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ABSTRACT

Neural sentence encoders (NSE) are effective in many NLP tasks, including topic
segmentation. However, no systematic comparison of their performance in topic
segmentation has been performed. Here, we present such a comparison, using
supervised and unsupervised segmentation models based on NSEs. We first compare
results with baselines, showing that the use of NSEs does often provide
improvements, except for specific domains such as news shows. We then compare
over three different datasets a range of existing NSEs and a new NSE based on ad hoc
pre-training strategy. We show that existing literature documenting general
performance gains of NSEs does not always conform to the results obtained by the
same NSEs in topic segmentation. If Transformers-based encoders do improve over
previous approaches, fine-tuning in sentence similarity tasks or even on the same
topic segmentation task we aim to solve does not always equate to better
performance, as results vary across method being used and domains of application.
We aim to explain this phenomenon and the relative poor performance of NSEs in
news shows by considering how well different NSEs encode the underlying lexical
cohesion of same-topic segments; to do so, we introduce a new metric, ARP. The
results from this study suggest that good topic segmentation results do not always
rely on good cohesion modelling on behalf of the segmenter and that is dependent
upon what kind of text we are trying to segment. Also, it appears evident that
traditional sentence encoders fail to create topically cohesive clusters of segments
when used on conversational data. Overall, this work advances our understanding of
the use of NSEs in topic segmentation and of the general factors determining the
success (or failure) of a topic segmentation system. The new proposed metric can
quantify the lexical cohesion of a multi-topic document under different sentence
encoders and, as such, might have many different uses in future research, some of
which we suggest in our conclusions.

Subjects Computational Linguistics, Data Mining and Machine Learning, Natural Language and
Speech, Text Mining

Keywords Topic segmentation, Neural sentence embeddings, Discourse coherence, Natural
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INTRODUCTION

Topic segmentation—automatically segmenting a long text into topically coherent units—
is a well known problem in natural language processing, and the first step for a number of
downstream applications. A long transcript from a news show, for example, could be
divided into single news stories so as to help an end user in retrieving more relevant and
specific information (Reynar, 1999) or a long article could be divided into subsections to
aid its reading (Hearst, 1997). Whatever the domain of application, topic segmentation is
therefore a useful task and it has the advantage of solid theory in discourse structure to
draw from, as the sharing of a common topic (usually defined as a collection of cohesive
lexical expressions) is among the things that define the local coherence of a written text or a
spoken dialogue act (Halliday ¢» Hasan, 1976). Because of this, many attempts have been
made in order to exploit various indicators of lexical cohesion for segmentation.

In the mean time, however, methods for determining and expressing similarities
between texts have seen a major shift in NLP from word count based methods to geometric
distance between dense text representations from pre-trained neural representations
(Smith, 2017), which (as explained later in more detail) we group under the umbrella term
of Neural Sentence Encoders (NSEs). Very recently these advances in text representation
techniques have been successfully applied to topic segmentation in various unsupervised
and supervised settings (Ghinassi, 2021; Harrando & Troncy, 2021; Solbiati et al., 2021; Lo
et al., 2021; Lukasik et al., 2020a). Drawing from these initial attempts, we explore in more
detail the use of these recent encoders for topic segmentation. Specifically, we explore the
use of NSEs as feature extractors, which can extract high-level representations leading to
better performance on behalf of a topic segmentation system. We investigate what kind of
such representations (if any) is most suitable for the task and draw comparisons with
existing benchmarks measuring performance on text similarity and related tasks. Finally,
we investigate the role of inter-segmental lexical cohesion under different text
representations in providing a good segmentation, in three different domains in which
topic segmentation has traditionally been investigated: text articles, news broadcast
transcripts and business meeting transcripts. The research questions informing this work
are:

RQ1: Do NSEs lead to better performance than previously used features in topic
segmentation?

RQ2: Which NSEs work best for this task? Is their ranking consistent with what existing
literature has noted about their general performance and how it varies across domains?

RQ3: Is the success (or failure) of NSEs always a consequence of better lexical cohesion
modelling by the encoders?

While answering the first two questions requires a survey of different encoders, the third
one involves the creation of new techniques to quantify lexical cohesion under different
encoders and datasets. We do that by introducing a new metric, Average Relative
Proximity (ARP). We show that NSEs often do improve over previously used features, but
in certain domains improvements are not always significant; and NSEs that are successful
in a variety of text similarity tasks do not necessarily improve performance in topic
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segmentation. We investigate and explain this with the fact that the factors behind topic
segmentation success are not necessarily correlated with a better capacity of identifying
cohesive segments and, in certain domains, topic segmentation can rely much more on
local cues, making it more similar to a text classification task.

RELATED WORK

Models for topic segmentation

Traditionally, topic segmentation involves the segmentation of text such as books or
articles (Beeferman, Berger ¢ Lafferty, 1999; Koshorek et al., 2018), and transcripts of
business meetings (Purver et al., 2006) or TV news shows (Misra et al., 2010; Sehikh, Fohr
& Illina, 2018).

One of the earliest techniques for topic segmentation, TextTiling, used two adjacent
sliding windows over sentences and compared the two by means of cosine similarity
between the relative bag-of-words vector representations (Hearst, 1994). The same
algorithm was then successfully used with different, more informative sentence
representations, such as Term-Frequency Inverse-Document-Frequency (TF-IDF)
rescoring of bag-of-words (Galley et al., 2003) and features derived from generative topic
models like Latent Dirichlet Allocation (LDA, Ried! ¢ Biemann, 2012). More recently,
these topic features have been replaced with sentence representations extracted from large
language models (LLMs), again apparently showing improvements (Ghinassi, 2021;
Harrando & Troncy, 2021; Solbiati et al., 2021).

Another early approach used the distance between sentence representations in a
dynamic programming framework. Similarly to TextTiling, initial work used bag-of-words
sentence representations (Utiyama & Isahara, 2001), with later literature substituting them
with representations from topic models (Misra et al., 2011; Sun et al., 2008; Choi, Wiemer-
hastings ¢» Moore, 2001). Improvements over TextTiling have been variously proposed,
either by using different scoring of similarities (Choi, 2000) or by employing dynamic
programming (Kehagias, Pavlina & Petridis, 2003; Eisenstein ¢ Barzilay, 2008). More
recently, attempts to reframe unsupervised topic segmentation as a next-sentence
prediction task with pre-trained LLMs have showed major improvements (Xing ¢
Carenini, 2021).

With the increasing availability of bigger datasets annotated for topic segmentation,
supervised systems have also started to be proposed. Koshorek et al. (2018) trained a
hierarchical, bidirectional long-short term memory (BiLSTM) neural network to segment
paragraphs in a large Wikipedia corpus, showing good improvements over non-neural and
unsupervised methods. Since then, most literature has focused on using hierarchical
recurrent neural networks (T'sunoo, Bell ¢~ Renals, 2017; Lukasik et al., 2020a; Sehikh, Fohr
¢ Illina, 2018) or, more recently, hierarchical transformers (Lukasik et al., 2020b; Glavas &
Somasundaran, 2020). In recent works, the transformer-based BERT (Devlin et al., 2019)
used as a sentence encoder has been included either to instill additional general knowledge
to end-to-end systems (Xing et al., 2020) or to extract standalone features (Lo et al., 2021).
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Neural sentence encoders

There is no universally agreed term to refer to models that can encode text spanning
multiple words, but here we refer to all such models under the umbrella term of Neural
Sentence Encoders (NSEs), which has been often used in the context of pre-trained models
for tasks such as semantic retrieval, question answering and, generally, tasks for which a
single output is produced for one or multiple sentences (Reimers ¢» Gurevych, 2020a;
Conneau et al., 2017; Cer et al., 2018). This does not necessarily mean that all of the
presented methodologies can be applied just on sentences and in fact these models are
often used to encode text spanning multiple sentences or shorter units. What is common
for all the discussed NSEs, then, is their ability of encoding in a single dense representation
text spanning multiple words.

For many bigger than word-level tasks, in fact, neural models require suitable text
representations. Early approaches used simple averaging of word vectors in a sentence or
paragraph to give a representation of their semantics, and this can perform quite well in
many tasks (Renter, Borisov ¢ Rijke, 2016). More recently, a number of specific neural
models have been proposed, and such an interest in models has arisen that specific
benchmarks have been developed to evaluate their performance on a variety of tasks
(Conneau & Kiela, 2019; Wang et al., 2018).

Among the most successful approaches, the Universal Sentence Encoder (Cer et al.,
2018) provides sentence embeddings from a deep averaging network (Iyyer et al., 2015)
pre-trained on Wikipedia and the Stanford Natural Language Inference (SNLI) corpus
(Bowman et al., 2015). More recent efforts directly used BERT (Devlin et al., 2019) and
similar transformer-based LLMs as sentence encoders (Li et al., 2020), or fine-tuned them
to output better sentence embeddings by using the distance between semantically related
pairs of sentences as an additional training objective (Reimers ¢» Gurevych, 2020a).

Especially, these latest transformer-based encoders have shown state-of-the-art results
in tasks ranging from semantic textual similarity to natural language inference. Very
recently an interest in using such encoders for topic segmentation has also emerged, as
opposed to obtain sentence representations in an end-to-end fashion (Xing ¢ Carenini,
2021; Lukasik et al., 2020a).

Recent works have used NSEs in the context of the unsupervised TextTiling algorithm
(Ghinassi, 2021; Harrando ¢ Troncy, 2021; Solbiati et al., 2021) or more advanced
unsupervised methods (Xia et al., 2022), while a few also investigated supervised models
built on top of BERT or other LLMs used as sentence encoders (Lukasik et al., 2020a; Lo
et al., 2021). The most recent literature has followed this latter direction experimenting
with efficient fine-tuning of NSEs for the task (Glavas, Ganesh & Somasundaran, 2021)
and using pairs of sentence representations directly for topic boundary classification (Lee
et al., 2023).

As most recent works used just one or two sentence encoders in their experiments, a gap
exists in the literature: no direct comparison exists between the influence of different
sentence encoding techniques on topic segmentation performance under a common
framework.

Ghinassi et al. (2023), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1593 4/34


http://dx.doi.org/10.7717/peerj-cs.1593
https://peerj.com/computer-science/

PeerJ Computer Science

Text similarity and topic segmentation

The majority of machine learning techniques for topic segmentation are based on the
assumption that the similarity between units of text, such as sentences, will be stronger
when they are part of the same topic and will weaken as the topics change (Reynar, 1999).
This idea aligns with theories in discourse structure that see lexical cohesion and
collocation as indicators of local coherence (Halliday ¢» Hasan, 1976), and it also connects
topic segmentation with other tasks, such as semantic text similarity.

Studies have demonstrated the relationship between text similarity and topic
segmentation by evaluating the effectiveness of text similarity metrics as tools for
evaluating topic segmentation systems (Mohri, Moreno ¢ Weinstein, 2009). This strong
correlation is what has justified the use of pre-trained NSEs and neural word embeddings
in current literature (Lo et al., 2021; Alemi ¢ Ginsparg, 2015; Solbiati et al., 2021; Glavas,
Nanni & Ponzetto, 2016); by virtue of their pre-training, dense neural representation at the
word and, especially, at the sentence or paragraph level are in fact optimised to represent
texts pertaining to the same semantic field closer in the embedding space, and this quality
can be variously employed by systems modelling local coherence such as topic segmenters
(Glavas, Nanni ¢» Ponzetto, 2016). Additionally, some recent works have attempted to
directly incorporate the notion of text similarity and lexical cohesion into their models by
using multitask learning (Lo et al., 2021; Xing et al., 2020; Glavas ¢» Somasundaran, 2020).

On the other hand, previous research using hand-engineered features, such as cue
words, has also shown that these more specific features are useful in identifying topic shifts
in domains such as business meetings (Joty, Carenini ¢ Ng, 2013). It is unclear from
existing literature which of these two factors, or what combination of the two, is more
relevant when applying recent NSE-based techniques to different domains.

In our experiments, then, we also aim to determine the lexical cohesion of same-topic
segments under different NSEs and compare how this impacts topic segmentation
performance in different domains.

METHODOLOGY

Basic units for topic segmentation and general pipeline definition
Previous work has variously used words, sentences, utterances or paragraphs as the input
for topic segmentation systems. Recent work has mostly settled on the use of sentences as
the basic units for monologue text (Xing ¢» Carenini, 2021; Lo et al., 2021; Lukasik et al,
2020a; Glavas ¢ Somasundaran, 2020; Koshorek et al., 2018), and utterances for multi-
party conversation (Xing et al., 2020; Solbiati et al., 2021; Xia et al., 2022). Sentences and
utterances, in fact, can be conveniently extracted via rule-based tokenizers or speaker
diarization systems and they have the advantage over word-level segmentation of creating
a less sparse setting for topic segmentation and alleviating the natural class imbalance
involved in this problem (where the no boundary class is far more represented than the
topic boundary one). At the same time, using sentences or utterances is advantageous
when using text representations such as those of interest here, as such units of text are
closer to the original pre-training settings of such models, which often are not capable of
encoding extremely long chunks of text. In this work then we adopt this setting and we
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Figure 1 General pipeline for sentence/speaker turn-level automatic topic segmentation.
Full-size K&l DOT: 10.7717/peerj-cs.1593/fig-1

predict whether a topic boundary occur at the level of each individual sentence (in the case
of monologue datasets) or speaker turn (for dialogue)—see details in the Dataset section.

This approach comes with the obvious limitation of potentially missing cases in which
there might be more than one topic shift inside a single sentence or speaker turn. In all
domains we consider, however, and in the majority of work on topic segmentation the
granularity of the segmentation is much coarser, as we aim to individuate thematic units
that typically span multiple sentences. The annotations for all the datasets we used,
therefore, never included multiple topic boundaries in a single sentence, justifying the use
of sentences as basic units.

In general, Fig. 1 shows a typical pre-processing and modelling pipeline for a modern
topic segmentation system, which is the pipeline we adopted in all our experiments.

In such a pipeline, the input (a monologue text or a multi-party conversation transcript)
is first tokenized into sentences or speaker turns S := {so, 1, ..., s, }, which serve as input
to a feature extractor, ®. This feature extractor can be as simple as a one-hot encoder (as in
the original TextTiling algorithm), a NSE or any other suitable function which can
vectorize the input text such that ®(S) = E := {eo, ey, ..., e,}, where e; is the vectorized
form or embedding of the input text s;. Such embeddings serve as input for a machine
learning model, ¥. This model outputs a series of binary decision labels ¥ (E) :=
{J0, 91, ..., Jn}, where a topic boundary occurs at s; when y; = 1. A series of k topic
segments TS := {Ty, T, ..., Tx} are then obtained such that each T; = {s,, 51, ..., Sytm}
where y,_; = 1 and y,.,, = 1, as the sentences enclosed between two positive topic
boundary labels constitute a topic segment.

Specifically, we have used the popular punkt sentence tokenizer (Bird ¢ Klein, 2009) to
extract sentences for our monologue datasets (Wikisection and BBC), while we have used
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The models, each pre-trained on the
respective target dataset, are publicly
available at: https://huggingface.co/
ighina/roberta_topseg_wiki (pre-trained
on Wikisection), https://huggingface.co/
ighina/RoBERTa_TopSeg BBC (pre-
trained on BBC3000) and https://
huggingface.co/ighina/RoBERTa_
TopSeg_ QMSUM (pre-trained on
QMSUM).

We used the sentence_transformers
library for extracting para-xlm and
GloVe-based sentence embeddings
(https://www.sbert.net/index.html), for
BERT and RoBERT4, the torch imple-
mentation from huggingface was used
(https://huggingface.co/docs/
transformers/model_doc/bert), for DAN
and USE the implementation from ten-
sorflow_hub (https://tfhub.dev/google/
universal-sentence-encoder/4), while for
infersent and SimCSE we used their
official implementation respectively
(infersent: https://github.com/
facebookresearch/InferSent; SimCSE:
https://github.com/princeton-nlp/
SimCSE).

the provided speaker turns as basic units when using the multi-party conversational
dataset (QMSUM).

Neural sentence encoders

As mentioned, previous works experimented with some NSEs in the context of topic
segmentation. These early attempts did not focus on explicitly comparing different
encoders; to do that, in this work we compare 13 different NSEs of which four pre-date
large transformer-based language models, six are derived from the popular transformer
encoder BERT (Devlin et al., 2019) and its optimized version RoBERTa (Liu et al., 2019),
while the last 3 are versions of RoBERTa further fine-tuned on semantic similarity, natural
language inference and topic segmentation tasks respectively.

The last encoder, specifically, consists of the ROBERTa pre-trained model which we
further fine-tuned for topic segmentation and constitutes a novel contribution in terms of
NSE', while for all the other models we used the original implementations and pre-trained
weights’. The encoders we use are described in more detail below:

Universal Sentence Encoder V4 (DAN): This architecture from the universal sentence
encoders’ family consists of a deep averaging network (DAN) that simply averages word
embeddings as an input for sentence-level pre-training. This network has been pre-trained
on the tasks and with the methodologies described by Cer et al. (2018) and briefly
mentioned above. The model proved to be very competitive in a variety of benchmarks for
semantic text similarity, outperforming BERT and static word vector averaging.

Universal Sentence Encoder V5 (USE): This architecture from the universal sentence
encoders’ family consists of a transformer encoder pre-trained in the same way as the more
compact DAN architecture (Cer ef al., 2018). We abbreviate this architecture as USE to
distinguish it from the DAN variant.

Infersent (Inf): The infersent architecture was proposed by Conneau et al. (2017) as one
of the first attempts to create general-use sentence encoders. It consists of a BILSTM
network with max pooling over GloVe word embeddings and it has been pre-trained on a
natural language inference task, which proved to be beneficial for training sentence
encoders (see also SImCSE below).

Average GloVe embeddings (GloVe): This is a very common baseline for sentence
encoders that simply averages word embeddings inside a sentence, in this case using GloVe
word embeddings (Pennington, Socher ¢ Manning, 2014). This approach has been shown
to be a good baseline on different benchmarks, managing to beat BERT CLS token (see
later) on many tasks, while performing significantly worse than universal sentence
encoders and fine-tuned transformers like Para-xIm (below) (Reimers &> Gurevych, 2020a).

BERT CLS token (BERT,;): This encoder uses the native sentence encoding capability
of BERT: the CLS token that is included at the beginning of each sentence during
tokenization. Using this token improved results in many sentence-level tasks, as reported
by the original article (Devlin et al., 2019). However, the adequacy of this token alone to
encode the semantic meaning of a sentence has been questioned by Reimers & Gurevych
(2020a), who provided empirical evidence to show that fine-tuning BERT was desirable for
semantic text similarity tasks, and that otherwise BERT performance on multiple
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benchmarks is even worse than the simple averaging of GloVe embeddings: we would
therefore expect this encoder to perform the worst.

BERT first-last layer average (BER T —145¢): In this configuration, we followed Huang
et al. (2021) and used the average of the first and last layer of BERT for each input sentence
as sentence representations. Reimers ¢ Gurevych (2020a) already reported that in the
context of sentence encoding the average of all token embeddings output by BERT yielded
better results than using the CLS token, but Huang et al. (2021) further showed that
averaging the first and last layer (rather than just the last) yielded better, more stable
results. In this context we want to see if BERT’s CLS token is consistently worse also in
topic segmentation.

BERT second to last average (BERTecondaiast): To match the setting of Xing ¢ Carenini
(2021) we include this pooled representation from BERT that averages the second to last
layer and it is suggested as a better sentence representation by the authors of bert-as-
service software (https://bert-as-service.readthedocs.io/en/latest/).

RoBERTa CLS token (RoBERTa): RoBERTa has been proposed as a robustly
optimised version of BERT, capable of outperforming the original BERT in a variety of
tasks (Liu et al., 2019). Here we compare the CLS token obtained from RoBERTa with the
one obtained via standard BERT.

RoBERT?a first last average (RoOBERTags;1a5t): As with BERT, we experiment with
Huang et al. (2021)’s pooling strategy of averaging first and last layers, to compare with the
standard CLS token.

RoBERTa second to last average (ROBERT asecondaiast): As with BERT, we include the
average of the second to last layer, highlighted as a better representation by the authors of
BERT-as-a-service.

Paraphrase-xlm-r-multilingual-vl (Para-xlm): This model derives from RoBERTa,
but here the sentence representation is obtained by averaging all output tokens from the
last layer of the ROBERTa model. The model is further fine-tuned on a dataset of
paraphrases to make vectors of paraphrases closer to each other in the embedding space, as
described by Reimers ¢» Gurevych (2020a). This encoder also has the advantage of being
able to produce embeddings for more than 50 languages, thanks to the additional
knowledge distillation described by Reimers ¢ Gurevych (2020b). Encoders using this pre-
training approach have been shown to improve over previous encoders such as universal
sentence encoder on standard benchmarks for semantic text similarity evaluation (Reimers
¢ Gurevych, 2020a). This encoder is the best among the ones we experimented with
according to these standard evaluations.

SimCSE RoBERTa (SimCSE): This encoder is a version of RoOBERTa architecture fine-
tuned with a contrastive unsupervised objective described by Gao, Yao ¢ Chen (2021). The
sentence information are summarised by the CLS token of the original ROBERTa, which is
fine-tuned with the objective of making entailing sentences closer in space and
contradicting ones further apart, via the contrastive objective described by Chen et al.
(2020). We used the pre-trained model from the official implementation: https://github.
com/princeton-nlp/SimCSE. By using SimCSE and Para-xlm we aim to test whether those
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Table 1 Sentence encoders used and relative characteristics.

Encoder GloVe InferSent USE/DAN BERT ROBERTA Para-xlm SimCSE TopSeg
Embedding size 300 4,096 512 768 768 768 768 768
Train domain General General General General General PR NLI In-domain

pre-training strategies that improve performance of sentence encoders for a variety of
other tasks (Reimers & Gurevych, 2020b; Gao, Yao ¢ Chen, 2021) can also lead to better
performance in topic segmentation.

RoBERTa topic segmentation (TopSeg): We further include a NSE specifically pre-
trained for topic segmentation in the target domain. To do so, we employed the training set
of each dataset we used to fine-tune RoOBERTa with the objective of making sentences (or
speaker turns in the case of QMSUM) from the same topic segment closer in the
embedding space. This encoder draws from the evidence collected by Xing ¢ Carenini
(2021) and Glavas & Somasundaran (2020), who added an additional loss to their topic
segmentation system to directly model the fact that embeddings from the same segment
should be closer in space as opposed to embeddings from different segments. Glavas ¢
Somasundaran (2020) achieved this by randomly shuffling the input sentences and having
a disciminator recognising the shuffled input together with the topic boundaries, while
Xing et al. (2020) added a discriminator predicting whether two consecutive segments were
supposed to be in the same segment or not. In both cases, the authors showed improved
performance resulting from the additional loss, suggesting that this was a consequence of
the model learning some notion of local cohesion (in both cases, they referred to it as
coherence). In our case, we disentangle the task of having the model predict whether two
sentences came from the same segment from the downstream task of topic segmentation.
We did so by fine-tuning RoBERTa first on the objective of representing sentences from
the same segment closer in space and sentences at the boundary of two different segments
further in the embedding space. We then froze the resulting fine-tuned RoOBERTa model
and, as with the other NSEs, we used the features extracted from the pre-trained encoder to
train the topic segmentation system. In fine-tuning, we minimised the following loss:

@ — € €l
leill2 - [lei1]]2

label(i;i+1) — 2 (1)

where e; and e;;; are two adjacent embeddings corresponding to sentences i and i + 1
respectively and label;;, ) = 0.5 if they both belong to the same segment, otherwise
label ;1) = —1. The values of 0.5 and —1 were used in order to give higher weight to the
cases in which embeddings belong to different segments, as these cases represent the
minority class.

Table 1 summarize the information of the different encoders used in our experiments,
including information about their training domains and their embedding sizes.
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NSE-based topic segmenters
Below we present the topic segmentation models using NSEs, alongside with a description
of how they work and (if applicable) how they were trained.

Unsupervised topic segmentation system
DeepTiling (Ghinassi, 2021): this system implements the classic TextTiling algorithm, but
using neural sentence embeddings instead of the bag-of-words features used in the original
implementation.

Having a NSE @ and an input document consisting of a sequence of sentences or
speaker turns S := {so, 51, ..., S, }, we first compute each embedding e; = ®(s;), then
having a fixed parameter w, we compute a left context for sentence i as:

bl; = w (2)
w

(that is, the average of w embeddings on the left of the given sentence); and, similarly, a
right context:

Zi*ﬂ\.’ e
br; = &=l (3)
w
Given these two contexts, we compute a score:
bl,' . bl‘i
score; = ———— (4)
" Ib| - [
Having all such scores we compute so-called depth scores for each one as:
score; + score, + 2score;
dS,' _ 1 r i (5)

2

where score; is defined as the first peak score on the left of the current score score; and it is
found as the first score such that

score;, < score; > scorejq (6)
with [ <i, while score, is the first peak score on the right of score; such that
score,, << score, > SCore, (7)

with > i.
Finally, a topic boundary is output for each ds; > threshold where threshold is a custom
parameter, as w both of which we tuned on training set. Figure 2 shows the model visually.

Supervised topic segmentation system
NSE-BiLSTM: As a simple supervised system, we adopted the architecture of Koshorek
et al. (2018) and substituted the word-level BiLSTM network with NSE.

Having one of the encoders ® described above and defining BiLSTM as a stack of n
BiLSTM layers yielding vectors of dimension h, Softmax as the softmax function and
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Figure 2 DeepTiling model. (A) Shows the process of finding the scores for sentence 1, while (B) shows
the process of computing the depth scores from the scores from figure (A) and then using them to output
a decision about topic boundaries in case the score is bigger than the given threshold.

Full-size K&l DOT: 10.7717/peerj-cs.1593/fig-2

W € R"™! being the weights of the final classification layer we compute the posterior
probabilities of each input

¥ = Softmax(WTBiLSTM(E)) (8)

where E := {ey, e}, ..., e,} is the sequence of embeddings, each corresponding to a
sentence, as extracted by the current encoder ® and the probabilities ¥ := {y0, J1, ..., Vu}
represent the probabilities of being the end of a topic segment that the model attributed to
sentences 0 to n respectively.

Each sentence encoder @ is not fine-tuned, acting just as a static feature extractor.

An output boundary is outputted when y > threshold: where 0.05 < threshold < 0.95
and threshold is optimised by grid-search on validation set during training.

Figure 3 shows the proposed model visually.
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Figure 3 NSE-BiLSTM model architecture. Full-size E&] DOTI: 10.7717/peerj-cs.1593/fig-3

Non-NSE-based topic segmenters

For completeness we also evaluate how our NSE-based models perform compared to other
models having the same structure but non-neural or word-level input features. Specifically
we include the following Non-NSE baselines:

Unsupervised topic segmentation systems
TopicTiling (Ried] ¢» Biemann, 2012): An alternative version of TextTiling using the topic
ID assigned to each word with highest probability by an LDA model to build the sentence
vectors.

TextTiling (Hearst, 1994): The original TextTiling algorithm. The main difference with
DeepTiling and TopicTiling is that the input features are sparse vectors with absolute word
counts in each sentence.

Supervised topic segmentation system
TextSeg (Koshorek et al., 2018): This model is the same as NSE-BiLSTM but for a word-
level BiLSTM network modelling Word2Vec word embeddings (Mikolov et al., 2013) to
create sentence representations. This lower-level network passes each word embedding in a
sentence to two recurrent layers with 256 hidden units and then applies a max pooling
operation over the encoded input to obtain a sentence representation. The sentence-level
BiLSTM, then, is identical to NSE-BiLSTM.

Finally, we include one random and one rule-based baseline:

Binomial: Using the same setting as Koshorek et al. (2018) we included a random
baseline that outputs a sentence-level decision over boundaries based on a binomial
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distribution having 1 probability of success (i.e., a boundary is output), where k is the
average length of segments in the dataset.

Cue Word: This baseline is a simple rule-based method. We automatically detect the
ten most frequent words from the final sentence (excluding function and stop words) of
each segment in the training set and we then derive a rule to create a new segment where at
least one of these words is detected. This method, as we will see, can be surprisingly
effective in scenarios in which segments tend to end with a formulaic expression, such as
those appearing in certain news shows.

Datasets

We used three datasets covering a range of domains: face-to-face meetings (QMSUM),
written articles (Wikisection) and TV news broadcasts (BBC3000). The datasets have been
chosen to cover the type of domains in which topic segmentation has been traditionally
investigated: the conversational domain, where usually datasets extracted from business
meetings have been used (Janin et al., 2003; Solbiati et al., 2021; Xia et al., 2022); the books
or articles domain, which is the most usual domain of experimentation in the field given
the convenience of automatically obtaining datasets by scraping articles from Wikipedia
(Koshorek et al., 2018; Arnold et al., 2019); and the media domain, where most work has
focused on segmentation of structured radio or TV programmes such as news shows
(Ghinassi et al., 2023; Wang et al., 2012; Sehikh, Fohr & Illina, 2018). The three datasets we
used and that we describe in more detail below, then, can be seen as representative of these
three domains, as all but the last are very popular datasets in the respective literature, while
the last dataset represents the media domain, where datasets are usually private due to
copyright issues.

QMSUM (Zhong et al., 2021): This dataset was introduced in the context of meeting
summarization and aggregates three smaller datasets from multiple domains: ICSI (Janin
et al., 2003), a dataset of real-world academic meetings, AMI (Carletta et al., 2006), a
corpus of simulated business meetings, and a third dataset of parliamentary committees
meetings from Wales and Canada’s parliaments, that was newly annotated by the authors.
As such, the dataset covers a range of domains, but all in a conversational setting, which
proved to be more challenging for topic segmentation (Solbiati et al., 2021). The dataset
includes 232 meetings and provided a standard training, validation and test set. Each
meeting is annotated with summaries and, crucially, with the topic currently being
discussed. From the topical annotation, topic boundaries can then be derived to train a
topic segmentation system, as shown in the original article (Zhong et al., 2021). Speaker
turns are provided by the author and we use the utterances thus defined instead of
sentences when using this dataset.

Wikisection (Arnold et al., 2019): Wikisection was recently proposed as a dataset for
topic segmentation and classification in both German and English. The dataset was
obtained by scraping Wikipedia articles from two different domains: medical and
geographical (specifically, articles about cities). The ground truth topic boundaries are
obtained by exploiting the headers present in the original HTML files. We follow Xing ¢
Carenini (2021) and we consider only topic boundaries occurring between headers of level
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Table 2 Statistics from the datasets used.

Statistics QMSUM Wikisection BBC3000
Num. Segs 1,286 90,048 32,074

Av. Seg length 96.93 + 6.11 14.00 £ 0.12 22.00 + 0.19
Segs per Doc 5.54 £ 0.26 3.93 £ 0.03 10.77 £ 0.11

1 and 2 (therefore excluding any boundary between sub-topics). We used just the English
partition of the dataset and exclude any article not having topic boundaries when
considering just the headers described before.

BBC3000: This is a private dataset consisting of 3,077 transcripts from news shows
aired on the BBC news channel between 2014 and 2020. The training set consists of 2,707
such documents, while the test set includes the last 270 shows. In addition to the already
provided train-test split, we used 270 shows from the train set to create a validation set, by
extracting one show every 10. The transcripts were created manually by expert annotators
and, therefore, they are reliable in terms of both content and punctuation.

Table 2 shows some statistics from the three datasets used. Notice how QMSUM has
extremely long segments compared to the other two datasets, while Wikisection is by far
the biggest dataset.

Evaluation

Most works in the field, use the Py metric (Beeferman, Berger ¢» Lafferty, 1999) to evaluate
topic segmentation models. Py gives a measure which does take into account how close the
segmentation is to the ground truth on average, but has been reported to be untrustworthy
in a number of contexts (Georgescul, Clark & Armstrong, 2006) and, as such, better options
such as WindowDifference (Pevzner ¢ Hearst, 2002) has been developed during the years.
Existing literature still mostly use the outdated P metric. To have a more trustworthy
evaluation, we used the Boundary Similarity metric developed by Fournier (2013).
Boundary Similarity employs the well-known minimum edit distance algorithm to obtain
the minimum operations required to get from a hypothetical segmentation to the reference
one. Each operation has a specific weight, where transposition of nearby boundaries are
not penalised as bad as addition, deletion or direct substitution of an incorrect boundary.
We keep the default value of 2 for the parameter controlling how close an incorrect
boundary has to be in order to be considered a near miss.

EXPERIMENTAL SETUP

Each of the three datasets have been split into a training, validation and test set and each
model we present is trained and tested independently on each dataset using the
corresponding partitions; when we report results for NSE-BiLSTM for QMSUM, for
example, such results were obtained from the test set of that dataset with a NSE-BiLSTM
model trained on QMSUM’s training set and optimised on QMSUM’s validation set. The
same applies to all baselines (more details for the individual models are found below).
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For every NSE-BiLSTM and TextSeg experiment we used 256 hidden units and two
recurrent layers, to match the original configuration of Koshorek et al. (2018). Learning
rate was set to 0.001 and the Adam optimization algorithm (Kingma ¢ Ba, 2015) was used
with a scheduler reducing the learning rate by a factor of 0.1 in case of no improvement on
validation set loss over 10 epochs. A batch size of 8 was used for every experiment and we
stopped training after 20 consecutive epochs without improvements on validation set’s
boundary similarity.

For the unsupervised systems, we have found the optimal values for threshold and
window size on the training set of each dataset and encoder via grid-search over the following
sets of parameters: window € {1,5,15,25,75} and threshold € {0.5,1.5,2.0,2.5}.

For TopicTiling, we first fitted a topic model with 50 hidden topics on each respective
training set and then used that to obtain posterior probabilities for the words in each
dataset. Before fitting TextTiling and TopicTiling, stop words were removed and
lemmatization was applied.

Finally, we also tested the hypothesis of the results of the best performing of our models
for every dataset being significantly better than the best performing baseline from the
relative dataset, by using a two-sample hypothesis testing for mean difference via
bootstrapping the difference in average test results as explained in Davison ¢ Hinkley
(1997), Chapter 4. We report statistical significance with a p-value smaller than 0.05 by
marking the best result from our models with an asterisk (*) (or not marking it, in case of
non-significance).

BASELINE COMPARISON

Tables 3 and 4 report the results we achieved with our encoders for each dataset and NSE-
based model, as well as the baseline results. Table 3 reports results obtained with the
supervised systems, while Table 4 shows the results obtained with the unsupervised and the
random models.

A general look at the table confirms that the answer to our first question is positive:
NSEs seem to outperform all of the baselines, as at least one of the neural sentence
encoders proposed always perform better than the baselines based on word-level or non-
neural features.

If we compare DeepTiling with the other two unsupervised baselines, TextTiling and
TopicTiling, we see that in fact all NSEs perform better than the baselines, except for the
very good performance of TextTiling in BBC3000 which places it in 6th position.

In the case of TextSeg, the baseline model is competitive with NSE-BiLSTM in
Wikisection and BBC3000, where it beats most non-transformer NSEs. In Wikisection the
supervised models using transformer-based encoders lead to improvements over this
baseline and the best configuration using TopSeg encoder significantly outperforms
TextSeg.

In the case of BBC3000 dataset, instead, using TextSeg leads to mostly better results than
NSE-based models and, even though, the best NSE configuration is marginally better than
the TextSeg baseline, such an improvement is not significant. This evidence is discussed in
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Table 3 Results of supervised topic segmentation models on QMSUM, Wikisection (Wiki) and
BBC3000 (BBC) datasets in terms of boundary similarity for NSE-BiLSTM and TextSeg baseline.

Dataset QMSUM Wiki BBC
NSE-BiLSTM

GloVe 5.79 56.56 81.42
DAN 10.43 57.27 84.86
USE 11.42 57.63 86.05
Inf 13.88 56.04 87.28
BERT 11.83 60.55 88.43
BERTfirst—tast 14.44 59.17 87.60
BERT eondalast 12.84 59.92 88.30
RoBERTas 741 58.73 88.13
RoBERT Gfiyst—jast 16.04* 58.67 88.30
ROBERTaondaiast 14.89 59.84 89.45
Para-xlm 11.67 57.95 86.83
SimCSE 12.07 58.40 8491
TopSeg 14.49 61.24" 87.50
Supervised baseline

TextSeg 10.53 59.31 89.18

Notes:

Higher values indicate better results. Bold font indicates best results on the relative dataset.
“ Indicates results are significantly better than baseline (p < 0.05).

more details later, where the specific case of the news shows domain is analysed in more
details.

For what concerns the conversational domain, TextSeg performs worse than the
majority of the NSE-BiLSTM models but for the ones based on GloVe and, surprisingly,
RoBERTa,;. Using the average of first and last layers for the same RoBERTa model,
instead, leads to the best results, that are significantly better than the baseline. Also if we
look at BERTj; and BERTF;ys;— st We can confirm that the pooling strategy proposed by
Huang et al. (2021) leads to significant improvements in the case of conversational data
such as QMSUM.

A surprising result is that of fine-tuned transformers for BBC3000. In this case they all
underperform with respect to the relative baselines, but for TopSeg being the best NSE in
DeepTiling. This evidence will be further explored in the next section.

As a quick note about the random and rule-based baselines, all models seem to generally
perform better than these settings but for the striking results of Cue Word baseline on
QMSUM and, especially, BBC3000 where it outperforms most unsupervised systems. This
evidence is indeed very interesting and the next sections will expand on this.

SENTENCE ENCODERS COMPARISON
NSE-BiLSTM comparison with DeepTiling

When we compare the various sentence encoders and our two models presented in Tables
3 and 4, we can immediately see how NSE-BiLSTM outperforms DeepTiling in every
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Table 4 Results of unsupervised topic segmentation models and random baselines on QMSUM,
Wikisection (Wiki) and BBC3000 (BBC) datasets in terms of boundary similarity for our
DeepTiling, unsupervised and random baselines methods.

Dataset QMSUM Wiki BBC
DeepTiling
GloVe 2.96 24.02 15.69
DAN 4.65 25.34 22.04
USE 4.17 25.71 23.49
Inf 3.74 22.94 13.35
BERT 2.82 2291 25.25
BER Tt tagt 2.56 23.29 12.73
BERT second2last 2.81 23.12 14.34
RoBERTa, 3.51 20.53 18.03
ROBERT st ast 3.26 19.92 22.49
RoBERT agecondniast 3.26 21.73 21.65
Para-xlm 493 25.75 21.48
SimCSE 4.86 27.39 21.68
TopSeg 12.22% 31.98* 69.55"
Unsup. Baselines
TopicTiling 0.63 8.39 11.87
TextTiling 2.95 16.30 21.82
Other baselines
Binomial 1.28 8.73 5.00
Cue word 3.60 11.46 26.07
Notes:

Higher values indicate better results. Bold font indicates best results on the relative dataset.
Indicates results are significantly better than baselines (p < 0.05).

setting, proving the superiority of supervised approaches for the task, when training data is
available.

Transformers-based encoders comparison with other architectures
In terms of encoders used, Transformer-based encoders generally outperform the
alternatives, in line with existing literature on sentence encoders. GloVe consistently
performs the worst when used with NSE-BiLSTM, with the only notable exception of
Wikisection, where Infersent is marginally worse even than GloVe.

If we look at the ranking of the encoders for DeepTiling or even at the ranking of
Transformer-based encoders for NSE-BiLSTM, however, we realise that results contradict
existing literature in many respects.

DeepTiling seems to benefit from GloVe embeddings more than from RoBERTa
(Wikisection) or BERT based ones (QMSUM): this seems at odds with the evident
superiority of those methods when using a supervised approach, while also contradicting
the ranking of these encoding methods in existing benchmarks for sentence encoder
evaluation. Different pooling strategies for BERT and RoBERTa do not necessarily
improve results when looking at DeepTiling, while NSE-BiLSTM largely confirm that
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averaging different layers result in better results than simply using the CLS token; a notable
exception to this rule, however, can also be seen in the supervised results of BERT CLS,
which is the best among the non fine-tuned encoders.

Fine-tuned RoBERTa comparison with other encoders

Looking at the fine-tuned RoBERTa models, it can immediately be seen that in general
fine-tuning the basic model yields bigger improvements for DeepTiling rather than for
NSE-BIiLSTM. A striking result is the fact that TopSeg does not perform the best when
coupled with NSE-BiLSTM for QMSUM and BBC datasets. As the encoder is specifically
fine-tuned on the topic segmentation task we would have expected that setting to always
score the best.

This is indeed the case when looking at DeepTiling, that is hardly surprising considering
that in fact the cosine distance between adjacent embeddings is at the base both of the pre-
training strategy and of the unsupervised algorithm. Using TopSeg with DeepTiling, then,
is equivalent to injecting information into the model in a supervised fashion, which
obviously gives a great advantage to this setting when compared with the other totally
unsupervised ones.

Dataset comparisons

The discrepancies between literature on neural sentence encoders and the use of the same
in topic segmentation are evident in the fact that methods such as SimCSE and Para-XLM
do not seem to yield any consistent improvement over the non fine-tuned baselines and
this is true both when looking at NSE-BiLSTM and (in a smaller measure) DeepTiling
models.

The fact that transformer-based models tend to be better instead conforms to what we
could have expected and suggest that maybe a better interpretation of the results can be
achieved by thinking at each individual dataset.

The three domains we are looking at, in fact, present notable differences with each
other, and the internal segment coherence might have a very different role in a
conversational setting such as QMSUM and a text-based benchmark like Wikisection. This
is evident when we look more closely at the varying degree of success that a simple rule-
based baseline like Cue Word can have in different datasets. The simple baseline performs
worse than any other system for a dataset like Wikisection, it is competitive in QMSUM
and it actually outperforms every DeepTiling configuration but the TopSeg one for
BBC3000.

We hypothesise that part of the reason for this phenomenon lies in the fact that certain
domains present more conventional, formulaic ways of terminating a topic than others. In
news shows, especially, repetition of the name of the channel or a greeting to the current
reporter are both common ways in which a segment might end, while in a meeting various
disfluencies such as “um” or fillers such as “right” tend to appear more often towards the
end of discussing a topic, as there are fewer things left to say and interlocutors start to
consider whether they forgot something (Purver et al., 2006).
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The same logic highlighting the importance of specific cue words for achieving good
segmentation results in certain domains is certainly to be linked to the good results of
TextSeg for BBC3000 shown in the previous section. TextSeg is a hierarchical supervised
system modelling word-level embeddings. At the same time, it uses a max pooling
approach to create sentence representations from words (Koshorek et al., 2018) and later
research has shown that using an attention-based pooling approach yields considerable
improvements (Xing ¢» Carenini, 2021). All of this is likely to be related to the fact that
hierarchical supervised models benefit from focusing on specific cue words, which, in cases
like BBC3000, might make them competitive with models building on semantically richer
features like NSE-BiLSTM.

The factors leading to a specific model or neural sentence encoder outperforming
another one in topic segmentation, therefore, are not limited to how well that encoder can
encode similar texts closer in space, as supervised systems such as NSE-BiLSTM and,
especially, TextSeg might actually focus more on individuating specific transition marks,
while even a model like DeepTiling might perform well enough thanks to a closing
sentence being on average further in the embedding space from other sentences.

In the next section, then, we introduce a novel method to quantify the cohesion of
ground truth segments under each dataset and each embedding. By correlating this
quantity with our results we aim to isolate the influence of embeddings’ coherence on topic
segmentation results, so to better answer the point raised above.

SEGMENTATION COHESION COMPARISON

ARP scores

Recent work in topic modelling has showed how simple clustering performed on top of
sentence embeddings is an effective way of obtaining coherent topics that can in many
cases perform better than more complex neural and traditional topic models (Angelov,
2020; Zhang et al., 2022; Sia, Dalmia ¢ Mielke, 2020; Grootendorst, 2022). At the same
time, we already described how NSEs have been used in the context of topic segmentation
with the rationale of having features that can better capture the lexical cohesion indicating
a common theme, where a better representation in this case implies encoding topically
similar sentences closer in the embedding space (leading to such sentences having a higher
text similarity score). Sentence embeddings that are able to correctly represent the
underlying semantic field of a common topic, then, would start to deviate from previous
ones as the topic change and this is exactly the intuition behind unsupervised approaches
such as DeepTiling (Ghinassi, 2021).

Therefore, we quantify this phenomenon directly in the embedding space as the total
variance of a group of embeddings that are supposed to be in the same segment according
to ground truth topic segmentation labels (intra-segmental variance). When compared to
the variance of embeddings from different, adjacent segments (inter-segmental variance),
this can give us an idea of how well each encoder can embed individual sentences from the
same segment to be closer in the embedding space as opposed to sentences from different
segments. Secondly, by comparing such a quantity of relative proximity to downstream
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3 .
A comprehensive summary of such
metrics can be found in Rider, Both ¢
Hinneburg (2015).

topic segmentation results, we can draw conclusions about the importance that encoding
same segment closer in space has in different domains.

More formally, we define Average Relative Proximity (ARP) as a metric to evaluate the
overall coherence of segments in the embedding space. The method first computes the
intra-segmental variance:

intravar = ||std(Eq,)||” )

where E,, is a set of embeddings in a same segment. It then computes the inter-segmental
variance with the next segment:

intervar = ||std(Es,)||? (10)

where E,,, includes embeddings in E,, and embeddings in the following segment.

In order to overcome the standard deviation bias of getting bigger for smaller samples,
we force the intra-variance to be computed on a collection of embeddings having the same
length as the ones from which the inter-variance is computed. This is simply done by
adding a cutting point cut = |E;|/2 where |E,| is the length of the current segment, so that

E;, = E;and E;,, = Ef“t:‘E‘ ® E?jf{”, with E;y; being the next segment and @ representing

concatenation.
The two scores are aggregated to obtain a single score representing the relative
proximity (RP) of embeddings belonging to the same segment. We compute it as

intervar — intravar
RP = 100 X - : ) (11)
intervar + intravar

While the constant 100 serves solely the purpose of better visualisation, the
normalization factor (i.e., the sum of the two variances) forces the score in the range of
—100 to 100 and both extremes have a unique interpretation. RP = —100 corresponds to
the case of maximum distance between embeddings in the same segment and maximum
proximity of embeddings in between segments (worst case). RP = 100 corresponds to the
case of maximum proximity between embeddings from the same segment and maximum
distance of embeddings from different segments (best case). RP = 0 is when there is no
difference between the intra and inter-distance of the analysed embeddings.

The ARP score on a dataset with a specific sentence encoder is then obtained by simply
averaging all the relative proximity scores

ARP =

SR RP(i) (12)
seg
where N, is the total number of segments in the dataset.

The ARP method thus defined can highlight the relative cohesion of a sequence of
topically coherent segments. The method differs from previous coherence measures used
for topic modelling evaluation’ in that ARP serves the different purpose of highlighting the
inner coherence of consecutive document-level topic segments, while other coherence
measures usually highlight the internal coherence of individual corpus-level topics. As
such, this specific coherence score reflects the specific situation of topic segmentation,
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where we want to infer the boundaries of existing topic segments, rather than classifying
the entire document into (often) overlapping topics underlying the entire corpus.

Dataset comparison

Table 5 shows all the ARP scores for each dataset and encoder we used, using the ground
truth to obtain the true segments and compute the various inter and intra-segmental
variances. In the table we also include the ARP score obtained with the same setting but
using random segments rather than the ground truth ones, while the third column
explicitly shows the ranking of each encoder in the relative dataset in terms of ground truth
ARP scores.

While the ranking can tell us which encoders seem to be more successful in encoding
coherent segments, showing the ARP score for random segments is useful to check that
indeed the ARP scores for any given setting are better than random.

In this way we can immediately see that this condition holds true for all the encoders in
Wikisection and BBC, but not for the worst performing encoders in QMSUM. This
evidence is likely to reflect what we observed in the previous section about this dataset and
its conversational nature. In conversation, given the numerous disfluencies and speech
acts, we do expect embeddings to be distributed more randomly within the same segment
and the low ARP scores are indeed a strong confirmation that this is happening and, as a
consequence, the ability of encoders to embed intra-segmental sentences closer in space
might be less relevant in this context.

The same can be observed for BBC3000; even though all sentence encoders are able to
encode intra-segmental sentences closer in space, resulting in positive and significantly
greater than 0 ARP scores, the magnitude of the scores is quite low compared to what we
can observe in the case of Wikisection, once more reflecting a lower intra-segmental
coherence in that dataset/domain.

Correlation of ARP scores with topic segmentation results
We can further confirm the above intuition by looking at Fig. 4, where the correlation
between our topic segmentation systems and the relative ARP scores is displayed. NSE-
BiLSTM and, in a smaller measure, DeepTiling results for Wikisection are all quite
strongly correlated with the ARP scores, while this is not so clear for the other two datasets.
The correlation between DeepTiling results for BBC3000 and its ARP scores is actually
extremely high, while it drops to a very weak correlation for NSE-BiLSTM. Overall, this
seems to hint at the fact that a supervised system in this context does not focus much on
the coherence of the embeddings’ sequence as other information contained in single
embeddings might be enough to solve the task satisfactorily (see the high boundary
similarity obtained by the rule-based method for this dataset). Appendix A further
illustrates this.

QMSUM, instead, consistently shows relatively weak correlation between ARP scores
and topic segmentation results, further confirming what we observed before.
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Table 5 ARP scores for every sentence encoder and dataset.

Dataset Encoder ARP (Ground Truth) ARP (Random Segment) ARP ranking
Wikisection  GloVe 4.10 0.03 6
DAN 2.25 0.03 13
USE 2.45 0.01 12
Inf 3.59 -0.07 9
BERT 5.81 0.01 2
BER Tyt tast 4.08 -0.02 7
BERT secondzlast 5.77 -0.01 3
RoBERTa 5.05 -0.01 4
ROBERT @it tast 333 0.07 10
RoBERT Gsecondaiast 4.72 0.03 5
Para-xlm 2.70 0.04 11
SimCSE 3.81 -0.01 8
TopSeg 12.15 -0.26 1
BBC3000 GloVe 1.12 0.06 12
DAN 1.25 -0.02 10
USE 1.39 -0.02
Inf 1.46 -0.09
BERT,;, 1.56 -0.03 4
BER Tt tast 1.21 0.01 11
BERTecondalast 1.44 0.06 7
RoBERTa 1.76 0.04 3
ROBERT @it tast 1.02 0.03 13
RoBERT Gsecondaiast 1.50 -0.07 5
Para-xlm 1.26 —-0.06 9
SimCSE 2.00 -0.03 2
TopSeg 4.83 -0.02 1
QMSUM GloVe -0.10 0.11 13
DAN 0.13 0.11 10
USE 0.10 0.15 11
Inf 1.50 -0.4 1
BERT,, ~0.09 0.10 12
BERTfirs—tast 0.26 -0.26 8
BERT econdalast 0.34 0.10 7
RoBERTa, 0.70 -0.05 3
ROBERT it —tast 0.43 -0.39 5
RoBERT asecondatast 0.53 -0.31 4
Para-xlm 0.24 0.41 9
SimCSE 0.31 0.02 6
TopSeg 0.91 -0.01 2
Note:

The ARP scores (Ground Truth) column shows the ARP scores computed on the ground truth labels, while the ARP
Scores (Random Segments) column show the scores computed with the same sentence encoder on randomly segmented
input documents. In both cases the higher the ARP score the better a sentence encoder is able to encode same-segment
sentences closer in space as opposed to cross-segment ones.

Ghinassi et al. (2023), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1593 22/34


http://dx.doi.org/10.7717/peerj-cs.1593
https://peerj.com/computer-science/

PeerJ Computer Science

-0

-0.8

wikisection

-07

-0.6

BEC

-05

- 04

-0.3

OMSUM

-0.2

Figure 4 Correlations between the results from NSE-BiLSTM and DeepTiling and the relative ARP
scores computed on ground truth for each sentence encoder. Pearson correlation coefficient has been
used as correlation score. Full-size K&l DOT: 10.7717/peerj-cs.1593/fig-4

Encoder rankings

Finally, we can look at the ranking of the encoders by their relative ARP scores and draw
some conclusions about these as well, while keeping in mind the bigger picture just
described.

In almost every case, TopSeg scores the highest as it has been directly trained for
representing coherent segments in the target domain. We can see that the other two fine-
tuned encoders, Para-xIm and SimCSE, have varying success in the same task, as their ARP
scores are quite low for BBC3000 and QMSUM. A very surprising result is that of Infersent
placing itself first for QMSUM,; even though this would be worth further exploration, this
can also be partly explained by the fact that scores are anyway always very poor in this
dataset. The relatively good performance of Transformer-based encoders, however, seems
to be confirmed also under this metric, as in every case the top three encoders mostly
belong to that category.

If we combine the individual ARP scores with the more general picture that we drew
before when looking at the correlation map with segmentation results, two main points can
be made:

1) Existing sentence encoders pre-trained on large corpora for textual similarity do not
transfer the same good performance to topic segmentation. This is evident by the non-
convincing performance of Para-xIm and SimCSE; while TopSeg trained on the target
domain is able to perform much more convincingly, still simple methods like CLS token
from BERT or RoBERTa perform competively with respect to more ad hoc models. If we
look at the ARP scores in conversational domains, then, it becomes evident that
sentence encoders fine-tuned for textual similarity fail to take into consideration the
longer context and probably to disregard the redundant information that multi-
sentence segments might present, leading to a limited ability to encode same segments
closer in a coherent embedding space.
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2) Even overcoming the limitations described above would not guarantee better
segmentation results, as in certain settings the problem of topic segmentation can partly
be solved by text classification. Where specific cues are present that signal a potential
topic boundary, the importance of encoding the more global coherence of the
underlying text becomes less relevant.

Finally, ARP scores help analysing the encoders under a different light, but could also
work as feature selector as they successfully place in the top three encoders the ones that
end up having the best topic segmentation results 5 out of 6 times. Future work might
explore further the potential of ARP scores in pre-selecting the correct sentence encoders
without the need for any additional training; this direction is especially worth considering
for domains such as written articles like Wikisection, where ARP scores are strongly
correlated with downstream segmentation performance.

Specificity of topic segmentation as a text similarity task
The evidence thus collected has shown that text similarity benchmarks commonly used in
much literature advancing the state of the art of NSEs do not reflect the performance of
those same NSEs on the task of topic segmentation. The ARP scores we defined in this
section further confirm this evidence: even though the score itself is closely related to text
similarity, in fact, it is clear that SimCSE and Para-xlm, both of which have shown good
improvements on standard text similarity benchmarks (Reimers ¢» Gurevych, 2020a; Gao,
Yao & Chen, 2021), do not perform any better than other encoders.

From a qualitative point of view, we can explain this fact via a number of different
factors:

1) Regarding performance on QMSUM, standard benchmarks typically do not involve
conversational data.

2) Notwithstanding this limitation, the semantic granularity needed to solve standard text
similarity tasks is usually finer than that needed for topic segmentation. Topic
segmentation, in fact, aims to find parts of a text related to a coherent semantic field or
domain: even just the fact of identifying such a field is a non-trivial task that might
depend on a certain level of world knowledge (Ferret ¢» Grau, 2000) and it usually
implies semantic connections that are looser than, for example, identifying a set of
paraphrases or whether a sentence entails or contradict another, both of which are
common pre-training strategies for standard text similarity tasks.

Focusing on this last point, especially, we can qualitatively analyse the similarity
assigned by different encoders to specific pair of sentences.

Table 6 shows a number of sentence pairs having different semantic relationships with
each others, as well as the cosine similarity score assigned to each pair by different
encoders.

From the table we can see that different NSEs tend in fact to manifest a different
behaviour in how closely related they consider pairs of sentences. Para-xlm and SimCSE
show a behaviour consistent with traditional semantic text similarity tasks, reflecting their
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Table 6 Qualitative examples of the cosine similarity assigned to pair of sentences by different NSEs.

Sentence 1 Sentence 2 TopSeg BERT,, SimCSE Para-xlm

Paraphrases

Katz was born in Sweden in 1947. Katz was born in 1947 in Sweden. 0.98 0.98 0.98 0.97

NLI

A statue at a museum that no seems to be looking at.  There is a statue that not many people seem  0.86 0.97 0.78 0.78

to be interested in.

Topic segmentation

The highest chimney in Europe is at a power station It stretches more than 1,180 feet into the sky. 0.46 0.97 0.27 0.10
in Slovenia.

Unrelated sentences

Cars are made of steel The sea is blue, the grass is green 0.20 0.92 0.01 0.14

Note:

The first pair are paraphrases. The second pair pertain to natural language inference (NLI), where in this case the first sentence entails the second. The third pair consists
of two consecutive sentences in a topic segment, while the last pair includes two unrelated sentences.

pre-training and they assign high scores to paraphrases and entailing sentences, while they

assign very low scores to the semantically unrelated pair. Both of these encoders assign

very low cosine similarity also to the topically related pair, too, reflecting their relatively

poor performance in downstream topic segmentation.

On the other hand, BERT; give a high score to the topically related pair, but it can be

seen that it assigns a quite high score to the unrelated pair as well, even though

comparatively lower than to the other categories.

The encoder we pre-trained on topic segmentation itself, TopSeg, gives high scores to

Paraphrases, NLI and Topic Segmentation pairs and a low score to the unrelated sentences.

In particular, it can be seen that even though it still scores paraphrases and even entailing

sentences much higher, the score assigned to the pair of sentences from the same topic

segment is considerably higher than the one assigned to the unrelated pair, unlike the case

of BERT.

Even by just looking at the different pairs in the table it is clear how topic segmentation

fundamentally differs from entailing and paraphrasing sentences. While the paraphrases

are clearly about a set of specific entities, in the case of the topic segmentation example, the

relation between the two sentences mostly concern a semantic field that we could loosely

refer to as tallness. The encoder fine-tuned on topic segmentation, then, as well as BERT

seem to encode as important certain collocational relationships (e.g., high, sky), whereas

encoders fine-tuned just on paraphrases or entailment detection might have forgotten this

kind of relationships as part of their specific fine-tuning.

At the same time, it looks like fine-tuning an encoder on topic segmentation as we did

with TopSeg also allows it to recognise totally unrelated sentences in a more convincing

way than using a general pre-trained language model such as BERT, suggesting that topic

segmentation itself could be a valid pre-training strategy for text similarity-related tasks.

Opverall, this section does not aim to give an exhaustive analysis, but these initial

observations together with the analysis carried out so far are a strong indication that topic

segmentation can rely on text similarity, but with a fundamentally different level of
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granularity such that approaches otherwise effective for text similarity fail when encoding
topically related sentences closer in space.

Future research can then draw on these initial conclusions in a variety of ways, such as
exploring topic segmentation as a pre-training objective for general text similarity or
adding the task to existing benchmarks in order to account for such differences in semantic
granularity required.

CONCLUSION

In this work we have evaluated the influence of pre-trained NSEs on topic segmentation. In
doing so, our main contributions have been:

1) We established the superiority of models built on NSEs by drawing a comparison of
such models against existing baselines across different datasets.

2) We presented a systematic comparison of NSEs for the task under a common
framework including one supervised and one unsupervised model. As a result, we
provided a ranking of different NSEs in the context of topic segmentation.

3) We have shown our results on three datasets representing three typical domains in
which topic segmentation is used. By doing so, we have highlighted the differences
between such domains in terms of topic segmentation performance of different models
and NSEs, but also in terms of what the models might focus on in different situations.

4) We also introduced a metric, ARP, to directly evaluate the internal coherence of ground
truth segments under different NSEs.

Our experiments pointed towards the following conclusions with respect to the use of
NSE for topic segmentation:

1) Using NSEs as feature extractors mostly outperforms similar methods based on
hierarchical networks, lexical or topical features.

2) The ranking of NSEs for the task does conform to existing literature on text similarity in
certain respects (transformer-based models outperform other methods), but seems to
diverge from it in others. Especially, models fine-tuned for text similarity and even for
topic segmentation do not perform convincingly better than their non fine-tuned
counterparts. Also, better pooling strategies failed to yield consistent improvements.

3) Following the above conclusion, we have shown that NSEs that perform better for topic
segmentation do not always embed sentences from the same segment closer in space as
opposed to sentences spanning multiple segments, as might be expected under the
assumption that the models capture the underlying topical coherence of the data.
Especially for domains like news shows and especially for supervised models that can
learn what to focus on, this discrepancy is a strong hint towards the fact that topic
segmentation does not always involve recognising the underlying topical coherence. We
hypothesise that in these cases, the recognition of recurrent expressions or even
individual words might be more relevant for good topic segmentation results.

4) Notwithstanding the above, our measure of relative topical coherence also highlighted
how NSEs do a better job in encoding sentences from the same segment closer in space
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when applied on natively textual data like Wikipedia articles, while performance drops
with news shows transcripts, and their capacity to convincingly reduce inter-segmental
embedding variance for meeting transcripts seems practically null. This is probably a
result of the high frequency in this latter domain of utterances that may perform
important dialogue functions but do not contain topical semantic content, and it is per
se an interesting evidence of the limitations of well-established sentence encoders in
such domains.

5) When text similarity plays a role in recognising topic boundaries, it looks like the type of
text similarity involved in such a task is fundamentally different and probably looser
than the one accounted for in traditional benchmarks for semantic similarity. This can
be inferred by the poor performance both in topic segmentation and ARP scores shown
by NSEs that performed very well on traditional sentence similarity benchmarks and it
is further confirmed by qualitative analysis. This last piece of evidence, then, frames the
task of topic segmentation as a fundamentally different task, such that a research
direction worth pursuing is that of including this task in existing benchmarks for text
similarity so as to account for the different levels of granularity at which we want to
consider two pieces of text similar (i.e., thematically/topically similar as opposed to be
direct paraphrases or entailing each others).

Opverall, our contribution is the first to our knowledge to compare different NSEs for
topic segmentation in different domains. In doing so, we highlighted interesting
convergences and divergences with existing literature and we have empirically shown how
the task of topic segmentation might look very different in different domains.

In answering our third question, we introduced ARP scores as an indicator of the
relative coherence of multi-topic documents under different NSEs, measuring the lexical
cohesion of portions of text in the embedding space. This score is a relevant contribution
by itself, as it can work as an effective feature selection method for topic segmentation, but
it can also help answering a variety of other related questions.

Future research might investigate whether the use of ARP scores in conjunction with
datasets such as Wikisection, in which the scores are highly correlated with topic
segmentation performance, could make a good addition to existing benchmarks for
evaluating NSEs performance. The task of topic segmentation, in fact, seems to have
peculiar characteristics that make it different from usual text similarity tasks commonly
used to evaluate NSEs; under this respect, adding the information of how these features
work for topic segmentation could enrich existing benchmarks with a novel angle.

APPENDICES

Appendix A: importance of last sentence for supervised topic
segmentation

From our experiments we could conclude that topic segmentation systems in different
domains might focus on things different from lexical cohesion, especially where specific
cues are present, which might be useful for segmentation.
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Table 7 New Correlation analysis between ARP Scores and the boundary similarity score obtained
by re-training NSE-BiLSTM models on the three different corpora after having excluded the last
sentence for each segment in every training set.

Dataset Correlation coefficient Difference with previous correlation
BBC3000 0.43 +0.31
QMSUM 0.31 -0.08
Wikisection 0.74 +0.02
Note:

Pearson correlation coefficient has been used as correlation score.

This evidence has been indirectly observed by previous literature in, e.g., dialogue topic
segmentation, where cue sentences played a role in a number of proposed systems (Joty,
Carenini ¢» Ng, 2013). Similarly, in the media domain the use of specific cues have been
largely used especially by early models, following the reasoning that in programmes such
as news shows the anchor person tends to use formulaic expressions to move to a different
topic (Emilie & Quénot, 2012; Misra et al., 2010; Kannao & Guha, 2016).

In this appendix to our main work, we further develop on our hypothesis for which
lexical cohesion plays a minor role in automatic topic segmentation systems for domains in
which specific segment-terminal cues are present. To do so, we re-run the NSE-BiLSTM
experiments using the same settings and encoders we used in our main experiments, but
this time we deleted the last sentence of each segment from the training set.

For every dataset, then, we applied a pre-processing step for which we delete all
sentences or speaker turns sﬁ with j corresponding to any index where sentence sﬁ is at the
boundary between two topic segments in the training set document S;. By doing so, we
mask from the model any potential recurring cue phrase that the system could exploit to
decide whether to predict a topic boundary.

Having applied this pre-processing step, we then re-train all the NSE-BiLSTM models
following the same approach and parameters described in the main body of this work.

We then re-run the correlation analysis presented in “Correlation of ARP Scores with
Topic Segmentation Results” to observe how the results from different encoders compare
to ARP scores at this point.

The results from Table 7 clearly shows that for BBC3000 dataset the exclusion of the last
sentence for each topic segment during training lead to the segmentation results for
different encoders being much more correlated to our ARP scores for the same encoders.
The correlation coefficient in fact is about 30 points higher and this evidence, together with
the evidence previously collected, is a strong indicator towards what previously observed
about this dataset. The big change in results, in fact, suggests that supervised models for
this dataset were making a bigger use of localised cues from the last sentences of each
segment, rather than modelling the underlying lexical cohesion of the entire segment.

If we look at Wikisection and QMSUM, instead, we can observe that the correlation
coefficient does not vary significantly and this suggest that in these cases the effect of cue
phrases was less pronounced.
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