Clarification Requirements

What clarification requests tell us about dialogue system design

NIST ATP: Bosch RTC, Volkswagen, CSLI, SRI
Clarification Requests

- Questions about an antecedent (sub-)utterance
- Can concern meaning or form
- A characteristic dialogue phenomenon
- (Purver et al., 2003; Rodriguez & Schlangen, 2004; Rieser, 2005)
 - Quite common (3-6% of turns)
 - Lots of different types

Ben: No, ever, everything we say she laughs at.	Laura: Can I have some toast please?
Frances: Who Emma?	Jan: Some?
Ben: Oh yeah.	Laura: Toast
Restrictions on representations

- (Ginzburg & Cooper, 2004):
 - Must represent clarifiable information for each possible antecedent
 - fractal heterogeneity
 - utterance reference & accessibility
 - clarificational potential
- Representation of clarifiable elements via abstraction
 - Simultaneously abstracted set of parameters
 - C-PARAMS in a HPSG grammar
- Explicit record of sub-constituents, form and content
- Association of sub-constituents with their abstracted parameters
- Phrase types associated with suitable contents
- Amalgamation vs. inheritance
Restrictions on representations

Ben: No, ever, everything we say she laughs at.	Laura: Can I have some toast please?
Frances: Who Emma?	Jan: Some?
Ben: Oh yeah.	Laura: Toast

- Frances’ question needs to be able to ask about the semantic reference of “she”
- Need to know how that fits into the overall proposition
- Jan’s question needs to be able to ask about the utterance “toast”
- Need to know that “toast” came after “some”
Restrictions on semantics

- (Purver & Ginzburg, 2004): reprise content hypothesis
 - CRs query the semantic content of their antecedents
 - So knowing what a CR can/cannot ask about tells us something about that antecedent’s contents
- Stricter than standard compositionality
 - Phrases held to account, not just sentences
- Suggests that generalised quantifiers might not be ideally suited
 - NP CRs really seem to ask about individuals
 - V and N CRs seem to ask about predicates
Restrictions on semantics

<table>
<thead>
<tr>
<th>Monica: You pikey! Typical!</th>
<th>Terry: Richard hit the ball on the car.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andy: Pikey?</td>
<td>Nick: What car?</td>
</tr>
<tr>
<td>Nick: Pikey!</td>
<td>Terry: The car that was going past.</td>
</tr>
<tr>
<td>Monica: I dunno. Crusty.</td>
<td>Terry: James [last name]'s football.</td>
</tr>
</tbody>
</table>

- Andy’s question asks about the semantic content of “pikey”
 - A property or predicate of individuals
- It doesn’t ask about the individual reference of “you pikey”
- Nick’s questions ask about the semantic content of “the car”, “the ball”
 - Individuals
 - Not properties-of-properties
Restrictions on context models

● We need a record of:
 - Utterances and words
 - Content associated (parameter assignments)
 - Inter-utterance dependency (QUD)
 - What hasn't been grounded (PENDING)
● Even the first takes us away from a purely finite-state-based model
● Examining possible clarification sequences can tell us about possible protocols:
 - Nested clarification pairs: a stack-based model?
 - Crossing clarification pairs: a set-based model?
 - Clarifications-of-clarifications: processing CRs as normal utterances
CLARIE (Purver, 2006)

- Dialogue system specifically designed to model human CR capabilities
 - Building on GoDiS, IBiS (Larsson (et al.), 2000, 2002)
- Reflects all the requirements explicitly
 - Compatible semantic representation
 - Explicit representation of clarificational potential
 - Fractally heterogeneous
 - PENDING stack, empirically grounded protocols
- Can engage in clarification dialogue in either direction
 - Learn unknown words, check contradictory information, …
 - Answer user queries
- But it’s not a “serious” dialogue system
 - Text-based
 - Small domain
 - Small lexicon
 - HPSG grammar with minimal coverage
CHAT (Weng et al., 2006)

- Interactive in-car device control
 - Music player
 - Phone/addressbook
 - Point-of-interest database query
 - Navigation
- Information-state-update approach
 - CSLI Dialogue Manager as used in WITAS, SCoT
 - (Lemon & Gruenstein, 2004; Pon-Barry et al., 2006)
- Tree-based context representation
 - Dialogue moves as nodes
 - Update effects determined via node properties, structural relations
- Tested on real users with pretty good success rates
- Quite advanced system CR behaviour (see Stanley’s talk)
CHAT clarification dialogues

- Use confidence scores at various interpretation levels:
 - Hypothesize most likely (pragmatic) interpretation
 - (including DMT attachment point)
 - Ask confirmation question
 - Positive answers lead to full attachment
 - Negative answers remove attachment, report
- Questions targeted at problematic levels
 - “I couldn’t hear you”
 - “Which song do you want, the one by X or the one by Y?”
- Incorporated into dialogue (allow further information in the answer)
 - “Are you looking for a cheap Chinese restaurant?”
 - “Yes, a casual one”
 - “No, an expensive one”
CHAT = CH(e)AT?

- However, it doesn’t fulfill all the “requirements” ...
- Semantics:
 - Uses an intermediate LF representation
 - Represents clarifiable information, albeit implicitly
- Utterance representation:
 - Not fractally heterogeneous
- Context model:
 - Does have a “pending” equivalent
 - Not restricted to stack-based processing
- How do we get away with this?
 - Utterance-based clarification/confirmation (not phrase-level)
 - Explicit questions (rather than reprise behaviour)
Why should we care?

- Spoken dialogue system designers might say we don’t have to …
 - Systems certainly must be able to confirm, but you can get away with something much less
 - Utterance-level confirmation requires much less complexity
- With system error-handling, we always have speech recognition in the loop
 - Perhaps we can’t be confident enough to be very subtle anyway
- We might assume we know all about the domain
 - Semantic CRs irrelevant – just acoustic, pragmatic
- We don’t necessarily want to ask CRs like a human anyway
 - If we can’t get prosody/timing quite right, might be safer to be explicit (non-reprise)
What if users request clarification?

- With user CRs, we have no way of controlling them
 - Could ask about any word/phrase
 - Could ask about any information level
 - Could use any syntactic form (incl. reprises/NSUs)
- Standard (implicit) assumption is that this won’t happen
 - Users are more intelligent than systems
 - Users know more than systems about the domain
- But in some domains this no longer holds:
 - Tutoring systems
 - Users not understanding terms or explanations
 - Mitigated by system strategies (e.g. Socratic question-asking)
 - Interactive navigation systems (in-car systems)
 - Noise
 - User attention divided, cognitive load
 - Unfamiliarity with the domain
User CRs really do happen

- Wizard-of-Oz experiments in the navigation domain
 - User driving a simulated car in a simulated city
 - 1100 user turns
- About 7% of user turns are CRs of one kind or another
- About ¾ of these are requests for repetition
 - Often requests for a particular word or phrase, rather than the whole utterance
 - Often verbatim repetition is the wrong thing to do
- The rest are queries about reference or content
- About ¾ of them are explicitly marked (“please repeat X”, “what was the Y”)
- Some are more difficult to spot/interpret (reprise questions)
- Haven’t seen any about underlying intentions, syntax etc, or corrections
 - Probably not surprising
What can happen (1)

TTS: I calculated a route to Brian’s house. It is 4.13 miles long and should take around 9.0 minutes.
SR: what is my next turn
TTS: Go East on Miranda Ave
SR: what is the next turn
TTS: Make sharp right on Arastradero Rd
SR: what road
TTS: I'm sorry, I do not understand what you mean by: what road
TTS: Please try rephrasing that.
SR: what road do i turn on
TTS: I'm sorry, I do not understand what you mean by: what road do i turn on
TTS: Please try rephrasing that.
SR: what road do i turn on and where is alma street from there
TTS: Did you want to plan a route from there?
SR: what was the last instruction you gave me
TTS: Sorry, there is no instruction to repeat
SR: what was the last route instruction you gave me
TTS: Sorry, there is no instruction to repeat
SR: i want to go to brian's
TTS: Ok, I will plan a route to Brian. Would you like anything else?
Simplest case: repetition

- Most obvious example: simple repetition

 Wiz: there is no traffic at wall street
 Subj: repeat that
 Wiz: there is no traffic at wall street

- Slightly more subtle: repetition of a particular move type

 Wiz: go straight for three blocks turn left at madison avenue
 ...
 Subj: repeat the last directions
 Wiz: turn left at madison avenue

- Repetition of a phrase or word

 Wiz: turn right at sage road
 Subj: was that left or right
 Wiz: turn right at sage road
Pseudo-repetition

- Even requests for repetition are not always straightforward
- Intervening material means we have to look things up in context
- Intervening time means that previous information may no longer be correct

Wiz: did you want directions to dave's house
Subj: that is affirmative
Wiz: go straight for one mile turn left at columbia road
Subj: please repeat
Wiz: go straight for one mile turn left at columbia road
Subj: please provide location to nearest steakhouse relative to my current position
Wiz: carver's steakhouse is two point one miles away
Subj: please repeat directions to dave's current location
Wiz: go straight for three blocks turn left at columbia road

- New information, but pseudo-repetition form
Reprise questions

- We also get reprised fragments, so far all with wh-substitution:

 Wiz: go straight for four blocks turn left at wall street
 Subj: turn left where
 Wiz: turn left at wall street

 TTS: Make sharp right on Arastradero Rd
 SR: what road

- Seem to be ambiguous in general
 - Can be asking for verbatim repetition of queried element
 - Can be asking for clarification of reference

- Would like to know which (although could answer for both)

- Either way, need to establish which element is being queried
 - Don’t want to repeat whole utterance
Non-matching CRs

- Reference questions may involve non-identical terms:
 - Subj: how long
 - Wiz: dave's house is sixteen minutes away
 - Subj: was that one six or six zero minutes
 - Wiz: six minutes away

- Even apparent requests for repetition:
 - Wiz: after left at elm street turn right at lois lane
 - Subj: was that right on lois lane or left on lois lane
 - Wiz: turn right at lois lane

- Of course, this may be a result of ASR errors
- Antecedent identification becomes vital
Incorrect CR hypotheses

- Importantly, the user’s hypothesis may be wrong:
 - Subj: how long
 - Wiz: dave's house is six minutes away
 - Subj: was that one six or six zero minutes
 - Wiz: six minutes away
 - Wiz: go straight for three blocks turn right at wall street
 - Subj: please repeat left where
 - Wiz: go straight for three blocks turn right at wall street
 - Subj: left where

- Antecedent identification becomes vital
What do we need to do?

- Need to be able to recognize the particular CR type
 - Some CR types are easier to recognize than others
- Need to be able to identify the antecedent
 - Association of words/phrases with their semantic content
- Need to be able to find the required information in context
 - Utterance history
 - Move type history
 - Semantic representation
 - Real-world (dynamic) context
Small steps …

- The current system can handle various repetition requests
- Repeat last utterance
 - Temporal utterance record
 - Slight complication, as we need to avoid e.g. error messages
- Repeat last navigation instruction
 - Requires move history
 - Really requires semantic check (re-generate rather than repeat)
- Actually takes care of a lot of user CRs in this domain
Medium steps …

- Queries about fragment reference and/or repetition
 - Minimally requires representation of constituency
 - Requires association of phrases & contents
- Need to spot reprise fragment CRs
 - Repeated fragments
 - Unless interpretable as other relevant move
 - Must repeat semantically potent element
 - WH-substituted fragments
 - Similar approach
- But this misses reformulations
 - Could perhaps treat with domain-specific lists
 - A general approach is more difficult (hard to know what counts as an alternative in context)
- Also misses possible ASR errors
Further steps

- Interpreting paraphrased or incorrect-hypothesis CRs
 - Phrase co-reference goes some way
 - Intended co-reference is rather more difficult to spot ("one six or six zero")
- Disambiguation
 - Determine what’s being asked about
 - Determine how to answer it (repetition/reference)
 - Determine whether this is a CR in the first place
 - Dialogue systems usually try very hard to interpret things
 - CRs often interpretable as other commands/queries
- Incrementality
 - Most spoken systems now allow barge-in
 - We know that human-human CRs often occur mid-utterance
 - What might this mean for us?
Questions we need to ask

- What are CRs likely to ask about
 - Possible/likely phrase & word types
 - Requirements for lexical & semantic representation

- How are CRs likely to be phrased
 - Can surface form tell us what’s going on?

- When are CRs likely to appear
 - Position relative to antecedent turn
 - Turn-by-turn: antecedent detection
 - Phrase-by-phrase: incremental processing

- How should CRs be answered?
CR Antecedents

- Corpus data can tell us what lexical and phrasal types are likely to be antecedents
 - (Purver, Ginzburg & Healey, 2003)
 - Conversational English dialogue (BNC)
 - (Rodriguez & Schlangen, 2004)
 - Task-oriented German dialogue (Bielefeld)
 - (Rieser & Moore, 2005)
 - Task-oriented English dialogue (Communicator)
CR Antecedents: BNC results

<table>
<thead>
<tr>
<th>Category</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole utterances</td>
<td>44%</td>
</tr>
<tr>
<td>Nominal phrases</td>
<td>41%</td>
</tr>
<tr>
<td>det-N</td>
<td>30%</td>
</tr>
<tr>
<td>pronoun</td>
<td>23%</td>
</tr>
<tr>
<td>proper</td>
<td>21%</td>
</tr>
<tr>
<td>CN</td>
<td>27%</td>
</tr>
<tr>
<td>Modifiers</td>
<td>7%</td>
</tr>
<tr>
<td>Verbs & verb phrases</td>
<td>3%</td>
</tr>
<tr>
<td>Function words</td>
<td>3%</td>
</tr>
</tbody>
</table>
CR Antecedents: task-oriented

- No direct antecedent data, but can infer some

<table>
<thead>
<tr>
<th>Type</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intention recognition (whole utterance)</td>
<td>22%</td>
</tr>
<tr>
<td>Acoustic problems</td>
<td>12%</td>
</tr>
<tr>
<td>NP reference</td>
<td>24%</td>
</tr>
<tr>
<td>Deictic reference</td>
<td>27%</td>
</tr>
<tr>
<td>Action reference</td>
<td>0</td>
</tr>
<tr>
<td>Syntactic problems</td>
<td>0</td>
</tr>
</tbody>
</table>
CR Antecedents

- Most phrase-level CRs ask about nominals
- Very few ask about function words
- Almost all function word CRs were determiners
 - Numbers & quantifiers, rather than articles
- Very few ask about verbs or VPs (or actions)
- 94% nominals, modifiers & determiners
 - Can we get away with expecting just these?
Just a frequency effect?

- If this is actually just a frequency effect, that would be a dangerous assumption
- Not the case for the content/function distinction:

<table>
<thead>
<tr>
<th></th>
<th>CRs</th>
<th>General</th>
</tr>
</thead>
<tbody>
<tr>
<td>Content</td>
<td>92.4%</td>
<td>69.2%</td>
</tr>
<tr>
<td>Function</td>
<td>7.6%</td>
<td>30.8%</td>
</tr>
</tbody>
</table>

- Not the case for the verb/noun distinction:

<table>
<thead>
<tr>
<th></th>
<th>CRs</th>
<th>General</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noun</td>
<td>93.9%</td>
<td>39.0%</td>
</tr>
<tr>
<td>Verb</td>
<td>6.1%</td>
<td>61.0%</td>
</tr>
</tbody>
</table>
Explaining the distinction (1)

- So why do we see these distinctions?
- With the content/function case, perhaps this is clear
 - Content words carry the semantic information
 - That’s why they’re called content words
- In that case, might see a variance effect
 - High variance of word counts across documents = high information content (high context-dependence)
 - (Kilgarriff, 1997; Francis & Kucera, 1982)
- Indeed, across the BNC (and other corpora), content words have a much higher average count variance
- Another possibility might be how likely words are to be rare (and therefore possibly not mutually known)
 - Ratio of average rarity matches the ratio of CR frequencies very well
Explaining the distinction (2)

- But we can’t explain the verb/noun distinction so easily
- Verbs are no less common than nouns
- Verbs are no less contentful than nouns
 - Comparing average variances shows the opposite, in fact
- Verbs are more likely to be rare …
 - but not enough (about 3 times more)
- We see more verb types than noun types
 - But not enough (about 3 times more)
- Verb fragments are no less easy to interpret as CRs
 - Chat tool experiments (Healey et al., 2003)
- Less fine-grained semantics?
- Incremental processing effects?
What do we need?

- Semantic representation of nominal phrases
 - Usually present in any ISU system to some extent
 - Database entries, slot/value pairs …
 - Intermediate representation (LF) or database reference
 - Probably would prefer a non-GQ representation
 - Destination, waypoints, POIs …

- Semantic representation of interesting determiners
 - Present in intermediate representations
 - Only implicitly present in database reference
 - Cardinality of results sets (number of restaurants)

- Association of phrases with their semantic content
 - This is by no means standard, so must be added
CR Disambiguation

- Form-content correlations from BNC study
 - Reprise sentences tend to have y/n (clausal) readings
 - Reprise fragments similarly

- Suspect these may not generalize to the domain, though. But:
 - Domain data suggests often lexically specified
 - Domain data suggests strong bias to repetition
 - (not just of whole utterance, though)

- Seems likely that intonation will help
 - Pitch contours (Srinivasan & Massaro, 2003; Grice et al., 1995)
 - (see David’s talk)
 - How well does this translate to HCI, though?
 - Available from standard speech recognizers?
When do CRs occur?

- All corpus studies show a strong preference for immediate clarification
 - 85% within 1 turn in the BNC
 - Most long-distance examples were unrepresentative
 - Multi-party dialogue
 - Repeated clarification sequences
- Stronger effect in task-oriented dialogue
 - 93-95% within 1 turn
 - All the NAV data is the immediately preceding turn
- Long-distance CRs tend to be explicit forms
 - Non-reprise e.g. “repeat the last directions”
- A default strategy of checking the immediately preceding turn unless incompatible seems OK
CRs and incrementality

- CHAT (as many systems) allows barge-in
- Do people ask CRs mid-utterance?
- Do we know anything about when to expect them?
 - Help us decide whether a turn is a CR or not
 - Help us identify the correct antecedent
 - Might also tell us something about how sentence processing works ...
- Can’t use existing test data (no user CR capability)
- Can’t use existing WOZ data (not annotated for barge-in)
- BNC is annotated for speaker overlap
- Can use existing CR corpus to investigate possible patterns
Incrementality

- We know human-human CRs occur mid-sentence:

 A: They X-rayed me, and took a urine sample, took a blood sample.
 A: Er, the doctor
 B: Chorlton?
 A: Chorlton, mhm, he examined me, erm, he, he said now they were on about a slight [shadow] on my heart. Mhm, he couldn't find it.

- No clear examples in WOZ data, but we can imagine:

 Sys: take the next exit left, and then …
 Usr: which exit? This one?

- Incidentally, not many CRs occur mid-phrase

 - Because NPs need to be completed before resolution attempted?

- Do we really need incremental processing for this?

 - Fortunately, probably not
 - Need a representation of what’s said/meant, but we already did
Avoid Mind-reading?

- Clearly, 0% of CRs ask about something that hasn’t been said yet
- (Actually, this isn’t quite true:
 - In human-human conversation, we see “fillers” (c. 4% of CRs)
 - Suggested completions after clear pauses/problems
 - But with systems delivering fully-formed utterances, shouldn’t be possible)
- We need to know what we’ve said so far
 - Possible antecedents restricted to completed portions
- This may not be at all trivial
 - Most NLG systems are pipelined
 - The dialogue manager forms a complete move and passes it on
 - We need a TTS module which knows what it has said (bookmarking)
 - We need a representation from which we can determine what has therefore been expressed
How should we answer CRs?

- Again, we can look at the BNC:
 - Sluices: fragment answers
 - Conventional repetitions: full utterances
 - Reprise sentences: y/n
 - Reprise fragments: depends on the intention
 - Clausal “checks”: y/n
 - Constituent: fragments

- With human-computer dialogue, contrast:
 - Longer answers may be clearer
 - Brevity may be important in general (especially with in-car navigation)
Re-formulation

- Some apparent “repetitions” may need reformulation
 - Ensure information is still correct
- Really need to recognize the user’s intention in asking the CR
 - Asking about the words used: repeat
 - Asking about reference: reformulate
 - The difference could be really important:
 - “Turn left here”
 - “Where?”
 - “Here.” vs. “The first exit”, “After Safeway” etc.
- This requires some departures from standard NLG
 - The best NP realization now depends on the context
 - Alignment with previous turns may be undesirable
Over-answering

- Hockey et al. (1997) looked at check-questions in the MapTask corpus
 - Only 40% of y/n answers were bare
 - More likely for negative answers
 - (distinct from general y/n answers: 64% bare)
- Perhaps a good strategy is to over-answer: y/n + fragment
- Particularly important for negative answers:

 "Turn left into Arastradero Road."
 "The first exit?"
 "No." vs. "No, the second exit."
- Especially so with possible ASR errors:

 "Turn left into Arastradero Road."
 "The first exit?" ASR: THE THIRD EXIT
 "No." vs. "No, the first exit."
Conclusions (roughly in order)

- Users do request clarification
 - Not necessarily in the same way they would from other people
- Need to represent what can be clarified
 - Need a record of what has been said
 - Need an intermediate semantic representation
 - Need an underlying model of the world
- Need to associate words/phrases with contents
- Need non-standard NLG for answering
- Need TTS bookmarking for barge-in
- Need more investigation for disambiguation
 - May include prosodic features
What can happen (2)

- SR: turn left where
 - TTS: I'm sorry, I do not understand what you mean by: turn left where

- SR: turn right at what
 - TTS: I'm sorry, I do not understand what you mean by: turn right at what

- SR: uh what's my next turn
 - TTS: Go East on Miranda Ave
 - SR: was that right on alma street
 - TTS: I'm sorry, I do not understand what you mean by: was that right on alma street

- SR: where do i turn again
 - TTS: I'm sorry, I do not understand what you mean by: where do i turn again