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ABSTRACT
We present two multimodal models for topic segmentation of pod-
casts built on pre-trained neural text and audio embeddings. We
show that results can be improved by combining different modali-
ties; but also by combining different encoders from the same modal-
ity, especially general-purpose sentence embeddings with specifi-
cally fine-tuned ones. We also show that audio embeddings can be
substituted with two simple features related to sentence duration
and inter-sentential pauses with comparable results. Finally, we
publicly release our two datasets, the first in our knowledge publicly
and freely available multimodal datasets for topic segmentation.
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1 INTRODUCTION AND RELATEDWORK
Topic segmentation of broadcast material is a useful and well-
known task [26]. Topic segmentation have been traditionally per-
formed on text, but early works combining text and audio also exist
[5, 13, 32]. Early attempts used unsupervised approaches [6, 16] that
have been successfully applied with text neural embeddings (i.e.
sentence embeddings) [15, 30]. Neural audio embeddings have also
been used as input for a Bidirectional Long-Short Term Memory
(BiLSTM) neural network [17] with success [3]. Performing topic
segmentation with neural networks such as BiLSTM [19, 33] and
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Transformers [23, 24] have recently gained momentum thanks to
bigger text datasets [2, 19].

However, while effective models have been developed for audio-
visual content such as TV news broadcasts, often using simple
classifiers on top of visual features [9], no such features are available
for podcast programmes while a renewed interest in automatically
segmenting this type of multimedia content has recently emerged
[1].

In this context, multimodality has been investigated by fusing
word-level text and low-level acoustic features into BiLSTM net-
works [28, 31]: no attempt to combine neural text and audio embed-
dings exists. Multimodal experiments are limited by the fact that no
freely available, recent dataset for multimodal topic segmentation
exists, as the existing ones are either private or not free such as the
TDT datasets [20, 34] which is also more than 20 years old.

In our experiments, we use two datasets that we created for
multimodal topic segmentation and we release them to fille the
existing gap. We use two neural sentence encoders for the text
domain and two neural audio encoders for the audio domain to
extract features. We try two common approaches in literature on
multimodality. Given the relative success of text embeddings alone,
we experiment with concatenating simple duration of sentences
and pauses in between them to the text-only embeddings to simplify
the model.

We show that multimodality can for specific domains lead to
significant improvements. Finally, we assess whether the use of
neural audio embeddings is really justified or if lower-level acoustic
features lead to similar results.

2 METHODOLOGY
2.1 Neural Embedding Models
2.1.1 Sentence Embeddings. We experiment with two different
versions of RoBERTa [22], a popular languagemodel that has shown
good results for topic segmentation [23]. RoB (RoBERTa Average
Pooling): the base version of RoBERTa [22], which is a 12-layer
transformer encoder optimized based on BERT [8]. Top (RoBERTa
Topic Segmentation): RoBERTa fine-tuned on the training dataset
with the objective of making sentences from the same topic segment
closer in the embedding space. The loss function for fine-tuning
is expressed as L = | |𝑙𝑎𝑏𝑒𝑙 (𝑖;𝑖+1) − 𝑒𝑖 ·𝑒𝑖+1

| |𝑒𝑖 | |2 · | |𝑒𝑖+1 | |2 | |2, where 𝑒𝑖 and
𝑒𝑖+1 are the embeddings for sentences 𝑖 and 𝑖 + 1; 𝑙𝑎𝑏𝑒𝑙 (𝑖;𝑖+1) equals
0.5 if the two sentences belong to the same segment, and equals -1
otherwise.
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Figure 1: Unimodal model architecture

For each sentence 𝑖 , the neural model returns multiple sub-word
embeddings, which are then averaged as a single embedding [27],
which is represented as 𝑒𝑇

𝑖
.

2.1.2 Audio Embeddings. We use two pre-trained audio models for
the task of topic segmentation. XVEC (X-Vectors) was proposed by
[29] for speaker diarization. OP (Openl3) was proposed by [7] for
audio classification.

For each sentence 𝑖 , the neural model extracts multiple sub-
embeddings, whose mean and standard deviation are contatenated
as a single embedding, represented as 𝑒𝐴

𝑖
.

2.2 Topic Segmentation Models
2.2.1 Unimodal. Weuse BiLSTM, one of themost popularmodel [17],
for unimodal topic segmentation. In the simplest case, defining
𝐵𝑖𝐿𝑆𝑇𝑀 as a stack of 𝑛 BiLSTM layers yielding vectors of dimen-
sion ℎ, 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 as the softmax function and𝑊 ∈ Rℎ×1 being the
weights of the final classification layer we compute the posterior
probabilities of each input 𝑌 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑊𝑇𝐵𝑖𝐿𝑆𝑇𝑀 (𝐸)) where
𝐸 B {𝑒0, 𝑒1, ..., 𝑒𝑛} is the sequence of embeddings, each correspond-
ing to a sentence, as extracted by the current (sentence or audio)
encoder, and the probabilities 𝑌 B {𝑦0, 𝑦1, ..., 𝑦𝑛} represent the
probabilities the model attributed to sentences 0 to 𝑛 respectively
of that sentence being the end of a topical coherent segment.

We also combine different encoders from the same modality. For
each sentence 𝑖 , the embedding is represented as a concatenation of
output of two encoders 𝑒𝑛𝑐1 and 𝑒𝑛𝑐2 , i.e. 𝑒𝑖 = 𝑒𝑛𝑐1(𝑖) ⊕ 𝑒𝑛𝑐2(𝑖),
where ⊕ denotes concatenation. Figure 1 shows this visually.
2.2.2 Multimodal with neural audio-embeddings. We experimented
with two common modality fusion techniques:

Early Fusion [12] is summarised by the following equation:𝑌 =

𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑊𝑇𝐵𝑖𝐿𝑆𝑇𝑀 (𝐸𝑀 )) but in this case,𝐸𝑀 B {𝑒𝑀0 , 𝑒𝑀1 , ..., 𝑒𝑀𝑛 }
includes all the embeddings 𝑒𝑀

𝑖
corresponding to sentence 𝑠𝑖 and

audio chunk 𝑎𝑖 being obtained as 𝑒𝑀𝑖 = 𝑒𝑛𝑐𝑇 (𝑠𝑖 ) ⊕ 𝑒𝑛𝑐𝐴 (𝑎𝑖 ), where
𝑒𝑛𝑐𝑇 is one or the combination of the two text encoders and 𝑒𝑛𝑐𝐴

Figure 2: Early Fusion model architecture

Figure 3: Late Fusion model architecture

is one or two encoders from the audio modality. Figure 2 shows
this visually.

Late Fusion [14] models the two modalities separately with two
different BiLSTM networks. Having 𝐸𝑇 B {𝑒𝑇0 , 𝑒

𝑇
1 , ..., 𝐸

𝑇
𝑛 } as the

collection of all the sentence embeddings 𝑒𝑇
𝑖
∈ (𝑅)𝑑𝑡 extracted from

the programme transcript’s sentences and 𝐸𝐴 B {𝑒𝐴0 , 𝑒
𝐴
1 , ..., 𝐸

𝐴
𝑛 }

being the collection of all the corresponding audio embeddings 𝑒𝐴
𝑖
∈

(𝑅)𝑑𝑎 , we compute 𝐻𝑇 = 𝐵𝑖𝐿𝑆𝑇𝑀 (𝐸𝑇 ) and 𝐻𝐴 = 𝐵𝑖𝐿𝑆𝑇𝑀 (𝐸𝐴)
where 𝐻𝑇 ∈ (𝑅)𝑑𝑡×𝑛 and 𝐻𝐴 (𝑅)𝑑𝑎×𝑛 are the text and audio hidden
representations respectively as encoded by two separate BiLSTM
networks. Finally, we concatenate the output of the two networks:
𝑌 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑊𝑇

𝑐 (𝐻𝑇 ⊕ 𝐻𝐴)) with𝑊𝑐 ∈ (𝑅)𝑑𝑡+𝑑𝑎×1 being the
classification layer. Figure 3 shows this visually.

2.2.3 Multimodal with low-level features. We also experiment with
augmenting the text-only embeddings with the two low-level fea-
tures of sentence durations and inter-sentential pauses. In this case,
we employ the unimodal model described in the above section, but
where each input embedding 𝑒𝑖 = 𝑒𝑛𝑐𝑇 (𝑠𝑖 ) ⊕ 𝑠𝑑𝑖 ⊕ 𝑠𝑝𝑖 , with 𝑒𝑛𝑐𝑇
being one of the text encoders described before, 𝑠𝑖 is the current
sentence 𝑖 in our input transcript and 𝑠𝑑𝑖 and 𝑝𝑠𝑖 are the sentence
duration and inter-sentential pause for sentence 𝑖 .
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Table 1: Details of the two datasets. Datasets details: total number
of files (TF), total number of segments (TS), average number of seg-
ments per file (ASF), average number of sentences per file (ASpF)
and average number of sentences per segment (ASpS).

Dataset TF TS ASF ASpF ASpS

NonNewsSBBC 54 393 7.27 491.38 72.04
RadioNewsSBBC 48 561 11.69 346.79 28.93

Table 2: Unimodal results using Sentence (top) and Audio (middle)
embeddings, and multimodal results (bottom) with low-level acous-
tic features (laf). ‘+’ indicates combination of encoders.

Dataset NonNewsSBBC RadioNewsSBBC

B-F1 B-P B-R B-F1 B-P B-R

RoB 62.56 61.24 72.70 59.86 49.63 81.97
Top 59.61 52.83 73.00 69.85 64.69 78.04
RoB+Top 71.63 70.92 75.71 74.61 68.94 83.21

XVEC 55.01 80.70 45.08 62.81 54.18 78.59
OP 64.00 72.35 67.86 61.92 97.41 45.82
XVEC+OP 62.09 80.62 54.68 62.61 63.57 64.38

RoB+laf 49.60 38.74 83.30 80.01 76.94 84.89
Top+laf 63.44 71.84 58.18 76.56 69.26 88.17
RoB+Top+laf 65.52 65.64 67.99 79.82 74.62 87.26

3 DATA & EXPERIMENTAL SETUP
Datasets. We introduce two new datasets for multimodal topic

segmentation, each containing podcast episodes from different pro-
grammes available on the BBC Sounds platform. We obtained tran-
scripts automatically by using the open-source Kaldi framework
[25] and a private automatic recognition model internally trained
at BBC. The model provided the initial sentence segmentation and
the corresponding time labels, used to extract text sentences from
the transcripts and audio chunks from the associated audio files.
The datasets we used are presented below in more details. Given
copyright limitations, we release just the extracted embeddings and
the relative ground-truth labels from both datasets1.

NonNewsSBBC: 54 magazine-style radio programmes from
BBC Sounds covering different non-news topics. Topic boundaries
were manually annotated by experts; audio file length ranges from
20 to 60 minutes approximately.

RadioNewsSBBC: 48 news bulletins from local, national and
World Service radio channels by the BBC. Topic boundaries were
manually annotated by experts and the length of each audio file
range from 9 to 60 minutes approximately.

The statistics of the two datasets are presented in Table 1. For
each dataset, we used pre-defined train, validation and test splits,
where the validation and test folds are about 15% of the original
datasets’ sizes and the training set about 70%.

Experimental Setup. Our networks consisted of 2 BiLSTM layers
of 256 hidden units per direction each. We used the Adam optimizer
[18] with learning rate 0.001; for the Focal Loss function we used
𝛼 = 0.9 and 𝛾 = 2.
1https://zenodo.org/record/7825759; https://zenodo.org/record/7821475

Audio files were re-sampled at 16kHz before encoding. Sentences
were extracted from the transcripts via the rule-based punkt tok-
enizer [4], punctuation having been automatically restored while
generating the transcriptions.

Given the strong class imbalance, we use the focal loss function
[21] in training; this combines class weighting 𝛼 (to give more
weight to the positive class, i.e. topic boundary) and an additional
weight 𝛾 for samples with probability closer to the decision bound-
ary (0.5).

The models were evaluated with a variant of precision, recall and
F1 scores named boundary similarity [11]. For computing the metric
we have used the standard segeval python library [10]; the resulting
accuracy metrics are named B-F1, B-P and B-R and the parameter
controlling when a prediction close to a real one is considered
a "near miss" is set to 1

7 of the average segment length of each
document.

4 RESULTS
4.1 Unimodal and Multimodal Results
Table 2 shows unimodal results; text-based embeddings (top) usu-
ally outperform audio-based ones (middle), for all metrics but B-P,
for which XVEC and OP are the best configuration for NonNews
and RadioNews Datasets respectively. The two text encoders are not
very strong when used by themselves; but combining them gives a
noticeable gain, suggesting that they provide non-redundant infor-
mation. Combining audio encoders does not improve results.

Table 3 shows the multimodal results. Early Fusion tends to
outperform the Late Fusion approach in all metrics but recall for
both datasets. The high recall and low precision of Late Fusion could
be a consequence of this model overfitting on the limited training
data due to the bigger size and, as such, being more confident in
outputting topic boundaries.

OP+RoB+Top is consistently the best combination in terms of
B-F1 and XVEC+RoB is usually the best when looking at B-R, while
the ranking yielded by B-P seems more variable.

In terms of comparison with the unimodal settings, the multi-
modal results seem on average higher for RadioNews dataset, while
for the NonNews one this difference is not evident. This is exem-
plified by the best performing combination from the multimodal
experiments (i.e. OP+RoB+Top), which significantly outperforms
the best unimodal setting (i.e. RoB+Top) in the RadioNews scenario,
while the two settings clearly perform very similarly in the case of
NonNews, leading to a statistically insignificant difference.

4.2 Multimodal Results: low-level acoustic
features

In this section we explore adding two low-level acoustic features
(see Methodology section) to the text-only embeddings.

Correlation Analysis. Figure 4 shows that pauses and durations
correlate differently with topic boundaries in the different datasets.
The pause correlation is positive in news podcasts, i.e. silences
between sentences are a relatively good indicator of topic shifts:
in this format an anchorperson often introduces the topics and
employs longer intra-topic silences to better separate them. The
correlation in magazine-style shows is much lower, indicating more
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Table 3: Early Fusion and Late Fusion results for topic segmentation.

Early Fusion Late Fusion

Dataset NonNewsSBBC RadioNewsSBBC NonNewsSBBC RadioNewsSBBC

B-F1 B-P B-R B-F1 B-P B-R B-F1 B-P B-R B-F1 B-P B-R

XVEC+RoB 65.83 85.03 58.81 74.68 67.25 85.99 52.21 44.59 86.58 73.48 65.64 86.50
OP+RoB 64.35 82.21 55.28 81.58 91.03 74.76 61.12 56.45 78.27 76.18 83.90 71.10
XVEC+OP+RoB 67.82 79.53 66.91 80.02 96.35 68.88 59.22 52.98 83.12 79.21 74.42 87.53
XVEC+Top 71.16 83.28 68.77 67.60 85.87 57.03 57.06 47.58 85.77 69.17 60.11 86.59
OP+Top 63.56 77.80 57.07 80.42 91.63 72.71 66.59 60.57 76.13 68.09 65.06 75.39
XVEC+OP+Top 67.83 88.27 57.96 72.49 87.34 62.89 61.81 52.86 84.88 71.96 65.38 83.92
XVEC+RoB+Top 60.88 87.65 48.97 68.60 84.59 59.40 54.33 44.22 81.68 76.11 69.94 86.43
OP+RoB+Top 71.86 77.80 70.84 84.48 91.38 78.79 71.43 67.64 80.55 73.46 71.05 78.22
XVEC+OP+RoB+Top 67.40 86.27 58.79 79.71 92.46 70.83 53.53 45.53 84.4 77.11 74.15 84.77

Figure 4: Correlation coefficients of pauses in-between sentences
(pauses) and of sentence duration (durations) with topic boundaries.

variation in the shows’ formats and how different topics are intro-
duced. The correlation of sentence duration, on the other hand, is
weakly negative for RadioNews, and practically null for NonNews.

Experiments. As Table 2 shows (bottom), results confirm the ex-
pectations from Figure 4: performance improves in RadioNewsBBC
(where pause correlation is stronger), but not in NonNews. In this
case, the base RoB model works the best and its B-F1 difference
with the best multimodal setting is no longer significant even for
RadioNewsSBBC.

The small sizes of the datasets might be the cause of such statis-
tical insignificance and the multimodal results using audio embed-
dings are still the best even if not significantly.

5 CONCLUSION
Our experiments suggest these conclusions: (1) Multimodality can
significantly boost performance but just in specific domains (here,
news podcasts). (2) For both datasets and all models used, using
OpenL3 and the combination of RoBERTa Average Pooling and
RoBERTa fine-tuned for topic segmentation provides the best mul-
timodal setting. (3) For news podcasts, simply concatenating text
embeddings with raw sentence durations and inter-sentence pause
durations is not significantly worse than adding full audio embed-
dings.

An open question remains about what audio embeddings seem
to convey more than simple low-level acoustic features and if using
more advanced fusion techniques they can yield significantly better
results. By publicly releasing the two datasets, we hope to foster
research towards future better approaches that could make full use
of the various information encoded by both text and audio neural
embeddings.
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