
A Little Book on Java

Fatima Ahmad and Prakash Panangaden

August 30, 2001

Contents

1 Introduction 3

2 Are you ready to program in Java? 3

3 Installing Java 4

4 Java Documentation 4

5 Java Basics 4
5.1 A Simple Java Program . 5
5.2 Names in Java . 6
5.3 Variables in Java . 7
5.4 Basic Java Datatypes . 7

5.4.1 Numeric Datatypes . 7
5.4.2 The Character Datatype . 8
5.4.3 The Boolean Datatype . 8
5.4.4 Strings . 8

5.5 Arrays . 8
5.6 Expressions and Statements in Java . 9

5.6.1 Blocks . 10
5.7 Basic Java Control Constructs . 11

5.7.1 Looping Mechanisms in Java . 11
5.7.2 Conditional Statements . 12

5.8 Conclusion to the Basic Part . 13

6 Abstraction Mechanisms 13
6.1 Procedures, Parameters and Types . 15

1

7 Classes and Static Methods 16
7.1 Overview of Classes . 16

7.1.1 Syntax of Class Declarations . 16
7.1.2 Class Variables . 16

7.2 Static Methods . 17
7.2.1 The main Method . 18
7.2.2 Method Execution . 19

7.3 The Dot Operator . 21

8 Visibility Issues 22

9 Classes and Objects 22
9.1 Why Static is not Enough . 22

10 The Object Concept 23
10.1 The State of an Object . 23
10.2 Constructors . 24
10.3 Creating an Object . 25
10.4 Object References . 26
10.5 Accessing the Fields of an Object . 27
10.6 The Behavior of an Object . 27
10.7 Passing Object References as Parameters . 29
10.8 The this reference . 32

11 Linked Lists: An Extended Example 33

12 Inheritance 38

13 Subtyping and Interfaces 41
13.1 Subtypes and Typechecking in Java . 43

14 Analysis of the gaussInt Example 44

15 Exception Handling in Java 47
15.1 The Exception Object . 48
15.2 Creating a New Exception . 48
15.3 Throwing an Exception . 48
15.4 Catching an Exception . 51

16 Conclusions 55

2

1 Introduction

These notes are a brief introduction to Java and to some basic object-oriented concepts. They
should not be viewed as a comprehensive textbook but they should be more than adequate
for learning Java in conjunction with the lectures and assignments. These notes were written
specifically to cover those aspects of Java that arose in CS250 during the Fall of 1998. The
emphasis in the course is algorithms and not programming languages. To properly appreciate
the subtleties of the object-oriented paradigm, one needs to take a course on programming
languages, such as CS302.

Java is a relatively new, but very popular object-oriented programming language. It
builds on the syntax of C and is closely related to C++, but there are key differences. I
assume that you know the elements of programming in some language such as Pascal or C
(it does not really matter what) so the basic aspects of programming are not talked about
at all; we will just give the basic Java syntax and semantics.

These notes will not tell you everything about Java. They will, however, tell you where
to find out more. In particular, we will tell you how to find out information about Java from
the official Java documentation available free on the internet.

There are three aspects of Java that one might cover:

• basic concepts,

• details of the libraries and utilities,

• advanced programming tips and secrets.

It is our goal to cover the first topic. You will not be very knowledgeable about the other
two topics from this course alone. However, you will be able to learn those things easily in
the context of a job or project – if you need to – later on. These are pricisely the things that
you can teach yourself whereas learning the concepts is not easy without help.

2 Are you ready to program in Java?

We expect you to know nothing about Java before you read this book. We do however
expect you to have a fair amount of programming experience in either Pascal or C. If you
are not familiar with the following concepts, we strongly urge you to take an introductory
programming course in Java (such as CS202) before tackling CS-250: statements, condition-
als and loops, expressions and types, variables, arrays, procedures, call by value versus call
by reference and simple IO.

We expect that you understand what it means to compile and run a program. If your
only experience with computers has involved using preexisting packages then you need an
introduction to programming first.

3

3 Installing Java

The official Java website can be found at http://www.javasoft.com. Among its many
features, this site provides free downloads for Java and complete Java documentation. The
latest version of Java is called “Java 2 SDK v1.3.1”. The main homepage for this distribution
is:

http://java.sun.com/j2se/1.3/

The page with all the documentation is:

http://java.sun.com/j2se/1.3/docs/index.html

In order to insure proper installation, do read the file that describes all steps that need
to be taken for successful installation. In particular, pay attention to the section pertaining
to setting classpaths. To be able to compile and run Java code from any directory, the
classpaths on your system must be set properly.

4 Java Documentation

Complete documentation for Java SDK v1.3.1 can be found at

java.sun.com/j2se/1.3/docs/

This page lists and provides a description of all packages supported by Java SDK v1.3.1.
These packages contain predefined Java classes (you will learn about classes later). The page
also lists all Java classes in alphabetical order and provides a link to the definition for each
class (i.e. the variables, constructors and methods provided by the class - do not worry if
you do not know as yet what these words mean). An appropriate time to browse through
the Java docs would be after you have learned about classes and objects.

You can look up all sorts of information including books at:

http://developer.java.sun.com/developer/infodocs/

For starters, get familiar with looking up information on Java on the web by finding the Java
Language specification. You can also practice by looking up information on Java operators
at

http://web2.java.sun.com/docs/books/tutorial/java/nutsandbolts/operators.html

5 Java Basics

In this section we review basic Java ideas. These are things you should know from a previous
course in another language, so the discussion will be brief.

4

5.1 A Simple Java Program

A Java program is stored in a .java file. Let us create a simple Java program that you can
compile and run. At this point, we do not expect you to understand the program’s syntax.
Type the following Java program using a text editor such as “NotePad”1 or preferably
“emacs” or “vi” - basically any editor that produces plain text output2.

class First{

public static void main(String args[]){

System.out.println(‘‘This is my first Java program!!!’’);

}

}

Make sure that you typed the code exactly as above. Note that Java is case sensitive and
the code that you typed will contain errors if you did not preserve the case of the words.
Save the program in a file called First.java. Note that this program can be saved in a file
with any name as long as it has a .java extension.

Compiling and Running

Let us compile and run First.java. At this stage, we just want you to go through the
motions of compiling and running a Java program. Later, we will go through the details of
what happens when a Java program is compiled and run.

To compile First.java, type javac First.java at the command prompt and press
enter. The program javac is the Java compiler and the command javac First.java creates
a file called First.class.

If your classpaths are set properly, then you can compile your program from any directory.
Otherwise, the system does not know where to find javac. javac is contained in the bin

directory of the Java SDK. If your classpath has not been set, then you need to compile
your program from the bin directory of the Java SDK3. Another alternative is to specify the
location of javac (i.e. the full path to javac) each time you compile. This latter option is
somewhat cumbersome, but it does allow you to compile from any directory. Again, read
the README file to find out how to set classpaths.

To run First.java, type java First at the command prompt and press enter. The
program java is the Java Interpreter, which executes Java programs by running the class
files generated by compiling the program. In this case, the Interpreter runs First.class.
Note that the command is java First and not java First.class. You must run java from
the same directory in which the program was compiled. If you have successfully compiled
and run your first Java program, your screen should display the following output: This is
my first Java program!!!

1Notepad is not a good editor for use with programming languages; such editors designed for text.
2So Word and Wordperfect are right out!
3Needless to say, this is a very bad idea; you should set the paths.

5

Comments in Java

Comments can be written in two ways. Any text on the same line after two consecutive
backslashes (//) is a comment. Any text enclosed within /* and */ is a comment. Comments
are not nested, meaning that the first /* will end at the next */. The // is best used for
short comments that come on the same line and the other notation can be used for longer
comments.

This is a good place to say something about how to comment. Comments should be
there to explain what the program is doing. Every program should have comments at the
beginning that say briefly what the program does and what the general methods used are.
It might be appropriate to say what kinds of assumptions are made - for example the nature
or format of the expected input. Each method (procedure) should have comments specific
to that procedure. Anything tricky should be explained but obvious things should not be
belaboured. Here are examples of good comments and bad comments.

//Below is a good comment

/* The following code allows one to swap two values without using a

temporary variable. */

x = y - x;

y = y - x;

x = x + y;

//Comments below are bad

x = 0; //x is set to zero

int x; //x is declared

int x; //x is used to count the number of iterations of the loop

int x; //Nobody cares about me except my mother

One very good use of comments is to indicate the end of methods or classes.

5.2 Names in Java

Most things in a program have names. Data, procudures (methods), portions of memory,
types and classes4 are all named. The ability to give names was one of the innovations in
high-level languages. When a name is used there has to be a declaration saying that a new
name is being introduced and what type the name will stand for. Thus a name might be a

4It does not matter if you do not know as yet what a class is.

6

way of referring to a memory cell - this is what is usually called a variable - or be the name
of a method (procedure).

In Java, declarations can be introduced in the middle of the text. In other languages,
one has to make declarations at the beginning of the program or at the beginning of a block.
We will see examples of names and declarations below.

5.3 Variables in Java

A variable is a name for a piece of memory. Java is a strongly typed language, which means
that the datatype of a variable must be specified when a variable is declared. The datatype
of a variable can be any Java datatype. We will cover some basic Java datatypes in the next
section.

In a variable declaration, the datatype of the variable is written before the variable’s
name. One can initialize a variable at its declaration using the ’=’ operator. Multiple vari-
ables of the same datatype can be declared on the same line as long as they are separated by
commas. In the following examples float, int and double are all names of Java datatypes.

/* Just declaring a variable of type integer */

int var;

/* Declaring more than one variable of the same datatype,

float in this case */

float var1, var2, var3;

/* Declaring a variable and initializing it */

double var4 = InitialValue;

5.4 Basic Java Datatypes

A datatype is used to organize data into collections that reflect structural and/or operational
similarity. Java provides eight primitive data types for numbers, characters and booleans.
These primitive datatypes are a part of the Java language. In this section, we will cover
some of Java’s primitive datatypes as well as datatypes for strings and arrays. A list of all
of Java’s primitive datatypes can be found at

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/vars.html

5.4.1 Numeric Datatypes

Java provides primitive datatypes for integers and floating point numbers. There are four
such datatypes for integers, of which the most commonly used is int. Of the two datatypes
(float and double) for floating point numbers, use double as it provides greater precision.

7

5.4.2 The Character Datatype

In Java, the char datatype denotes character values. Single quotes are used to specify
characters.

char a = ’a’; //Declaring and initializing a character variable

5.4.3 The Boolean Datatype

The boolean datatype contains only two values: true and false. This datatype can be
used to denote the result of logical tests. Logical tests determine whether a certain logical
condition has been met. The value of the test is true if the test’s condition has been met
and false otherwise. In the language C there is no boolean datatype. Having this datatype
in Java reduces many common errors that occurred in C programs.

5.4.4 Strings

A string is a sequence of characters and is denoted by the String5 datatype. In Java, double
quotes are used to specify a string, thus distinguishing a string from a character.

String title = ‘‘A Little Book on Java’’;

String p = ‘‘p’’; //A string containing one symbol

String P = ‘‘p’’;

Note that p and P are different variables since Java is case-sensitive.
Variables of type String are Java objects. As we have yet to cover objects, we will not

go into a further discussion of what can be done with objects of type String. Later, when
you have learned about objects, you can look up class String in the Java documentation on
the web to find out more about strings.

5.5 Arrays

It is often useful to cluster data of the same type in a collection. An array is a set of memory
locations containing data of the same datatype. The most important aspect of arrays is that
the elements of the array are accedded by numerical indices. Furthermore these indices can
be computed.

An array can contain data of any Java datatype. Like strings, arrays are Java objects.
In Java, an array of size n has indices from 0 to n − 1. Recall that we expect you to be
already familiar with arrays in Pascal or C (or Fortran or Basic).

When declaring an array, one must specify the size of the array and the datatype of its
elements. The general declaration of an array is as follows:

5Note that the first letter is capitalized.

8

datatype[] ArrayName = new datatype[ArraySize];

This is how you declare an array of integers containing 250 elements:

int[] numbers = new int[250];

Note the use of the new keyword in the above declaration. We will discuss the importance
of this keyword when we discuss objects. Briefly, the new actually creates space for the array
while int[] numbers just says that the name “numbers” will be used for an array of integers
(of unspecified size).

After an array has been created, its elements must be initialized. So far we have named
the array and reserved space for it but we have not put any data in the array. Each element
of an array has an index, with the first element having the index 0 and the last element
having an index one less than the size of the array. Using an index, one can modify or obtain
the array element at that index. This is the key aspect of arrays. By using expressions for
the indices one can have names that are computed at run-time.

/* A small array of doubles */

double[] nums = new double[3];

/* Initializing the array */

nums[0] = 1.0;

nums[1] = 2.0;

nums[2] = nums[0] + nums[1];

An error occurs if one tries to access an array index that does not exist, i.e. an index
that is less than zero, or greater than or equal to the size of the array. This error is a Java
exception called ArrayIndexOutOfBoundsException. We will discuss exceptions in a little
more detail in section 15.

5.6 Expressions and Statements in Java

An expression is anything that evaluates to a value. Thus in Java, x + y is an expression.
When it occurs it is a signal that a calculation must be done. Not all expressions are
arithmetical. The word is used whenever there is a resulting value.

By contrast a statement is an “order” to do something. There is in general no result
from executing a statement. Here is a basic example.

x = 2 + 3;

Above is a statement, which contains the expression 2 + 3. This statement is a command
that can be rendered in English thus:

9

1. Compute the expression 2 + 3.
2. Store the result of the expression evaluation in the memory cell named by x.

The statement of the previous paragraph is an example of the assignment statement.
You must have seen it many times before. However it is worth being absolutely clear about
several things now. A general assignment statement looks like this:

<name> = <expression>

The name on the left-hand side has to be the name of a memory cell. The expression on
the right hand side has to produce a value. The type declared for the cell and the type
of the expression must match. Later we will see that the “name” can be the result of a
computation. Thus the most general form is:

<expression-which-produces-a-name> = <expression-which-produces-a-value>

We will see examples of this more general form later on. For the first few weeks you will not
encounter it.

Things get more interesting when the same name occurs on both sides of the expression
as in:

x = x + 2;

Or as C hackers like to write it:

x += 2;

Now the interpretation of the name is different on the two sides of the assignment operator
(i.e. the = sign). In order to appreciate this properly, note that the name x is the name of a
memory cell (here a cell for storing integers). This cell contains a value. The name x is used
both to refer to the cell and to its contents. In the example at hand, on the left hand side
the name x names the cell and on the right hand side it names the value currently stored in
the cell.

Certain notations are both expressions and statements. A typical example is the construct
x + +. This means “increase the current value of x by 1”; but it is also a statement and
it returns the old value of x. The construct + + x means - as a statement - “increase the
current value of x by 1” (just the same as x + +) but as an expression it returns the new
value of x. Thus if x is 1729 and we write y = x++ we will get 1729 stored in y but x will
now be 1730. If we were to write y = ++x then both x and y would be 1730.

5.6.1 Blocks

In order to write interesting programs, we need mechanisms to put together complex state-
ments from simple ones. One of the basic forms is the block. A block contains zero or more
statements enclosed in parenthesis. A block is a compound statement and can always replace
a single statement. We will see examples of blocks below.

10

5.7 Basic Java Control Constructs

Java provides looping mechanisms and conditional statements that allow us to alter the
control flow of execution. In this section, we will discuss the syntax of some basic loops and
conditional statements. Recall that we expect you to be familiar with the concept of loops
and conditional statements. The notation may change from one language to another but the
ideas are the same.

5.7.1 Looping Mechanisms in Java

A loop repeats the execution of some code a certain number of times. We will discuss three
loops: the while loop, the do-while loop and the for loop.

The while Loop The syntax of a while loop is as follows:

while <boolean-expression>

statement

As long as the boolean expression specified in the header of the while loop evaluates to
true, the statement is executed. The while loop exits when the boolean expression is false.
If the boolean expression is false the first time it is evaluated, then the statement is never
executed. Note that the statement that the while loop repeatedly executes can also be a
block.

The do-while Loop The syntax of a do-while loop is as follows:

do

statement

while (boolean-expression);

The do-while loop is equivalent to the while loop except that the statement is executed
at least once. The boolean-expression is evaluated after the statement is executed. The loop
body is executed as long as the boolean expression remains true.

The for Loop The most general loop form is the for loop. The syntax of a for loop is
as follows:

for (initial-expression, boolean-expression, increment-expression)

statement

A for loop is almost the same as the following:

11

initial-expression;

while (boolean-expression){

statement

increment-expression;

}

A for loop iterates over a range of values given to a variable. The variable must have an
initial value, which is specified by initial-expression. The value of the variable is modified
in some way; usually it is incremented as specified by increment-expression. One can also
decrement the value. The boolean-expression tests whether the value of the variable is within
the range that specifies the number of iterations for the for loop.

5.7.2 Conditional Statements

We will cover the if statement. The syntax of the if statement is as follows:

if (boolean-expression)

statement

If the boolean-expression evaluates to true, then the statement is executed. An if state-
ment can be be used in conjuction with the else if and/or else clauses as follows:

if (boolean-expression)

statement

else if (boolean-expression)

statement

else

statement

Here is a simple example of a loop and a conditional. In this fragment, A is an ar-
ray containing some numbers and the loop searches through looking for the largest of the
numbers.

/* Code fragment to find the largest number in an array by iterative

search. The variable ‘‘size’’ stores the size of the array. */

//Start by assuming the first number is the largest

int max = A[0];

//Search until the end

for (int j = 0; j < size; j++){

//Found a new possible max

if (A[j] > max) max = A[j];

}

12

Note that the if statement did not have an else part in this example.
Java provides a special statement called break which can be used to exit a block of code.

The syntax of the break statement is as follows:

break;

One can use the break statement to exit loops early. Here is an example of a loop that
searches an array for a given number and stops the search as soon as it finds the number.

/* Code fragment that searches an array for a given element. The

variable ‘‘elt’’ stores the element we are looking for, while the

variable ‘‘size’’ stores the size of the array. */

int i = 0;

//Set to true if elt is found

boolean found = false;

while (i < size){

//If the element is found, stop looking

if (A[i] == elt){

found = true;

break;

}

else i++;

}

5.8 Conclusion to the Basic Part

This completes our review of the basic aspects of Java. Except perhaps for our emphasis
on the role of names, all of this should have been familiar to you, possibly with different
notations. There are all sorts of details that we have not told you. You should look up the
Java documentation to find out about these as needed. The next step will be the study of
larger units of code.

6 Abstraction Mechanisms

A vital part of an advanced programming language like Java is abstraction. By abstraction we
mean packaging code and data into organized units in such a way that the details are hidden.
There is a tendency for beginning programmers (and writers of beginning textbooks) to
emphasize control constructs and data manipulation and spend less time on overall program

13

organization. This might be reasonable for small programs, but as programs get larger it
is imperative to think about the overall program structure. In this class we will be moving
towards medium sized programs and the principles of program organization will be more
important than mastery of all the control constructs.

Programs are the most complex mechanisms built by humans. There is no hope for any
one person to keep the details of a large program in mind. The only viable strategy is for
the program to be broken into small manageable pieces. These pieces will interact with
each other and this interaction has to be controlled in a structured way. Thus, when we
decompose a program into pieces we have to think at two levels. We have to understand a
piece of code ignoring all the interactions with the rest of the program and then, we have
to understand the interactions between the pieces without thinking about the details of the
code inside each piece. I emphasize this because this is the part where many beginners have
trouble. They tend to be obsessed with understanding each piece of code at the lowest level
of detail and cannot ignore details even when it is appropriate to do so.

The basic abstraction mechanisms are procedural abstraction and data abstraction. In
procedural abstraction, a piece of code - called a procedure - is packaged together and given
a name. Thereafter, this code can be run or invoked simply by using this name. This is done
not to save typing (as many students seem to think) but to enforce abstraction levels. When
the procedure is defined you do not worry about all the different places in the program where
it might be used, when the procedure is used, you do not think about how it was coded.

In data abstraction, some collection of data is organized into a structured form (a data
structure) and some code is provided to manipulate the data while maintaining the integrity
of the structure. The abstraction consists of hiding the details of the data structure. The
point of this is to force you to use the code provided rather than to mess with the structure
directly. This way you are less likely to violate the integrity of the structure. Just as in
procedural abstraction, hiding is the key. We will see examples of data abstraction and
procedural abstraction in Java in the next two sections.

The correct way to think of abstractions is as a contract. When you write a procedure
you have in mind that a solution to a certain well-defined task is to be implemented. You
do not think about what a user might do with the procedure. Abstractions like this occur
in everyday life. Perhaps one of the best examples of abstraction is in a car. The driver of
a car is usually not an expert engineer. In fact, relatively uneducated people can drive cars
well, despite the fact that there is a significant amount of sophisticated engineering involved.
Furthermore when one operates a car by using the controls, one has to be aware that some
basic contracts are fulfilled. Thus turning the wheel causes the car to turn and pressing the
brake slows down the car. One need not have the faintest idea of how this is accomplished. In
fact in an emergency, it is important to not waste your time thinking about auto mechanics,
you have to spend your mental effort dealing with the emergency.

The brake and the other controls are like procedures. They fulfill a certain contract but
you need now know how this is done. The designer of the car certainly has to know how this
is done. But she does not have to think about what the driver might do with the car. She
does not think about the fact that you are going to use the car to commute to work, or go on

14

a date or go to the store. The separation of concerns is complete, as the only link between
the two levels is the control panel of the car. This is the interface between the low-level
engineering and the higher-level human concerns of the person using the car.

We will be using all these concepts in programming. We will define procedures - called
methods in object-oriented programming - and data abstractions - using classes. We will
define interfaces and we will use these concepts to structure a program into manageable
pieces. A modern object-oriented programming language like Java supports these ideas
directly.

6.1 Procedures, Parameters and Types

A procedure needs to interact with the rest of the program. This happens in two phases. The
program may want to run the procedure so that it does whatever it is supposed to do. When
the procedure is done, it needs to return control back to the part of the program that called
it. Thus the basic control flow is the following: a procedure is called (by using its name),
the rest of the program stops and waits (suspends) while the procedure runs (executes) and,
finally, the procedure completes and returns control to the suspended program.

At each stage the procedure and the program may need to communicate. When the
procedure is called it may need some data to work with and when it finishes, it may want to
return the result of some computation that it has performed. The data passed to a procedure
is named by special variables called parameters.

In order to use a procedure we need to know three things:

• its name,

• what kinds of parameters it expects (if any),

• what kind of result it might return.

The information in the latter two items is called the type of the procedure. In a typed
language like Java, these items have to be explicitly specified.

A simple example of these ideas is a procedure for performing multiplication. To use it
you have to know its name, say times. You have to know that it expects two integers and
that the result is an integer. Thus we would say that the type of times is

integer ∗ integer → integer.

In programming languages we do not use this explicit notation with the arrow but we es-
sentially say the same thing. Notice that to use the procedure times, we need not have any
idea how this was coded. In fact, we often use mathematical libraries knowing the names
and types of procedures without knowing how they were coded.

You might think that we have left out something obvious, namely we need to know what
the procedure does even if we do not know how it does it. This is very true but the language
provides no way of ensuring that a procedure does what you think it does. Thus if you want

15

to perversely to call the multiplication procedure add or foobar, nothing in the language
stops you. This part of the contract is informal. This is one reason why we need comments
that document what a procedure does.

7 Classes and Static Methods

This section has two parts: classes are concerned with data abstraction and methods are
concerned with procedural abstraction. We will emphasize procedural abstraction more for
now.

7.1 Overview of Classes

A Java program is built from classes. In Java, all code is written inside a class. Classes form
the basic organizational unit of all Java programs. For now, think of a class as a module
that organizes a cluster of code. It is essentially a data abstraction mechanism. In other
words, it provides mechanisms for hiding things.

At first we will see simple classes that will only contain constants, variables and methods
(Java’s version of procedures or functions). Later we will study objects and see how they fit
with classes. In doing so, we will introduce a new type of abstraction mechanism, i.e. object
abstraction.

7.1.1 Syntax of Class Declarations

A class is declared using the class keyword, followed by the name of the class. The body
of a class is enclosed within curly brackets. Here is a class declaration:

class Hello{

/* The body of this class contains nothing right now */

}

The name of a class must begin with a letter, but can otherwise contain both letters and
digits. The Java compiler raises an error at compile-time if the name of a class is one of
Java’s reserved words.

7.1.2 Class Variables

A class is a package for some data and some code designed to interact with the data. The
data packaged in the class - like any other data - is referred to through the use of variables.
Thus, a class can have variables that belong to it. These variables are called class variables
or static variables. Do not worry about the strange use of the word “static”; it just means
that the data referred to by the variable is associated with the class.

A variable is declared to be static using the static keyword, followed by the datatype
and the name of the variable. The class mechanism hides its data from the rest of the

16

program according to some precise rules spelled out below in section 8. As far as the
internal structure of the class is concerned, static variables can be accessed and modified by
all methods contained in a class. Let us revisit class Hello and add a static variable to it.

class Hello{

//Static variable

static String s = "Hello?";

}

This is still not a very exciting class. It just contains a datum and provides nothing one
can do with it. A class needs to have code that can manipulate the data. This is what we
now turn to with our discussion of methods.

7.2 Static Methods

In any language, there is some mechanism for packaging a piece of code together in such
a way as to view it as a single entity. This is what we have called prodedural abstraction
in the discussion of the last section. Typically, one uses the word “procedure” (Pascal) or
“function” (C, C++) for such constructs. In Java they are called methods. We will start
with a very simple kind of method called static methods. Just as with static variables, the
word “static” means that the methods are associated with the class. Later - when we study
objects - we will look at non-static methods (which are just called “methods”).

Like all code in Java, static methods are contained in classes. A static method is declared
using the static keyword, followed by the return-type and the name of the method. The
parameter list of a static method directly follows the method’s name and is enclosed in
parenthesis. Each parameter is declared with its datatype followed by its name. Commas
separate multiple parameters. If there are no parameters, the parenthesis for the parameters
are present but empty. The general syntax of the header of a static method is as follows:

static <return-type> name(type 1st-Parameter, ... ,type nth-Parameter)

The return-type of a static method can be any Java datatype. A static method that
returns nothing has its return-type given as void. The name of a static method must begin
with a letter, but can otherwise contain letters and digits. The Java compiler raises an error
if the name of a method is one of Java’s reserved words.

The body of a static method is enclosed within curly brackets. Variables can be de-
clared within a method’s body: these variables are local to the method. Local variables
are undefined until they are initialized. Accessing the value of an undefined variable leads
to a compiler error. A method with a return-type other than void must contain a return

statement. The return statement must be placed such that all paths through the method
end with it.

Let us add a simple static method to class Hello.

17

class Hello{

//Static variable

static String s = "Hello?";

//Static methods

//This method modifies the class variable s

static void helloWorld(){

s = "Hello, world!";

}//helloWorld

}//class Hello

Note the use of comments in the above code to indicate the end of a method and a class.

7.2.1 The main Method

A class cannot be executed unless it contains a special method called main, which has the
following syntax:

public static void main(String args[]){

/* Body of main */

}

A class that is run must contain a method called main, as when a class is run, the code
in main is executed first. From the main method of a class, one calls other methods of the
class.

The header of the main method must be written as above. Do not worry about the
public keyword. We will discuss what this keyword means in section 8. The main method
is static. It takes as its parameter an array of type String called args. The size of this array
is not specified. The contents of this array can be specified at the command prompt when a
class is run. Suppose we want to provide parameters to the main method of a class named
foo. Then the parameters to the main method of class foo are specified after the command
java foo as follows:

java foo a b c

The parameters a, b and c are read as strings into array args. After these parameters
have been read into args, its contents are as follows:

args[0] = "a"

args[1] = "b"

args[2] = "c"

18

Let us add a main method to class Hello so that we can run it.

class Hello{

//Static variable

static String s = "Hello?";

//Static methods

//This method modifies the class variable s

static void helloWorld(){

s = "Hello, world!";

}//helloWorld

public static void main(String args[]){

System.out.println(s); //Prints the value of s

helloWorld();

System.out.println(s);

}//main

}//class Hello

Save class Hello in a file called Hello.java. Compile the source code in Hello.java

through the command javac Hello.java. To run, type java Hello.

7.2.2 Method Execution

It is time to look at exactly what happens when a method is used. We will use a simple
example from arithmetic.

class Arith {

//Static variables

static int a,b;

//Declaration of method add

static int add(int n, int m){

int r = 0; //Local variable for add method, initializaed to 0

r = n + m;

return(r);

}//add

19

public static void main(String[] args) {

int p = 0; //Declares and initializes variable local to main

//Assign values to the class variables

a = 1729;

b = 4104;

p = add(a,b); //Method add is called, result is stored in p.

System.out.print(p); //Print p on the screen

}//main

}//class Arith

This class has two static variables a and b, which are declared to be integers. It also has
a static method add which expects two integers and will return an integer as a result. We
see that from the type information given with the declaration for add.

There are two other kinds of names appearing in the program. First, there are local
variables - variables that are part of a method - such as r (local to add) and p (local to
main). Second, there are parameters namely the n and m which are parameters of the
method add.

Local variables are temporary storage, used when a method is active and removed when
the method finishes. Parameters are names used to refer to data that is passed to a method
when it is called. Let us see what happens when a method is called. A special area of
memory is reserved for the method. This is called the activation record. The following
space is reserved in the activation record. There is space for each local variable, space for
each parameter and space to remember where the control has to return when the call is
complete (the return address). The local variables get values like any other variables when
an assignment is made. The parameters get values when the call is made.

The precise rule for passing values to methods (procedures) varies from language to
language, and many languages support different mechanisms for passing parameters. In
Java, all parameters are passed by value. This means the following. When the call is made,
the arguments to the method are evaluated first. The resulting values are stored. In the
example above, the actual arguments are a and b. These are evaluated to yield 1729 and
4104 respectively. What is stored in the activation record are the values 1729 in the memory
cell named by n and 4104 in the memory cell named by m. Thus we get copies of the values.
We cannot affect the values of a and b from inside the add method, we can only affect the
copies. The copies of parameters are destroyed when a method exits. In fact, the whole
activation record is destroyed. The next time a method is called there is no memory of what
it had done before.

20

7.3 The Dot Operator

To access static variables and static methods inside the class to which they belong, one can
simply refer to the said variables and methods by their names. This is not the case when
one wants to access static variables and static methods belonging to other classes. One
can access static variables and static methods belonging to other classes using the dot(.)
operator. Suppose one wants to access method showFoo belonging to class foo from class
Bar. This is done as follows:

Foo.showFoo();

The dot(.) operator is preceded by the name of the class containing the method that
needs to be called. The method name follows the dot(.) operator. Thus in general, one calls
a static method belonging to another class as follows:

classname.methodname(parameters);

Similarly, one calls a static variable belonging to another class as follow:

classname.variablename;

Note that one can only successfully access those methods and variables belonging to
another class that are not declared private. We will discuss what this keyword means in
greater detail in sectionr̃efvisibililty.

Compiling and Running a Java program

So far, you have only seen Java programs with one class. A Java program can however
contain more than one class.

Suppose Foobar.java contains two classes named Foo and Bar respectively. One compiles
the source code in Foobar.java by typing javac Foobar.java at the command prompt.
When a Java program is compiled, a classname.class file (where classname is the name
of a class) is generated for each class contained in the program. The Java compiler converts
the source code of each class into bytecode which is stored in the class files. Compiling
Foobar.java results in the creation of two class files: Foo.class and Bar.class.

One runs a Java program by running one of its classes. To run a class, type java

classname at the command prompt. The bytecode stored in the class file of the class whose
name is typed at the command prompt is read by the Java Virtual Machine and executed.

Not all classes contained in a program can be run. A class that can be run must contain
a method called main, as when a class is run, the code in main is executed first.

It is perfectly possible for a program to contain several classes with the method main

defined. This means that one can compile a program once and test its different parts by
invoking Java on different class names.

21

8 Visibility Issues

The variables and methods contained in a class can be accessed by all code in that class.
In order for classes to be an effective data abstraction mechanism, we will need to hide the
code and data in a class from other classes. One can control whether code in other classes
can access the variables and methods in a class through the use of the keywords: public,
private and protected. We will refer to these keywords as access modifiers. In this section,
we will only discuss the public and private keywords. For the purposes of this course, you
do not need to know what the protected keyword means.

Public data and code is visible to all classes, while private data and code is visible only
inside the class that contains it. To control the visibility of a method, place public or
private as the first word in the method header i.e. before the static keyword for static
methods and before the return-type for instance methods (you will learn about instance
methods in the next section). To control the visibility of a variable, place public or private
as the first word in the variable declaration: before the static keyword for static variables
and before the datatype for instance variables (again, you will learn what these are in the
next section).

One can also declare a class as public or private. We will not be going into a discussion
on the visibility of classes except that a public class must be contained in a .java file that
has the same name as the public class. One file can thus contain only one public class. To
declare a class public or private, place public or private before the class keyword in
the class declaration.

9 Classes and Objects

Recall our discussion of classes in section 7. We defined a class as a module that contains
a cluster of code. In this section, you will discover that a class is much more than just
a module containing code. We will discuss two new definitions of classes and how objects
relate to classes.

9.1 Why Static is not Enough

We have introduced classes as a data abstraction mechanism and methods as a procedural
abstraction mechanism. We have so far seen static variables and static methods. Is this
enough? Let us look at the class Arith. It has two integers a and b packaged inside. This is
fine if we never ever need more than two integers but one is very unlikely to only work with
some fixed number of integers. Well we can repeat the pattern of the class definition and
make new classes. But this is silly! Repeating all those class definitions again and again and
pretending that they are different. Clearly we want to have different “things” but all of the
same class. This is exactly what objects are.

22

10 The Object Concept

One of the revolutionary ideas of computer science is that code is just another form of
data and can be treated as such. This idea was the basis of the fundamental conceptual
breakthroughs by Turing and von Neumann in the 30s and 40s which made computer science
possible.

In our discussion of abstraction mechanisms, we talked about procedural abstraction and
data abstraction. We saw how methods captured the idea of procedural abstraction and
classes captured the idea of data abstraction. This separation of abstractions makes an
artificial distinction. In fact, it makes sense to cluster code and data together into a single
entity called an object. In order for this to be possible, the distinction between code and
data has to be blurred. An object is treated like data; it is better to say an object is data.
It can be created and passed as an argument to a method. It can be the result of a method
and it has a type just like other data. However, part of an object is code as an object carries
methods in addition to other forms of data.

What is the type of an object? This is where classes come in. Classes have two roles with
respect to objects. They constitute types for objects and they are also generators of objects.
Let us ignore the second role for the moment. Objects of the same “family” are grouped
together by classes. Now, a class declaration becomes a description of an object. There
may be several objects of the same class present at the same time. Furthermore, individual
objects have their own names. We discuss the role of names below - be warned that names
for objects are a source of great confusion for beginners.

In summary, an object is a package of data and code. An object belongs to a class. Each
object is an instance of the class to which it belongs. There are two roles that a class plays
for its objects: it provides a type for its objects and it is a generator of its objects. The
name of a class is the type that a class gives to its objects. A class contains constructors
that allow one to generate or create objects of that class. Both roles will be discussed below.

10.1 The State of an Object

An object contains data. The data stored in an object specifies useful information about
the object: it is thus the state of the object. The non-static or instance variables of a class
determine the data stored in the objects of that class. These variables form the fields of the
object.

Instance variables are declared the same way as static variables, except for the omission
of the static keyword. Each instance variable defines a separate field of an object. Each
object has its own copy of the instance variables defined in its class. Instance variables
belong to the objects of a class and not the class itself. It is thus possible for each object to
preserve a distinct state.

Here is a simple class that contains instance variables.

class PointIn3D{

23

//Instance Variables

private double x;

private double y;

private double z;

}//class PointIn3D

Each object of class PointIn3D represents a point in three-dimensional space. Each
instance of class PointIn3D contains its own copy of the x, y and z fields. This is the
distinction between static variables and instance variables. We do not have a special word
to designate instance variables because they are actually much more common than static
variables.

Instance variables can be given initial values upon declaration. The fields of an object
can also be explicitly initialized when that object is being constructed (see below).

10.2 Constructors

We need a way of manufacturing new instances of a class, i.e. new objects. A constructor is
a special method that creates an object of the class that contains it. A constructor has the
following syntax:

access-modifier NameOfConstructor(parameter-list){

/* body of constructor */

}

A constructor may be declared public, private or protected. If a constructor is
private, then it cannot be called from a class other than the one that contains it, i.e.
other classes cannot create objects of a certain class using a private constructor. The name
of a constructor is the same as the name of the class that contains it. A constructor contained
in class PointIn3D thus has PointIn3D as its name. The parameter list of a constructor is
written the same way as the parameter list of any other method. We do not declare a return
type for a constructor because it returns a new object of the class. Notice that we are using
classes as types for objects.

A class may contain more than one constructor. The constructors of a class are distin-
guished by their types; i.e. by the number and types of their parameters. No two constructors
belonging to the same class are allowed to have the same type. The parameters of a con-
structor are used to initialize the fields of the object that the constructor creates. If the
instance variables of a class are not initialized at their declaration, then these fields should
be initialized when an object is being created. Let us add constructors to class PointIn3D.

class PointIn3D{

//Instance Variables

24

private double x;

private double y;

private double z;

//Constructors

//This constructor does not take parameters

public PointIn3D(){

/* Initializing the fields of this object to the origin,

a default point */

x = 0;

y = 0;

z = 0;

}

//This constructor takes parameters

public PointIn3D(double X, double Y, double Z){

/* Initializing fields of this object to values specified by

the parameters */

x = X;

y = Y;

z = Z;

}

}//class PointIn3D

Any of the two constructors above can be used to create a PointIn3D object. The second
constructor differs from the first one as its parameters specify values for the fields of a newly
constructed object. Of course, we do not really need the first constructor, but perhaps it is
useful to have since it might be used so often.

10.3 Creating an Object

An object is created using the new keyword followed by a call to a constructor of the appro-
priate class. Let us create objects belonging to class PointIn3D.

//Creates a PointIn3D object with coordinates (0, 0, 0)

new PointIn3D();

//Creates a PointIn3D object with coordinates (10.2, 78, 1)

new PointIn3D(10.2, 78, 1);

25

Figure 1: A Reference as a Pointer

Figure 2: Two references to the same object

10.4 Object References

How do we use and manipulate objects once they are created? We need a way to refer to
them. They are referred to by references. One may think of a reference to an object as
a special value that tells you where an object is stored. In many languages, references are
called pointers but I prefer not to use this word. What about names? Do objects have
names? One often says that various objects have names but the situation is subtle. We will
explain once we see some examples.

An object’s reference is used to manipulate the object. A reference is declared as follows:

ReferenceType ReferenceName;

A reference declaration is similar to a variable declaration. The ReferenceType is the
type of the object for which the reference is intended. Recall that a class provides a type
for its objects; this type is the name of the class. The ReferenceName is any name for the
reference. Let us declare a reference for an object of type PointIn3D.

PointIn3D p;

p is now a reference to an object of type PointIn3D. Declaring an object reference does
not create the object for which the reference is intended. An object reference must be
explicitly assigned to an object. Since p has not yet been assigned to an object, it is a null

reference, that contains null as its value. Let us assign p to an object of type PointIn3D.

p = new PointIn3D(1, 1, 1);

Now that we have assigned p to an object, its value is no longer null. Instead, p contains
the address of the object to which it was assigned. p does not contain the actual object that
it was assigned, but the address of that object. This distinction is illustrated in figure 1.

A single object can have more than one reference. Let us create another reference for the
object referred to by p.

PointIn3D q = p;

q now contains the same value (i.e. the same address) as p as shown in figure 2.

26

10.5 Accessing the Fields of an Object

We can access a field of an object using the dot(·) operator on a reference to that object as
follows:

ReferenceName.FieldName;

The above statement returns the appropriate field of the object whose reference we used.
Attempting to access a private field from outside the object’s class with the above statement
will result in a compiler error. Note that all fields of a PointIn3D object are private. This
measure of privacy limits the access of these fields by code in other classes. It also limits the
ability of other classes to corrupt the fields of a PointIn3D object.

10.6 The Behavior of an Object

An object can contain code. The code stored in the object defines the operations that can
be performed on the object: it is thus the behavior of the object. The behavior of an object
is determined by the non-static or instance methods of its class. Instance methods can be
used to manipulate and access the state of an object.

Instance methods are declared the same way as static methods except for the omission
of the static keyword. Like, instance variables, each object contains its own copy of its
instance methods.

An instance method is invoked on an object using the dot(·) operator on a reference to
that object as follows:

ObjectReference.InstanceMethodName(Parameter-List)

If a private method is invoked on an object from outside the object’s class, a compiler
error occurs. Let us add some instance methods to class PointIn3D.

class PointIn3D{

//Instance Variables

private double x;

private double y;

private double z;

//Constructors

//This constructor does not take any parameters

public PointIn3D(){

/* Initializing the fields of this object to the origin,

a default point */

27

x = 0;

y = 0;

z = 0;

}

//This constructor takes parameters

public PointIn3D(double X, double Y, double Z){

/* Initializing fields of this object to values specified by

the parameters */

x = X;

y = Y;

z = Z;

}

/* Returns the x field of this object i.e the object

on which this method is invoked */

public double getX(){

return x;

}

//Returns the y field of this object

public double getY(){

return y;

}

//Returns the z field of this object

public double getZ(){

return z;

}

//Sets the x field of this object to X

public void setX(double X){

x = X;

}

//Sets the y field of this object to Y

public void setY(double Y){

y = Y;

}

//Sets the z field of this object to Z

28

public void setZ(double Z){

z = Z;

}

//Prints the x, y, z fields of this object

public void print(){

System.out.println("x = " + x + " y = " + y + " z = " + z);

}

}//class PointIn3D

The instance methods defined in this class allow us to access and modify the fields (i.e.
the state) of a PointIn3D object. These methods are public and can be used by code in
any class.

10.7 Passing Object References as Parameters

An actual object can never be passed as parameter to a method or a constructor: what can
be passed is a reference to the object. Recall that parameters are passed by value in Java.
When a reference is passed as a parameter, a copy of the address stored in the reference is
passed. Both the original reference and its copy refer to the same object. Thus, using the
copy of the original reference, one can manipulate and modify the actual object. Since the
original reference itself is passed by value, its value cannot be changed.

Let us add a few static methods to class PointIn3D.

class PointIn3D{

//Instance Variables

private double x;

private double y;

private double z;

//Constructors

//This constructor does not take any parameters

public PointIn3D(){

/* Initializing the fields of this object to the origin,

a default point */

x = 0;

y = 0;

z = 0;

}

29

//This constructor takes parameters

public PointIn3D(double X, double Y, double Z){

/* Initializing fields of this object to values specified by

the parameters */

x = X;

y = Y;

z = Z;

}

/* Returns the x field of this object i.e the object

on which this method is invoked */

public double getX(){

return x;

}

//Returns the y field of this object

public double getY(){

return y;

}

//Returns the z field of this object

public double getZ(){

return z;

}

//Sets the x field of this object to X

public void setX(double X){

x = X;

}

//Sets the y field of this object to Y

public void setY(double Y){

y = Y;

}

//Sets the z field of this object to Z

public void setZ(double Z){

z = Z;

}

//Prints the x, y, z fields of this object

30

public void print(){

System.out.println("x = " + x + " y = " + y + " z = " + z);

}

/* Static Methods */

//Sets the coordinates of PointIn3D p1 to zero

public static void makeZero(PointIn3D p1){

// The fields get permanently changed

p1.x = 0;

p1.y = 0;

p1.z = 0;

/* The reference p1 is set to null, but the original reference

whose copy is passed to this method is not changed */

p1 = null;

}

/* Returns true if the coordinates of PointIn3D p1 are equal to the

coordinates of PointIn3D p2 */

public static boolean isEqual(PointIn3D p1, PointIn3D p2){

return (p1.x == p2.x) && (p1.y == p2.y) && (p1.z == p2.z);

}

public static void main(String args[]){

PointIn3D p, q, r, s; //Declaring references

//Assigning references to objects

p = new PointIn3D(3, 4, 5);

q = new PointIn3D(9, 8, 6);

r = p; //r and p are two references to the same object

s = new PointIn3D(3, 4, 5);

//Display the coordinates of all 4 PointIn3Ds

System.out.println("Here are the coordinates of p, q, r, s: ");

System.out.print("p: "); p.print();

System.out.print("q: "); q.print();

System.out.print("r: "); r.print();

System.out.print("s: "); s.print();

System.out.println(); //Skip a line

31

/* Do p and r refer to the same object? Check if both references

are equal */

if (p == r)

System.out.println("p and r are references to the same object!");

//Do p and s refer to the same object? Compare both references

if (p != s)

System.out.println("p and s don’t refer to the same object");

System.out.println(); //Skip a line

System.out.println("Let us set the coordinates of p to zero: ");

makeZero(p);

//Does the reference p point to null?

if (p != null)

System.out.println("p is not null");

System.out.println("Here again are the coordinates of p, q, r, s: ");

System.out.print("p: "); p.print();

System.out.print("q: "); q.print();

System.out.print("r: "); r.print();

System.out.print("s: "); s.print();

System.out.println();

}

}//class PointIn3D

In the makeZero methods, we are passing references to PointIn3D objects. Using these
references, we can access and modify the fields of the actual objects. Note that because any
reference that is passed to a method is a copy of the original reference, we cannot modify
the original reference in the method. In the makeZero method, the reference p1 is assigned
to null. The original reference p is not modified.

Copy class PointIn3D into a .java file. Compile the program and run class PointIn3D.

10.8 The this reference

Java provides a special reference called this, which can be used inside instance methods
or constructors. Inside an instance method, this is a reference to the object on which
the instance method is invoked. Inside a constructor, this refers to the object that the
constructor just created.

Within instance methods and constructors, any instance variable that is accessed or any
instance method that is invoked without a reference has a this reference implicitly attached

32

to it. Let us rewrite a constructor and an instance method of class PointIn3D using the
this reference:

public PointIn3D(){

this.x = 0;

this.y = 0;

this.z = 0;

}

public double getX(){

return this.x;

}

The above constructor and instance method are equivalent to those previously written
in class PointIn3D.

11 Linked Lists: An Extended Example

In this section we give a discussion of linked lists in Java. The array construct allows one
to have collections of a fixed size but one often needs data structures that are dynamically
growing. In other words, they should grow as needed during the program. For example,
most databases have to have the ability to expand as they are used and new data is inserted.
The linked list is a paradigmatic example of a dynamically growing structure.

The basic ingredient that we need is the new construct, which allows one to create a new
object dynamically (the jargon is “on the fly”). Let us imagine having just a list of numbers.
Thus a list will consist of a sequence of objects. Each object will contain a number and
whatever else we need to form the list. The question is: “How do we glue all these objects
together to form a single structure?” The answer is simple: each object should contain the
number and a reference (pointer) to the next cell. Think of a herd of elephants with each
one holding onto the tail of the next so as to stay together.

The basic unit will be called a cell, we will have a class definition for cells. Here it is in
all its glory!

class Cell{

//Instance variables

private int item;

private Cell next;

//Constructors

public Cell(int n){item = n; next = null;};

33

public Cell(int n, Cell c){ item = n; next = c;};

//Instance methods

public int first(){ return item;};

public Cell rest(){ return next;};

public void SetItem(int n){ item = n;};

public void SetNext(Cell c){ next = c;};

//Static (Class) Methods

public static void display(Cell c){

System.out.print("The list is: [");

while (c != null) {

System.out.print(c.item + " ");

c = c.next;

}

//Println flushes the line of buffer

System.out.println("]");

};

};

Do not worry about all the methods just yet. Note that the basic data is an integer
and a reference to another cell. Note that the class definition is recursive! There are two
constructors one for making a brand new cell and one for making a new cell and linking it with
an existing chain of cells. The basic data is declared private but the instance methods allow
one to see and to modify the value and the next link. We have provided a class method to
display a sequence of cells. To recapitulate: each cell object has data representing a number
and a link to another cell. The code for the instance methods is copied in each object (at
least conceptually) and there is a class method for displaying the sequence of cells. Why did
we not make this an instance method? It was a design choice, it could very well have been
an instance method.

In order to work with linked lists and hide all the manipulation that goes on, we will
package up the sequences of cells inside another class called List with its own class definition.
The class list will contain the sequence of linked cells as private data. As before, we have
access methods that allow us to see the private data. The point is that the private data can
be manipulated but only through the methods that we have provided.

class List{

//Instance variables

private Cell list; //This is the actual list

34

//Constructors

public List(){

//Used to construct an empty list

list = null;

}

public List(Cell c){

list = c;

}

public List(int n, Cell c){

list = new Cell(n,c);

}

public List(int n){

list = new Cell(n);

}

public List(int n, List l){

list = new Cell(n,l.list);

}

//Instance methods

public int car(){

//Accessing the first cell

return list.first();

}

public List cdr(){

//Accessing all but the first cell, note the type

return (new List(list.rest()));

}

public boolean IsNull(){

return (list == null);

}

public List copy(){

if (IsNull()) return new List();

else return new List(car(), cdr().copy());

}

35

//Concatenates a list to this list, nothing is destroyed

public List append(List l){

if (this.IsNull()) return l.copy();

else if (l.IsNull()) return this.copy();

else return new List(this.car(),this.cdr().append(l));

}

//Returns a reversed copy of the list

public List reverse(){

if (IsNull()) return new List();

else return cdr().reverse().append(new List(car()));

}

//Class methods

public static void display(List l){

Cell.display(l.list);

}

public static void main(String[] args){

int i;

List l,l1,l2, l3;

//Small test

l1 = new List(3,new List(4));

display(l1);

//Larger test

l = new List();

for (i=10;i > 0; i--) l = new List(i,l);

display(l);

//Examples of using the methods

Cell foo = new Cell(1);

foo.SetNext(new Cell(6));

Cell bar = new Cell(28);

bar.SetNext(new Cell(496));

foo.rest().SetNext(bar);

l3 = new List(foo);

display(l3);

}//main

36

}//class List

A natural question to ask is “why did we have this two-level structure?”. After all, the
linked structure already existed when we defined class Cell. Class List was only there as
packaging. One response is that packaging is important. A more precise answer appropriate
for the present situation can be seen by considering the following question. What would
happen if we wanted to insert a cell into a sequence? Suppose that we had no class List

and just worked with the class Cell. Suppose that we had a sequence of cells named s and
a number n and we wished to insert n (first making a new cell for it) into the sequence.
Perhaps s is sorted and we want to insert n in such a way as to keep it sorted. Now suppose
that n fits somewhere in the middle of s. This is not a problem at all. The following code
does this. We shall view it as a new static method added to the class Cell. Make sure that
you understand the piece of code below before reading further.

/* The following method makes a new cell for n and inserts it into

a sorted sequence of cells starting with c in such a way as

to preserve the sorting. */

public static void cellInsert(int n, Cell c){

Cell temp = new Cell(n); //Make a new cell for insertion

trailer = null; //Keeps track of the cell just behind the current

/* We use temp.next to search through the list starting at the

beginning and advancing whenever the value of n is bigger than

the current value. */

temp.next = c; //Initializing temp.next to the start

while ((temp.next != null) && ((temp.item) > ((temp.next).item))){

trailer = temp.next;

temp.next = (temp.next).next;

}//while

if (trailer == null) //We never did the while loop

c = temp; //So the new item goes in front

else trailer.next = temp; //New item is linked into the middle

}

In order to insert a number into s, we would call cellInsert with s as the second
argument. This code has a serious problem. It only works if the new value being inserted
is not right in front. Suppose that n is smaller than the smallest item in s (this is handled

37

by the case trailer == null) and we perform the assignment c = temp. What actually
happens? Well, remember that parameter passing is by value. So in the activation record
for cellInsert, there is a cell named c which has a reference to the actual cell s. When we
perform the assignment c = temp, we change this copy but the original cell s still points to
whatever it used to point to, it will not point to temp. We need a handle on the first cell.

One solution is to keep this handle in a special reference. But this is exactly what the list
class does. It has a private reference (called list) which is a reference to the first cell in its
list of data. By packaging this inside an object we keep it secure and accessible only through
our methods. Now we can keep the cell insertion code above, but in the class List we have
an insert method that first ensures that the new item should not be inserted in front before
calling cellInsert. If it has to be inserted in front the List class deals with it directly. This
is done in the method (of class List) shown below.

public void insert(int n){

if (list == null)

list = new Cell(n);

else if (n < list.first())

list = new Cell(n,list);

else

Cell.CellInsert(n,list);

}

The basic design is that class Cell is an auxiliary class which manages the lowest level
of data manipulation. Class List is a higher-level package which is what a user of this class
might actually work with.

12 Inheritance

One of the fundamental advances in the object-oriented paradigm is the ability to reuse
code. It often happens that you find yourself coding a small variation of something that you
had coded before. If your code is organized into classes, you might observe the following
patterns. The new code that you want to write is a new class, but it looks just like an old
class that you wrote a while ago except for a couple of methods. It is to handle situations
like this that we have the notion of inheritance.

The following code is a basic example.

class myInt {

//Instance variable

private int n;

//Constructor

public myInt(int n){

38

this.n = n;

}

//Instance methods

public int getval(){

return n;

}

public void increment(int n){

this.n += n;

}

public myInt add(myInt N){

return new myInt(this.n + N.getval());

}

public void show(){

System.out.println(n);

}

}

This class just has an integer in each object together with some basic methods. It is not a
class we would really write. It is here for illustrative purposes only.

Now imagine that we decide to have “integers” made out of complex numbers. These
numbers are called gaussian integers used by the great mathematician Gauss for his work
in number theory. He discovered that as an algebraic system, these numbers behaved very
much like ordinary integers. We might want to extend our ordinary integers to deal with
these gaussian integers. Here is the code that does it. The keyword extends in the class
declaration tells the system that you want all the code that worked for class myInt to be
present in class gaussInt. We say that gaussInt inherits from myInt. We also say that
myInt is the superclass and that gaussInt is the subclass.

class gaussInt extends myInt {

//Instance variable

private int m; //Represents the imaginary part

/* We do not need the real part that is already present because we

have inherited all the data and methods of myInt. Thus the

private int n is also present in every instance of a gaussInt. */

//Constructor

39

public gaussInt(int x, int y){

super(x); //Special keyword

this.m = y;

}

//Instance methods

//This method is overridden from the superclass

public void show(){

System.out.println(

"realpart is: " + this.getval() +" imagpart is: " + m);

}

public int realpart(){

return getval();

}

/*The method getval is defined in the superclass. It is not defined

here but it is inherited by this class so we can use it. */

public int imagpart(){

return m;

}

//This is an overloaded method

public gaussInt add(gaussInt z){

return new gaussInt(z.realpart() + realpart(),

z.imagpart() + imagpart());

}

public static void main(String[] args){

gaussInt kreimhilde = new gaussInt(3,4);

kreimhilde.show();

kreimhilde.increment(2);

kreimhilde.show();

}

}//class gaussInt

There are a couple of things to note. In the constructor, we first want to use the constructor
for the superclass; this is done with the keyword super. The super keyword invokes the
superclass constructor and then continues with whatever is written next. The picture that
you should have in mind is that an instance of gaussInt contains an instance of myInt.

Now you really want to inherit some of the methods unchanged, but some methods need

40

to be modified. Obviously the show method of myInt is no use for gaussInt. In the subclass,
you can give a new definition for an old method name. Thus in the above class, we have
inherited getval and increment unchanged but we have modified show. This is called
overriding. From class gaussInt you cannot use the show method of the superclass as it is
well hidden.

There is also a more subtle phenomenon called overloading. Look at the add method in
the two classes. At first sight, this looks like overriding. However the types of the arguments
expected by the two definitions of the add method are different. The types of the arguements
are called the signature of the method. Now when we use the same name for a method but
with a different signature we get two different methods with the same name. Both mwthods
are available from the subclass. In this case, from the class gaussInt, we can use both add

methods. How does the system know which one to use? It looks at the types of the actual
arguments and decides which one to use. Thus if you want to add an ordinary myInt to a
gaussInt, then the add method of the superclass is used.

There are many more subtle aspects to inheritance that we will go into in more detail in
a later class. For now, it suffices to grasp the basic concept of inheritance and to recognize
when to use it.

13 Subtyping and Interfaces

One of the features of object-oriented languages is a sophisticated type system that offers a
possibility called “subtype polymorphism.” In this section we will explain what this is and
how it works in Java. One very important caveat when reading the extant literature: there
is terrible confusion about the words “subtyping” and “inheritance”. They are not the
same thing! Yet one sees in books phrases like “inhertitance (i.e. subtyping) is very easy
...”! My only explanation is that lots of people really are clueless. Do not learn from them.

Recall that a type system classifies values into collections that reflect some structural or
computational similarity. There is no reason that this classification should be into disjoint
collections. Thus, for example, a value like 2 can be both an integer and a floating-point
number. When a value can be in more than one type we say that we have a system that is
polymorphic - from the Greek, meaning “having many shapes.” A type system that allows
procedures to gain in generality by exploiting the possibility that a value may be in many
types is called a polymorphic type system.

The kind of polymorphism that one sees in Java is called “subtype polymorphism”6 which
is based on the idea that there may be a relation between types called the subtyping relation.
Do not confuse subtyping with the notion of subset. We will say that a type A is a subtype
of a type B if whenever the context requires an element of type B it can accept an element
of type A. We write ACB to indicate this.

Here is the basic example of subtyping in many languages. Consider the types int and
float. It is easy to see that int is a subtype of float, in symbols intCfloat. Whenever

6There are other kinds, most notably parametric polymorphism. We will not consider this further.

41

you need a floating-point value an integer can be used but definitely not the other way. For
example, we may have a method for computing the prime factors of an integer, obviously
such a method would not even make sense of a floating-point number.

How do we set up the subtyping relation? There are some built in instances of subtyping
– such as intCfloat – but, clearly, this is not worth making such a fuss about. Where
subtyping really comes into its own is with user-defined types. In Java, subtyping occurs
automatically when you have inheritance; this does not mean that subtyping and inheritance
are the same thing. You can also have instances of subtyping without any inheritance as we
shall see.

Thus, if we declare a class B to be an extension of class A, we will have - in addition
to all the inheritance - that BCA. In other words, if at some point you have a method foo

which expects an argument of type A; foo will always accept an object of type B. If we
extend class B with class C then we have

CCBCA.

If we extend A with another class D then we will have DCA but there will be no subtyping
relation between B and D or C and D. A method expecting an object of type A will accept
objects of type B,C or D. This gives increased generality to the code.

It is often the case that the inheritance hierarchy is not very “wide”. In other words
it is unlikely that a class A can be sensibly extended in many incompatible ways. This is
because the code has to be inherited and usually only a few methods are modified. If we
are modifying all or almost all the methods then it is clear that we are not really using
inheritance. We are really trying to get the generality offered by subtype polymorphism.

Java supports subtype polymorphism independently of inheritance. This is done by
interfaces. An interface is a declaration of a collection of method names - without any
method bodies - and perhaps some constants. They describe a (sub)set of methods that
a class might have. There is no code in an interface, hence there is nothing to inherit.
A concrete class7 may be declared to implement an interface. This is really a subtyping
declaration. An interface names a new type (not a class) and when we say that a class P
implements interface I we have set up the subtyping relation PCI. Because there was no
code in the interface, P does not inherit any code; but it must have a method of the same
name and type as every method name in the interface I.

A class can implement many interfaces and thus one can have a complex type hierarchy
with multiple subtyping. One often hears the phrase “interfaces allow Java to fake multiple
inheritance”. This is a source of confusion. What interfaces allow is multiple subtyping. Java
definitely does not have multiple inheritance (C++ does have true multiple inheritance); wat
it has is multiple subtyping.

Here is an example of the use of inheritance. Imagine that you have written code to draw
the graph of a mathematical function. You want this to be abstracted on the function. You

7We use the adjective “concrete” to mean that the class is completely defined, i.e. it has all the actual
code for the methods.

42

do not want to write code to plot a graph of the sine function and another different - but
almost identical - piece of code to plot a graph of the exp function. You want the function
- a piece of code - to be a parameter. We can do this with objects because objects can be
passed around like any other piece of data but yet they carry code. What kind of object is a
mathematical function? It expects a double argument and returns a double result. There
might be other methods associated with function objects but the plot method does not care.
It only cares that there is a method - called, say, y - such that f.y(3.14159) returns a double.
So instead of having to know all about the details of the class of mathematical functions we
just define an interface plottable with the one method y in it with the appropriate type.
When we define our mathematical function objects we can make them as complicated as we
please as long as we declare that they implement plottable and ensure that they really do
have the method y. If we have another type of object - say fin-data - for financial data
we would expect to define a totally different class with no relation to mathematical function
objects. However, fin-data could also have a method y and be declared to implement
plottable. Then our plot method works on totallly unrelated classes. We have achieves
generality for our plotting method through subtype polymorphism in a situation far more
general than could have been achieved by inheritance.

In between interfaces and classes are abstract classes that have some methods defined
and some that are left blank as in interfaces. You can extend them as you would any class.

There are many subtle issues about method lookup and how it interacts with inheritance
and type-checking. However, those issues are best discussed in a programming languages
class. A future edition of these notes will deal with these issues.

13.1 Subtypes and Typechecking in Java

In this section we revisit the gaussian integers example and formalize the rules for type
checking a little more carefully.

The following is a brief summary of the

Rules for Method Lookup and Type Checking.

In particular we discuss the Guassian integers example from class.
First the rules. Remember that there are two phases: compile time, which is when type

checking is done and run time, which is when method lookup happens. Compile time is
before run time.

• The type checker has to say that a method call is OK at compile time.

• All type checking is done based on what the declared type of a reference to an object
is.

• Subtyping is an integral part of type checking. This means if B is a subtype of A and
there is a context that gets a B where A was expected there will not be a type error.

43

• Method lookup is based on actual type of the object and not the declared type of the
reference.

• When there is overloading (as opposed to overriding) this is resolved by type-checking.

14 Analysis of the gaussInt Example

We recapitulate the full example:

class myInt {

private int n;

public myInt(int n){ this.n = n;}

public int getval(){return n;}

public void increment(int n){ this.n += n;}

public myInt add(myInt N){ return new myInt(this.n + N.getval());}

public void show(){

System.out.println(n);}

}

class gaussInt extends myInt {

private int m; //represents the imaginary part

public gaussInt(int x, int y){

super(x);

this.m = y;}

public void show(){

System.out.println(

"realpart is: " + this.getval() +" imagpart is: " + m);}

public int realpart() {return getval();}

public int imagpart() {return m;}

public gaussInt add(gaussInt z){

return new gaussInt(z.realpart() + realpart(),

z.imagpart() + imagpart());

44

}

public static void main(String[] args){

gaussInt kreimhilde = new gaussInt(3,4);

kreimhilde.show();

kreimhilde.increment(2);

kreimhilde.show();

System.out.println("Now we watch the subtleties of overloading.");

myInt a = new myInt(3);

gaussInt z = new gaussInt(3,4);

gaussInt w; //no object has been created

myInt b = z; //b and z are names for the same object

//even though d and z refer to the SAME object they have

//different types

System.out.print("the value of z is: "); z.show();

System.out.print("the value of b is: "); b.show();

//which show method will be used?

myInt d = b.add(b); //this does type check

System.out.print("the value of d is: "); d.show();

// w = z.add(b); will not type check

// w = b.add(z); will not type check

w = ((gaussInt) b).add(z);//this does type check

System.out.print("the value of w is: "); w.show();

myInt c = z.add(a); //will this typecheck?

System.out.print("the value of c is: "); c.show();

}

}

Here is what we can say about the variables (TBD means “to be determined”):

Name Declared Type ActualType

a: myInt myInt

z gaussInt gaussInt

w gaussInt TBD

b myInt gaussInt

45

d myInt myInt

c myInt TBD

myInt a = new myInt(3);

gaussInt z = new gaussInt(3,4);

gaussInt w;

myInt b = z;

System.out.println("the value of z is"+ z.show());

> real part is 3 imag part is 4

this prints out the above line because z is declared to be of type gaussInt. It passes the
type checker as there is a show method defined in the gaussInt class. At run time it uses
the show method of gaussInt to display the above line.

System.out.println("the value of b is :" + b.show());

> real part is 3 and imag part is 4.

b is declared to be of type myInt. There is a method called show in the myInt class. The
type checker sees that and because of that it passes the type checker, but the actual type
of b is gaussInt. Method lookup is based on actual types of objects and therefor b uses the
show method in the gaussInt class and displays what a gaussInt object would have shown.

myInt d = b.add(b)

System.out.println("the value of d is:"+ d.show());

> 6

b is declared to be of the type myInt, the type checker checks to see whether there is an add

method in the myInt class. Yes there is one; it takes a myInt object and returns a myInt

object as the result. At run time b’s actual type is gaussInt the run-time system checks to
see if there is an add method in the gaussInt class which matches the type that it was told
by the type-checker. There are two add methods - one that takes a myInt and returns a
myInt (This method has been inherited from the myInt class). The other takes a gaussInt

and returns a gaussInt; this is the method that is explicitly defined in the gaussInt class.
However the latter method does not match what the type-checker told the run-time system
to expect.
NOW WHICH ADD METHOD DO WE USE?
since “When there is overloading, it is resolved by typechecking” the method which takes an
object of the type myInt will be used. This is the method that has been inherited. It takes

46

in a myInt and returns a myInt. Hence b.add(b) returns a myInt object and therefor NOW
the actual type of d is myInt.

//w= z.add(b) -----(i)

//w = b.add(z)-----(ii)

These two will not type check

1. z is declared to be of the type gaussInt. There are two methods in the gaussInt

class, the one that takes in a myInt object and returns a myInt object is used. Why?
Once again overloading is resolved by typechecking. Since b is declared to be a myInt

object it will pick the add method that it inherited.

z is a gaussInt which is a subtype of myInt and hence is added to b and returns a
myInt. w is declared to be a guassInt. Since myInt is not a subtype of gaussInt

the assignment statement will not accept this for the right hand side, and hence would
cause an error.

2. b is declared to be of the type myInt. The type checker checks if there is an add method
in the myInt class there is one which expects a myInt object and returns a myIntobject
z is a gaussInt and since gaussInt is a subtype of myInt, b is added to z to produce
a myInt object

w is declared to be a gaussInt Since myInt is not a subtype of gaussInt it will not
accept it and hence would cause an error.

w = ((gaussInt) b).add(z)

This does type check as it is just a little modification to case 2 above. Now since w is
a gaussInt, it better get a gaussInt on the right hand side. However, now, because of
the cast, the typechecker knows that b is really a gaussInt. Thus, it now has to choose
between two possible add methods. To resolve the overloading it uses the declared types;
z has declared type gaussInt. Thus when it resolves the overloading of the add method it
figures out to use the gaussInt to gaussInt version.

15 Exception Handling in Java

Exception handling is a Java mechanism that serves two purposes: it allows the programmer
to deal with runtime errors and it can be used to indicate special error conditions. Both uses
of exception handling will be discussed below.

47

15.1 The Exception Object

In Java, runtime errors are called exceptions. An exception is a Java object. All exceptions
inherit from the Exception class and its subclasses. You can find the definition of class
Exception and a list of its direct subclasses at

http://java.sun.com/products/jdk/1.2/docs/api/java/lang/Exception.html

Java divides exceptions into two groups: unchecked exceptions and checked exceptions.
All unchecked exceptions inherit from the RunTimeException class, which is a subclass of the
Exception class. Note that the name RunTimeException is misleading since all exceptions
occur at runtime.

Runtime errors that occur because of programming errors correspond to unchecked ex-
ceptions. Unchecked exceptions happen because of the programmer’s carelessness and can
be prevented by the programmer through the introduction of checks in the code. Unchecked
exceptions thus do not require exception handling. Two common unchecked exceptions are
ArrayIndexOutofBoundsException and NullPointerException. Both can be prevented
by simple checks in the code: the former exception would not occur if the programmer
checks that an array index actually exists before accessing it, while the latter exception can
be prevented by checking whether a reference contains null before using it to access fields
or invoke methods.

All other runtime errors are categorized as checked exceptions. Checked exceptions are
caused by situations out of the programmer’s control. Checked exceptions require exception
handling. Two common checked exceptions are FileNotFoundException and IOException.
The former exception occurs when the user provides an input file that does not exist. The
latter exception indicates that an error occurred while writing to or reading from a file.

15.2 Creating a New Exception

New exception classes can be created if none of Java’s predefined exception classes correspond
to a certain error. To create a new exception class, extend either the Exception class or any
one of its subclasses other than RunTimeException. Recall that RunTimeException and its
subclasses correspond to unchecked exceptions. Instances of any new exception class should
be checked exceptions because of reasons you will discover below.

15.3 Throwing an Exception

An exception is thrown to indicate the occurrence of a runtime error. Only checked exceptions
should be thrown, as all unchecked exceptions should be eliminated.

An exception is explicitly thrown using the throw statement. To throw an exception,
first determine the type of exception you need to throw, then throw a new instance of that
exception. You can throw one of Java’s predefined exceptions or define a new exception class
and throw its instance. Let us throw a FileNotFoundException.

48

throw new FileNotFoundException();

A method must add a throws clause in its header to indicate the types of all the checked
exceptions that it may throw. This clause follows the parameter list in a method’s header.
Commas separate multiple exception types in the throws clause. Here is the header of a
main method that throws an IOException and a FileNotFoundException:

public static void main(String[] args) throws IOException,

FileNotFoundException

A method’s header advertises the checked exceptions that may occur when the method
executes. When creating a new exception class, it is important that its instances be checked
exceptions, so that others are aware of the existence of a new type of exception that may be
thrown. If a method’s header does not contain a throws clause, then the method throws no
checked exceptions.

Although exceptions can be thrown to indicate runtime errors such as a missing input
file, one can also throw exceptions to indicate special error conditions. Consider a method
called search that looks for an element in an array. The method either returns the first
array index at which the element is found or -1 to indicate that the search was unsuccessful.
One can alternatively throw an exception to indicate that an element was not found in the
array. Let us write search and create a new exception class:

class ElementNotFoundException extends Exception{

//Constructor

/* This is a simple constructor that just calls the constructor of

its superclass */

public ElementNotFoundException(){

super();

}

}

public class bar{

//Static methods

public static int search(int[] A, int key) throws ElementNotFoundException{

boolean found = false;

int index = 0;

while ((! found) && (index < A.length)){

if (A[index] == key)

49

found = true;

else

index ++;

}

if (found) return index;

else throw new ElementNotFoundException();

}//search

public static void main (String args[]) throws ElementNotFoundException{

/* Note that an ElementNotFoundException must be declared in the

throws clause of this method as any of the calls to method search

can cause this exception to be thrown */

int[] A = new int[50];

int k = 50;

//Initializing A

for (int i = 0; i < A.length; i++){

A[i] = k;

k--;

}

k = 23;

int result = search(A, k);

System.out.println(k + " found at " + result);

k = 88;

//This will cause an exception

result = search(A, k);

System.out.println(k + " found at " + result);

k = 35;

result = search(A, k);

System.out.println(k + " found at " + result);

}//main

}//class bar

Compile the code above and run class bar. The source code must be saved in a file called
bar.java as class bar is a public class.

50

We defined a new exception class called ElementNotFoundException, which extends
the Exception class. An instance of the ElementNotFoundException class is a checked
exception and must be declared in the header of a method that throws it. Since we explicitly
throw an ElementNotFoundException in the search method of class bar, we declare that
exception in the throws clause of the method’s header.

An exception can occur in two ways: explicitly through the use of a throw statement
or implicitly by calling a method that can throw an exception. We explicitly throw an
exception in the search method of class bar. The main method of class bar implicitly
throws an exception by calling search, a method that can throw an exception. Thus, the
main method of class bar must also declare an ElementNotFoundException in its throws

clause.
In general, it is not a good idea to indicate an error condition that will occur often by

throwing an exception. This is so because catching exceptions takes a lot of time.

15.4 Catching an Exception

When an exception occurs, the normal flow of execution stops as the Java runtime system
starts looking for the appropriate exception handling code. Code that handles an exception
is found in a catch clause. To handle an exception, one must catch it. One catches an
exception using a try-catch block. The general syntax of a try-catch block is as follows:

try{

code that could cause exceptions

}

catch (Exception e1){

code that does something about exception e1

}

catch (Exception e2){

code that does something about exception e2

}

Code that can throw exceptions is placed in a try block as above. When an exception
occurs, the normal flow of execution stops as the rest of the code in the try block is skipped.
The Java runtime system starts looking for an appropriate catch clause for the exception
that occurred.

The catch clause for an exception need not be in the method in which the exception is
thrown. It can be in any of the methods that were called before the current method. Indeed,
if a catch clause is not found in the method that throws the exception, then each of the
calling methods is examined in turn for a catch clause. If no catch clause is found in any
of the methods on the calling stack, then a default exception handler catches the exception.
The default exception handler handles all exceptions in the same way: execution is stopped
and the name of the exception and a stack trace are printed on the screen. This is the
scenario that takes place when class bar is run.

51

If a catch clause for the exception is found, then the code in that catch clause is executed.
After the execution of the catch clause, the first line of code not inside a catch clause is
executed. A method that handles an exception need not declare that exception in its throws
clause. If no exception is thrown by the code in a try block, then all the code in the try

block is executed and the all the catch clauses associated with that try block are skipped.
Let us modify the main method of class bar to catch the exception thrown by the search

method.

class ElementNotFoundException extends Exception{

//Constructor

public ElementNotFoundException(){

super();

}

}

public class bar{

//Static methods

public static int search(int[] A, int key) throws ElementNotFoundException{

boolean found = false;

int index = 0;

while ((! found) && (index < A.length)){

if (A[index] == key)

found = true;

else

index ++;

}

if (found) return index;

else throw new ElementNotFoundException();

}//search

public static void main(String args[]){

int[] A = new int[50];

int k = 50;

//Initializing A

52

for (int i = 0; i < A.length; i++){

A[i] = k;

k--;

}

try{

k = 23;

int result = s2(A, k);

System.out.println(k + " found at " + result);

k = 88;

//This will cause an exception

result = search(A, 88);

System.out.println(k + " found at " + result);

k = 35;

result = search(A, k);

System.out.println(k + " found at" + result);

}

catch(ElementNotFoundException e1){

System.out.println(k + " not found in array A");

}

System.out.println("End of main method of class bar reached.");

}//main

}//class bar

We enclosed all the calls to search in a try block, since any of these calls could result in an
ElementNotFoundException. The second call to search causes an ElementnotFoundException.
The remaining code in the try block is skipped. The code in the catch clause correspond-
ing to an ElementNotFoundException is executed. After the execution of the catch clause,
normal execution resumes as the print statement after the catch clause is executed. Note
that because the second call to search throws an exception, the third call to search is never
reached. Indeed, if the first call to search caused an exception, then both the second and
third calls to search would be skipped. The above try-catch block is poorly designed. It
is much better to wrap each call to search in a try block. Thus, for each call to search,
one can handle the possibility of an unsuccessful search.

class ElementNotFoundException extends Exception{

//Constructor

public ElementNotFoundException(){

super();

53

}

}

public class bar{

//Static methods

public static int search(int[] A, int key) throws ElementNotFoundException{

boolean found = false;

int index = 0;

while ((! found) && (index < A.length)){

if (A[index] == key)

found = true;

else

index ++;

}

if (found) return index;

else throw new ElementNotFoundException();

}//search

public static void main(String args[]){

int[] A = new int[50];

int k = 50;

//Initializing A

for (int i = 0; i < A.length; i++){

A[i] = k;

k--;

}

try{

k = 23;

int result = s2(A, k);

System.out.println(k + " found at " + result);

}

catch(ElementNotFoundException e1){

System.out.println(k + " not found in array A");

}

54

try{

k = 88;

//This will cause an exception

result = search(A, k);

System.out.println(k + " found at " + result);

}

catch(ElementNotFoundException e1){

System.out.println(k + " not found in array A");

}

try{

k = 35;

result = search(A, k);

System.out.println(k + " found at" + result);

}

catch(ElementNotFoundException e1){

System.out.println(k + " not found in array A");

}

System.out.println("End of main method of class bar reached.");

}//main

}//class bar

Each call to search is wrapped in its own try block and each call gets executed. If any
of the calls to search was not wrapped in a try block, then an ElementNotFoundException

would have to be declared in the throws clause of the main method. Since we handle each
ElementNotFoundException that may be thrown, we need not declare this exception in a
throws clause.

16 Conclusions

This is the end of our brief survey of Java. To learn more about the language you should take
a course on programming languages. There are many subtle issues that we have not looked
at most notably subtyping and related issues. There are many details of various predefined
Java classes, libraries and packages that we have not even mentioned. What we have said
about the language is hopefully stable.

Acknowledgements

We would like to thank Haroon Ali Agha, Jacob Eliosoff, Etienne Gagnon, Patrick Lam,
Moses Mathur and Maria Olaguera for helpful comments. We are very grateful to Alan

55

Shaver, Dean of the Faculty of Science for providing the funding that made these notes
possible. The second author would like to thank his wife for reminding him to shave from
time to time.

References

[AG98] Ken Arnold and James Gosling. The Java Programming Language, Second Edition.
Addison-Wesley, 1998.

[HC99] Cay S. Horstmann and Gary Cornell. Core Java 1.2. Sun Microsystems, 1999.

[LL98] John Lewis and William Loftus. Java Software Solutions. Addison-Wesley, 1998.

[vdL99] Peter van der Linden. Just Java 1.2, Fourth Edition. Sun Microsystems Press, 1999.

56

