Ask Not What Semantics Can Do For Dialogue

Ask What Dialogue Can Do For Semantics

Matthew Purver
(and many others)
SemDial 2014
Meaning from Observation
Meaning from Observation

<table>
<thead>
<tr>
<th>Ronnie B</th>
<th>/fɔːkændəʊʒ/</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ronnie C</td>
<td>🎃 🎃 🎃 🎃</td>
</tr>
<tr>
<td></td>
<td>Four candles</td>
</tr>
<tr>
<td>Ronnie B</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>‘Andles for forks</td>
</tr>
<tr>
<td>@gaskarthlrh</td>
<td>finally got my 5sos follow back</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>@sleepykidlrh</td>
<td>@gaskarthlrh you mean the band?</td>
</tr>
<tr>
<td>@gaskarthlrh</td>
<td>@sleepykidlrh yeahh</td>
</tr>
</tbody>
</table>
Five Seconds Of Summer

© Dan Jones / The Sun
Dialogue: a Semantic Observatory

• We can tell what things mean by seeing how people respond to them
 – (particularly when they’re trying to repair)

• (Perhaps “what things mean” is “how people respond to them”?)

• Studying dialogue help us study semantics
PROBING SEMANTIC THEORIES
NP Semantics

• The simplistic view

 “John” is of type e: \(john' \)
 \[
 \text{VP(NP)} \rightarrow \lambda x. \text{snore}(x)(john') \rightarrow \text{snore}(john')
 \]

• The traditional GQ view

 “John” is of type \((e>t)>t\): \(\lambda P. P(john') \)
 \[
 \text{NP(VP)} \rightarrow \lambda P. P(john')(\lambda x. \text{snore}(x)) \rightarrow \text{snore}(john')
 \]
 “Every man”: \(\lambda P. P(\forall x. \text{man}(x) \land P(x)) \)
 \[
 \text{NP(VP)} \rightarrow \forall x. \text{man}(x) \land \text{snore}(x)
 \]
Clarification Requests

Ann: I saw John yesterday.
Bob: John??
Ann: Yes, John. Dr Smith. The one with the pipe & monocle. Him.

<points>
Men, Englishmen, old Etonians, people who have climbed Everest in striped pyjamas, ...
Smoking, being shortsighted, being upper class, climbing Everest in striped pyjamas, ...
George: You want to tell them, bring the tourist around show them the spot
Sam: The spot?
George: where you spilled your blood

Unknown: What are you making?
Anon 1: Erm, it’s a do- it’s a log.
Unknown: A log?

Anon 1: It had twenty rooms in it.
Anon 2: Twenty rooms?
Anon 1: Yes.
Clarifying NP Semantics

• Sometimes quantifier, sometimes CN property, sometimes referent set …
 – … but always lower-order: never sets of sets/properties directly
 – (Purver & Ginzburg, 2004)
• Even with logical quantifiers:
 Richard: No I’ll commute every day
 Anon 6: Every day?
 Richard: as if, er Saturday and Sunday
 Anon 6: And all holidays?
 Richard: Yeah
• Denotation of NPs as witness sets of type e
 – “John”: \{john’\}
 – “Every man”: \{x / man(x)\}
 – (or pairs of reference & complement sets)
The GQ Strikes Back

• Cooper (2013): the problem’s not with GQs
 – rather, with standard GQ-compatible NPs
 – proposes a friendly amendment

\[q\text{-params} : [w : \text{all(} \text{man} \text{)}] \]
\[content \ : \lambda P. [c=w : \text{all(} \text{man}, P \text{)}] \]

– explains possible CR readings
 • and why some impossible (GQ scope i.e. VP content)
 • (although possibly not all …)

• Can we tell which should be preferred?
 – perhaps not yet, but we’re better off than we were
Dialogue provides constraints on semantics

(so it can help us work out what things mean – or don’t mean)
GETTING MORE EMPIRICAL
Clarifying Lexical Semantics

• NPs aren’t the only thing we clarify …
• … but they’re by far the most common thing.
• Excluding whole sentences etc:
 – NP/Pro/PN/CN: 76%
 – Adj/Adv/Mod: 12%
 – Det: 4% (mostly numbers)
 – VPs: 4%
 – Verbs: 1%
 – Prep/Conj: <0.5%
Clarifying Lexical Semantics

• NPs aren’t the only thing we clarify ...
• ... but they’re by far the most common thing.
• Excluding whole sentences etc:
 – NP/Pro/PN/CN: 76%
 – Adj/Adv/Mod: 12%
 – Det: 4% (mostly numbers)
 – VPs: 4%
 – Verbs: 1%
 – Prep/Conj: <0.5%
Clarifying Lexical Semantics

• NPs aren’t the only thing we clarify …
• … but they’re by far the most common thing.
• Excluding whole sentences etc:
 – NP/Pro/PN/CN: 76%
 – Adj/Adv/Mod: 12%
 – Det: 4% (mostly numbers)
 – VPs: 4%
 – Verbs: 1%
 – Prep/Conj: <0.5%
Clarifying Lexical Semantics

• NPs aren’t the only thing we clarify ...
• ... but they’re by far the most common thing.
• Excluding whole sentences etc:
 – NP/Pro/PN/CN: 76%
 – Adj/Adv/Mod: 12%
 – Det: 4% (mostly numbers)
 – VPs: 4%
 – Verbs: 1%
 – Prep/Conj: <0.5%
Content vs Function Words

• In some cases, this makes sense ...
• Function word clarification very rare
• Function words more familiar:
 – Low type-token ratio (i.e. less rare)
• Function words less contentful:
 – Low variance across genres
 – Low information content (surprisal)
• Perhaps clarification just doesn’t make sense?
 – It would be nice if we could test this ...
Experimenting with Dialogue

- GodFather: wots happening bro!
- GodFather: sat sri akal.
- Gagz: long time no chat
- Gagz: kiddha
- GodFather: yea man
- GodFather: where u bin

- Gagz is typing a line...

- GodFather: wots happening bro!
- GodFather: sat sri akal.
- Gagz: long time no chat
- Gagz: kiddha
- GodFather: yea man
- GodFather: where u bin

- i been hicing

• Insert fake clarifications:
 – Repeat words from previous turns
 – Wait for response

• Content words: 45% responded to
 – The vast majority as direct CRs (92%)

• Function words: only 15% response
 – And none of those as direct CRs

Laura: Can I have some toast please?
Jan: Some?
Laura: Toast

• So maybe we understand content vs. function
What about Verbs?

• But in other cases it seems plain weird!
• Verb clarification is vanishingly rare. Why?
 • no examples found for action-reference class
 • 51% of examples were NP or deictic reference

A: You see this thing did you buy this separately or did it come in the Walkman?
B: We were lent them.
A: Lent them?
B: Yeah.
What about Verbs?

• But in other cases it seems plain weird!
• Verb clarification is vanishingly rare. Why?
 • no examples found for action-reference class
 • 51% of examples were NP or deictic reference
• Verbs are no less contentful than nouns
 – Similar (high) type-token ratio, variance
 – Similar (high) information content
• Verb clarifications are easy to interpret
 – Just as likely to get a response
 – And get responded to in parallel ways
Perhaps Verbs are Not Nouns

• Do verbs & nouns have different semantic (cognitive?) status?
 – Conventionally both $e>t$:
 \[
 \lambda x.\text{snore}(x) \quad \lambda x.\text{woman}(x)
 \]

• Perhaps verbs are structured around arguments
 – ... which are mostly NPs ...
 – ... and then we tend to clarify those NPs?

• Frame semantics:
 – SELL[buyer, seller, goods, money, ...]
Dialogue poses questions about semantics

(about what things mean, what things don’t mean, and what differences must be accounted for)
WHAT ABOUT PROCESSING?

Processing Issues

- We can clarify before the end of a sentence

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>And er they X-rayed me, and took a urine sample, took a blood sample. Er, the doctor</td>
</tr>
<tr>
<td>B</td>
<td>Chorlton?</td>
</tr>
<tr>
<td>A</td>
<td>Chorlton, mhm, he examined me, erm, he, he said now they were on about a slide (unclear) on my heart. Mhm, he couldn’t find it.</td>
</tr>
</tbody>
</table>

- This tells us a lot about semantic processing
 - In interpretation
 - In generation
Processing Issues

• We can clarify before the end of a sentence

<table>
<thead>
<tr>
<th></th>
<th>And er they X-rayed me, and took a urine sample, took a blood sample. Er, the doctor</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Chorlton?</td>
</tr>
<tr>
<td>A</td>
<td>Chorlton, mhm, he examined me [...]</td>
</tr>
</tbody>
</table>

• At this point, both A & B must know:
 – That it’s a constituent
 – That it’s potentially referential to an individual
 – What a possible world/dialogue reference might be
Compound Contributions

• Not just clarification ...
• Completions of incomplete antecedents:

 D: Yeah I mean if you’re looking at quantitative things it’s really you know how much actual-­‐ How much variation happens whereas qualitative is ⟨pause⟩ you know what the actual variations
 U: entails

• Expansions of “complete” antecedents:

 T: It’ll be an E sharp.
 G: Which will of course just be played as an F.
Incrementality

• Incremental processing
• Incremental semantic representation
• Incremental semantic interpretation
• Incremental reference
• Incremental context
• Incremental extensibility
• Incremental reversibility (parsing/generation)
DynDial & RISER

• Dynamic Syntax
• Type Theory with Records
 – (IWCS 2011, TTNLS 2014)

I want to go to Paris

\[
\begin{aligned}
e &= \text{now} & : & e_s \\
e_1 &= \text{future} & : & e_s \\
x_1 &= \text{Paris} & : & e \\
p_2 &= \text{to}(e_1, x_1) & : & t \\
x &= \text{speaker} & : & e \\
p_1 &= \text{go}(e_1, x) & : & t \\
p &= \text{want}(e, x, p_1) & : & t
\end{aligned}
\]
Self-repair

• Incrementality & monotonicity:

 The interview was – it was alright
 I went swimming with Susan – or rather, surfing
 – Maintain semantic context, but with ...
 – incremental parsing & choice mechanisms (Hough, 2012-14)
Dialogue provides constraints on semantic processing

(about when & how we understand and produce meaning and components of meaning)
GETTING EVEN MORE EMPIRICAL
Learning

- It’s all very well testing our existing theories
 – (my armchair is very comfy, actually)
- But can we **learn** a good framework?
- If dialogue gives us evidence for semantics, we should be able to learn that semantics
- Of course, we’d need a lot of data with people talking to each other about stuff …
Distant Supervision

• A common technique for sentiment detection

 Best day in ages! #Happy :)
 just because people are celebs they dont reply to your tweets! NOT FAIR :(

^_^*
Distant Supervision

• A common technique for sentiment detection

Best day in ages!
just because people are celebs they dont reply to your tweets! NOT FAIR
Distant Supervision

- A common technique for sentiment detection

 Best day in ages!

 just because people are celebs they don't reply to your tweets! NOT FAIR

再做个梦如果明天我中奖了该怎么支配呢每次想这个问题都很美**^_^**

离队倒计时，期待奇迹的发生 (T_T)
Distant Supervision

• A common technique for sentiment detection

Best day in ages!
just because people are celebs they dont reply to your tweets! NOT FAIR
再做个梦如果明天我中奖了该怎么支配呢每次想这个问题都很美
离队倒计时,期待奇迹的发生

• Go et al (2009): works well if you have a reliable but (semi-)independent label to hand
Distant Supervision

• Often independent labels aren’t reliable

 : - O : - @ : - $: - P

• Often reliable labels aren’t independent

Vodafone signal #fail
Gets so #angry when tutors don’t email back
Distant Supervision

• Often independent labels aren’t reliable
 :-O :-@ :-$:-P

• Often reliable labels aren’t independent

 Vodafone signal
 Gets so when tutors don’t email back

• Poor results for many emotions
 – (Purver & Battersby, 2012)
Responses as Distant Supervision

• But what if someone responds?

_AggieGirl16: @captain_lizard lol yeaaaah. I'm pretty lucky! Haha!
captain_lizard: @_AggieGirl16 I'm glad you're happy, Monica! :)
Responses as Distant Supervision

• What do these have in common?

MattHDGamer: EA Servers down again?!
OrFIFAProdigy: you're surprised?
mattryanharris: Another school shooting? What the actual fuck.
BasedGoDEnigma: You seem like you're surprised?
danni_13_ONLY: HES GAY?!?! What the hell!
BeastyyLove: you're surprised? ! Lol

• Build classifiers better or same with much less data
Responses as Distant Supervision

• Does OK for simple distinctions (*happy vs not*)
 – better than hashtags, worse than emoticons
 – with a dataset half the size

• Similar on 6-way emotions, with 10% of the data
 – 77% accuracy
 – similar per-class f-scores

• Better at subtle distinctions e.g. *angry vs surprised*
 – 75% accuracy with <1000 training examples
 – (an emoticon-based *angry* classifier achieves 76% “accuracy” on *surprised* data!)
Questions as Distant Supervision

• Q8. In what city is the maracana stadium located?
 #Nairabet #Mightygeorgegiveaway
 – Brasilia

• Thanks. What city is the 24-hour fitness?
 – Oxnard

• what city is the quarry in?
 – Monroe. Exit 11 off 75. Lol.
Clarification as Distant Supervision

- @xxsylviaaxx Midnight Red is actually really good
 - you mean the band?
 - haha yeah the boyband

- @gaskarthlrh finally got my 5sos follow back
 - you mean the band?
 - yeahh

- @Joe_rauchet Any girl that likes the red hot chili peppers immediately becomes 100x more attractive
 - oh you mean the band

- @sbrezenoff Why is it so hard to find a youth-size Boston T-shirt with the guitar spaceships?!?
 - you mean the band & not city, don’t you? #notwherebrainwent
 - the band the band!!
Dialogue provides a basis for learning meaning

(helping build systems that can understand or produce meaning)
GETTING MORE EMPIRICAL AND MORE SEMANTIC ...
Learning Semantic Grammars

- We can learn lexical entries/grammars from sentential LFs:

“you read the book”
\textit{read(you, the(x, book(x)))}

LF constrains meaning (as situations do?)
Learning a Dialogue Grammar

- We can learn one that’s suited for dialogue:
 - i.e. incremental in all the necessary ways
 - Eshghi et al (2013): 92% coverage, 85% F-score on CHILDES
Learning Without Grammar

- We might even be able to learn one without a grammar ...
 – (ConCreTe project: Wiggins, Forth, Griffiths et al)

Semantic context

- Speech recognition

Semantic association

- Recognise → Speech → Language

Word

- To

- Wreck → Nice → Beach

Morpheme

- Tek

- Rek → Keg → Niviz → Spi:tf

Phoneme

- T → E → R → E → K → A → N → L → S → B → I → T → J

Viewpoint Model

- D1 → D2 → D3 → D4 → D5 → D6 → D7 → D8 → D9 → D10

- Chromatic Pitch
- Scale Degree
- Mode
- Duration Ratio
- Duration
- Duratio
Learning from Dialogue?

• We can even learn from questions & answers:
 – Liang et al, 2011

 \[
 \begin{array}{cc}
 \text{column 1} & \text{column 2} \\
 \text{(OK)} & \text{(TX,2.7e5)} \\
 \text{(NM)} & \text{(TX,2.7e5)} \\
 \text{(NV)} & \text{(CA,1.6e5)} \\
 \ldots & \ldots \\
 \end{array}
 \]

 – But these are database query results, not utterances ...

• See Eshghi & Lemon (this afternoon)
• And Moradlou & Ginzburg (the day after tomorrow)

• Dialogue utterances provide similar (less specific) information:
 – Responses restrict the space of antecedent meanings
 – So could we learn semantic grammars from dialogue?
Learning from Dialogue?

• Can we learn semantics from dialogue alone?

• General problem:
 – Learn to construct representations which match the distribution of responses
 – (cf: learn to construct queries which match the distribution of answers)
 – A very unconstrained space
 – Large number of latent variables

• Distributional semantics
 – Vector space representations of meaning
 – Geometric modelling of distributions & relations
 – (cf: learn to construct representations which match distributions of lexical context)
Distributional Semantics

- Vector space representations of words
 - Co-occurrence-based or learned (Mikolov et al, 2013)
 - *apple* close to *orange*, far from *pavement*
 - *(king – queen)*
 - \(\approx (man – woman) \)
 - \(\approx (uncle – aunt) \)

- Compositional approaches:
 - Learned e.g. neural net-based (Socher et al, 2012)
 - Tensor-based (Coecke et al, 2010)
 \[
 \sum_{ijk} C_{ijk} \langle \text{dogs} | \overrightarrow{n_i} \rangle s_j \langle \overrightarrow{n_k} | \text{cats} \rangle
 \]
VSMs for Dialogue Act Tagging

- Kalchbrenner & Blunsom (2013)
 - learn word representations & context update functions jointly

\[p_i = \text{softmax}(O_i h_i + b_o) \]

\[h_i = (I x_{i-1} + H_i h_{i-1} + S s_i + b_h) \]

\[p_i = P(x_i | x_{<i}, s_i, a_i) \]
Distributional Pragmatics?

• Can we produce a *compositional* version?
 – Compositional distributional models help DA tagging
 • (Milajevs & Purver, 2014; Milajevs et al, 2014)

• Sentences as vectors plus “dialogue act” tensors
 – e.g. (Paperno et al, 2014) vector + tensor model
 \[
 \left\langle \vec{x}, \hat{1}^1, \ldots, \hat{n}^n \right\rangle
 \]
 – estimate contextual tensors directly

• Estimate tensors and lexical vectors jointly:
 – Learn lexical (& phrasal) semantics & pragmatics directly!
 – i.e. learn what things mean from how people respond
In Summary

Hooray for dialogue!

(even if you don’t care about dialogue)
IWCS 2015 in London

13th-16th(ish) April 2015
Queen Mary University of London
in London’s vibrant and fashionable East End™

I hope there will be dialogue!
Thanks!

• To you and:
 – Julian Hough
 – Arash Eshghi
 – Christine Howes
 – Dmitrijs Milajevs
 – Mehrnoosh Sadrzadeh
 – Dimitri Kartsaklis
 – Stephen McGregor
 – Zheng Yuan
 – Stuart Battersby
 – Geraint Wiggins
 – Pat Healey
 – Ruth Kempson
 – Jonathan Ginzburg