Combining Lexical Resources in a Robust Broad-Coverage Semantic Parser

John Dowding
Mathew Purver

7th Annual Semantics Fest
March 10, 2006
Open-Domain Interpretation

- Extract propositional content from meetings
 - Used to help detect decisions and action items
 - Part of DARPA’s CALO program,
 - emphasizing “learning in the wild”
- Open-Domain
 - Meeting topics are not specified in advance
- Analyzing speech recognition output
 - Word Error Rates near 30%
 - Word Confusion Networks encoding large numbers of speech recognition hypotheses
 - Avg. 1.9×10^{34} paths (mean)
Approach

• Given the prevalence of ill-formed data, allowing for the full complexity of English syntax seems likely to introduce more errors than it fixes.
• Emphasize extracting predicate-argument structure
• Extract major phrase types (S, VP, NP, PP)
 • Rely heavily on lexicon
 • Less emphasis on grammar
• Build lexicon from publicly available resources
 • COMLEX, VerbNet, WordNet, NomLex
 • Combine semantic information across resources
• Avoid hand-modifying the lexicon
Lexical Resources

- COMLEX provides detailed syntactic features
 - 23,195 nouns (mass/count and temporality)
 - 5,665 verbs (subcategorization)
 - 4,200 adjectives (gradeability and subcategorization)
 - 3,120 adverbs (syntactic distribution)
 - Provides morphological variants for irregular forms
- VerbNet provides semantic information for 5,000 verbs
 - Verb class
 - Thematic Roles
 - Syntax-Semantics Mapping
 - Selectional Restrictions
 - Expressed as concepts from the EuroWordNet upper ontology
Lexical Resources (continued)

- WordNet
 - We take another 15,500 nouns from WordNet
 - Semantic class information for all nouns
 - Semantic classes hand-aligned to the EuroWordNet upper ontology
- NOMLEX (and NOMLEXPLUS)
 - Syntactic information for event nominalizations
 - Mapping into corresponding verb syntactic positions
 - Aligned with VerbNet to provide selection on noun arguments.
- Common proper names from US Census data
Pruning low-frequency POS

• COMLEX contains many entries for low-frequency part-of-speech assignments for high-frequency words.
 • Examples like are, down, low, okay
• These caused trouble for the parser
• Used hand-tagged data (Switchboard, ATIS, WSJ) to identify low-frequency POS assignments
 • Pruned POS when a word had a dominant POS (>98%)
• Eliminated POS assignments for ~900 words.
Minimal Recursion Semantics (MRS)

- Based on Copestake, Flickenger, Sag (1999)
- Flat semantic representation that underspecifies scope
- Identifies entities and events
- Represents elementary predications
- Easy to extract features for machine learning
 - Additional ML approaches to detecting action items
MRS Example

B: declarative(C)
D: quant(exists;[det],F;[get-13.5.1],H,I)
J: event(F;[get-13.5.1])
J: 'Buy_v'(F;[get-13.5.1])
K: agent(F;[get-13.5.1],L;[organization])
K: theme(F;[get-13.5.1],N;[phys_obj])
V: quant(a;[indef],N;[phys_obj],W,X)
Y: entity(N;[phys_obj])
Y: new_adj(N;[phys_obj])
Y: computer_n(N;[phys_obj])
Z: quant(the;[def],L;[organization],A1,B1)
C: entity(L;[organization])
C1: department_n(L;[organization])

The department bought a new computer
NOMLEX Example “talk”

(NOM :ORTH "talk"
 :VERB "talk"
 :NOM-TYPE ((VERB-NOM))
 :VERB-SUBJ ((N-N-MOD)
 (DET-POSS)
 (PP :PVAL ("by"))
 :SUBJ-ATTRIBUTE ((NHUMAN))
 :VERB-SUBC ((NOM-INTRANS :SUBJECT ((N-N-MOD)
 (DET-POSS)
 (PP :PVAL ("by"))
 :REQUIRED ((SUBJECT))
 (NOM-PP-PP :SUBJECT ((N-N-MOD)
 (DET-POSS)
 (PP :PVAL ("by"))
 :PVAL ("about" "of" "on")
 :PVAL2 ("to" "with")
 (NOM-PP :SUBJECT ((N-N-MOD)
 (DET-POSS)
 (PP :PVAL ("by"))
 :PVAL ("about" "on" "of" "to" "with"))}
VerbNet Thematic Roles “talk”

<THEMROLES>
 <THEMROLE type="Actor">
 <SELRESTRS logic="or">
 <SELRESTR Value="+" type="animate"/>
 <SELRESTR Value="+" type="organization"/>
 </SELRESTRS>
 </THEMROLE>
 <THEMROLE type="Actor1">
 <SELRESTRS logic="or">
 <SELRESTR Value="+" type="animate"/>
 <SELRESTR Value="+" type="organization"/>
 </SELRESTRS>
 </THEMROLE>
 <THEMROLE type="Actor2">
 <SELRESTRS logic="or">
 <SELRESTR Value="+" type="animate"/>
 <SELRESTR Value="+" type="organization"/>
 </SELRESTRS>
 </THEMROLE>
 <THEMROLE type="Topic">
 <SELRESTRS>
 <SELRESTR Value="+" type="communication"/>
 </SELRESTRS>
 </THEMROLE>
</THEMROLES>
VerbNet Frame “talk”

<FRAME>
 <DESCRIPTION descriptionNumber="0.1" primary="PP-PP" secondary="to-PP Topic-PP" xtag=""/>
 <EXAMPLES>
 <EXAMPLE>"Susan talked to Rachel about the problem"</EXAMPLE>
 </EXAMPLES>
 <SYNTAX>
 <NP value="Actor1">
 <SYNRESTRS/>
 </NP>
 <VERB/>
 <PREP value="to">
 <SELRESTRS/>
 </PREP>
 <NP value="Actor2">
 <SYNRESTRS/>
 </NP>
 <PREP value="about">
 <SELRESTRS/>
 </PREP>
 <NP value="Topic">
 <SYNRESTRS/>
 </NP>
 </SYNTAX>
Word Confusion Networks

- Nodes combined to form a linear sequence
- Arcs labeled with words and probabilities
- 1 arc into each node labeled with ϵ with probability
- Probabilities on the arcs into a node sum to 1.
Parsing Word Confusion Networks

- Modified Gemini parser to handle WCNs
 - Track and combine probabilities
 - Prune phrases with probability beneath a threshold
 - Competing words treated like lexical ambiguity
 - Parser extended to allow ϵ-moves:
 - For an ϵ-move between index $i-1$ and index i with probability p_ϵ
 - Extend every phrase ending at index $i-1$ with probability p_{i-1} to index i with probability $p_i = p_{i-1} \times p_\epsilon$

- Parser speed is influenced by
 - Pruning threshold
 - Timeout on the amount of time spent at any index
Evaluation (parser speed)

- Parsed one ICSI meeting (Buw001), 1800 WCNs
 - 31% Word Error Rate
 - Failed to find any major phrases for 177 WCNs
 - WCNs from SRI/ICSI recognizer

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg. Parse Time</td>
<td>6.5 seconds</td>
</tr>
<tr>
<td>Avg. number of nodes</td>
<td>15</td>
</tr>
<tr>
<td>Avg. number of arcs</td>
<td>157</td>
</tr>
<tr>
<td>Avg. number of phrases</td>
<td>12.7</td>
</tr>
<tr>
<td>Avg. phrase length</td>
<td>3.7</td>
</tr>
<tr>
<td>Avg. number of edges</td>
<td>478</td>
</tr>
</tbody>
</table>
Evaluation (parser quality)

- Annotaters selected 145 phrases from Buw001 that contribute information relevant to action items
- Judged parser results for each phrase:
 - Identified by parser, with essentially correct semantics
 - Partially identified by parser, but with significant errors or omissions
 - Not identified by parser

<table>
<thead>
<tr>
<th>Correct</th>
<th>Partial</th>
<th>Missed</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>61</td>
<td>49</td>
</tr>
</tbody>
</table>
Partially Correct Example

• An exampled judged partially correct:
 • Target phrase:
 People are supposed to send me URLs
 • Identified phrase:
 People are supposed to send me elves

• Clearly wrong, but got a lot of the semantics right
• Potentially still useful in the CALO environment
Continuing and Future Work

- Inconsistent use of contracted forms in WCNs
 - Costing us most negations
- Combine lexicon with TRIPS lexicon (U. Rochester)
- N-N modification
 - POS Tag ICSI data to learn common compounds
- Combine WCN probabilities with
 - POS probabilities
 - Parse probabilities
- Evaluate using parser to reduce Word Error Rate