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ABSTRACT
Recent works have shown that audio embeddings can improve auto-
matic topic segmentation of formats such as radio shows. In this
work we expand the work in that direction by showing how and
which publicly available, pre-trained neural audio embeddings can
perform the task, without the need of any further fine-tuning of the
audio encoders. The ranking of the encoders suggest that neural en-
coders pre-trained for speaker diarization and general purpose audio
classification are the best suited to be used as features, beating non-
neural baselines. We show that we can obtain perfect results on a
newly created random dataset similar to the one used in previous
work. We also show for the first time results on real-world data,
proving that our method can be applied to actual radio shows with
good results, but the choice of audio encoders is extremely important
in order to achieve those. Finally, by releasing the datasets we used
we make the contribution of providing the first (to our knowledge)
publicly available, free of charge datasets for audio topic segmenta-
tion of media products.

Index Terms— topic segmentation, neural audio embeddings

1. INTRODUCTION

The task of topic segmentation is concerned with segmenting a long
document into topically coherent segments [1]. The input document
can be composed of text, audio, video or a mixture of them. Many
approaches have been developed during past years to tackle this
problem. Recent works have explored the use of information from
the audio stream alone in segmenting, for example, radio shows (see
Fig. 1). The use of just audio implies that no transcripts are needed,
therefore saving resources and possible causes of noise, where the
transcripts were automatically generated. In this context, [2] has
shown that the use of audio embeddings can outperform previous
approaches. In doing so, the authors left open several points. Firstly,
the encoders used to extract the embeddings were trained on the
same corpus used for segmentation. Because of this, problems of
efficiency and performance arise: new classification models need to
be fitted each time to extract audio embeddings and different mod-
els might have a big impact on segmentation performance. Secondly,
non-neural baselines for audio embeddings were not presented, leav-
ing an open question about whether using neural networks for ex-
tracting audio embeddings is indeed the most effective approach.

◦The work was done when H. Phan was at the School of Electronic En-
gineering and Computer Science, Queen Mary University of London, UK
and the Alan Turing Institute, UK and prior to joining Amazon.

Fig. 1. Segmenting an audio file into topically coherent segments
implies recognising when the underlying topic shifts. In our case,
we propose a method based on audio information only.

Thirdly, the corpus used to evaluate topic segmentation was not pub-
licly released and statistics about the corpus were not included ei-
ther, leaving open questions about the replicability of the proposed
approach. Fourthly, the corpus used to evaluate topic segmenta-
tion was artificially constructed by concatenating random portions
of radio programmes in a setting similar to [3]. The use of artificial
datasets for evaluating topic segmentation attracted criticism in the
past years [4], leading to the need of real-world evaluation to confirm
the utility of audio embeddings for the task.

In this work we address the above problems by introducing a
topic segmentation system that works on embeddings derived from
open-source, pre-trained audio encoders and by introducing three
new datasets. We explore different research questions:

RQ1: Do audio representations from pre-trained neural networks
generally yield better results than traditional features?

RQ2: Which audio representation is more appropriate for the seg-
mentation task?

RQ3: Is our method effective in real-world datasets and how does
the performance vary?

We answer these questions by using a set of different pre-trained
neural and non-neural features as input for a BiLSTM network to
recognise the boundaries of topic segments.

We show good segmentation results on real-world data and that
pre-trained neural representations are effective for the task, but per-
formance varies greatly according to architecture and pre-training
objectives of the encoders. We achieve a perfect score on our ran-
dom dataset and, by releasing the two real-world datasets, we open
the field to real-world use of the proposed system.



2. RELATED WORK

2.1. Audio Topic Segmentation System

The direct use of audio to segment an audio stream into coherent seg-
ments has been researched for a long time. When audio is involved,
the coherence of two consecutive audio frames is defined in terms
of change of speakers, channel or environment [5]. In the context
of media products’ segmentation, a change in these three factors is
likely to represent a change in the content of the audio stream, indi-
cating a possible topic shift. Attempts to directly segment the acous-
tic input into topically coherent segments also exists [6–8]. Various
works on topic segmentation using audio generally employed unsu-
pervised methods developed for text-based topic segmentation such
as the TextTiling algorithm [9] and similar methods exploiting vec-
tor similarities [7,10]. More recently, supervised approaches, mostly
in the form of recurrent neural networks, are usually preferred [2].

The main focus of research into topic segmentation using audio
has been the choice of which acoustic features to use. Different types
of hand-crafted acoustic features have been explored. One obvious
feature that has been applied early on is the binary feature indicating
whether a portion of the audio stream consists of just silence [11].
Features that can indicate a change in speaker are useful for the task
of segmentation as well. Previous literature has, in fact, used the
identity of speakers (e.g., if the current speaker is predicted to be
the anchorman in a news show) as features [12]. Mel-frequency
cepstral coefficients (MFCCs) have also been directly used for au-
dio topic segmentation [5–7, 13]. Other typical audio features for
topic segmentation are the ones related to prosody like F0 contour,
speech rate and power. Such features have been used, for example,
by [8, 12, 14] and they have their theoretical justification in the fact
that certain prosodic patterns have been shown to correlate with a
change in topic in multiple scenarios [15].

Another set of acoustic features that have been more recently
used in topic segmentation relate to neural audio classification. In
this context, [2] trained a neural audio classifier to extract acoustic
embeddings to be used in a long short-term memory (LSTM) net-
work for segmenting radio shows. These features were even more
effective than using text features in that context. The fact that these
type of features have not been thoroughly investigated for topic seg-
mentation gives a lot of scope for experimentation, without neces-
sarily having to train audio encoders from scratch.

2.2. Datasets for Audio Topic Segmentation

In terms of data, many datasets have been proposed in the litera-
ture for evaluating topic segmentation of texts [3, 16, 17]. This is
not the case, however, for audio topic segmentation. In this con-
text, the only (to our knowledge) publicly and free of charge dataset
that is annotated for topic segmentation system is the one released
by [18], which include a number of academic meetings. That do-
main, however, is quite restricted and for the more specific domain
of media products segmentation, much fewer datasets have been de-
veloped and none has been publicly released. The most famous ex-
amples of such datasets are those released for the various editions
of the TDT challenges [19] and two editions of the TRECVID chal-
lenge [20]. Generally, it is quite common for authors to use private
datasets created by the authors themselves [21] when experimenting
on TV newscasts and TV programmes, which can be explained both
with the fact that the TDT datasets must be paid for and that they
are by now quite old (about 20 years). Given all these considera-
tions, together with the analysis of new and better features for au-
dio topic segmentation we release three new publicly available and

free of charge datasets for audio topic segmentation, which we de-
scribe in more details below. In our case, we manage to overcome
copyright limitations by releasing the audio embeddings extracted
for each programme, but not the original audio. This strategy has the
advantage of allowing the experimentation and advancement of the
field, while protecting the interests of the copyright owners and the
privacy of participants in the programme.

3. METHODOLOGY

3.1. Pre-Trained Audio Embeddings

We explore different pre-trained audio encoders and manually engi-
neered audio embeddings. In the choice of such encoders we fol-
lowed the work of [22] that evaluated different neural encoders for
a variety of audio tasks. We used the following pre-trained neural
encoders:

X-Vectors (XVEC): this architecture was proposed by [23] in
the context of speaker diarization, obtaining state-of-the-art results
at the time of publication. Here we used the pre-trained X-vectors
model implemented by SpeechBrain1.

Openl3 (OP): this model was proposed by [24] as a relatively
lightweight, publicly available pre-trained model for audio classifi-
cation. We used the official implementation2.

Wav2Vec2 (WAV): the Wav2Vec family of neural audio en-
coders was proposed as a way of translating the self-supervised
language modelling objective from the text domain in the audio
domain [25]. Wav2vec2 is the most recent model following this
approach and it achieved state-of-the-art performance in various
speech-related tasks, especially in under-resourced settings [26].
Here we used the pre-trained model released by huggingface3.

CREPE (CR): this model was proposed in the context of F0
tracking, reaching state-of-the-art upon its release [27]. We used the
pre-trained Pytorch implementation4.

3.2. Non-neural Baselines

We include two non-neural baselines obtained by using manually
engineered features:

Prosodic (PR): this set of features reflects the ones from [28].
They include means and standard deviations of pause durations, F0
contour, pitch jump (difference of F0 with respect to the previous
frame), mel-frequency bins and their delta values for a total of 167
features per audio embedding.

MFCC: this set of features includes the mean and standard de-
viation of the first 50 mel-frequency cepstral coefficients, as well as
their first-order delta values.

3.3. Topic Segmentation Model

3.3.1. Basic unit extraction

In order to extract the audio embeddings and train a topic segmenta-
tion system, we first need to pre-process the audio file and divide it
in smaller portions, which will be passed individually to the encoder.
A straightforward approach is that of [2] which simply extracts the
audio embeddings from non-overlapping 1-second portions of au-
dio. This approach leads to a severe sparsity problem, as the number

1https://huggingface.co/speechbrain/spkrec-xvect-voxceleb
2https://github.com/marl/openl3
3https://huggingface.co/docs/transformers/model doc/wav2vec2
4https://github.com/maxrmorrison/torchcrepe



Table 1. Dataset details and statistics (durations are expressed in seconds). Where applicable, we report mean and 95% confidence interval.

Dataset Total Audio
Files

Total Number
of Segments

Avg. File
Segments Avg. File Duration Avg. Segment

Duration
BMAT-ATS 100 995 9.95± 0.05 393.06± 13.82 41.52± 1.29
NonNews-BBC 57 399 7± 0.52 2131.19± 0.52 511.18± 39.13
RadioNews-BBC 48 702 12.77± 1.19 1631.75± 227.08 138.18± 12.29

of positive units will remain the same while the number of negative
examples grow linearly with the length of the input audio.

The effect of this class imbalance is unclear in the work of [2],
given the absence of dataset statistics. We decided to segment the
audio in non-overlapping 1-second portions as well, but to mitigate
the sparsity problem we employed a different training loss, described
in more details in the experimental details section.

3.3.2. Audio encoding

Once having pre-segmented the input file in non-overlapping 1-
second portions and having an encoder enc, we obtain the initial
sequence of audio embeddings Xi = enc(ai), where ai denotes
a 1-second audio unit, and reduce them to one embedding with
xi = pool(Xi). Since the different encoders used take in differ-
ent audio frame sizes for embedding extraction, the length of the
embedding sequence Xi extracted for each audio portion depends
on a specific encoder. The pooling function pool reduces the em-
bedding sequence to a single embedding per audio portion, so that
xi ∈ R1×d, with d being the number of elements in the embedding
yielded by the given encoder. We consider different pooling func-
tions. In the case of XVEC, PR and MFCC the pooling function is
simply the identity function pool(Xi) = Xi ≡ xi as they already
summarise all of the input by default. In the case of the other three
encoders, OP, WAV, and CR, we experimented with the following:

STD: pool(Xi) = mean(Xi)⊕ std(Xi) with mean represent-
ing average, std the standard deviation and ⊕ concatenation.

MAX pool(Xi) = max(Xi) with max representing max pool-
ing across different vector’s dimensions.

LAST: pool(Xi) = Xi[N ] where N is the length of the se-
quence Xi, thus Xi[N ] corresponds to the last embedding vector in
the sequence. By using the last element from each sequence we aim
to maximise the potential distance between the different audio units.

DELTA: pool(Xi) = Xi[N ]− Xi+1[N ]. In this last setting the
pooling operation computes the difference of the last embedding of
the current sequence Xi and the last embedding of the next sequence
Xi+1, and thus, modelling directly in the feature space the difference
between the two audio units in the audio file and possibly aiding the
segmentation model in finding areas of maximal divergence.

3.3.3. Segmentation model

Finally, the embeddings xi are passed into a bidirectional LSTM
(BiLSTM) network, followed by a dense layer and sigmoid activa-
tion function for classification. At inference time, a boundary is out-
put when the output score is greater than a threshold θ, that was set
to 0.5. The segmentation model is illustrated in Fig. 2.

3.4. Data

Previous work using audio embeddings neither publicly released the
dataset that was used nor included statistics about it. Moreover, it
was specified that the dataset was built using a process similar to [3],
i.e., concatenating random portions of radio shows and treating the

Fig. 2. Our proposed segmentation procedure.

concatenation points as topic boundaries. The random concatena-
tion of different audio portions might prove unrealistic in the audio
domain as drastic variations in the signal power or in the overall
spectral envelope are easier to capture than, e.g., random concatena-
tion of words, where some semantic understanding is still needed.
To overcome these limitations we introduce three new datasets.

BMAT-ATS: This dataset replicates the random setting of [3],
but it has been built on top of the publicly available BMAT dataset
[29] and can therefore be re-created given the released recipe. The
dataset has been built by using the English news segments contained
in the original BMAT dataset. Such segments have been previously
segmented by splitting each file where there are intervals of fore-
ground music. In this way the length of individual files ranged from
5 seconds to 1 minute. 100 random audio files have then been cre-
ated by concatenating 10 such smaller files randomly and by avoid-
ing repetitions in the patterns.

NonNews-BBC: This dataset consists of 57 magazine-style ra-
dio programmes from BBC Radio channels covering different non-
news topics. Topic boundaries were manually annotated by experts
and the length of each audio file range from 20 to 60 minutes approx-
imately. Given copyright limitations, we release just the extracted
embeddings and the relative ground-truth labels from this dataset.

RadioNews-BBC: This dataset consists of a selection of 48
news bulletins from local, national and World Service radio chan-
nels by the BBC. Topic boundaries were manually annotated by
experts and the length of each audio file range from 9 to 60 minutes
approximately. Given copyright limitations, we release the extracted
embeddings and the relative ground-truth labels from this dataset.

The statistics of the three datasets are presented in Table 1.



Table 2. Boundary similarity scores B-F1, B-Precision and B-Recall (%). Bold indicates best in column. +,∗ indicate statistical significance
(p < 0.05): += significantly better than best non-neural baseline; ∗= significantly worse than best configuration. The higher the better.

Dataset BMAT-ATS NonNews-BBC RadioNews-BBC
Encoder B-F1 B-Precision B-Recall B-F1 B-Precision B-Recall B-F1 B-Precision B-Recall

PR 35.66∗ 23.43 89.57 32.02∗ 30.24 39.42 24.12∗ 21.50 29.05
MFCC 95.90 93.65 98.61 33.15∗ 25.56 58.28 60.76 72.16 55.19
XVEC 94.19 100 89.32 49.88+ 56.47 60.77 59.29 78.98 49.05

OP + STD 82.06∗ 87.79 77.70 36.87∗ 55.86 28.47 54.86 85.87 41.25
WAV + STD 94.11 93.53 95.48 30.27∗ 33.09 29.86 51.76 70.68 41.63

CREPE + STD 96.61 98.63 94.91 29.75∗ 29.79 35.03 47.68∗ 48.77 48.95
OP + MAX 86.60∗ 83.87 91.60 28.93∗ 40.22 24.95 55.15∗ 81.57 42.34

WAV + MAX 91.51 90.07 93.88 24.29∗ 33.85 20.61 45.41∗ 52.67 40.93
CREPE + MAX 93.26 97.02 90.60 30.45∗ 33.88 32.91 48.77∗ 81.05 36.50

OP + LAST 92.56 90.17 96.08 36.99 46.67 33.30 51.09 92.47 35.94
WAV + LAST 48.54∗ 38.41 73.37 5.00∗ 3.19 11.47 16.61∗ 11.14 35.08

CREPE + LAST 21.57∗ 14.50 86.76 1.99∗ 1.44 3.12 8.36∗ 5.16 53.16
OP + DELTA 95.40 92.15 99.30 30.40∗ 29.51 35.37 35.80∗ 24.96 77.25

WAV + DELTA 18.60∗ 12.97 52.51 0∗ 0 0 6.02∗ 3.67 18.32
CREPE + DELTA 12.42∗ 7.42 54.15 0∗ 0 0 2.59∗ 1.43 14.27

4. EXPERIMENTAL SETUP

For all settings, the segmentation model was designed to have 2 BiL-
STM layers with a total of 512 hidden units per layer (i.e. 256 hid-
den units per direction). In optimising the model, we used a learn-
ing rate of 0.001, Adam optimiser [30] and the focal loss function.
Focal loss was proposed by [31] in the context of object detection
but it has been proved to be useful also for topic segmentation in
the text domain [32]. The loss includes a weighting that does not
just re-balance the classes (as we have very imbalanced classes, as
shown above), but that also assign more weight to examples that
were “hard”, in the sense of closer to the decision boundary, as those
are probably the ones that the system will need to be more careful in
classifying. For the loss parameters we used α = 0.9 to assign more
weight to positive class in training and we kept the default value
γ = 2 for the weighting of “hard” examples5. We adopted an early
stopping mechanism when no improvement on validation data was
observed over 50 epochs and we set a maximum of 1000 training
epochs. We applied dropout before and after the recurrent layers and
we chose the best dropout probabilities p1 and p2 based on valida-
tion results, with the search space p1 ∈ {0, 0.2, 0.5} for dropout
before the recurrent layers and p2 ∈ {0, 0.2, 0.5} for dropout after.

The models were evaluated using a variant of precision, recall
and F1 scores named boundary similarity [33]. Standard accuracy
metrics, in fact, are considered too strict for topic segmentation [34].
Because of this, boundary similarity was recently proposed as a
way to account for near misses by introducing a loss modulated
on the standard minimum edit distance algorithm, where predicted
and ground truth boundaries are seen as two strings and the cost
of editing the prediction to become the ground truth string is con-
verted into a confusion matrix from which standard F1, precision
and recall can be computed [33]. For computing the metric we have
used the standard segeval python library [35]; as per standard F1,
precision and recall the resulting accuracy metrics are named B-F1,
B-Precision and B-Recall respectively when reporting our results.

For each configuration, we used pre-defined train, validation and
test splits, where the validation and test folds are about 15% of the

5The parameter names follow the implementation we used, available at
https://pytorch.org/vision/stable/ modules/torchvision/ops/focal loss.html

original dataset and the training set amount to the remaining 70%.
We also report the p-value associated with the null hypothesis of

each encoder not leading to test results significantly different from
the best performing non-neural baseline from the same dataset: this
way we test whether neural audio embeddings can improve over tra-
ditional features (RQ1). We obtained the p-values by running a two
sample t-test between the B-F1 test scores from the each configura-
tion and the B-F1 test scores from the best-performing non-neural
baselines, that in every case turned out to be MFCC. Similarly, we
report whether each configuration is significantly worse than the best
performing one by using the B-F1 scores of the best setting and com-
paring them with all other settings’ via a two sample t-test.

5. RESULTS

Table 2 shows the results for all configurations. In describing the
results, we first turn to the real-world datasets, NonNews-BBC and
RadioNews-BBC. X-vectors are consistently the best audio embed-
dings when looking at B-F1 score for NonNews-BBC and they are
the best among neural embeddings for RadioNews-BBC. If we look
at NonNews-BBC dataset, especially, we can observe how XVEC
is the only neural audio encoders that is significantly better than the
MFCC baseline, even though OP+LAST is not significantly worse
than XVEC for this dataset if we set the null hypothesis rejection
threshold to 0.05 (it is significantly worse when the threshold is
0.10). Surprisingly, using MFCC in RadioNews-BBC proves to be
the most effective approach; even though the results are not signif-
icantly better than XVEC, this evidence suggests that neural em-
beddings are not always better than traditional non-neural features,
directly contradicting the claim of [2].

Furthermore, other neural embeddings such as OP+LAST do
perform better than MFCC in NonNews-BBC, but probably because
of a large variance in test results, this improvement does not seem
statistically significant. The results from RadioNews-BBC confirm
this as most neural configuration, even though marginally worse than
MFCC, are not significantly worse, reflecting the high variability in
test results. In both NonNews-BBC and RadioNews-BBC the preci-
sion of neural encoders tend to be bigger, suggesting that the model
tends often to undergenerate topic boundaries, probably as a result



of overfitting to the majority class (i.e. no boundary).
Especially OpenL3 seems to follow this pattern, having the high-

est precision scores in RadioNews-BBC and positioning itself as
second best neural encoder overall, followed by CREPE and, last,
Wav2Vec2. Manually engineered prosodic features always position
in the middle for NonNews-BBC datasets, being better than WAV
and CREPE but worse than XVEC, OP and MFCC. When looking at
RadioNews-BBC those manually engineered features underperform
also with respect to the best settings of Wav2Vec2 and CREPE.

Whereas the poor performance of Wav2Vec2 is not striking in
the sense that the general purpose audio encoder was pre-trained on
mainly speech data and was reported to improve performance on
tasks that are not similar to the topic segmentation one (e.g. auto-
matic speech recognition), we might have expected CREPE and PR
to perform better than they did, considering the importance of pitch
as a topic shifting signal recorded by previous literature [36]. The
three encoders mostly show results that are significantly worse than
the best neural embeddings for both real-world datasets.

Different encoders also seem to benefit from different pool-
ing strategies. On one hand, OpenL3 on NonNews-BBC perform
the best when using the LAST pooling strategy and perform the
worst with MAX, while CREPE+MAX is the best configuration
for CREPE and WAV+STD is the best one for Wav2Vec2. More
in details, using the LAST and DELTA pooling strategies seems to
increase recall: this is likely related to the fact that the last embed-
ding of each boundary 1-second chunks will already be positioned
in the next topic segment making negative and positive samples
more similar and causing the model to overgenerate topic bound-
aries. The DELTA pooling strategy seem to be overall the worst
setting, as it totally fails when combined with WAV and CREPE
and it underperforms also when applied to OpenL3 embeddings.
A notable exception to this is the recall score of OP+DELTA for
RadioNews-BBC, which is the highest for the dataset. It can prob-
ably be explained with what noted above about LAST and DELTA
pooling effect on recall more generally. Similar observations hold
for RadioNews-BBC but with the difference that OP+MAX places
itself first relatively to other pooling approaches on the same em-
beddings, confirming the fact that the best encoder and pooling
technique might change according to the data they are used on.

Experiments on BMAT-ATS clearly shows that random datasets
are easier than the real-world datasets, casting doubts about whether
they provide a trustworthy benchmark. The best setting in terms
of B-F1 is CREPE+STD, contradicting the bad performance of this
encoder for real-world datasets. XVEC reaches perfect precision,
confirming it among the best approaches, while OP+DELTA is the
best setting in terms of recall, probably as a result of what previously
observed for the LAST and DELTA pooling. Most of the configura-
tions, however, manage to reach over 90% for all the metrics, leading
to the results being mostly not significantly different from each other.

Overall, we have shown that the proposed method can be suc-
cessfully applied to real-world data (RQ3) and that pre-trained neu-
ral representations can in certain cases outperform non-neural ones
in topic segmentation (RQ1): this is however dependent upon the
domain and the encoder being used, contradicting the general claim
that neural embeddings are always better. We, then, empirically
showed which a pre-trained encoder might work the best for this
purpose (RQ2), reaching the conclusion that X-vectors seem to be
consistently the best option, even though not significantly better than
alternatives such as OpenL3. Our results, therefore, confirmed that
speaker diarization and sound classification are relevant to topic seg-
mentation in the audio domain. Future research might explore dif-
ferent encoders from these two domains further.

At the same time, our results challenged previous literature by
demonstrating that features related to pitch often under-perform with
respect to simple MFCCs and that neural audio embeddings are not
always the best choice of feature. The release of our two datasets,
then, can foster more research to highlight the limit and the potential
of such features in real world topic segmentation of media products.

6. CONCLUSION

In this work, we have introduced three new datasets for audio topic
segmentation and experimented with different audio encoding tech-
niques to extract audio embeddings for audio-based topic segmenta-
tion. The main question we aimed to answer is whether using pre-
trained neural encoders could yield results comparable to the ones
described in [2] and which neural encoder is more suitable for the
task. At the same time, given pitfalls from previous work, we aimed
to establish whether the use of audio embeddings for topic segmen-
tation was still effective in real-world scenarios and whether neural
encoders were actually better than more traditional features.

Our results confirmed that neural representations can yield im-
provements in topic segmentation over non-neural features on real-
world data, but not for any given domain, as MFCCs are the best op-
tion in segmenting news podcasts. Still, neural features for speaker
diarization such as X-vectors perform always as good if not better
than MFCCs and future research might consider using similar, more
advanced features to improve over simpler baselines.

We also made the crucial contribution of releasing three datasets
for audio topic segmentation of radio shows. To the best of our
knowledge, they are the first datasets of their kind to be freely and
publicly available and this is particularly important given the fact
that results on synthetic data was proven to be higher on average,
therefore not reflecting actual performance in a real-world scenario.

Future research can build upon our observations and our released
datasets to further improve the state of the art by, for example, using
more advanced architectures or combining different features.
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