
Findings of the Association for Computational Linguistics: EMNLP 2021, pages 2030–2042
November 7–11, 2021. ©2021 Association for Computational Linguistics

2030

Natural SQL: Making SQL Easier to Infer from Natural Language
Specifications

Yujian Gan1 Xinyun Chen2 Jinxia Xie4 Matthew Purver1,3
John R. Woodward1 John Drake5 Qiaofu Zhang4

1Queen Mary University of London 2UC Berkeley 3Jožef Stefan Institute
4Guangxi University of Finance and Economics 5University of Leicester

{y.gan,m.purver,j.woodward}@qmul.ac.uk
xinyun.chen@berkeley.edu john.drake@leicester.ac.uk

{jinxia_xie,qiaofuzhang}@hotmail.com

Abstract
Addressing the mismatch between natural lan-
guage descriptions and the corresponding SQL
queries is a key challenge for text-to-SQL
translation. To bridge this gap, we pro-
pose an SQL intermediate representation (IR)
called Natural SQL (NatSQL). Specifically,
NatSQL preserves the core functionalities of
SQL, while it simplifies the queries as fol-
lows: (1) dispensing with operators and key-
words such as GROUP BY, HAVING, FROM,
JOIN ON, which are usually hard to find coun-
terparts for in the text descriptions; (2) re-
moving the need for nested subqueries and
set operators; and (3) making schema link-
ing easier by reducing the required number of
schema items. On Spider, a challenging text-
to-SQL benchmark that contains complex and
nested SQL queries, we demonstrate that Nat-
SQL outperforms other IRs, and significantly
improves the performance of several previous
SOTA models. Furthermore, for existing mod-
els that do not support executable SQL gener-
ation, NatSQL easily enables them to generate
executable SQL queries, and achieves the new
state-of-the-art execution accuracy 1.

1 Introduction

Automatic generation of SQL queries from natural
language (NL) has been studied in the literature
for a number of years (Warren and Pereira, 1982;
Androutsopoulos et al., 1995; Ana-Maria Popescu
et al., 2003; Li et al., 2006; Dong and Lapata, 2018;
Li and Jagadish, 2014; Iacob et al., 2020). More
recently, WikiSQL (Zhong et al., 2017), the first
large-scale cross-domain text-to-SQL dataset, has
attracted much attention from the research com-
munity (Xu et al., 2017; Wang et al., 2018; He
et al., 2019). Although the current state-of-the-art
approach has achieved over 90% execution accu-
racy on WikiSQL (He et al., 2019), since the SQL

1Our code and dataset are available at
https://github.com/ygan/NatSQL.

queries in this benchmark only cover a single SE-
LECT column and aggregation, as well as WHERE
conditions, it does not represent the true complexity
of SQL generation. To facilitate more realistic eval-
uation, Yu et al. (2018b) introduced Spider, the first
large-scale cross-domain text-to-SQL benchmark
with complex and nested SQL queries, on which
previous models designed for WikiSQL suffer a
significant performance drop.

To synthesize SQL queries with more com-
plex structures, intermediate representation (IR)
is widely employed by the previous SOTA models
on the Spider dataset (Wang et al., 2020; Guo et al.,
2019; Yu et al., 2018a; Shi et al., 2020). However,
previous IRs are either too complicated or have lim-
ited coverage of SQL structures. Besides, although
the existing IRs eliminate part of the mismatch
between intent expressed in NL and the implemen-
tation details in SQL, there is still some mismatch
that can be further eliminated by improving the IR.

In this work, we present Natural SQL (NatSQL),
a new intermediate representation that offers sim-
plified queries over other IRs, while preserving a
high coverage of SQL structures. More importantly,
NatSQL further eliminates the mismatch between
NL and SQL, and can easily support executable
SQL generation. Figure 1 presents a sample com-
parison between NatSQL and other IRs. We ob-
serve that there is a mismatch between the NL word
‘and’ and the INTERSECT SQL keyword, since
in another similar question shown in Figure 5, the
‘and’ no longer corresponds to the INTERSECT
keyword. To translate the NL question into a cor-
responding query, previous IRs need the models to
distinguish whether the word ‘and’ corresponds
to INTERSECT, this is not required for NatSQL.
Among all IRs, NatSQL provides the simplest and
shortest translation, while the NatSQL structure
also aligns best with the NL question.

NatSQL preserves the core functionalities of
SQL, while simplifying the queries as follows:

https://github.com/ygan/NatSQL
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Question : : m :

Which film has more than 5 actors and less than 3 in the inventory?

SQL : :
SELECT T1.title FROM film AS T1 JOIN film_actor AS T2 ON T1.film_id = T2.film_id GROUP

BY T1.film_id HAVING count(*) > 5 INTERSECT SELECT T1.title FROM film AS T1 JOIN

inventory AS T2 ON T1.film_id = T2.film_id GROUP BY T1.film_id HAVING count(*) < 3

The IR of RAT-SQL : (Remove the JOIN ON Clause) :
SELECT title FROM film, film_actor GROUP BY film_id HAVING count(*) > 5

INTERSECT SELECT title FROM film, inventory GROUP BY film_id HAVING count(*) < 3

The IR of SyntaxSQL : (Remove the JOIN ON and FROM Clause) :

SELECT film.title GROUP BY film.film_id HAVING count(*) > 5 INTERSECT

SELECT film.title GROUP BY film.film_id HAVING count(*) < 3

SemQL : (Remove the JOIN ON, FROM and GROUP BY Clause. Merge the HAVING and WHERE clause)

SELECT film.title WHERE count(film_actor.*) > 5 INTERSECT

SELECT film.title WHERE count(inventory.*) < 3

NatSQL : (Further remove the set operators based on SemQL) :

SELECT film.title WHERE count(film_actor.*) > 5 and count(inventory.*) < 3

Figure 1: A sample question in Spider dataset with corresponding SQL and IRs.

(1) dispensing with operators and keywords such
as GROUP BY, HAVING, FROM, JOIN ON, which
are usually hard to find counterparts for in the text
descriptions; (2) removing the need for nested sub-
queries and set operators, using only one SELECT
clause in NatSQL; and (3) making schema linking
easier by reducing the required number of schema
items that are normally not mentioned in the NL
question. The design of NatSQL easily enables
executable SQL generation, which is not naturally
supported by other IRs.

We compare NatSQL with SQL and other IRs
by incorporating them into existing open-source
neural network models that achieve competitive
performance on Spider. Our experiments show
that NatSQL boosts the performance of these exist-
ing models, and outperforms both SQL and other
IRs. In particular, equipping RAT-SQL+GAP with
NatSQL achieves a new state-of-the-art execution
accuracy on the Spider benchmark. These results
suggest that to improve the ability of text-to-SQL
models to understand and reason about the NL de-
scriptions, designing IRs to better reveal the cor-
respondence between natural language and query
languages is a promising direction.

2 Review: Text-to-SQL Paradigm

Most existing text-to-SQL models generate the
SQL keywords (blue character in Figure 1) and
SQL schema items (black character in Figure 1)

separately. Based on this paradigm, we investigate
how we can design an IR to improve both SQL
keyword generation and schema item generation.

2.1 Generating SQL Keywords

Neural text-to-SQL models usually generate the
SQL keywords according to the similarity linking
scores between the hidden state from the question
and the production rule embeddings. For exam-
ple, in Figure 1, we conjecture a good text-to-SQL
model should be able to give a higher linking score
between the word ‘less’ and the SQL ‘<’ keyword.

However, SQL is designed for effectively query-
ing relational databases, not for representing the
meaning of NL questions. Hence, there inevitably
exists a mismatch between intents expressed in nat-
ural language and the implementation details in
SQL (Guo et al., 2019). For example, in Figure 1,
the GROUP BY and JOIN ON clauses are not men-
tioned in the question. One solution is to use an IR
to remove the SQL clauses that are hard to predict.
Experiments show that the SemQL IR can improve
the accuracy of previous models (Guo et al., 2019).

2.2 Generating Schema Items

Text-to-SQL models usually generate the schema
items according to the similarity linking scores be-
tween tokens in the question and database schemas.
Intuitively, a model is supposed to predict higher
scores to schema items that are mentioned in the
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NatSQL = SELECT , Column , { ‘,’ Column } ,
[ WHERE W_Cond ] ,
[ ORDER BY Order_By ] ;

Column = Agg_Col | Table_Col ;

Agg_Col = Agg_Fun , ‘(’ Table_Col , ‘)’ ;

Agg_Fun = ‘avg’ | ‘count’ | ‘max’ | ‘min’ | ‘sum’ ;

Table_Col = TABLE_NAME , ‘.’ , COLUMN_NAME
| TABLE_NAME , ‘.’ , ∗ ;

W_Cond = [Conjunct], Condition , { Conjunct Condition } ;

Condition = Cond_L , W_Oper , Cond_R ,

[ ‘and’ , NUMBER ] ;

Conjunct = ‘and’ | ‘or’ | ‘except’ | ‘intersect’

| ‘union’ | ‘sub’ ;

W_Oper = ‘between’ | ‘=’ | ‘>’ | ‘<’ | ‘>=’
| ‘<=’ | ‘! =’ | ‘in’ | ‘like’ | ‘is’
| ‘exists’ | ‘not in’ | ‘not like’
| ‘not between’ | ‘is not’ | ‘join’ ;

Cond_R = NUMBER | STRING | Column ;
Cond_L = Column | “@” ;

Order_By = Column , [ DESC | ASC ] ,
[ LIMIT , NUMBER ]

Table 1: The main grammar of NatSQL. Here we high-
light the differences of production rules from SQL.

question. To achieve this goal, some existing neural
networks implement a schema linking mechanism,
by recognizing the tables and columns mentioned
in a question (Guo et al., 2019; Bogin et al., 2019a;
Wang et al., 2020).

Schema linking is essential for text-to-SQL tasks.
As shown in the ablation study of IRNet (Guo et al.,
2019) and RAT-SQL (Wang et al., 2020), remov-
ing the schema linking results in a dramatic de-
crease in performance. The importance of schema
linking raises a question about generating schema
items not mentioned in the question. Some models
use graph neural networks to find these unmen-
tioned schema items, and some models delete un-
mentioned schema items based on the IR; e.g., in
Figure 1, the IRs remove the JOIN ON and GROUP
BY clauses with the unmentioned schema items.

3 NatSQL

3.1 Overview
Table 1 presents the grammar specification of Nat-
SQL. NatSQL only retains the SELECT, WHERE
and ORDER BY clauses from SQL, dispensing with
other clauses such as GROUP BY, HAVING, FROM,
JOIN ON, set operators and subqueries. Tokens in
capital italics are keywords of SQL and NatSQL,
and other capital tokens represent special meanings,
where ‘TABLE_NAME’ and ‘COLUMN_NAME’
are defined for databases, and ‘NUMBER’ and
‘STRING’ represent the data types.

Except for the deleted clauses, the differences

between NatSQL and SQL are underlined in Ta-
ble 1. NatSQL implements the function of the
deleted clauses by adding new keywords and allow-
ing conjunct to appear before the WHERE condi-
tion. In terms of language format, NatSQL does
not add new clauses, and can retain deleted clauses
as needed, as in the variant NatSQLG discussed in
Section 3.3.

The main design principle of NatSQL is to sim-
plify the structure of SQL and bring its grammar
closer to natural language. Considering the ex-
ample in Figure 1, the set operator ‘INTERSECT’,
used to combine SELECT statements, is never men-
tioned in the question. INTERSECT is introduced
in SQL to allow the combination of the results of
multiple functions. Such implementation details,
however, are rarely considered by end users and
therefore rarely mentioned in questions (Guo et al.,
2019).

3.2 Overall Comparison

Starting from SyntaxSQLNet (Yu et al., 2018a),
several types of IR have been developed for text-
to-SQL models on the Spider dataset. The main
limitation of SyntaxSQLNet is that it removes the
FROM and JOIN ON clauses, which may result in
the failure to find the correct table when converted
to SQL. For example, in Figure 1, SyntaxSQLNet
IR misses the inventory table, thus it cannot gener-
ate the correct JOIN ON clause that appears in the
original SQL. The IR for RAT-SQL (Wang et al.,
2020) is mostly close to SQL, and it avoids missing
tables since it only removes the JOIN ON clause
from SQL. Zhong et al. (2020) and Lee (2019) also
utilize an IR that is similar to the IR in RAT-SQL
and SyntaxSQLNet.

Guo et al. (2019) introduced SemQL, an in-
termediate language, to facilitate SQL prediction.
As with NatSQL, SemQL removes the keywords
FROM, JOIN ON, GROUP BY, HAVING from SQL.
Although SemQL and NatSQL remove both FROM
and JOIN ON clauses, SemQL and NatSQL avoid
missing a table by moving the table into the ‘*’
column. NatSQL improves on SemQL in the fol-
lowing ways:
(1) Compatible with a wider range of SQL queries
than SemQL.
(2) Simplify the structure of queries with set op-
erators, i.e., INTERSECT, UNION, and EXCEPT,
denoted as IUE hereafter.
(3) Eliminate nested subqueries.
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Ques 1: Find ... who have a pet.
NatSQL: ... WHERE @ join has_pet.*
Ques 2: Find ... who have two pet.

NatSQL: ... WHERE count(has_pet.*) = 2

Table 2: A modified example based on Figure 2

(4) Reduce the number of schema items to predict.
(5) NatSQL uses the same keywords and syntax
as SQL, which makes it easier to read and expand
than SemQL.

There are four examples in Figure 1, 2, 3 and
4 demonstrating the differences between SQL,
SemQL, and NatSQL statements representing the
same natural language question.

3.3 Scalability of NatSQL

We take an SQL query with multiple tables as an
example. In Figure 2, since the SemQL misses the
has_pet table, SemQL cannot be converted to the
target SQL, indicating that SemQL is not compati-
ble with this type of SQL query. The SyntaxSQL-
Net IR is also not compatible, but the RAT-SQL IR
can convert this query appropriately.

While both SemQL and NatSQL completely re-
move all FROM and JOIN ON clauses, NatSQL
introduces a new WHERE condition operator join
for these unremovable JOIN ON clauses, as shown
in Figure 2. With this extra WHERE condition,
NatSQL can be converted to the target SQL. Al-
ternatively, you could use the NatSQL augmented
with FROM clause version. We recommend the
original version since its experimental result is bet-
ter and the sub-question ‘who have a pet’
looks like a WHERE condition. We modify this
example in Table 2 to illustrate why it looks like a
WHERE condition. Usually, NatSQL does not need
the join operator for generating JOIN ON clause,
such as the ‘Ques 2’ in Table 2, except in cases
when it cannot infer the correct JOIN ON clause
from other clauses.

NatSQLG. Since each database has different
compatibility with SQL, we allow NatSQL to re-
tain the deleted clauses as needed. NatSQLG is
NatSQL augmented with GROUP BY, which im-
proves the compatibility in the SQLite database
where the Spider benchmark is built on.

3.4 NatSQL for SQL Keyword Generation

By simplifying the set operators and nested sub-
queries, NatSQL improves text-to-SQL models.

Question : : :

Find the name of students who have a pet

SQL : :

SELECT T1.name FROM student AS T1

JOIN has_pet AS T2 ON T1.stuid=T2.stuid

SemQL : :

SELECT student.name

NatSQL : (Original) :

SELECT student.name WHERE @ join has_pet.*

NatSQL : (Extend FROM clause) :

SELECT student.name FROM student, has_pet

Figure 2: An example about the scalability and read-
ability of NatSQL.

3.4.1 Simplifying Queries with Set Operators

It is typically hard to generate queries with IUE
(INTERSECT, UNION, and EXCEPT) set operators
for text-to-SQL models, where the corresponding
F1 score is usually the lowest among all breakdown
metrics on the Spider benchmark (Guo et al., 2019;
Bogin et al., 2019a; Wang et al., 2020). The main
reason is that the related questions are generally
longer and more complicated, while the mismatch
between NL and SQL queries further increases the
prediction difficulty, as discussed in Section 2.1.

Figure 3 compares the SQL queries correspond-
ing to two similar problems. The second ques-
tion in Figure 3 contains an extra condition:
‘more than 1 room’. This extra condition
changes the structure of the entire SQL query. Al-
though IRs have been widely used for complex
SQL, enthusiasts of end-to-end models expect the
text-to-SQL model to automatically distinguish
whether the word token ‘or’ in Figure 3 corre-
sponds to UNION or OR keyword. However, most
models cannot do that and would generate a OR
clause for both questions. This example is similar
to the comparison between Figure 1 and Figure 5
discussed on Section 1.

NatSQL bridges this gap by unifying them into
a simple OR operator that will be converted to
a UNION clause when it cannot concatenate its
following conditions. The reasons for the failure
to concatenate conditions include: (1) the prece-
dence of the following conditions is higher (e.g.,
the precedence of AND is higher than OR); (2)
the two conditions cannot be connected, or they
are disjoint such as the example in Figure 1. The
‘count(film_actor.*)>5’ condition cannot be con-
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Question : :
Find names of properties that are houses
or apartments?

SQL : (Almost the same as Other IRs)

SELECT name FROM Properties WHERE
code = "House" OR code = "Apartment"

NatSQL : :

SELECT name FROM Properties WHERE

code = “House” OR code = "Apartment”

Question : : :
Find names of properties that are houses
or apartments with more than 1 room?

SQL : (Almost the same as Other IRs)

SELECT name FROM prop WHERE code = 
"House" UNION SELECT name FROM prop
WHERE code = "Apartment" AND room > 1

NatSQL : :

SELECT prop.name WHERE prop.code = 
“House” OR prop.code = "Apartment" AND
prop.room > 1

Figure 3: An example about the mismatch between NL
and IUE set operators.

nected with the ‘count(inventory.*)<3’ condition
because they belong to different tables. Based on
the same rules, NatSQL simplifies the SQL with
other set operators, the details of which can be
found in Appendix A.

3.4.2 Eliminating Nested Subqueries
Since the subqueries in both NatSQL and SemQL
only appear in WHERE conditions, only one col-
umn in the SELECT clause of a subquery is re-
quired. NatSQL keeps this SELECT column in
‘Cond_R’ (right column of WHERE conditions) in-
stead of a whole SELECT clause. Since this meets
the WHERE condition format, NatSQL can remove
the brackets and subqueries from SQL, as shown
in Figure 4.

3.5 How NatSQL Help Schema Item
Generation

NatSQL helps schema item generation by reduc-
ing the number of schema items that need to be
predicted. For example, in Figure 4, without an
in-depth analysis of the database schema, by look-
ing at the natural language description itself, it is
difficult to infer the grey shaded columns in SQL
and SemQL (in this example, they are column ‘id’
in table ‘visitor’ and column ‘visitor_id’ in table
‘visit’). We cannot build a schema linking for these

Question : : :

Find the number of visitors who did

not visit any museum opened after 

2010.

SQL : :

SELECT count(*) FROM visitor WHERE

id NOT IN ( SELECT t2.visitor_id

FROM museum AS t1 JOIN visit AS

t2 ON t1.Museum_ID = t2.Museum_ID

WHERE t1.open_year > 2010 )

SemQL : :

SELECT count(visitor.*) WHERE visitor.

id NOT IN ( SELECT visit.visitor_id

WHERE museum.open_year > 2010 )

NatSQL : :

SELECT count(visitor.*) WHERE @ NOT IN

visit.* and museum.open_year  >  2010

@ is a placeholder

t2.visitor_idid

.visitor_idid

It is hard to construct schema linking for column
‘id’, because the question doesn’t mention it:

Figure 4: A sample question in Spider dataset with cor-
responding SQL, SemQL and NatSQL queries.

columns, even though the schema linking is im-
portant to boost performance as discussed in Sec-
tion 2.2.

NatSQL solves this problem by replacing some
of the columns with a table only or @, where @
is a place holder of NatSQL. We can find that all
columns of NatSQL in Figure 4 are mentioned
in the question. Specifically, NatSQL uses @ to
replace the ‘visitor.id’ and uses ‘visit.*’ to replace
‘visit.visitor_id’.

@ is a placeholder in NatSQL that only appears
in ‘Cond_L’, which denotes that we need to infer
a column to replace it. The ‘*’ keyword does not
appear in the WHERE condition without an aggre-
gation function, so NatSQL uses it to represent
a table. With this table, we can infer the correct
column in the target SQL to replace the @ and
‘table.*’ according to Algorithm 1.

3.6 Executable SQL Generation

Many previous text-to-SQL models (Guo et al.,
2019; Wang et al., 2020; Bogin et al., 2019a) only
focus on the Spider exact match accuracy, i.e., they
only generate the SQL queries without condition
values. These queries are not executable until fill-
ing in the condition values. However, it is not easy
to fill in the values correctly. On the one hand,
there are too many possible condition value slots
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Algorithm 1 Infer columns to replace the @ and table.* in NatSQL
Input: t_list . All tables before @, which include the table ‘visitor’ in Figure 4

table_r . The table next to the @, which is the table ‘visit’ in Figure 4
Output: Two columns to replace the @ and table.*
1: for Every table in t_list do
2: if There is foreign key relationship between table and table_r then
3: return These two foreign key columns
4: for Every table in t_list do
5: if There are columns with the same name in both table and table_r then
6: return The same name columns
7: return Their primary keys

Question : : :

Which film is rented at a fee of 0.99 

and has less than 3 in the inventory?

NatSQL : : :

SELECT film.title WHERE film.rental_rate 

= 0.99 and count(inventory.*) < 3

Question : :

Which film has less than 3 in the 
inventory and is rented at a fee of 0.99 ?

NatSQL : :

SELECT film.title WHERE count(inventory.*)

< 3 and film.rental_rate = 0.99  

SQL:                                                                                                                         :
SELECT T1.title FROM film AS T1 JOIN inventory AS T2 ON T1.film_id = T2.film_id WHERE

rental_rate = 0.99 GROUP BY T1.film_id HAVING count(*) < 3

Convert to the same SQL

Figure 5: Fill the values in order of appearance (see more discussion in Appendix B).

that need to be searched. The slots can appear
in: WHERE clause, WHERE clause in a subquery,
WHERE clause after set operators, HAVING clause,
etc. On the other hand, when there are multiple
value slots, it is easier to confuse where to fill. For
example, in Figure 5, the two different questions
correspond to the same SQL query, making it hard
to copy the right values from the question to SQL.

Because the condition value slots of NatSQL
only appear in the WHERE clause, generating con-
dition values becomes much easier, as shown in
Figure 5. Unlike the models (Lin et al., 2020; Ru-
bin and Berant, 2021) trained to copy the values
from questions to SQL queries, NatSQL simply
copies the possible values (numbers or database
cell values) from questions to SQL in the order
of appearance without training. This feature en-
ables the models designed only for the Spider exact
match metrics to generate executable SQL.

4 Experiments

4.1 Experimental Setup

We evaluate NatSQL on the Spider benchmark (Yu
et al., 2018b). There are 7000, 1034 and 2147
samples for training, development and testing re-
spectively, where 206 databases are split into 146

for training, 20 for development and 40 for testing.
We first evaluate the gold NatSQL and other IRs

using the exact match and execution match met-
rics in (Yu et al., 2018b). Exact match measures
whether the predicted query without condition val-
ues as a whole is equivalent to the gold query. Ex-
ecution match measures whether the execution re-
sult of the predicted query from the database is the
same as the gold query. We then evaluate NatSQL
and other IRs using existing open-source models
that provide competitive performance on Spider:
(1) GNN (Bogin et al., 2019a); (2) IRNet (Guo
et al., 2019); (3) RAT-SQL (Wang et al., 2020); (4)
RAT-SQL+GAP (Shi et al., 2020). Although some
of these models are not designed for the genera-
tion of executable SQL queries, with the approach
discussed in Section 3.6, we utilize NatSQL to gen-
erate executable SQL and evaluate the execution
match performance.

4.2 Comparison Between IRs
4.2.1 Gold IRs
In Table 3, we present the exact match and execu-
tion match accuracies of the gold IRs on the Spider
development set, where the metrics are defined by
Yu et al. (2018b) for the Spider benchmark.

We observe that NatSQL can be converted to
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Language Exact Match Execution Match
SQL 100% 100%

SemQL 86.2% Unsupported
IR(RAT-SQL) 97.7% 97.1%

NatSQL 93.3% 95.3%
NatSQLG 96.2% 96.5%

Table 3: The comparison between gold IRs on Spider
development set.

Ques: Find students whose age is 10 or 16.
SQL 1: ... WHERE age = 10 or age = 16

NatSQL 1: ... WHERE age = 10 or age = 16
SQL 2: ... WHERE age = 10 UNION

... WHERE age = 16
NatSQL 2: ... WHERE age = 10 union age = 16

Table 4: Equivalent SQL queries with its NatSQL

more gold SQL than SemQL, because NatSQL can
handle the unremovable JOIN ON clauses, as dis-
cussed in Section 3.3. Such SQL queries comprise
around 5% of the entire Spider dataset. Other per-
formance improvement comes from the fact that
NatSQL is more compatible with subqueries and
that its capability to generate SQL is better. More
importantly, SemQL is designed only for the exact
match metrics of Spider, and cannot directly be
used to generate executable SQL.

The IR of RAT-SQL is the most similar to SQL
and thus has the highest coverage among all IRs.
However, NatSQLG further simplifies the queries
with only 0.6% execution accuracy degradation,
whilst enabling better model prediction perfor-
mance. NatSQLG outperforms NatSQL when com-
paring the gold queries, but the gap is small when
they are utilized by models. We defer more break-
down analysis to Appendix C.

The result in the training set is close to that in
the development set. It should be noted that the
exact match accuracy will slightly vary in differ-
ent NatSQL versions. The accuracy depends on
the attitude towards equivalent SQL queries. Ta-
ble 4 presents two equivalent SQL queries with
their corresponding NatSQL queries. Considering
that UNION is not mentioned in the question, we
prefer to sacrifice the exact match accuracy for a
more succinct NatSQL representation, i.e., we will
use the first NatSQL query in Table 4 to represent
the second SQL, even though it can not be con-
verted into the second SQL query. Although our
preference slightly affects the exact match accuracy

Approach Exact Execution
GNN + SQL 47.5%
GNN + SemQL 51.6%
GNN + NatSQL 53.8% 58.0%
IRNet + SemQL 51.8%
IRNet + NatSQL 52.9% 52.6%
RAT-SQL + IR(RAT-SQL) 62.7%
RAT-SQL + SemQL 58.4%
RAT-SQL + NatSQL 64.4% 66.7%
RAT-SQL + NatSQLG 65.2% 67.3%
extend BERT:
RAT-SQL + IR(RAT-SQL) 69.5%
RAT-SQL + NatSQL 71.7% 72.8%
RAT-SQL + NatSQLG 72.1% 73.0%
extend GAP:
RAT-SQL + IR(RAT-SQL) 71.8%
RAT-SQL + NatSQL 73.7% 74.6%
RAT-SQL + NatSQLG 73.7% 75.0%

Table 5: Exact and execution match accuracy on Spider
development set.

in the Spider benchmark, it brings greater potential
and convenience when outside Spider.

4.2.2 IRs for Prediction
Table 5 presents the exact match accuracy of four
models with SemQL, its default IR (or SQL), and
NatSQL separately. We observe that NatSQL con-
sistently outperforms SemQL with all of these
model architectures, including IRNet. Note that
the original Spider dataset additionally includes
1,659 training samples from 6 earlier text-to-SQL
benchmarks (Academic, GeoQuery, IMDB, Restau-
rants, Scholar and Yelp), which were used to train
models with SemQL in the IRNet. To provide a fair
comparison with other baselines, we didn’t include
these additional samples for all models in our eval-
uation, thus our presented result for IRNet+SemQL
(51.8%) is lower than the number reported in the
IRNet paper (53.2%).

Note that SemQL causes performance decline
for RAT-SQL. We hypothesize that this is because
the exact match accuracy of the gold SemQL is
only 86.2%. With the improvement of model ar-
chitectures, such a gap will affect the prediction
accuracy more negatively. Although the accuracy
of gold RAT-SQL IR is higher than that of NatSQL,
NatSQL still outperforms the original RAT-SQL
model, and NatSQLG slightly improves the perfor-
mance over NatSQL.

Meanwhile, NatSQL helps these models gen-
erate executable SQL queries. Execution match
accuracy improves with the improvement of the
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Approach Easy Medium Hard Extra
GNN + SemQL 68.5% 58.9% 36.8% 24.1%
GNN + NatSQL 72.0% 58.0% 42.0% 28.2%
IRNet + SemQL 69.8% 53.0% 46.0% 30.1%
IRNet + NatSQL 70.6% 54.1% 46.0% 32.5%
RAT-SQL + IR(RAT-SQL) 80.4% 63.9% 55.7% 40.6%
RAT-SQL + NatSQLG 82.4% 65.0% 59.2% 46.5%
extend BERT:
RAT-SQL + IR(RAT-SQL) 86.4% 73.6% 62.1% 42.9%
RAT-SQL + NatSQLG 88.4% 76.6% 62.6% 46.4%
extend GAP:
RAT-SQL + IR(RAT-SQL) 88.3% 74.0% 64.4% 44.0%
RAT-SQL + NatSQLG 91.6% 75.2% 65.5% 51.8%

Table 6: Exact match accuracy by difficulty on Spider
development set.

exact match, and most execution match accuracy
is better than that of exact match. The execution
match accuracy of IRNet is slightly lower than the
exact match, because the IRNet does not predict the
DISTINCT keyword while the exact match metric
does not check this aspect.

Breakdown results. Based on the complexity of
the SQL, the examples in Spider are classified
into four types: easy, medium, hard, and
extra hard. We provide a breakdown com-
parison on the Spider development set, as shown
in Table 6. The improvement brought by Nat-
SQL mainly comes from the extra hard SQL,
which demonstrate an average 4.74% absolute im-
provement across these models. This improve-
ment is in line with the design of NatSQL, i.e.,
most extra hard SQL queries contain set op-
erators or subqueries, while NatSQL has simpli-
fied these components. Since easy and medium
SQL queries categorized in the Spider dataset are
more similar to NatSQL queries, it is expected that
the improvement on simple SQL is less significant.
However, we still observe that NatSQL consistently
increases the accuracy on most samples of different
difficulty levels.

4.3 Overall Performance Analysis

First, we present the exact and execution match
accuracy of our approach applied to RAT-SQL
augmented with GAP in Table 7, where we com-
pare with various baselines at the top of the Spider
leaderboard. By incorporating NatSQL into the
RAT-SQL model with GAP, we demonstrate that
our approach achieves a new state-of-the-art on
Spider execution benchmark, surpassing its best
counterparts by 2.2% absolute improvement.

Considering that the gap between dev and test in
exact match is larger than that in execution match,

Approach Exact Execution
IRNet + BERT (Guo et al., 2019) 54.7% –
RATSQL + BERT (Wang et al., 2020) 65.6% –
BRIDGE v2 + BERT(ensemble) (Lin et al., 2020) 67.5% 68.3%
COMBINE (Anonymous) 67.7% 68.2%
SmBoP + GraPPa (Rubin and Berant, 2021) 69.5% 71.1%
RATSQL + GAP (Shi et al., 2020) 69.7% –
DT-Fixup SQL-SP + RoBERTa (Anonymous) 70.9% –
RAT-SQL + GAP + NatSQLG (Ours) 68.7% 73.3%

Table 7: Results on Spider test set, compared to other
models at the top of the leaderboard.

we speculate that there are two reasons why our ex-
act match accuracy has dropped by 1% compared to
RAT-SQL+GAP. From the complexity breakdown
accuracy between dev and test, we observe that
the main performance degradation comes from the
extra hard SQL queries. Since there are many
subqueries in extra hard SQL queries, some
limitations of the Spider exact match evaluation
process (discussed in Appendix C) may have a neg-
ative effect on our prediction results. On the other
hand, some degradation may come from equivalent
SQL queries. As we discuss in Section 4.2.1 and
Table 4, it is not mandatory to keep the NatSQL
queries consistent with the original SQL queries.
As a result, the model trained by NatSQL may
output equivalent SQL queries that do not match
exactly but that get the same query result. There-
fore, our evaluation shows that NatSQL is more
suitable for generating executable SQL queries.

5 Related Work

Natural Language Interface to Database The
study of Natural Language Interface to Database
(NLIDB) has a long history that can be traced back
to the 1970s (Warren and Pereira, 1982; Androut-
sopoulos et al., 1995; Popescu et al., 2004; Li et al.,
2006; Iacob et al., 2020). Most of the early work
focuses on single-domain datasets, including ATIS,
GeoQuery (Iyer et al., 2017), Restaurants (Ana-
Maria Popescu et al., 2003; Tang and Mooney,
2000; Giordani and Moschitti, 2012), Scholar (Iyer
et al., 2017), Academic (Li and Jagadish, 2014),
Yelp and IMDB (Yaghmazadeh et al., 2017) and
so on. Finegan-Dollak et al. (2018) shows some
models dealing with specific databases that only
learn to match semantic parsing results. It is a chal-
lenge to generate SQL queries in a cross-domain
setting, such as the case of the WikiSQL (Zhong
et al., 2017) and Spider (Yu et al., 2018b) bench-
marks. SyntaxSQLNet (Yu et al., 2018a) was the
first study to use the Spider benchmark. Following
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this work, many models are presented to address
this problem (Bogin et al., 2019a; Guo et al., 2019;
Zhang et al., 2019; Bogin et al., 2019b; Wang et al.,
2020; Rubin and Berant, 2021; Lin et al., 2020).

Intermediate Representations for NLIDB
Early work on IR of SQL tried to use an IR to
translate a natural language question and then
convert it to SQL queries (Woods, 1978; Li and
Jagadish, 2014). Li et al. (2014) proposed an IR for
SQL called Schema-free SQL, for users who do not
need to know all of the schema information. The
IR in SyntaxSQLNet (Yu et al., 2018a) represents
an SQL statement without FROM and JOIN ON
clauses. SemQL (Guo et al., 2019) removes the
FROM, JOIN ON and GROUP BY clauses, and
combines the WHERE and HAVING conditions.
The IR in EditSQL (Zhang et al., 2019) also
combines the WHERE and HAVING conditions but
keeps the GROUP BY clause. IR is also used to
improve compositional generalization in semantic
parsing (Herzig et al., 2021). Compared to existing
IRs for SQL, our NatSQL further simplifies the
SQL language, moving closer towards bridging
the gap between natural language descriptions and
SQL statements.

6 Conclusion

In this paper, we propose NatSQL, a new SQL in-
termediate representation that reduces the difficulty
of schema linking and simplifies the SQL struc-
ture. By incorporating NatSQL into existing neural
models for text-to-SQL generation, we show that
NatSQL is easier to infer from natural language
specification than the full-fledged SQL and other in-
termediate representation languages. Furthermore,
NatSQL enables existing models to easily generate
executable SQL queries without modifying their ar-
chitecture. Experimental results on the challenging
Spider benchmark demonstrate that NatSQL con-
sistently improves the prediction performance of
several neural network architectures and achieves
the state-of-the-art, showing the effectiveness of
our approach.
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A Further Discussion on Set Operators

Based on the rules discussed on Section 3.4.1, Nat-
SQL can simplify the SQL with INTERSECT (ex-
ample is shown in Figure 1) and EXCEPT. As to
the case that the set operator itself represents part
of a condition, NatSQL allows them to follow the
WHERE keyword. As illustrated in Table 8, this
type of SQL is mainly related to the EXCEPT op-
erator.

The NatSQL prediction work in Table 8 is easier
than others. NatSQL here only needs to predict
the ‘cartoon’ table, instead of predicting the ‘car-
toon.channel’ column. Predicting a table is eas-
ier than predicting a column because the premise
of finding the correct column is to find the cor-
rect table. Besides, many models incorrectly out-
put ‘cartoon.id’ instead of ‘cartoon.channel’ be-
cause the annotation of ‘cartoon.id’ is the same
as‘tv_channel.id’ column.

Ques Find the id of tv channels that do not play any cartoon
SQL SELECT id FROM tv_channel EXCEPT

SELECT channel FROM cartoon
SemQL SELECT tv_channel.id EXCEPT

SELECT cartoon.channel
NatSQL SELECT tv_channel.id WHERE except cartoon.*

Table 8: An example of none WHERE conditions be-
fore the IUE.

In addition to the conditions mentioned in Sec-
tion 3.4.1 that cannot be concatenated, Table 9
present one more example. These two conditions
can not concatenate because one WHERE condi-
tion can not concatenate a HAVING condition by a
OR operator.

Ques Which film is rented at a fee of 0.99 or has less
than 3 in the inventory?

SemQL SELECT film.title WHERE film.rental_rate = 0.99
UNION
SELECT film.title WHERE count(inventory.*)< 3

NatSQL SELECT film.title WHERE film.rental_rate = 0.99
OR count(inventory.*)< 3

Table 9: An example modified from that in Figure 5.

B Further Discussion on Executable SQL
Generation

In Section 3.6, we discuss that different questions
in Figure 5 will be converted to different NatSQL,
where training data is the key. Firstly, in the dataset,
for SQL with multiple WHERE conditions, the or-
der of the conditions is mostly consistent with the
question. Secondly, the NatSQL further expands
this type of training data. For example, the Nat-
SQL queries in Figure 1,3,4 contain more WHERE
conditions than SQL and other IRs, and these condi-
tions appear in the order they are mentioned. These
training data make it possible for models to gen-
erate different NatSQL according to the different
questions in Figure 5.

C Gold NatSQL Error Analysis

Table 10 presents the F1 score of NatSQL for dif-
ferent SQL components. We observe that the main
errors come from GROUP BY and IUE matching.
Although NatSQL cannot be converted to all gold
GROUP BY clauses, most of these errors don’t af-
fect the execution results. The IUE errors occur
because NatSQL only supports one IUE operator
per query.

Some other errors are due to the limitation
of the exact match evaluation method when
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Component F1 Component F1
select 0.997 where 0.969
group 0.879 order 0.996
and/or 0.998 IUE 0.900

keywords 0.989

Table 10: Partial matching F1 score of NatSQL on the
Spider development set.

evaluating the JOIN ON clause of subqueries and
sub-subqueries. Specifically, when the FROM and
JOIN in a generated subquery is not identical to the
gold SQL, the Spider evaluation scheme considers
it to be wrong. For example, the following two
SQL statements have the same semantic meaning,
but they are recognized as different by the Spider
exact match evaluation method, thus results in an
exact match error.
... col in ( SELECT col FROM T1 JOIN T2 ... )
... col in ( SELECT col FROM T2 JOIN T1 ... )

D SQL, SemQL and NatSQL Examples

We present more examples in Table 11.
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Ques: What are the name of the countries where there is not a single car maker?
SQL: SELECT CountryName FROM countries EXCEPT SELECT T1.CountryName FROM

countries AS T1 JOIN car_makers AS T2 ON T1.countryId = T2.Country;
SemQL: Not Support
NatSQL: SELECT countries.countryname WHERE except @ is car_makers.*

Ques: Find the last name of the students who currently live in the state of North Carolina but have
not registered in any degree program.

SQL: SELECT T1.staff_name FROM staff AS T1 JOIN Staff_DA AS T2 ON T1.staff_id =
T2.staff_id WHERE T2.job_title_code = "Sales Person" EXCEPT
SELECT T1.staff_name FROM staff AS T1 JOIN Staff_DA AS T2 ON T1.staff_id =
T2.staff_id WHERE T2.job_title_code = "Clerical Staff"

SemQL: SELECT staff.staff_name WHERE Staff_DA.job_title_code = "Sales Person" EXCEPT
SELECT staff.staff_name WHERE Staff_DA.job_title_code = "Clerical Staff"

NatSQL: SELECT staff.staff_name WHERE Staff_DA.job_title_code = "Sales Person"
AND Staff_DA.job_title_code != "Clerical Staff"

Ques: Find id of the tv channels that from the countries where have more than two tv channels.
SQL: SELECT id FROM tv_channel GROUP BY country HAVING count(*) > 2
SemQL: SELECT tv_channel.id WHERE count ( tv_channel.* ) > 2
NatSQL: SELECT tv_channel.id WHERE count ( tv_channel.* ) > 2

Ques: List all song names by singers above the average age.
SQL: SELECT song_name FROM singer WHERE age > ( SELECT avg(age) FROM singer )
SemQL: SELECT singer.song_name WHERE singer.age > ( SELECT avg(singer.age) )
NatSQL: SELECT singer.song_name singer WHERE @ > avg ( age )

Ques: Which district has both stores with less than 3000 products and stores with more than 10000
products?

SQL: SELECT district FROM shop WHERE Number_products < 3000 INTERSECT SE-
LECT district FROM shop WHERE Number_products > 10000

SemQL: SELECT shop.district WHERE shop.Number_products < 3000 INTERSECT SELECT
shop.district WHERE shop.Number_products > 10000

NatSQL: SELECT shop.district WHERE shop.number_products < 3000 and
shop.number_products > 10000

Table 11: SQL, SemQL and NatSQL examples from the Spider.


