we're going to need somebody to make the travel arrangements right. I mean the most or uh driving down there were (Owner: Laura Roslin) (Timeline: at least one week before the demo)

 - Claus Bøttger: at least one week before the demo
 - Gaeus Bøttger: but is a week three
 - Laura Roslin: we're going to need somebody to make the travel arrangements right. I mean the most or uh driving down there were
Action Items

- **John_Marlow**: Maybe you want to check out the filesystem first for yourself. You want to do that over the weekend.

- **Mark_Lewis**: So I'll work with John and we'll get that solved. Um, hopefully Monday morning.

- **John_Pedersen**: On Friday, Friday is the summary day. That's one we're going to put together a report with recommendations.

- **Mark_Lewis**: For the depends, I need to get out and materials ten paper materials. And I will do that Monday by by twelve o'clock.
Action Items

Subclass hypotheses

Top hyp is highlighted

Mouse-over hyps to change them

Click to edit them (confirm, reject, replace, create)
Action Items

Superclass

- **hypothesis**
- **delete** = **neg. feedback**
- **commit** = **pos. feedback**
- **merge, ignore**

Diagrams

1. **John Pedersen**
 - On Friday, Friday is the summary day that's one we're going to put together a report with recommendations.

2. **Mark Lewis**
 - For the depends I need to get out and materials ten paper materials.
 - And I will do that Monday by by twelve o'clock.

Notes

- Ignore this one.
- Not an action item.
Feedback Loop

- Each participant’s implicit feedback for a meeting is stored as an “overlay” to the original meeting data
 - Overlay is reapplied when participant views meeting data again
 - Same implicit feedback also retrains models
 - Creates a personalized representation of meeting for each participant, and personalized classification models
Implicitly Supervised Learning

- Feedback from meeting browser converted to new training data instances
 - Deletion/confirmation = negative/positive instances
 - Addition/editing = new positive instances
 - Applies to overall action items and sub-properties
- Improvement with “ideal” feedback:
What kind of feedback?

- Many different possible kinds of user feedback
- One dimension: time vs. text
 - Information about the time an event (like discussion of an action item) happened
 - Information about the text that describes aspects of the event (task description, owner, and timeframe)
- Another dimension: user vs. system initiative
 - Information provided when the user decides to give it
 - Information provided when the system decides to ask for it
- Which kind of information is more useful?
 - Will depend on dialogue act type, ASR accuracy
- Which kind of information is less annoying?
 - During vs. after meeting, Clippy factor
Experiments

• To evaluate user factors, we need to experiment directly
 - Wizard-of-Oz experiment about to start
• To evaluate theoretical effectiveness, can use idealized data
 - Turn gold-standard human annotations of meeting data into posited “ideal” human feedback
• For text feedback, use annotators’ chosen descriptions
 - Use string/semantic similarity to find candidate utterances
• For time feedback, assume 30-second window
 - Use existing sub-classifiers to predict most likely candidates
• For system initiative, use existing classifiers to elicit corrections
• Determine which dimensions (time, text, initiative) contribute most to improving classifiers
Ideal Feedback Experiment

• Compare inferred annotations directly
 - Well below human agreement: average 0.6 for best interface
 - Some dialogue act classes do better: owner/task > 0.7

• Compare effects on classifier accuracy
 - F-score improvements very close to ideal data

• Results:
 - both time and text dimensions alone improve accuracy over raw classifier
 - using both time and text together performs best
 - textual information is more useful than temporal
 - user initiative provides extra information not gained by system-initiative
Wizard-of-Oz Experiment

• Create different Meeting Assistant interfaces and feedback devices (including our Meeting Rapporteur)

• See how real-world feedback data compares to the ideal feedback described above

• Assess how the tools affect and change behavior during meetings
WOZ Experiment Rationale

• Eventual goal: A system that recognizes and extracts important information from many different types of multi-party interactions, but doesn’t require saving entire transcript
 – Meetings may contain sensitive information
 – People’s behaviors will change when they know a complete record is kept of things they say
 – May often be better to extract certain types of information and discard the rest

• To deploy an actual system, also need to know how people will actually use it
 – Especially for a system that relies on language, people’s speech behavior changes in the presence of different technologies
WOZ Experiment Goals

• Provide a corpus of multi-party, task-oriented speech from speakers using different meeting-assistant technologies (does not currently exist)

• Allow us to analyze how verbal and written conceptions of tasks evolve as they progress in time and across different media (speech, e-mail, IM)

• Assess different ways of obtaining user feedback
WOZ Experiment

• Conduct a “Wizard-of-Oz” experiment designed to test how people interact in groups given different kinds of meeting assistant interfaces
 - private, post-meeting interface (individuals interact with it after the meeting, like our current system)
 - private online interface (individuals interact with it during meeting)
 - shared online interface (group interacts with it during meeting)