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Abstract. We present computational experiments on language segmen-
tation using a general information-theoretic cognitive model. We present
a method which uses the statistical regularities of language to segment
a continuous stream of symbols into “meaningful units” at a range of
levels. Given a string of symbols—in the present approach, textual rep-
resentations of phonemes—we attempt to find the syllables such as grea
and sy (in the word greasy); words such as in, greasy, wash, and wa-
ter ; and phrases such as in greasy wash water. The approach is entirely
information-theoretic, and requires no knowledge of the units themselves;
it is thus assumed to require only general cognitive abilities, and has pre-
viously been applied to music. We tested our approach on two spoken
language corpora, and we discuss our results in the context of learning
as a statistical processes.

Keywords: Artificial Intelligence; Language Acquisition; Learning; Lan-
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1 Introduction

The question which we address in this paper is whether language learning can
be considered to be a statistical process. This has been an ongoing and funda-
mentally dividing issue in fields which consider language learning their subject
matter.

We assume that language has several layers of structure. At the bottom
we find the smallest units; in this paper, we start with phonemes, though our
method is not restricted to this level of granularity. These smallest units build
larger items of language structure:

– Phonemes build larger units such as syllables and morphemes.
– Morphemes and syllables build words. Words build phrases and phrases are

the building blocks of sentences (or spoken utterances).
– These sentences or utterances go in turn to make up larger units such as

paragraphs in text or speaker turns in speech.



We must assume some smallest unit such as phonemes in speech or graphemes
in text as an entry point into the language system. The question which arises is
how one can tell where one such unit above the phoneme or grapheme ends and
another one begins. In natural language processing this task is generally called
text segmentation for written language and speech segmentation for spoken lan-
guage.

In the current paper, we assume that the phonemes are presented as one
continuous stream - roughly equivalent to removing the white space from sen-
tences in written text - and define our task as determining where a word or
other linguistic unit begins or ends. This is similar to the task infants face when
learning their first language, itself an open research question. Taking the title
as an example, we need to identify that the word segmentation is composed of
syllables, which are seg, men, ta, and tion, and morphemes, which are segment
and ation. From there larger units need to be distinguished such as the words
segmentation, of and natural. Longer utterances need to be split up into phrases,
perhaps at various levels of granularity e.g. natural language and segmentation
of natural language.

We present a computational approach to the segmentation problem [1] in
which we rely entirely on the information content of a symbol within a language
dataset. Our prediction is that information content will rise at the beginning of
a segment and fall at the end of a segment. A similar assumption was used by
Harris [2] for finding morpheme boundaries. We assume that this assumption
should hold for segments at all levels of the linguistic hierarchy. However, for
each level the nature and extent of this fall and rise will vary; but parameters
of the model will vary predictably with levels of segmentation. In the following,
we will present computational experiments which test this prediction on two
datasets of natural language.

Our approach to the cognitive task of language processing therefore places
emphasis on domain-independent principles, rather than taking a domain-specific
approach as has been argued as appropriate for the case of language.

We outline our information-theoretic approach in the next section; we then
present the methods used in this paper in detail. Our results and the discussion
of these for computational experiments on language segmentation are presented
in the following sections. In our conclusion we return to the question outlined
above.

2 Information-Theoretic Speech Segmentation

Applying machine learning and pattern recognition methods to natural language
has become a rich source of insights into language structure and theoretical issues
of linguistics [3] and the learning of language [4]. While many linguists take
the view that natural language requires domain-specific, innate structures (see
e.g.[5]), this is debated; one of the tenets of cognitive linguistics is that language
processing by humans is domain general and not domain specific. As Geoffrey
Sampson puts it, language learning depends on ‘general human intelligence and



abilities’ [6, p. IX]. Using information theory as a framework for such an approach
has been argued to be both cognitively and biologically plausible [7, 8].

It has often been proposed that language and music share certain proper-
ties. One can ask the same questions regarding the structure and processing of
language as one can ask about music [9]. Indeed, there a number of objective
similarities and differences between these two domains [10]. There seem to be
shared resources in structural processing of language and music [10], in addition
to the conceptual similarity which is that the building blocks of the structures
are “cognitive objects” – i.e. percepts . In this paper, we assume that percepts in
general can be processed via their statistical regularities in a given corpus. The
computational model used here was created for purposes of melodic grouping
[11].

The current research is situated within the wider context of the IDyOM and
IDyOT frameworks. IDyOM [12] stands for Information Dynamics Of Music. It
was developed on the basis of natural language processing methods and can di-
vide melodies into perceptually correct segments using the statistical regularities
in a corpus. Generally, however, we argue here that the framework can also still
be used to segment a corpus of natural language data into syllables, words and
phrases.

In previous work [13, 14] a cognitive architecture called IDyOT is outlined
which builds on the principles of IDyOM. IDyOT [14] stands for Information
Dynamics Of Thinking. The premise of both of these different incarnations of
the underlying research framework is that grouping and boundary perception
are central to cognitive science [15] and that the most cognitively plausible way
of approaching this task is using Shannon’s [16] information theory. Especially,
we employ information content as introduced by MacKay [17].

IDyOT is based on the Global Workspace Theory [18]. In the long term it is
predicted that IDyOT provides the basis for modelling creativity and eventually
aspects of consciousness [14, 19]. In order of testing certain claims about the
domain generality of the information dynamics approach embodied by IDyOM
and IDyOT, we look at language segmentation to see whether the approach
shown to be useful in music segmentation can be transferred back to language.

The IDyOM model [20] and corresponding software1 were developed for the
statistical modelling of music in the context of music perception and cognition
research. However, one of the central features of the model is that it can also
be used for other types of sequential data, as the principles on which it is based
are cognitively inspired and meant to be general rather than domain specific
[13]. The model presented in IDyOM relies on a pattern recognition theory of
mind [21] which suggests that languages are learned by processing the underlying
statistics of the positive data contained in stimuli. Although, at the present mo-
ment only representations of auditory stimuli have been studied, our conjecture
is that any kind of perceptual data can be processed in this way. Wiggins [22]

1 The software can be found at https://code.soundsoftware.ac.uk/projects/idyom-
project/files.



gives initial indications that the model can extend to language segmentation,
and we pursue that idea in more depth here.

As aforementioned, we take an information-theoretic approach here [16]. Pre-
dicting the next element in a sequence given the previous element is often called
a Shannon Game [23, p. 191]. Here, we assume that both music and language can
be modelled as a sequence of elements e from an alphabet E . For each element
ei in e one can calculate its probability given the context – more specifically the
preceding context ei−11 :

p(ei|ei−11 ) (1)

There is good evidence that children use transition probabilities during language
acquisition [24, p. 33], and this probability can be calculated by approximating
on the basis of a context subsequence of finite length n, i.e. by using an n-gram
model [25, pp. 845–847].

2.1 The IDyOM Model

IDyOM is a multidimensional variable-order Markov model. The multidimen-
sionality within IDyOM is formalised as a multiple viewpoints system [26], where
viewpoints can be either given basic types, or derived and combined from existing
viewpoints to form new viewpoints revealing more abstract levels of structure.
Predictions from individual variable-order viewpoint models are combined using
an entropy-weighting strategy [20].

Two basic information-theoretic measures are central to IDyOM. Information
content is the measure of unexpectedness—or surprisal to use the terminology
of [27]—and entropy a measure of uncertainty.

1. information content (h) is a measure of how unpredictable a [given unit] is
given its context [27];

2. entropy (H) is the expected information content of an unseen event in a
given context.

More formally, in IDyOM these concepts are modelled as (1) and (2) below:

h(ei|ei−11 ) = log2
1

p(ei|ei−11 )
(2)

H(ei−11 ) =
∑
e∈E

p(ei|ei−11 )h(ei|ei−11 ) (3)

Entropy-based models such as these have been used in natural language learn-
ing in the past [28, pp. 21–37]. Given an n-gram model of p(ei|ei−11 ) which char-
acterises the dataset in question, we can calculate h and H at all points in a
sequence, and thereby find local falls and rises. Such falls and rises have pre-
viously been shown to correlate with the ending and beginning of structural
units in music [11, 12] and language [22]. For the case of music it has also been
demonstrated that this model outperforms rule-based approaches [29].



2.2 Segmentation of Natural Language

Segmentation of natural language has been a topic for computational psycholin-
guistics at least since 1990 [30]. However, it can still be regarded as a current
problem in computational approaches to language learning (see for example [31–
34]). Brent [35] classifies a number of approaches to natural language segmen-
tation into three types of strategies. These are the utterance-boundary strategy,
the predictability strategy and the recognition strategy. Our approach employs
elements of the predictability strategy: we attempt to detect boundaries based
on changes in the information-theoretic properties of the symbol sequences in
question. In this way it is similar to, but simpler and more general than, methods
such as that of Cohen and Adams [36], who use boundary entropy but combine it
with other frequency measures via voting experts to segment words in a range of
languages, or Sun, Shen and Tsou [37], who use mutual information but combine
it with other statistical measures to segment Chinese characters into words.

This contrasts with approaches in which one tries to build grammars (or prob-
abilistic models) of likely segment sequences (the predictability strategy), (e.g.
for Finnish morphemes [38]), and with those in which one matches patterns of
known words against the stream (the recognition strategy); in those approaches
one needs to build up a lexicon first, either from external knowledge (e.g. [39]) or
from incremental clustering (e.g. [40]). Our boundary detection strategy needs
no knowledge of the lexicon or even of the fact that there are such concepts as
syllables, words or phrases.

3 Methodology

Our experimental method requires two steps: firstly, building a statistical n-gram
(IDyOM) model on the basis of which to calculate information content (entropy
is left for future work); secondly, hypothesising boundaries based on local drops
and rises in information content.

3.1 Calculating the Information Content

IDyOM has a range of model configurations intended to simulate different as-
pects of musical listening behaviour. The basic distinction concerns the data
used to train an n-gram model: a model can be trained from a large dataset,
modelling the learned experience of a listener and termed the Long Term model
(LTM) in IDyOM’s terminology; or from only the current sequence under con-
sideration, trained incrementally for each utterance being predicted [26, 20, 41],
modelling a listening experience in a specific context, and termed the Short Term
model (STM). However, variations are possible: the LTM approach can be made
dynamic by adjusting its probabilities based on the current sequence as it is ob-
served (termed LTM+); and the STM and LTM models can be combined. This
results in a total of five models:

STM model trained on stimuli only in a local context (i.e. notes of the melody
or phonemes in the utterance currently being predicted);



LTM model trained on a large training corpus;
LTM+ as LTM, but model also learns from the current example;
Both combination of STM and LTM;
Both+ combination of STM and LTM+.

3.2 Segmentation

Our overall approach is to look for characteristic local contours in information
content [22]—what Pearce et al. [15] call ‘peak picking’. Rises in information
content are signals of unexpectedness, and Wiggins [14] hypothesises that these
should correlate with the beginnings of new segments; conversely, falls in infor-
mation content are signals of predictability, which we expect to correlate with
the endings of segments.

Our current method is extremely simple, checking only for a simple rise
between successive data-points: the value at the current symbol ei must exceed
that at its immediate predecessor ei−1 by some specified amount. This amount
is our only parameter, d; thus, a new segment begins if h(ei)− h(ei−1) > d. We
evaluate performance using the κ statistic [42, 43], and set d to give the maximal
value for κ (for a specific segment type) by testing all d over the interval [0, 10].

3.3 Data

We test this method on two language corpora. The first dataset is a derived cor-
pus2 of the CHILDES corpus of child-directed adult English speech [44], collated
and transcribed at the phoneme level for word segmentation experiments [45]. It
contains 93,555 phoneme tokens which make up 33,377 words and 9,790 utter-
ances; average utterance length is 3.4 words. A single viewpoint with phonemes
as observed variables, denoted {phonemes}, is used as the basic IDyOM repre-
sentation.

The second corpus is the TIMIT transcriptions [46], a dataset of spoken En-
glish sentences obtained for the purpose of automatic speech recognition model
training, and transcribed at the level of sentences, words and phonemes. It con-
tains 81,533 phoneme tokens which make up 20,756 words and 2,342 utterances;
average utterance length is therefore 8.9 words. Again we use a simple phoneme
viewpoint; as TIMIT also contains stress annotations (represented as primary,
secondary, and no stress), this also allows us to construct a linked viewpoint
formed of the cross-product of phonemes and stress {phonemes ⊗ stress}, and
a two-viewpoint system combining both viewpoints {phonemes, phonemes ⊗
stress}.

To evaluate phrase-level segmentation, we used the Pattern parser [47] – nei-
ther TIMIT nor CHILDES contains phrase structure information. Automatic
parses are noisy: we excluded cases where Pattern produced a parse which could
not be mapped back onto the phonetic form of the utterance. Thus, our anal-
ysis on the phrase level only considers approximately half of the data for both
corpora.

2 http://www.ling.ohio-state.edu/~melsner/resources/acl12data.tgz



4 Results

We evaluate our segmentation model in terms of accuracy of boundary place-
ment against the ground truth for each level—syllables, words and phrases—with
accuracy assessed via both Kappa values (κ) and the F1-score (harmonic mean
of precision and recall). Both κ and F1 are calculated on the basis of individ-
ual phoneme tokens, with the gold-standard annotation classifying only the first
token in each segment as a boundary. We also examine the mean information
content (h̄), and optimum value of our segmentation parameter (d). h̄ is the
same in across all, as it is a property of the (phoneme-based) corpus and model
and not of the evaluation.

4.1 CHILDES

The results for the CHILDES corpus segmentation into words and phrases is
summarised in Table 1. Lower h̄ values mean better predictability, as high h̄
signifies more “surprisal” by a new element.

Table 1. Results for the CHILDES corpus for words (left) and phrases (right) using
all five IDyOM configurations.

CHILDES

WORDS PHRASES

Model
{phonemes} {phonemes}

h̄ d κ F1 d κ F1

STM 5.74 5.39 0.39 0.46 6.06 0.52 0.57
LTM 3.42 1.59 0.58 0.71 2.87 0.54 0.63
LTM+ 3.42 1.57 0.58 0.71 2.87 0.54 0.63
Both 3.67 1.21 0.54 0.7 3.02 0.55 0.65
Both+ 3.66 1.8 0.54 0.7 3.05 0.56 0.65

Performance is reasonable at word level, with F1 around 0.7 and κ approach-
ing 0.6. The performance of the STM is considerably lower than other models, as
might be expected; we note that h̄ is considerably higher for the STM, indicating
worse fit. The d parameter is therefore also correspondingly higher – and takes
longer to find – for the STM. The lowest d for words is found in the Both model
and LTM and LTM+ for the phrase segmentation.

In terms of both F1 and κ, the LTM and LTM+ are the best models for
the word discovery task. In the phrase segmentation task, we find that the Both
and Both+ models do marginally better than in the word segmentation task
with respect to κ, but with worse performance with respect to F1. The apparent
improvement of results for the STM may be due to the lower number of segments
which need to be predicted. The improvement in performance by the short term
model also leads to improvements in the Both and Both+ configuration as these
are combinations of STM and LTM.



In comparison to previous work on the same dataset, our best configuration
(LTM) still performs slightly worse with respect to F1-scores in the word seg-
mentation task. While Elsner et al. [45] obtained an F1-score of 0.8, our best
F1 score was 0.71. We also checked the baselines with respect to a random seg-
mentation, a segmentation which assumes every symbol is a boundary and a
segmentation which assumes no boundaries. In each case, the κ will be 0 as
expected with low F1-scores.

4.2 TIMIT

Table 2 shows the results for the TIMIT corpus. The results for the syllable
segmentation task are very comparable for all measures with those reported by
Wiggins [22]. As with the CHILDES dataset, the STM shows higher values for
h̄, with the LTM and Both models showing better performance. κ and F1 are
almost the same for the STM for all configurations. Therefore, the STM, for
which the h̄ is determined based on isolated utterances, seems not to be a good
model for this task.

Table 2. Summary of results for the TIMIT corpus for words (left) and phrases (right)
using all five configurations of IDyOM.

TIMIT

SYLLABLES WORDS Phrases

Model
{phonemes} {phonemes} {phonemes}

h̄ d κ F1 d κ F1 d κ F1

STM 5.46 2.43 0.11 0.26 3.95 0.17 0.24 6.96 0.39 0.42
LTM 3.55 1.29 0.47 0.65 1.96 0.58 0.69 4.50 0.41 0.47
LTM+ 3.54 1.15 0.47 0.66 1.95 0.56 0.69 4.40 0.41 0.47
Both 3.68 1.26 0.45 0.64 1.65 0.55 0.67 4.44 0.42 0.48
Both+ 3.67 1.05 0.45 0.65 1.94 0.56 0.69 4.52 0.42 0.48

Model
{phonemes ⊗ stress} {phonemes ⊗ stress} {phonemes ⊗ stress}

h̄ d κ F1 d κ F1 d κ F1

STM 6.04 3.09 0.11 0.22 3.72 0.18 0.26 7.36 0.39 0.42
LTM 3.73 1.08 0.48 0.67 2.17 0.60 0.70 4.48 0.42 0.48
LTM+ 3.72 1.10 0.48 0.67 2.05 0.60 0.71 4.84 0.42 0.48
Both 3.85 1.2 0.46 0.66 2.16 0.58 0.68 4.11 0.42 0.49
Both+ 3.84 1.27 0.47 0.65 2.15 0.58 0.69 4.09 0.42 0.49

Model
{phonemes,
phonemes ⊗ stress}

{phonemes,
phonemes ⊗ stress}

{phonemes,
phonemes ⊗ stress}

h̄ d κ F1 d κ F1 d κ F1

STM 6.01 2.96 0.11 0.23 3.64 0.18 0.26 7.03 0.39 0.42
LTM 3.72 1.10 0.49 0.67 2.12 0.61 0.71 3.93 0.42 0.49
LTM+ 3.71 1.14 0.49 0.67 2.13 0.61 0.71 4.49 0.42 0.48
Both 3.85 1.07 0.47 0.66 2.01 0.58 0.69 4.12 0.43 0.49
Both+ 3.84 1.10 0.47 0.65 1.92 0.58 0.69 4.02 0.42 0.49



Generally, one can see a trend that the LTM, LTM+, Both and Both+ models
perform better if they receive more information, i.e. in the {phonemes ⊗ stress}
and {phonemes, phonemes ⊗ stress} show marginally better performance. The
smallest values for d are found in the viewpoints {phonemes⊗ stress}.

There seems no improvement in performance when moving from the LTM to
LTM+ or the Both model variants (in all configurations except the {phonemes}
condition, where the LTM+ shows slightly higher F1-score). Overall, the best
configuration for the word segmentation task is the LTM in the {phonemes,
phonemes ⊗ stress} condition.

Segmentation at Different Levels For the word segmentation task, the optimal
setting of d is higher than that for the syllable segmentation task, for all con-
figurations. This corresponds with intuitive expectation, as one needs to predict
fewer segments. In all configurations, the LTM and LTM+ still show better
performance than the STM, Both and Both+; overall accuracy is slightly im-
proved over the syllable segmentation task, with F1 scores over 0.7. The LTM+
is the best configuration overall in the {phonemes, phonemes⊗ stress} condition.
The STM perhaps also shows some improvement here, with κ values marginally
higher.

In the phrase segmentation task, again, the optimum d increases relative to
word and syllable tasks, as even fewer segments need to be predicted. Perfor-
mance in terms of κ and F1-scores is, however, much lower for phrase discovery
than for syllables and words. Thus, with regard to this measure the performance
on the TIMIT data is less effective.

The κ values and F1 scores for the STM, however, are considerably higher for
this task. The STM does, however, not benefit from the additional information
which it gets in the {phonemes ⊗ stress} and {phonemes, phonemes ⊗ stress}
conditions.

In all configurations, the LTM, LTM+, Both and Both+ models show worse
performance in the phrase segmentation task with respect to κ and F1. Also,
there is little difference in the performance of these four models. The Both is the
best configuration overall in the {phonemes, phonemes ⊗ stress} condition with
respect to the κ value.

As expected our results are very similar to those reported in Wiggins [22] for
syllable segmentation. We also checked the baselines with respect to a random
segmentation, a segmentation which assumes every symbol is a boundary and
a segmentation which assumes no boundaries. In each case, the κ will be 0 as
expected with low F1-scores.

4.3 Overall Segmentation Performance

Figures 1 and 2 show the variation of κ with the information content threshold
parameter d for each corpus, illustrating the process of determining optimum d
values.

The LTM and Both model variants show a general pattern for syllables and
words: a gradual improvement leading up to a peak in performance (defining



Fig. 1. CHILDES corpus κ vs parameter d for words and phrases.

optimum d), after which performance drops off again. This optimum value of d
is higher as we move to longer, higher-level segments (from syllables to words,
and from words to phrases): larger changes in information content correspond to
segment boundaries at different levels. However, the phrase segmentation curve
shows less of a peak: performance reaches a level at which it stays. This suggests
that as long as d is large enough one finds segments which have a high probability
of coinciding with phrase boundaries. The plateau in the curve after the peak
can be explained as an effect of our segmentation method coding the beginning
of an utterance as a given start symbol. This is similar to the approach of Elsner
et al [45]. Thus, once the method stops oversegmenting at low d it finds the
optimum d and afterwards continues to agree on those given symbols at higher
d values.



Fig. 2. TIMIT corpus κ vs parameter d for syllables, words and phrases.

The STM shows particularly bad performance initially but then the plots
show a sudden leap in performance. This is true for all configurations on both
corpora. Thus, short term segmentation seems to require a certain threshold to
show any noticeable segmentation performance. Exposure to isolated utterances
is insufficient to learn the distributional regularities of language.

5 Discussion & Conclusion

Landis and Koch [48] characterise a κ ∈ [0.4, 0.6] as “moderate”. Thus, most of
the results reported here show a moderate success. The results reported for the
CHILDES corpus with respect to phrases is slightly higher and thus falls into the
“substantial” category. However, one has to again note, that results regarding the
syntactic units are to be taken with caution. There is less to predict and less to



agree on. Therefore, one would expect a higher agreement between ground-truth
and segmentation.

The long term model shows better performance than the short term model.
In effect, these two model a listeners knowledge of language (LTM) and a current
listening experience (STM). It is to be expected that there is little result to be
expected from learning from a single listening experience. Thus, the results with
respect to the differences in LTM and STM show that a long term learning from
raw stimulus is possible.

The TIMIT data also indicates that learning is improved if stress information
can be included. Though, the differences are small, the inclusion of stress in the
viewpoints selected for predicting the next phoneme do improve the results. The
differences reported here are minor, though.

The present contribution took a strong view of statistical language learning.
We claimed that it would be possible to predict syllable, word and phrase bound-
aries from a raw stimulus without having explicit information about these units
encoded in the method. We succeeded in the sense that our results indicate that
this is indeed possible. In future work, we plan to explore further in what way
the inclusion of different viewpoints improves the results.
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