
First-year
induction
21/9/2001

1 Richard Bornat
Dept of Computer
Science

How to Succeed
in Computer Science

Richard Bornat,
Director of Undergraduate Studies

Dept of Computer Science
Queen Mary, University of London

September 2001

First-year
induction
21/9/2001

2 Richard Bornat
Dept of Computer
Science

Executive summary

1. ‘University’ learning is different from ‘school’
learning.

2. ‘Computer science’ learning is different from
any other.

3. You are joining an intellectual community. It’s
exciting.

4. University education is about change. You have
to leave behind some old stuff, and you get
some new stuff. People who change, succeed.

5. Programming is fun, if you let it be fun. Give it
a go!

First-year
induction
21/9/2001

3 Richard Bornat
Dept of Computer
Science

0. To begin

Lots of people come to University keen and eager
to learn Computer Science.

You are ready to go.

You are capable of success.

Will you let us help you succeed?

We can help you to be a big success.

But you have to be ready to change, prepared to
accept new ideas, in more ways than one.

First-year
induction
21/9/2001

4 Richard Bornat
Dept of Computer
Science

Is Computer Science different?

Yes, it is.

The subject you have chosen seems to be stranger
than most.

Why that is – and what you can do about it –
come later on in the talk.

First, some general remarks about University
study.

(Any book about study skills will cover these
general points.)

First-year
induction
21/9/2001

5 Richard Bornat
Dept of Computer
Science

Motivation

Everybody agrees that to succeed at university
study, you must be properly motivated.

Question: are you

(a) here to learn useful things which will help you
get a job?

(b) just here to have a good time?

If you want to succeed, the correct answer is (b).
Don’t believe me? I have evidence to prove it!!!

But you must have your ‘good time’ inside your
subject. You do better if you are studying for fun
than if you are doing it for economic/family/(any
non-fun) reasons.

First-year
induction
21/9/2001

6 Richard Bornat
Dept of Computer
Science

Being clever

Employers prefer graduates. So young people
come to University to get a degree, to get a job.
That’s OK.

Why do employers prefer graduates? Is it because
of what graduates remember from their studies?

(No! Information is easy to acquire: anybody can
read it from a book.)

Is it because graduates are cleverer than non-
graduates?

(Yes!)

Cleverness is like physical fitness: it improves
with exercise. The purpose of a University
education is to make you cleverer, not to provide
you with ‘useful information’.

First-year
induction
21/9/2001

7 Richard Bornat
Dept of Computer
Science

Do-It-Yourself

School/FE is quite like training: the subject is
defined by an exam set by outsiders; student and
teacher work together to beat the examiners.

University learning is like exploring: you are
given a map, and left to find out as much about
the country as you want to, on your own. The
lecturer is also the examiner (and so is not really
on your side).

You are on your own – unless you grab all the
assistance you can.

(You have to grab us: we won’t grab you.)

(We want to be grabbed!)

(We won’t always help you to an easy ride – see
‘being clever’ above.)

First-year
induction
21/9/2001

8 Richard Bornat
Dept of Computer
Science

Being a programmer

What do people think about programmers? Do
they think we are all nerds?

Yes, they do: listen to stand-up comedians; watch
comedy programmes; read the newspapers.

Being a nerd is a bad thing; being a programmer is
a good thing. We don’t confuse the two, even if
other people do.

Programming is marvellous, intricate, difficult
work. It’s creative work, like architecture. It’s
design work, like the best arts and crafts.
Programmers build wonderful tools, beautiful
interfaces. And they surf the wave of
technological change.

They think we’re nerds. They will call you a nerd,
when you join us. Can you take it?

First-year
induction
21/9/2001

9 Richard Bornat
Dept of Computer
Science

That was scary: what can I do?

Come and live inside your subject:

• enjoy it, like it, love it;

• don’t bother if people outside don’t understand
what you are doing;

• stretch your mind by studying difficult things;

• don’t be afraid of seeming ‘keen’;

• and don’t believe (next section of this talk) in
old-fashioned ideas about learning.

First-year
induction
21/9/2001

10 Richard Bornat
Dept of Computer
Science

What a wrong theory can do

In 17th and 18th century England, people thought
disease was carried by bad air. The rich walked
about the street with nosegays – bouquets of
flowers – which they sniffed to keep well.

Meanwhile, plague-rat fleas were biting them.

In early 19th century England, cholera was
thought to be a product of bad dwelling
conditions.

There is a monument in Soho to John Snow, who
deduced that cholera was a consequence of
drinking-water pollution, and removed the handle
from the parish pump to prove it.

The wrong theory of disease was a deadly
delusion. The right theory saved lives.

Only the right theory of learning
can lead to success.

First-year
induction
21/9/2001

11 Richard Bornat
Dept of Computer
Science

The wrong theory of learning

Most people, from the Government downwards,
and most new students, think

“learning = knowing = remembering”.

Here is a diagram of the outside of your head,
according to this theory:

storage

IN

OUT

IN

First-year
induction
21/9/2001

12 Richard Bornat
Dept of Computer
Science

and the inside:

personality

knowledge

space for more
knowledge

“Knowledge”, according to this old-fashioned and
wrong theory, comes in through the ears and eyes
and is stored in the brain. It is separate from the
personality.

It’s not like that in there!

First-year
induction
21/9/2001

13 Richard Bornat
Dept of Computer
Science

A better theory of learning (1)

1. Children actually can learn stuff without
understanding it (so they can all work video
recorders, to their parents’ delight).

2. Listen/remember/revise learning works very
well – for children.

3. Adults (that’s you!) actually cannot learn stuff
which they don’t understand (that’s why they
can’t work video recorders).

4. Most of your head has already changed over to
adult mode.

5. Learning new stuff changes you. You aren’t
separate from what you know!

6. Because of the nature of Computer Science,
listen/remember/revise just doesn’t work.

7. Use/practise/discuss/reflect learning works best
for adults, and is essential in Computer Science.

First-year
induction
21/9/2001

14 Richard Bornat
Dept of Computer
Science

A better theory of learning (2)

Our best guess is that ‘knowledge’ is a complex
network, a matrix of interconnections in your
head. Stuff you know is defined by what it’s
connected to.

The more connections, the more you can use a
piece of knowledge. Example: you know
arithmetic (from constant use) and you can use it,
if you have to, to work out your taxes (etc., etc.).

First-year
induction
21/9/2001

15 Richard Bornat
Dept of Computer
Science

 Recalling something – e.g. for an exam – is just a
weak kind of use. Weakly connected knowledge is
easily forgotten.

‘Learning’ is an active process. You have to
connect new knowledge into the matrix, with as
many connections as possible.

If new knowledge won’t fit in your matrix, you
either have to reject it, or you have to rearrange
the matrix. Rearranging means throwing away (or
at least reconnecting) stuff which you previously
believed/understood/‘knew’.

Rearranging the inside of your head is hard work.
Learning expands your mind, and it hurts, just
like hard physical exercise hurts your body.

First-year
induction
21/9/2001

16 Richard Bornat
Dept of Computer
Science

How can teachers help?

I can’t rearrange what’s in your head! You have to
do it.

I can, from my experience, guess what you might
be thinking. So I can suggest rearrangements
which you might need.

But it’s best if you tell me! (In tutorials, in labs, in
exercise classes, ...) Then I have a better chance of
helping you with your particular rearrangements.

Nobody knows what is inside your head, unless
you tell them.

So nobody can ‘teach’ you anything, except in
discussion/conversation/debate/dispute/argument

where you reveal what is inside your head and
they reveal what is inside theirs.

Learning is what you do.

(Teaching doesn’t really exist.)

First-year
induction
21/9/2001

17 Richard Bornat
Dept of Computer
Science

Why does this matter so much?

Computer Science is pretty tough to begin with –
almost everybody struggles.

That’s because all Computer Science, and
especially programming, has a very peculiar
character.

It is based on mid-20th century axiomatic logic.
You have to understand a few basic axioms (facts,
instructions), plus a few rules (techniques for
putting things together into larger things like
methods, procedures and classes), and then you
can do an infinite number of things.

There is almost nothing to know, but a lot to do.
It’s an intellectual skill – a very odd combination.

Your head is not ready for this! School/FE
teaching and learning didn’t prepare you!

First-year
induction
21/9/2001

18 Richard Bornat
Dept of Computer
Science

Your head needs a lot of rearranging before the
new Computer Science stuff will fit. This is not
just adding a few facts round the edge!

Axioms and rules have to go right in the middle of
the matrix – they are so basic they can’t go round
the edge.

Some of their consequences have to go near the
middle, some can go farther away.

It all has to mesh with what you already know. A
lot of what you already know can be simplified;
but lots of it has to be thrown away. You have to
re-examine what you already know, think again
what it really means.

Doing such a rearrangement takes time. Revision
doesn’t work because a week – or a month – just
isn’t long enough.

Once the axiom/rule stuff is in there, it doesn’t get
forgotten very easily. Use/practise/discuss/reflect
learning means no more revision.

First-year
induction
21/9/2001

19 Richard Bornat
Dept of Computer
Science

Learning Computer Science

[Please believe me]

1. 29 years of experience has shown me that
listen/remember/revise just doesn’t work for
our subject.

(Even though it does work in other subjects.)

[Please believe me]

2. 29 years of experience has shown me that
programming is the hard bit: once that’s dealt
with, the rest is much easier.

(One kind of knowledge supports another.)

[Please believe me]

2. 29 years of experience has shown me that the
only way to learn Computer Science is by
sustained use and practice , backed up by
discussion and reflection.

First-year
induction
21/9/2001

20 Richard Bornat
Dept of Computer
Science

Use/practise/discuss/reflect

Programming is an intellectual skill. It’s also
creative. Learning to program is more like
learning to paint than like learning history, or
science, or any standard subject.

By using something you force yourself to know it.
Programming is simple but slippery.

Practice is the only way to get it inside your head;
use is the only way to keep it there.

Intellectual skills are like physical skills in that
they have to be learned. You have to practice. You
have to practice like mad!

Intellectual skills are not like physical skills in
that they can be forgotten. You can’t forget how
to ride a bicycle (fact!) but you can forget how to
calculate, or program, or analyse.

To keep an intellectual skill active, you have to
use it. That stops it drifting out of the matrix.

First-year
induction
21/9/2001

21 Richard Bornat
Dept of Computer
Science

Because you have an adult head, you can’t learn
like children do, piling in meaningless facts. You
have to fit knowledge properly into your matrix,
or there will be trouble.

The way you do it is to examine and re-examine
your knowledge, your beliefs, your experience.
You have to work on the jelly in your head,
pummel it into shape, constantly remake it.

Discussion exposes your knowledge to yourself,
and exposes you to the knowledge of others. (I
often don’t know what I know till I try to explain
it to somebody else.) Discussion reinforces
knowledge that works, and shows up knowledge
that doesn’t.

Reflection – turning things over in your mind –
works on the problems that discussion exposes,
finds new problems, finds solutions. It’s mental
housekeeping. (It’s great fun, but watch out when
you’re in company!)

First-year
induction
21/9/2001

22 Richard Bornat
Dept of Computer
Science

• PRACTICE gets you started. It’s essential
because you are learning a skill, how to do
something.

• USE makes your skill part of you. Using a
skill to do something important to you
connects it to your emotions, makes the skill
important, nails it down.

• DISCUSSION opens you up to new
knowledge, tests your knowledge against
objections, increases confidence.

• REFLECTION refines and simplifies your
knowledge, makes it more understandable,
ties it in with the rest of your brain.

First-year
induction
21/9/2001

23 Richard Bornat
Dept of Computer
Science

Use and practice take time. You can’t do them in
the ‘revision period’, on the night before an exam.
They need time in the lab, doing it,
experimenting, succeeding, failing. Trial-and-
error learning.

Discussion is part of the course (tutorials, labs),
but it’s also what you do with your friends over
lunch, in the corridor, in the coffee break, in the
bar. Reflection is private: you can do it in the
bath, on the bus, in the park, in the light, in the
dark – anywhere.

‘Revision’ – memorising lecture notes, spotting
questions, learning examples – only works in
subjects full of meaningless isolated facts; we
have very few of those in Computer Science.

(But reflection is true revision, and the best
revision technique of all.)

First-year
induction
21/9/2001

24 Richard Bornat
Dept of Computer
Science

A plagiarist’s progress (1)

(This is a story. It’s not about you. Plagiarism
(play-jer-ism) is cheating by copying.)

A is in a programming class of 200. The teachers
don’t know his/her name. A has a piece of
coursework to do; A hasn’t done it.

A needs the marks, but there isn’t time before the
deadline to do the work.

A decides to ask friend B for help. Just to get an
idea where to start; just like looking in a book.

A finds him/herself in a copyist’s paradise. It’s
really easy to copy computer files, usually without
anybody knowing about it.

A changes a few things in B’s work – maybe the
layout, maybe the names of the methods – and
hands it in with A’s name on it.

A goes back to bed.

First-year
induction
21/9/2001

25 Richard Bornat
Dept of Computer
Science

A plagiarist’s progress (2)

Who’s been hurt? B doesn’t lose any marks, and A
gets some for free.

It seems unlikely A will be spotted (it takes
200 200

2
× = 20 thousand comparisons to check

everybody’s work against everybody else’s).

A is very unlucky, isn’t caught, and gets hooked.
He/she spends more time in bed, and less time at
uni. A copies more and more courseworks, and is
never caught.

With three weeks before the exam, A starts to
‘revise’ – but in A’s case, that means learning it all
from scratch.

Teaching yourself to program in three weeks isn’t
possible. Not enough practice; no time for use or
reflection; no discussion.

So A fails! Then he/she buys a computer and a
book, and gets ready for the resit exams ...

First-year
induction
21/9/2001

26 Richard Bornat
Dept of Computer
Science

So what, exactly?

Somebody copied; we didn’t catch them. Was
there a crime? Who was hurt?

A was hurt. He/she failed the summer exam; 90%
chance of failing the resit exam as well – and then
it’s goodbye, usually for ever. The plagiarist has
wasted a year of their life.

Even if A is lucky in the resit, 100% chance that
they will struggle in the second year, and a good
chance that they will fail. Then they have wasted
two years of their life.

Or maybe they get away with it for three years.
They just manage to get a degree, but their
employer finds out that they can’t actually do
anything (except copy other people’s work).

Even with a degree, plagiarists can’t hold a good
job. They’ve wasted three years of their life,
missed their chance at education, and it’s too late
to get a second try.

First-year
induction
21/9/2001

27 Richard Bornat
Dept of Computer
Science

Plagiarism deprives the plagiariser of an
education. Plagiarism is “stealing the thoughts or
writings of others, and giving them out as your
own”. Plagiarists never develop thoughts of their
own. Learning how to think new thoughts is what
education, especially university education, is all
about.

(Plagiarists don’t see it like that. They see free
marks and an easy life.)

First-year
induction
21/9/2001

28 Richard Bornat
Dept of Computer
Science

Punishment for plagiarists?

Plagiarists hurt themselves. Should we punish
them as well?

If people can graduate without working, without
learning what they should, what’s a degree worth?
Employers can’t trust that kind of degree.

Plagiarism affects the gold standard which you
hope will get you a job. Plagiarists hurt the honest
student: they hurt you.

Plagiarists destroy standards, increase failure
rates, depress the standing of the university.

So: we are going to catch as many as we can.
We’ll use technology to make those 20 thousand
comparisons. We’ll use our ingenuity to beat the
tricks that they use. For your sake and for theirs.

And: when we catch a plagiarist, we shall be
as severe as we can be, to protect the standards of
the university. For everybody’s sake.

First-year
induction
21/9/2001

29 Richard Bornat
Dept of Computer
Science

How you will be tempted

The temptation to plagiarise is always there. It
arises whenever there seems to be too much work
to do.

It’s made worse because most people don’t tell
each other the truth about their problems. Some
they hide; some they exaggerate.

Some people pretend they aren’t doing any work;
some pretend they are working like mad.

At some point you will think at least one of these
thoughts:

• I don’t understand this stuff, but everybody
else does. I’m lost!

• None of my friends understands this stuff. It’s
too hard!

Then you might think “If I just cheated on the
next coursework, surely I could catch up later!”

Plagiarism beckons! Can you resist it?

First-year
induction
21/9/2001

30 Richard Bornat
Dept of Computer
Science

How to resist temptation

If you are lost or confused or frightened or bored,
you’ve got a problem. Here’s how to deal with it.

0. Don’t panic! Anybody can have problems.
Most people do, at one time or another.

1. Your resources are your colleagues (your fellow
students, your friends) the teaching assistants,
your tutor, your lecturers.

2. If your friends really do understand something,
let them teach it to you! It will do them good
(teaching is advanced reflection). You will
probably find you aren’t as lost as you thought
you were. Maybe you will end up teaching
them something.

3. Asking for help is smart. Don’t be afraid to seek
it out. Use tutorials; use exercise classes; talk to
us after lectures; try teaching assistants in the
labs. We’re here to help: use us; get help.

First-year
induction
21/9/2001

31 Richard Bornat
Dept of Computer
Science

4. Don’t despair. This stuff is hard (that’s what
university is for) but it isn’t impossible. I’ve
been teaching it for decades, and people do get
through, even when they think they won’t.

(But you still have to do the climbing. Your job
is learning how to learn. Push on!)

(So we may help you by asking questions rather
than by giving answers. It might seem heartless at
first, but it’s the only way.)

First-year
induction
21/9/2001

32 Richard Bornat
Dept of Computer
Science

I may be old, but I’m not daft

I know that I’m advising you not to be a ‘student’.
‘Students’ - especially first-year ‘students’ – drink
a lot, go to lectures only sometimes, avoid labs, do
as little work as possible, never talk to their
lecturers, copy if they can, and revise like mad in
the last week before the exam.

That strategy works – in some subjects.

Our subject – yours and mine – is different.
Intellectual skills take time to learn. We have to
put the hours in, especially when we’re
programming.

Students (and ‘students’) like to avoid work. I
claim that my way of learning – use, practice,
discuss, reflect – is less work in the end.

We lend you the machinery to practice on: the ITL
is open 16 hours a day, stuffed full of computers.
If you stay late, or come early, you can get all the
practice you need. (And reflect on the bus home.)

First-year
induction
21/9/2001

33 Richard Bornat
Dept of Computer
Science

An invitation

I love my subject. My colleagues love it too. We
want you to succeed. We invite you to join us in
our little world.

Entry is easy: in your first year you just play at
programming with a computer 8 hours a day or so,
for 24 weeks or so.

(The rest of your time would be your own, if it
wasn’t for the fact that programming gets under
your skin and you find yourself thinking about it
all the time, even in the shower ...)

Once you’ve learned to program, it all seems easy.
But to get started needs magic, and the magic only
works if you treat learning as play.

Come on in! The
subject’s lovely!

