
- 1 -

A Concurrent Programming Model using
Single-assignment, Single-writer, Multiple-reader

Variables
Matthew Huntbach

Department of Computer Science
Queen Mary and Westfield College

London E1 4NS, UK
mmh@dcs.qmw.ac.uk

Abstract This paper describes a concurrent programming language, Aldwych, and its
underlying model. The basis of the language is that the concurrency is provided by
shared single-assignment variables, each of which is constrained by the terms of the
language to have exactly one writer though it may have several readers. Through
derived forms, this simple model provides the basis of a flexible concurrent object-
oriented language.

Introduction
Underneath various concurrent programming models lie differences in how processes
share data. Unrestricted read/write access to shared store leads to the classic problems
of concurrency and mechanisms such as semaphores for mutual exclusion, discussion
of which still dominates concurrency as conventionally taught [Ma & Kr 99]. Shared
rewriteable store remains an essential part of concurrency in Java, with the need for its
synchronized methods though access to store is restricted by object-orientation. The
popular Linda model [Ca & Ge 89] has no direct sharing between threads of variables,
but has shared access to a database which any thread can write to, read from or delete
from.While these models are popular because they are an evolutionary step from
standard sequential von Neumann computing, the lack of restriction on access to
shared data makes concurrency seem complicated, and leaves a large burden for the
programmer to manage.
A different approach to concurrency uses models of computing which are inherently
concurrent. The ! -calculus [Mil 92] has received much discussion recently as one
such model, and at least one programming language has been built from it
[Pi & Tu 97], as functional programming languages have been built using the
"-calculus as an underlying model. The only data in the !-calculus are channels, and
channels are used to send messages which are themselves channels between
processes.
We sugges the !-calculus is not an ideal model for building a concurrent language
because of the unrestricted nature of access to its channels. A channel in the !-
calculus could be viewed as a restricted form of a Linda database, one which may
hold only one tuple. At any time the channel is either full with one value in which
case the only operation possible is for that value to be read and removed, or empty in
which case the only operation possible is for a value to be put into it. The original
!-calculus is synchronous, so the process putting a value in a channel must wait until
it is taken out by another, but asynchronous versions in which there is no such wait
have also been considered [Ho & To 91]. The problem is that any process that has
access to a channel may both read and write to it. Read and write access may be
spread arbitarily as a process with access to one channel may spread that access to any
other process which shares any other channel with it. Thus in any non-trivial
computation it could soon become difficult to trace which process wrote what to
which channel.
We propose a model of concurrent computation which is considerably more restricted
than this. As the history of sequential programming has shown us, with the
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development first of structured then of object oriented programming, restriction of
access in a programming language strengthens it. We can more easily build higher
level conceptual abstractions, both formally and informally, if we can be sure of lack
of interference from unexpected side-effects.
In our model, shared locations may only be written to once and only one process has
write access to a shared location at any one time. Other processes have read-only
access to locations, and reading has no effect on the value of the location, so, as it is
not consumed, writing to a location can be regarded as multicasting to all that
location’s readers. A process which needs the value of a location may have to wait
until it learns of that location’s value, but there are none of the problems associated
with concurrent systems where shared locations may change their value. As every
location has exactly one writer, in the absence of deadlocks and non-terminating
computations, locations will always get written to but there may be an arbitary delay
before a reader learns of the value written to a location. This allows for
implementation in a distributed system where it is the responsibility of a location to
inform processes suspended waiting its value of that value.

Logic Variables and Futures
The single assignment variable is often referred to as the “logic variable” [Hari 99] as
the first extensive use of the concept occurred in logic programming. Another form of
single-assignment variable is the “future” of parallel functional programming
[Hals 85] and concurrent object-oriented programming [Lieb 87] – a placeholder for a
value being computed concurrently which may be embdedded in structures or passed
as an argument before its value is known. The conventional model of logic
programming, however, makes no distinction between readers and writers of a
variable, whereas a future has exactly one writer, the computation calculating its
value. Our locations as described above then are more like futures than logic
variables.
The key advantage logic variables offer over futures is “back communication”
[Greg 87]. This refers to the writer of a variable writing to it a structure containing
variables which are intended to be written to by readers of the original variable. This
allows for the two-way communication between processes which is essential for
distributed computing. A future allows only for one-way communication since a
computation may set a future to a structure containing a future but must also set up a
computation to give a value to that embedded future.
Back communication seems incompatible with insisting that variables have one writer
but letting them have multiple readers. A structure containing a variable intended for
back-communication will be accessed by all readers of the original variable set to that
structure without distinction. To overcome this, Saraswat et al proposed a language,
Janus, in which logic variables had exactly one reader as well as exactly one writer
[Sara 90]. We propose a model which is less restrictive than this, so multicasting is
not lost.
We also avoid the introduction of additional constructs such as the cells and
procedure references of Oz [Hari 99] which are not describable using logic variables
and the logic programming model. So we develop a language which relies heavily on
derived forms, but has a direct translation to concurrent logic programming [Shap 89].
There are no direct higher-order procedures, unlike Oz. A program consists of a fixed
set of process descriptors and an initial process. We shall assume the process
descriptors are available globally, though in a highly distributed implementation of
the language this assumption may need to be reconsidered. At present the language is
implemented through a translator to a concurrent logic language, but it is not our
intention that the language be seen as a “front-end” to concurrent logic programming,
so it need not necessarily be implemented in that way.
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Communication of Simple Values
A process in our model consists of a name and an ordered collection of location
references (which we can call variables). There is a fixed set of process descriptors,
one for each possible name of process. A process descriptor gives formal parameters
for a process of its name, indicating for each parameter whether a process of that
name has read or write access to it. It also gives a set of rewrite rules. Each rewrite
rule consists of a left-hand side (lhs) and a right-hand side (rhs). The lhs of a rule
consists of read commands, or more properly ask commands, since they ask whether a
variable has a particular value. The rhs consists of write commands and new process
creations. A computation consists of a set of processes. When the variables in a
process are sufficiently bound such that all the asks on the lhs of a rule in the process
descriptor are answered positively the process is transformed to the rhs of the rule. In
both cases formal parameters are substituted by actual parameters, with any parameter
that occurs only in the rule being substituted by a new variable inaccessible anywhere
else in the computation. For simplicity we will for now ignore the case where there is
no rule to cover a situation, that is when at least one ask is answered negatively for
every rule.
To keep to the property that any variable has exactly one writer, each rule must give a
writer for each argument a process has write access to. The rule may write a value to
the variable itself or create a new process which writes to that variable. A variable
which occurs only on the rhs must occur in exactly one write position.
Here is the simplest example of a process descriptor:
#p(x,  ŷ) {x=a || y=b}

This indicates that any p process has two arguments, is a reader to its first and a writer
to its second. After its first becomes the constant "a" it writes the constant "b" to its
second.
Here is an example with two rules:
#p(x,  ŷ) {x=a || y=b; x=c || y=d}

Again, a p process has two arguments, is a reader to its first and a writer to its second.
If its first becomes "a" it writes "b" to its second, if its first becomes "c" it writes
"d" to its second.
A rule may have more than one ask on its lhs, in which case all asks must be
answered positively for the rule to be applied. So the following
#q(x,y, ̂z) {x=a, y=b || z=c}
indicates that a q process has three arguments, and is a reader to its first two, a writer
to its third. After its first becomes "a" and its second becomes "b", "c" is written to
its third.
The model is indeterministic because more than one rule may apply:
#q(x,y, ̂z) {x=a || z=c; y=b || z=d}
Here, a q process has three arguments, is a reader to its first two and a writer to its
second. If the first is "a" then "c" is written to the third, if the first is "b" then "d"
is written to the third. But either rule could be applied if the first is "a" and also the
second is "b".
While z=y writes the constant "y" to the variable z, z#y assigns the variable y to
the variable z. The effect is that remaining occurences of z, which must be read
occurrences, become further read occurrences of y. So
#r(w,x,y, ̂z) {w=a || z#x; w=b || z#y}
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means an r process has four arguments, with read access to the first three and write
access to the fourth. If the first becomes equal to "a", the fourth argument becomes
equal to the second argument, either the value already written to the second argument,
or if no value has yet been written to it, the variable in the fourth argument will
become written to whatever is written to the variable of the second argument later.
Similarly with the third argument if the first becomes "b". Note that since variables
never have their values rewritten, we do not need to be concerned over whether we
are writing references to values or values themselves into variables.
For an example showing the creation of a new process:
#r(w,x,y, ̂z) {w=a || p(x, ̂z); w=b || p(y, ̂z)}
Here when the first argument to a four-argument r process becomes "a", a new p
process is set up whose first (read) argument is the second argument of the r process
and whose second (write) argument is the fourth argument of the r process, when the
first argument of the r process is "b", a new p process is set up whose first argument
is the third argument of the r process. Note that a rule for an r process here has either
to write to z directly using = or #, or has to create exactly one new process with z in
the output position. It is not necessary to use all read arguments in a rule however, as
the above example shows. One way of thinking of the rules above is that an r process
becomes a p process on rewriting using either of the rules.
For an example with a local variable
#q(x,y, ̂z) {x=a || p(y,  ŵ), p(w, ̂z)}
sets up two p processes when the first argument to a q process becomes "a", with w
the link between them, written by one and read by the other. Any such variable local
to the rhs of a rule must have one writer but may have any number of readers. If there
is an existing variable of the same name, local variables like w should be considered
as given new unique names – there is no “variable capture”.
A variable may be used as a read argument even if its value is known through an ask,
for example in
#q(x,y, ̂z) {x=a || p(y,  ŵ), q(w,x, ̂z)}
the second argument of the recursive call to q must be "a" on its creation.
For an example with multicasting
#r(w,x,y, ̂z) {w=a || q(x,y,  v̂), q(v,y, ̂z)}
Here the third argument of the r process is sent to both q processes created when the
first argument becomes "a". Unlike Janus, this can happen before this third argument
has been given a value. Multicasting can also occur with an argument to which a
process has write access occurring in a read position in a new process:
#r(w,x,y, ̂z) {w=a || q(z,x,  v̂), q(v,y, ̂z)}
Here the z written by the second q process is multicast by being sent out of the r
process as well as into the first q process. As the two q processes run concurrently,
the circular dataflow is permitted, though it can lead to deadlock. The use of a read
access argument in a write position is not permitted however (until we consider single
bar rules later).
The situation in these two multicasting examples is perhaps best appreciated when
show as dataflow diagrams of the sort we used in our previous work on logic program
synthesis [Hunt 86]:
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Communication of Compound Values
Locations in our model may store not just constants but tuples containing references
to further locations. Here is a description of a process with a read and write argument,
which reacts when the read argument becomes an f tuple with two arguments by
writing a g tuple with the same two arguments reversed to its write argument:
#p(x,  ŷ) {x=f(u,v) || y=g(v,u)}

Tuple arguments on the lhs of a rule are treated as additional read arguments on the
rhs. If an argument to a tuple on the rhs is local to that rhs, it must also occur in
exactly one write position in a new process creation in order to ensure that every
variable has a writer:
#q(x,y, ̂z) {x=f(u,v) || p(u,  ŵ), z=h(v,y,w)}
The arguments to tuples may themselves be tuples, and asks on the lhs may combine
asks on an argument with asks on a sub-argument, for example:

#q(x,y, ̂z) {x=f(u,v), v=g(w) || p(u, ̂t), z=h(w,y,t)}
means a q process reacts only when its first argument becomes f(j,g(k)) for any
variables j  and k.
Tuples as described here do not allow for back-communication. When a process reads
a tuple it has only read access to its arguments. When a process writes a tuple it has to
write its arguments or pass write access to processes it has created. For a tuple to be
used for back-communication, a process which reads its value must be given write
access to one or more of its arguments. We could imagine m=f(x,  ŷ) writing to m a
tuple whose second argument is intended for back communication, but suppose m is
passed to a process that multicasts it, which reader of the tuple will write to y?

Back Communication
Back communication is achieved by having a separate set of variables which may
hold tuples with back-communication arguments. These tuples are referred to as
queries  as they may be considered queries sent to other processes to send an answer
back. So the variables holding them are referred to as query variables . The header of a
process descriptor will indicate which of its arguments are query variables, and which
are standard variables. Query variable arguments have read or write access like
standard arguments, but it is a compiler error to multicast them. It is a compiler error
to use a query variable in a standard argument position in a new process creation, and
a compiler error to use a query variable as one of the arguments of a tuple. A query,
however, may have query variables amongst its arguments.
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A process rule which asks for the value of a query argument it has read access to has
write access to all of its reply arguments. If a rule does not have an ask on a query
variable it has read access to, it must pass that variable to exactly one new process,
which is then passed the write access to its reply arguments, or alternatively the query
can be passed on as an argument to a further query. In
#q(m,x,y)
{
 x=a, m$f(u,v, ̂z) || r(u,v,y, ̂z);
 x=b || p(m,y)
}
the first argument to a q process is a query, which is indicated by writing it in italics.
When the second argument to the q process is "a", the first rule is used which creates
an r process to answer the query in the first argument. When the second argument to
the q process is "b", the query is passed on to a p process. Passing on a query like
this is a form of delegation [Lieb 87]. The $  character is used in the place of = in the
first rule to indicate that the query m is being broken down and answered in this rule.
= is used with query variables to view them without answering them. This is done
below:
#p(m,x)
{
 m$f(w,y, ̂z) || r(x,y,w, ̂z);
 m=g(w,y, ̂z) || r(z,y,w,  v̂), q(m,v,x);
 m$h(w,y, ̂z) || n=k(w, ̂z), q(n,y,x)
}
Here, a p process checks whether its first argument is an f query, a g query or an h
query. In the first case it answers it directly using an r process to generate the answer.
In the second case, it delegates it to a q process to answer, but one of the arguments to
the q process is generated from an r process which itself requires the reply to the
query. Note that when a process looks at the value of a query but does not answer it,
that is when its value is asked for using =, it has read access only to all the arguments
of that query including those that are indicated as reply arguments. So in the second
rule above there is read access to z, but write access to z is passed on to the q
process. A query which is read but not answered must be passed on to exactly one
process to keep the rule that there must be exactly one writer for every variable. The
third rule above shows a case where the query is answered by formulating and asking
a further query.
Note that the q and p processes above have no arguments with write access. This
means their only output is through replies to queries they receive as their first
argument. The use of back-communication means we can no longer describe the
behaviour of a process rule through a simple dataflow diagram as used previously.

Further Aspects of the Model
The model described above needs some minor additions in order for it to be the basis
of a general programming language. Arithmetic operators are allowed on the rhs of
rules so, for example, x#y+z waits till y and z have had numerical values written to
them, then adds those values and writes the results to x. The right-hand side of the #
may be any variable with write access, the left-hand side any arithmetic expression
with the usual operator precedence rules applying. The lhs of a rule may include
comparison operators on variables (either process arguments or additional variables
from tuples or queries), such as x>y. Any comparison operator must evaluate
positively as well as all ask operations for a rule to become applicable. A comparison
operator can only evaluate when both its arguments have been written to. The
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operation x? on the lhs where x is any variable means the rule does not become
applicable until x has been written to. This can be used for synchronisation. A :
following a rule is read as “otherwise”, meaning that rules following it only become
applicable if there has been sufficient writing to variables to make all rules before it
inapplicable. Variable and process names may be any string of alphanumeric
characters starting with an alphabetical one, and strings of digits represent numerical
constants. The following, for example, is a process descriptor to evaluate factorials:

#fact(n, ̂f) {n>0 || f#1; :|| fact(m, ̂r), m#n-1, f#r*n}

We have constructed a programming language called Aldwych which adds derived
form to this underlying model, much as Pict builds from the ! -calculus by adding
derived forms [Pi & Tu 97].
For use with ascii, p(x,  ŷ)  can be written p(x)->y, and q(x,  ŷ, ̂z) can be
written q(x)->(y,z) and so on. x# exp  can be written x<-e x p  for e x p  any
arithmetic expression. We shall see later how queries, which above use italics and the
symbol $, are dealt with.
To reduce the name space and give a more functional appearance to code, p(x) as a
new process argument or in an arithmetic expression can be written in the place of v
and p(x,  v̂) written elsewhere in the rule, where v is a variable which does not
otherwise occur in the rule. Similarly, any arithmetic expression exp  can be written
directly as an argument to a new process in the place of v being the argument and
v<-exp  occurring separately. =f(x,y) as an argument passes the tuple f(x,y) as
the argument, since f(x,y) on its own would mean z where there is a process
f(x,y, ̂z). On the lhs, x=f(u,g(v)) is a shorthand for x=f(u,w),w=g(v). The
form x=f(u,w=g(v)) is also allowed to give a layered pattern where a variable
representing g(v) is required on the rhs. The factorial example can be written in
Aldwych (showing the reduction of name space and also the form for when only ascii
characters are available):
#fact(n)->f
{
 n>0 || f<-n*fact(n-1);
 :
 || f<-1
}
The otherwise operator is best written in a line of its own like this so that it stands out.
More concise ways of writing factorial are given later in this paper.
A notation for expressing priorities between processes may be needed in some cases
(we argue this in respect of concurrent logic programming in [Hunt 91]). For mapping
the abstract concurrency onto real parallel architecture, a mapping notation such as
that employed by PCN [Fost 92] may be used. Notations for priority and process
mapping should be kept orthogonal to the abstract concurrency and are not discussed
further here.

Process State
Processes as described so far are short-lived. As soon as a rule is applied, they
disappear, though possibly creating new processes when they do. Conceptually,
however, it helps to think of a process created when a rule is applied as continuing the
original process, particularly if it has the same name and hence same process
description. This is how the Actors model [Agha 86] works: an actor creates the actor
to receive the next message in a stream of messages which are conceptually sent to a
single actor. It is also the basis for viewing concurrent logic programming in an
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object-oriented way [Sh & Ta 83], [Hunt 95]: the arguments in a clause head are
considered to represent the state of an object, with the arguments in a recursive call in
the clause body representing the state as updated by the actions represented by the
clause.
To encourage thinking in these conceptual terms, Aldwych has “single bar” rules in
which there is an implicit recursive process creation. When the lhs and rhs of a rule
are separated by | rather than ||, a process with the same process descriptor as the
process the rule in in is created when the rule is applied. The arguments to this
recursive call are by default the arguments to the original process. However, if x is a
read access argument to the process, x#exp  in a single-bar rule is equivalent to
  %x #exp  with   %x  replacing x in the recursive call (also x=val , where val is a constant
or a tuple, is equivalent to   %x =val  with the replacement). If y is a write access
argument to the process, y#exp  in a single-bar rule is equivalent to replacing y in the
recursive call and all other occurences of y on the rhs (including within exp) by   %y .
Thus
#r(w,x,y)->z
{x=a | v<-q(w,y), y<-q(z,v), x=b, z<-p(z)}
is equivalent to
#r(w,x,y, ̂z)
{x=a || q(w,y,  v̂), q(z’,v,  %ŷ ), x’=b, p(  %z , ̂z), r(w,x’,y’,  ˆ %z )}

Here y<-p(x) is equivalent to p(x,  ŷ) since p(x) on its own can be an expression
equivalent to v with a separate p(x,  v̂) with v an otherwise unused variable, so
y<-p(x) is equivalent to y<-v,p(x,  v̂), which is equivalent to p(x,  ŷ).
Using this, the factorial process above can be written as:
#fact(n)->f {n>0 | f<-n*f, n<-n-1; :|| f<-1}
If you are not used to the Aldwych style, the behaviour of a process with this
description may not be immediately apparent, but a tail recursive version of factorial:
#fact(n,acc)->f {n>0 | acc<-acc*n, n<-n-1; :|| f<-acc}
can easily be seen in terms of the while loop:
while(n>0)

{
 acc<-acc*n;
 n<-n-1
}

return acc
and in general a pair of rules of the form
{ cond | assignments; :|| return<-value}
can be seen as the while loop
while(cond) do assignments; return value
operating on updateable store.
This is the basis on which an imperative style of programming can be achieved in
Aldwych. The idea is extended in the full Aldwych language with some further
derived forms not described here.
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Stream Communication
In the object-oriented view of concurrent logic programming, recursive calls
representing the continuation of a state are coupled with lists representing continuous
communication between long-lived processes. If we represent lists by the tuple
list(head,tail) then the following is a long-lived version of our first process
descriptor which took in "a" and returned "b":
#p(x,  ŷ) {x=list(h,t), h=a | y=list(=b,y), x<-t}

which translates to:
#p(x,  ŷ) {x=list(h,t), h=a || y=list(=b,  %y ), p(t,  ˆ %y )}

This describes a process which has two arguments, an input stream and an output
stream. Each time it receives "a" on the input stream, it outputs "b" on the output
stream.
For a more convenient list syntax, Aldwych uses :   as an infix cons operator,
resulting in the following representing the "a" to "b" stream converter:
#p(x,y) {x=m:t, m=a | y=(=b):y, x<-t}
However, in most cases direct use of the cons operator is not required due to a derived
form introduced to handle streams. On the lhs, x.val  for any constant or tuple val is
equivalent to x=h:t,h=val with all occurrences of x on the rhs replaced by t (where
t is a new variable), except the occurrence in x<-exp  for assigning a new value of x
in the implicit recursive call. This means that x.val on the lhs can be considered as
checking the value at the head of stream x and consuming it. On the rhs, y.val  needs
to represent sending val  on stream y, so it is equivalent to y<-val:y, which assigns
val:y to the y position of the whole process, while leaving y otherwise to represent
the y output of the implicit recursive call. This means the "a" to "b" stream
converter can be described simply by
#p(x,  ŷ) {x.a | y.b}

The only problem here is that there is no rule to deal with stream termination. The full
converter is written:
#p(x,  ŷ) {x.a | y.b; x$ || y$}

On the lhs x$ means “check stream x is end-of-stream”, while on the rhs x$ means
“set stream x to end-of-stream”.
If x is a process argument with read access, x.val is permitted on the rhs of a single-
bar rule, and has the effect that the x position in the implicit recursive call is set to
val:x. The effect is to treat x as a stack, with x.val  on the rhs the push operation, and
x.val  on the lhs the pop operation. The equivalent of the top operation which looks at
the top of the stack or the front of the stream without consuming it is x/.val  on the
lhs. Like x.val , this is equivalent to x=h:t,h=val  on the lhs, but instead of x being
set to t on the lhs, it remains val:t there.
Since x.a means send/receive the constant "a", we need separate forms to receive
any value from stream x, and send any value to stream x. On the rhs, x^exp  evaluates
the expression exp  and sends it on stream x, that is it writes e:  %x  to x if the process
has write access to x, or sets the x position in the implicit recursive call to e:x if x is
a read access argument to the process, where e is the result of evaluating exp . On the
lhs of a rule, x?v evaluates positively when x is bound to h:t, and makes v a reader
of h and x a reader of t on the rhs of the rule. Again, a lookahead form is available,
so x/?v evaluates positively when x is bound to h:t, makes v a reader of t, but
keeps x referring to h:t on the rhs.
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Making use of these, the following is a process descriptor for indeterminate stream
merger:
#imerge(s1,s2)->m
{
 s1?v | m^v;
 s2?v | m^v;
 s1$ || m<-s2;
 s2$ || m<-s1
}
while merger of ordered streams with the elimination of duplicates is described by:
#omerge(s1,s2)->m
{
 s1?u, s2/?v, u<v | m^u;
 s1/?u, s2?v, v<u | m^v;
 s1?u, s2?v, u==v | m^u;
 s1$ || m<-s2;
 s2$ || m<-s1
}
It is possible both to send and receive multiple values on a stream in a rule. On the
rhs, x.val1.val2 is equivalent to writing val1:val2:  %x  to x where val1 and val2 are any
values, and :  is right associative. On the lhs, x.va l1.va l2  is equivalent to
x=h1:  %x ,h1=val1,  %x =h2:  %%x ,h2=va l2 with x  replaced by   %%x  on the rhs.
Combinations of the stream operators are possible, so x.val^exp on the rhs writes
val:e:  %x  to x, for any value val and expression exp  where e is the write argument
from the evaluation of exp. Combinations may include the lookahead operator on the
lhs, so x?u/.val  on the lhs becomes applicable when x has been written to h:t with
t further written to   va %l :  %x , then x is replaced by   va %l :  %x  on the rhs.

Streams of Queries and Objects
Because the arguments to a query may themselves be queries, a query variable may be
set to a stream of queries. However, such a stream must have only one reader and one
writer, whereas a standard stream may have many readers. Apart from this streams of
queries may be handled like streams as described above. Here is a simple example:
#cell(s,n)
{
 s.set(m) | n<-m;
 s.get(  m̂) | m<-n;
 s$ ||
}
which is equivalent to:
#cell(s,n)
{
 s=list(h,s1), h$set(m) || cell(s1,m);
 s=list(h,s1), h$get(  m̂) || m#n, cell(s1,n);
 s=nil ||
}
To make this clearer, an infix cons symbol has not been used for lists here. So the
query variable s which a cell process has read access to is bound by the process
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which has write access to s to a list consisting of set(m) and get(  m̂) queries. The
cell process has read access to the m  in set(m), but write access to the m in
get(  m̂). So a process set up by cell(s,n) can be considered a form of mutable
variable, with n initialising it, a set(m) message sent on s changing the value it
stores to m, and a get(  m̂) message on s used by the process which has write access
to s to retrieve the current value of the mutable variable. This might be considered to
have limited use, since s can have only one writer, and a mutable variable for a single
process can be represented by a simple argument in the process call changed to update
it in the recursive call. However, consider the following:
p(…,  %ŝ ,…), q(…,  %%ŝ ,…), merge(  %s ,  %%s ,  ŝ), cell(s,n)
where a merge process is like the indeterministic merge above, except that it merges
streams of queries rather than streams of values. The result is that the query stream s
of the cell process is a merger of two separate streams of queries   %s  and   %%s  written
by the p and q processes respectively. So p and q may be considered as sharing
access to a single mutable variable.
The idea of a shared mutable variable here is just a simple example of what can be
seen more generally as an object. An object has its own state which may be altered in
response to receiving a message, but it has complete control over its state
(encapsulation). This is what we have here with object state represented by process
arguments which a process may change in response to reading a query from the query
stream it has read access to. There can be as many references as needed to an object in
other processes, each represented by the process having write access to a stream of
queries, with the queries being merged together to form the single stream which is
read by the object process. The rule that a query has a single reader and a single writer
is not broken since the merge process is the single reader of the query, which
delegates that query to the object process. If there are more than two references to an
object, a tree of binary merges of query streams could be built up which enables us to
keep a description of the language in terms of the underlying model. A more efficient
alternative would be to provide multiway merges as a primitive in the implementation
of the language.
However, having to deal explicitly with streams of queries is too low level.
Additionally, it is counter-intuitive to represent an object which should be considered
one of the inputs to a process by a stream which is an output of the process. Therefore
we introduce “object variables” which are translated automatically to query variables.
An object variable is a query variable but with its polarity reversed, and refers only to
streams of queries. An object variable with write access is represented by a query
variable with read access. An object variable with read access is represented by a
query variable with write access. Multiple occurrences of an object variable with read
access are translated into separate query variables with write access whose sole reader
is a merge process which writes the query stream to which the write access of the
variable was translated.
So a p and q process sharing access to a cell object can be written as:
p(…,S,…), q(…,S,…), cell(n)->S
which is translated automatically to the form above. Note that object variables are
signified by having an initial capital letter. The call cell(n)->S may be considered
as producing the object reference S, referring to a new cell initialised with n.

Object Variables and Object Descriptions
Object variables have exactly the same rules regarding readers and writers, including
with single-bar rules, as standard variables. All the necessary conversion to streams
and mergers is done automatically. In fact query variables are almost dispensed with
in written Aldwych, featuring only in the underlying programming model into which
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it is translated, and as local variables. Process descriptors may not have query
arguments in written Aldwych, but they do remain as local variables within rules.
Here is an example:
#obj(x,y,P)->S
{
 S.mess1(z)->r | q(x,y,z)->r;
 S.mess2(z)->r | P.mess3(x,y,z)->r;
 S.mess4(u,v)  | x<-r(u,v,P);
 :
 S?m | P^m;
}
As can be seen, queries to an object are read using the same notation as used for
streams of values (. and ?), except the object reference must be one which appears to
the right of the -> in the process descriptor header. A query is more conventionally
termed a message in object-oriented terms.
In the description above, an obj object takes three arguments, two values x and y,
and an object P. If it receives a mess1 message with one input argument z and one
reply argument r, it computes the value of r by setting up a q process with its x and
y arguments and the z argument from the message as input. If it receives a mess2
message with one input argument and one reply argument, it returns the reply from a
mess3 message sent to the P object (another way of thinking of this is that the write
access to r is passed to the object represented by P). A mess4 message with two
input arguments but no reply causes the value of x in the state of the obj object to be
changed. The final rule applies only if none of the previous rules apply (due to the :),
that is a message is received which is not of the type covered in the previous rules. In
this case it is delegated to P to handle. Here m is a query variable, and is detected as
such from its context on the lhs. The only thing that is permitted to be done to a query
variable is to send it in this way to another object. Note that P^m sends the query in
variable m to the object referenced by P, and should be distinguished from P.m which
would send the constant "m" to P.
The following is the underlying representation of this in the Aldwych model:
#obj(x,y,  ̂p,s)
{
 s=m:  %s , m$mess1(z, ̂r) || q(x,y,z, ̂r), obj(x,y,  ̂p,  %s );
 s=m:  %s , m$mess2(z, ̂r) || p#n:  %p , n=mess3(x,y,z, ̂r), 

obj(x,y,  %p̂ ,  %s );
 s=m:  %s , m$mess4(u,v) || r(u,v,  %p̂ ,  ˆ %x ), obj(  %x ,y,  %%p̂ ,  %s ), 

merge(  %p ,  %%p ,  ̂p);
 :
 s=m:  %s  || p#m:  %p , obj(x,y,  %p̂ ,  %s );
 s$ || p$;
}
The last rule is added automatically and works as an object destructor. When the
stream of queries representing an object becomes end-of-stream, that indicates there
are no further references to the object. In any rule end-of-stream is written to any
query variables it has write access to which otherwise are unused, so that the reader of
the stream will read end-of-stream if there are no other references to it. This works to
give garbage collection of objects, although it cannot cope with circular object
references (an object which references a second object which references the first
object, either directly or indirectly through further objects).
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Object variables can be passed in messages to objects, both forwarded with them, and
returned in reply. The ability to pass object variables in messages and use object
variables received in messages as arguments to new processes and further messages
enables Aldwych to deliver dynamic concurrency, in which communication
topologies evolve during evaluation.
An object which is the writer to an object variable in messages which it receives can
be considered an “object-factory” or class. For example, the following:
#objclass()->S
{
 S.new(x,y,P)->R | obj(x,y,P)->R
}
in conjunction with the descriptor for obj objects above is the descriptor of an object
which represents a class for obj  objects. If C  is an object created by
objclass()->C , then C.new(a,b,P)->Q  is equivalent to a direct call
obj(a,b,P)->Q. Alternatively, consider:
#sobjclass(x,y)->S
{
 S.new(P)->R | obj(x,y,P)->R
}
Now, a call sobjclass(a,b)->C creates a class referenced by C for producing
obj objects specialised with their first two arguments set to a and b, and only the
third argument specified each time a new one is created by C.new(P)->Q. This is
the basis on which higher-order programming in Aldwych is achieved. The basic idea
is extended in the full language by some further derived forms not described here.

Beyond Object-Oriented Programming
In conventional object-oriented programming, including conventional concurrent
object-oriented programming, there is a just a single rule for each type of message an
object can receive ([Fr & Ag 94] describes an exception to this). While an object
descriptor in Aldwych can be limited only to have rules of this form, this is at the
discretion of the programmer and more complex rules are also possible.
A simple use of the flexible nature of message patterns in Aldwych is to have an
object represented by more than one streams of queries, for example:
#mobj(x,y)->(S,T)
{
 S.p(z)->r | r<-f1(x,y,z);
 T.p(z)->r | r<-f2(x,y,z);
 S.q(z)->r | r<-g(z,y,z);
 T.r(z)->r | r<-h(z,y,z);
 {S,T}.s(z)->r | r<-k(z,y,z)
}
Now, if a new object is created by mobj(a,b)->(P,Q), P and Q represent two
different views of that object. Whichever view is appropriate may be passed on to
other objects. P represents a view which can respond to p, q and s messages, while Q
represents a view which can respond to p, r and s messages. The Q view responds to
p messages in a different way than the P view, using an f2 rather than an f1 process,
but both respond to s messages the same way. The last rule introduces some new
syntax, it is just a shorthand for:
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 S.s(z)->r | r<-k(z,y,z);
 T.s(z)->r | r<-k(z,y,z)
This is just one example of several pieces of syntax in Aldwych but not described in
this paper which provide shorthand ways of writing commonly occurring patterns of
code. This one enables an arbitary number of types of access right to be given to an
object, which clearly gives a lot more programmer flexibility than the fixed public,
private  and protected, or similar, of conventional object-oriented languages.
The stacking effect, seen previously with s.m on the rhs where s is a read-access
argument, can be used with object arguments. S.mess(args)->reply where S is
an object variable with write access has the effect of stacking the message
mess(args)->reply on the S stream, equivalent to conventional object-oriented
“send a message to self”.
For examples of rules which respond only to combinations of messages (only the lhs
of the rules is given):
S.f(u)->v.g(w)->z | …
responds only when S receives an f message followed by a g message and must give
a reply to both by writing to v and z on the rhs.
S.f(u)->v, T.g(w)->z ~ | …
responds when the S stream receives an f message and the T stream a g message,
again both must be replied to on the rhs.
S.f(u)->v/.g(w;z) | …
responds only when an f message is followed by a g message, but involves a look-
ahead at the message stream to the g message. The g message is not answered in this
rule. The syntax g(w;z) rather than g(w)->z is used to make this clearer. Although
z is the return value of the g message, it is not written to on the lhs, because the g
message is not consumed in this rule but left for a further rule application.

Conclusions
The language Aldwych has an operational model which is simpler than that proposed
for other abstract concurrent languages. The language allows for interaction between
processes, and the dynamic configuration of communication links.
In order to give a flavour of the language without overwhelming the reader with
detail, it has been described in a fairly informal style. It would require a longer paper
to describe formally each of the features mentioned here, and the precise way it
interacts with other features, although the model which underlies the language is
strong enough to allow such a formal description to be built. There are several further
features of the language not covered here, but which take the same approach as that
used here, that is using derived forms which can be translated to the simpler
operational model. The aim of the derived forms introduced is to overcome verbosity,
in particular the verbosity which is found in the direct use of concurrent logic
languages for object-oriented programming [Sh & Ta 83] which is the ancestor of this
work.
The language has been developed experimentally, so an implementation exists,
compiling into the concurrent logic language KLIC [Roku 96]. The development of
the language has proceeded by using it, observing programming patterns, and adding
new derived forms where a particular pattern of programming is common, and its
intended effect is easier to see when it is written using the derived form.
The complete set of derived forms has not been finalised yet, and there is an obvious
tradeoff of the convenience of having a higher-level construct against the
complication which it brings into the language. We would prefer to promote wider
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experimentation and discussion of the language before settling on a fixed set of
constructs. This paper has described the basic model, which has remained stable for
some years, and some suggestions as to how it could be extended.
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