

This work is licensed under the Creative Commons Attribution License. To view a copy of this license:

• Visit http://creativecommons.org/licenses/by/2.5/ or

• Send a letter to:
Creative Commons
543 Howard Street, 5th Floor
San Francisco
California
94105, USA

Hacknot

Contents

Foreword... vi

Peopleware 1
The A to Z of Programmer Predilections... 2
The Hazards of Being Quality Guy.. 9
A Dozen Ways to Sustain Irrational Technology Decisions.................. 11
My Kingdom for a Door .. 15
Interview with the Sociopath ... 19
The Art of Flame War.. 23
Testers: Are They Vegetable or Mineral?.. 27
Corporate Pimps: Dealing With Technical Recruiters 30
Developers are from Mars, Programmers are from Venus 34

Management 37
To The Management .. 38
Great Mistakes in Technical Leadership.. 40
The Architecture Group ... 46
The Mismeasure of Man .. 48
Meeting Driven Development.. 54

Extreme Programming and Agile Methods 58
Extreme Deprogramming... 59
New Methodologies or New Age Methodologies? 62
Rhetorical AntiPatterns in XP.. 65
The Deflowering of a Pair Programming Virgin 69
XP and ESP: The Truth is Out There! ... 72
Thought Leaders and Thought Followers .. 75

Requirements 76
Dude, Where’s my Spacecraft?.. 77
User is a Four Letter Word .. 79

Design 81
The Folly of Emergent Design... 82
The Top Ten Elements of Good Software Design 86

Documentation 89
Oral Documentation: Not Worth the Paper it’s Written On.................. 90
FUDD: Fear, Uncertainty, Doubt and Design Documentation 93

Programming 96
Get Your Filthy Tags Out of My Javadoc, Eugene................................ 97
Naming Classes: Do it Once and Do it Right .. 98
In Praise of Code Reviews... 101

User Interfaces 104
Web Accessibility for the Apathetic .. 105
SWT: So What? ... 108

Debugging and Maintenance 113
Debugging 101...114
Spare a Thought for the Next Guy ...121
Six Legacy Code AntiPatterns ...122

Skepticism 124
The Skeptical Software Development Manifesto.................................125
Basic Critical Thinking for Software Developers127
Anecdotal Evidence and Other Fairy Tales..130
Function Points: Numerology for Software Developers133
Programming and the Scientific Method..137
From Tulip Mania to Dot Com Mania ...141

The Industry 143
The Crooked Timber of Software Development144
From James Dean to J2EE: The Genesis of Cool.................................147
IEEE Software Endorses Plagiarism ..149
Early Adopters or Trend Surfers? ..151
Reuse is Dead. Long Live Reuse. ..152
All Aboard the Gravy Train ...153

FOREWORD VI

Foreword

The Hacknot Web Site

Hacknot began life in 2001 as an internal mailing
list at the multinational telecommunications company
I was then working for. As part of the activities of
the local Software Engineering Process Group, I was
looking for a way to promote discussion amongst
staff about software engineering related issues, and
hopefully encourage people to learn about the
methods and techniques that could be used to
improve the quality of their work. A creative
colleague came up with the name “Hacknot” for the
mailing list … a pun on the geek web site “slashdot.”

A few years later, when I left the company, I
restarted Hacknot as an externally hosted mailing
list, with many of the same members as in its last
incarnation. In 2003, I was looking for a coding
exercise in J2EE, the main technologies of which had
passed me by while I was busy working in other
areas. Growing tired of building play-applications
like bug trackers and online store simulations, I
decided to create a web version of the Hacknot
mailing list. I figured it would give me a “real world”
context in which to learn about J2EE, and also a
project that I could pursue without the interference
of the usually inept management that so plagued the
development efforts of my working life.

So in 2003 the Hacknot web site was born. In
Australia, domain name registration rules restrict
ownership of “.com” domains to commercial
enterprises, so I chose the next best top-level domain,
which was “.info”.

Initially, I imagined that the web site would host
works by a variety of authors, myself included. But
when it came time to put pen to paper, almost all of
those who had previously expressed interest in
participating suddenly backed off, leaving me to
write all the content myself.

Many of the essays on Hacknot take a stab at some
sacred cow of the software development field, such
as Extreme Programming, Open Source and Function
Point Analysis. These subjects tend to attract
fanatical adherents who don’t take kindly to someone
criticizing what for them has become an object of
veneration. The vitriol of some of the e-mail I
receive is testament to the fact that some people need
to get out more and get a sense of perspective. It is
partially because of the controversial nature of these
topics that I have always written behind a
pseudonym; either “Ed” or “Mr. Ed”. I also favor
anonymity because it makes a nice change from the

relentless self-promotion engaged in by so many
members of the IT community.

The Hacknot Book

This book contains 46 essays originally published
on the Hacknot web site between 2003 and 2006.
The version of each essay appearing in the book is
substantially the same as the online version, with
some minor revisions and editing.

You can freely download PDFs of this book with
page sizes of 6” x 9” or A4, by visiting
http://www.hacknot.info. There you will also find
instructions on how you can obtain a hard-cover
copy, for the price of the binding and postage.

Please send any comments or corrections to
editor@hacknot.info.

Peopleware

2 HACKNOT

The A to Z of Programmer
Predilections*

There is a realization that comes with the accrual
of software development experience across a
reasonable number of organizations, and it is this:

Though the names change, the problems remain the
same.

Traveling from project to project, from one
organization to another, across disparate geographies,
domains and technologies, I am repeatedly struck
more by the similarities between the projects I work
on than their differences. Scenes from one job seem
to replay in the next one, only with a different set of
actors.

You might finish a gig in which you've seen a
project flop due to inadequate consultation with end
users, only to find your next project heading down
the same path for exactly the same reason. And it
generally doesn't matter how much you jump up and
down and try and warn your new project team that
you've seen the disastrous results of similar actions in
the past. They will ignore you, insisting that their
situation is somehow different. You will stand back
and watch in horror as the whole scenario plays out
as you knew it would, all the while unable to do
anything more to prevent it. The IT contractor's
career can be like some cruel matinee of "Groundhog
Day" – without the moral resolution at the end.

But this technological déjà vu is not limited to
technical scenarios - it extends to people. I find
myself working with the same programmers over and
over again. Their names and faces change, but their
personalities and predilections are immediately
recognizable. I find myself playing mental games of
"Snap" with my fellow developers. "Bob over there
is just like Ian from Acme. James is this workplace's
equivalent of Charles from that financial services gig
I had last year" – and so on.

Sometimes I fancy that I have met them all. There
will be no new developers for me to work with in
future – only the reanimated ghosts of projects past.
The same quirks and foibles that I've endured in the
past will haunt me the rest of my days.

I've listed below the cast of characters that have
been following me around for some years now.
Coincidentally, there are exactly twenty six of them,
one for each letter of the alphabet. Perhaps you've
encountered some of them yourself. Perhaps you're
one of them. If so – please go away and find
someone else to bug.

Arrogant Arthur

The three hardest words in any techie's vocabulary
are "I don't know". Arthur never has to struggle with
them, for he knows everything. Any technology you
might name - he's an expert. Any problem you might
have – he's solved it before. No matter what
challenge he's assigned – he's sure it will be easy.
Whenever Arthur appears to have made a mistake,
closer investigation will reveal that the fault in fact
lies with someone or something else. Arthur is a
pretty handy conversationalist. Whenever you're
having a technical discussion with someone and he is
within earshot, Arthur will generally join in and
quickly dominate the discussion with his displays of
erudition. Uncertainty and self-doubt are states of
mind that Arthur is entirely unfamiliar with. Arthur
has a tendency to make big generalizations and
sweeping statements, as if to imply that he has the
certainty that only comes from vast experience.

Belligerent Brian

Nobody in the office is particularly fond of Brian.
Sure, he's a smart guy and seems to be technically
well informed, but he has such a strident and
aggressive manner that it's difficult to talk with him
for any length of time without feeling that you are
under attack. Brian likes it that way and his hostile
manner is entirely intentional. You see, Brian is a go-
getter. Highly ambitious and energetic, he is
determined to advance up the corporate ladder, no
matter who he has to step on in the process.
Whenever any action is undertaken or decision made,
there is always a part of him thinking "How will this
make me look to my manager?" It's not surprising
then that not all of Brian's decisions are good ones.
He has been known to select cutting edge
technologies simply for their buzzword compliance,
betting that cool acronyms and shiny new
methodologies will make him appear progressive and
forward-looking. Although he regularly makes
mistakes, Brian never admits to any of them, and
generally blames third parties, vendors and
colleagues for errors that are actually his own.

C++ Colin

Colin is the local language bigot, whose language
of preference is C++. He began programming in C,
moved on to C++ when commercial forces threw the
OO paradigm at him, and has been working in C++
ever since. Colin has watched the ascent of Java with
a mixture of disdain and veiled jealousy. Initially, it
was easy to defend C++ against criticisms from the
Java camp, by pointing to C++'s superior

THE A TO Z OF PROGRAMMER PREDILECTIONS 3

performance. But with the growing speed of JVMs,
this advantage has been lost. Now, most of the
advantages that Colin claims for C++ are the same
language features that Java enthusiasts see as
disadvantages. Java developers (or, "Java weenies"
as Colin is fond of calling them) point to automatic
memory reclamation as an eliminator of a whole
category of bugs that C++ developers must still
contend with. Colin sees garbage collection as
disempowering the programmer, referring to the
random intrusion of garbage collection cycles as
payback for those too lazy to free memory
themselves. Java weenies consider the absence of
multiple inheritance in Java an advantage because it
avoids any confusion over the rules used to resolve
inheritance of conflicting features; Colin sees it as an
unforgivable limitation to effective and accurate
domain modeling. Java weenies consider C++'s
operator overloading to be an archaic syntax
shortcut, rife with potential for error; Colin sees it as
a concise and natural way to capture operations upon
objects. Colin displays a certain bitterness, resulting
from the dwindling variety of work available to him
within the language domain he is comfortable with.

Distracted Daniel

Daniel's mind is only ever half on the job, or to put
it another way, he doesn't have his head in the game.
Daniel lives a very full life – indeed, so full that his
private life overflows copiously into his professional
one. He has several hobbies that he is passionate
about, and he is always ready to regale a colleague
with tales of his weekend exploits in one of them. It
looks as if his job is just a way of funding his many
(often expensive) hobbies. His work is strictly a nine
to five endeavor, and it would be very rare to find
him reading around a particular work-related topic in
his own time, or putting in an extraordinary effort to
meet a deadline or project milestone. He is constantly
taking off at lunch times to take care of one task or
another, and does not seem to be particularly
productive even when he is in the office. Daniel
refers to this as "leading a balanced life". He may be
right.

Essential Eric

Eric knows that knowledge is power. Partly by
happenstance but mostly by design, Eric has become
irreplaceable to his employer. There just seems to be
a vast amount of technical and procedural arcana that
only Eric knows. If he should ever leave, the
company would be in a mess, as he would take so
much critical information with him. This gives him a

good deal of bargaining power with management,
and good job security. A few of the company's
managers have recognized the unhealthy dependence
that exists upon him, and have attempted to
document some of the valuable knowledge about
certain pieces of software central to the business, but
Eric always finds a way to get out of it. There always
seems to be something more pressing for him to do,
and if he is forced to put pen to paper, what results
tends to be incoherent nonsense. It seems that he just
can't write things down - or rather, that he chooses to
be so poor at it that no one even bothers to ask him to
document things any more. Eric is not keen to help
others in those domains that he is master of, as he
doesn't want to dilute the power of his monopoly.

Feature Creep Frank

Most of the trouble that Frank has got himself into
over the years has been heralded by the phrase
"Wouldn't if be cool if ... ". No matter how feature-
laden his current project may be, Frank can always
think of one more bell or whistle to tack onto it that
will make it so much cooler. Having decided that a
particular feature is critical to user acceptance of the
application, it is a very difficult task to stop him
adding it in. He has been known to work nights and
weekends just to get his favorite feature incorporated
into the code base – whether he has got permission to
do so or not. Part of Frank's cavalier attitude to these
"enhancements" comes from his unwillingness to
consider the long term consequences of each
addition. He tends to think of the work being over
once the feature has been coded, but he fails to
consider that this feature must now be tested,
debugged and otherwise maintained in all future
versions of the product. Once the users have seen it,
they may grow accustomed to it, and so removing it
from future versions may well be impossible. They
may even like the feature so much that they begin
requesting extensions and modifications to it,
creating further burden on the development team.
Frank justifies his actions to others in terms of
providing value to users, and often professes a
greater knowledge of the user demographic than
what he actually possesses, so that he can claim how
much the users will need a particular feature. But
Frank's real motivations are not really about user
satisfaction, but are about satisfying his own ego.
Each new feature is an opportunity for him to
demonstrate how clever he is, and how in touch with
the user community.

4 HACKNOT

Generic George

George delights in the design process.
Pathologically incapable of solving just the
immediate problem at hand, George always creates
the most generic, flexible and adaptable solution
possible, paying for the capabilities he thinks he will
need in the future with extra complexity now. Sadly,
George always seems to anticipate incorrectly. The
castles in the air that he continually builds rarely end
up with more than a single room occupied.
Meanwhile, everyone must cope with the inordinate
degree of time and effort that is needlessly invested
in managing the complexity of an implementation
whose flexibility is never required. It is a usual
characteristic of George's work that it takes at least a
dozen classes working together to accomplish even
trivial functionality. He is generally the first to
declare "Let's build a framework" whenever the
opportunity presents itself, and the last to want to use
the framework thus created.

Hacker Henry

Henry considers himself to be a true hacker – a
code poet and geek guru. Still in the early stages of
his career, he spends most of his life in front of a
keyboard. Even when not at work, he is working on
his own projects, participating in online discussion
forums and learning about the latest languages and
utilities. Software is his principal passion in life. This
single-minded pursuit of technical knowledge has
made him quite proficient in many areas, and has
engendered a certain arrogance that generally
manifests as a disdain directed towards those of his
colleagues whom he regards as not being "true
hackers". For his managers, Henry is a bit of a
problem. They know that they can rely on him to
overcome pretty much any technical challenge that
might be presented to him, provided that the solution
can be reached by doing nothing but coding. For
unless it's coding, Henry's not interested. He won't
document anything; certainly not his code, because
he feels that good code is self-documenting. He is
early enough into his career to have not yet been
presented with the task of adopting a large code base
from someone who subscribes to that same belief,
and to have thereby seen the problems with it. Also,
Henry can generally only be given "mind-size" tasks
to do. His tasks have to be small and well defined
enough for him to fit all their details in his head at
once, as he simply refuses to write anything down.
The architecture of enterprise-scale systems will
likely forever be a mystery to him as he does not
possess, and has no interest in developing, the

facility with abstractions and modeling that is
necessary to manage the design of large systems.

Incompetent Ian

Ian is a nice enough guy but is genuinely
incapable of performing most of the job functions his
position requires. It's not clear whether this is a result
of inadequate education, limited experience or
simply a lack of native ability. Either way, it is clear
to anyone who works with Ian for any length of time
that he is not really on the ball, and takes a very long
time to complete even basic tasks. Worst of all, Ian
seems to be blissfully unaware of his own
incompetence. This can make for some embarrassing
situations for everyone, as Ian's attempts to weigh in
on technical discussions leave him looking naive and
ignorant – which he also fails to notice. Ian tends to
get work based upon his personable manner and the
large number of friends he has working in the
industry. Most of his employers have come to view
him as a "retrospective hiring error".

Jailbird John

John has been working for his current employer a
long time. A very long time. Longer than most of the
senior management in fact. John has been working
here so long that it is highly unlikely he will ever be
able to work anywhere else. Over the years, his skill
set has deteriorated so greatly and become so stale
that he has become an entirely unmarketable
commodity. He knows all there is to know about the
company's legacy applications – after all, he wrote
most of them. He has been keeping himself
employed for the last decade just patching them up
and making one piecemeal addition after another in
order to try and keep them abreast of the business's
changing function. Tired of chasing the latest and
greatest technologies, he has not bothered learning
new ones, sticking to the comfortable territory
defined by the small stable of dodgy applications he
has been shepherding for some years. John gets along
with everyone, particularly those more senior to him.
He can't afford the possibility of getting into conflict
with anyone who might influence his employment
status, as he knows that this will likely be the last
good job he ever has. So he tries to stay under the
radar, hoping that the progressive re-engineering of
his pet applications with more modern technologies
takes long enough for him to make it over the finish
line.

THE A TO Z OF PROGRAMMER PREDILECTIONS 5

Kludgy Kevin

Kevin is remarkably quick to fix bugs. It seems
that he's no sooner started on a bug fix than he's
checking in the solution. And then, as if by magic,
the very same bug reappears. "I thought I fixed that",
declares Kevin – and indeed he did – but not
properly. In his rush to move on to something else,
Kevin invariably forgets to check that his "fix" works
correctly under some boundary condition or special
case, and ends up having to go back and fix it again.
Sometimes a third or even fourth attempt will be
necessary. This is Kevin's version of "iterative
development."

Loudmouth Lincoln

Terror of the cubicle farm, Lincoln incurs the ire
of all those who sit anywhere near him, but remains
blissfully unaware that he is so unpopular. His voice
is louder than anyone else's by a least a factor of two,
and he seems unable to converse at any volume other
than full volume. When Lincoln is talking, everyone
else is listening, whether they want to or not. People
in his part of the office know a great deal more about
Lincoln's personal life than they would like, as they
have heard one end of the half dozen or so telephone
calls that he seems to receive from his wife every
day. Lincoln's favorite instrument of torture is the
speakerphone. He always listens to his voicemail on
speakerphone each morning, so that he can unpack
his briefcase while doing so. He also likes to place
calls on speakerphone so that his hands are free to
type at his keyboard while conversing with someone
else. He either doesn't realize or doesn't care that he
is disturbing those nearby. Nobody seems to be game
enough to tell him how inconsiderate he is being.

Martyr Morris

Morris is very conscious of the impression others
form of him. Probably a little too concerned. He has
observed that many of his colleagues associate long
hours with hard work and dedication. The longer the
hours, the harder you're working – and having a
reputation as a hard worker can only be a good thing
when it comes performance review time. So Morris
makes sure he is at the office when his boss arrives
of a morning, and that he is still working away when
his boss leaves of an afternoon. Everyone agrees that
Morris certainly puts in the hard yards, but are a little
perplexed as to why his code is so often buggy and
poorly structured. In fact, it seems like Morris has to
put in extended hours in order to compensate for the

poor quality of his work. The net result is that he gets
almost as much achieved as his team mates who
work more sensible hours. Morris hasn't yet twigged
to the fact that his defect injection rate rises
dramatically as he fatigues, meaning that the extra
hours he works often have a negative effect on his
productivity. Worse yet, his know-nothing manager
rewards him for his dedication, thereby reinforcing
the faulty behavior.

Not-Invented-Here Nick

Nick has an overwhelming drive to write
everything himself. Due to hubris and ambition, he is
rarely satisfied with buying a third party utility or
library to help in his development efforts. It seems to
him that the rest of the industry must be incompetent,
for every time he looks to buy rather than build, he
finds so many shortcomings in the products on offer
that he invariably concludes that there's nothing for it
but to write the whole thing himself. It also seems
that his particular requirements are always so unique
that no generally available tool has just the
functionality that he needs. Not wanting to work
inefficiently, he insists on only using tools that do
exactly what he wants – nothing more, nothing less.
Little wonder then that he finds himself having to
write such fundamental utilities as text editors, file
transfer programs, string and math utility libraries.
The real problem is not that Nick's requirements are
so unique, but that he deliberately fabricates
requirements so specific that he can find commercial
offerings lacking, and thereby justify reinvention of
those offerings himself. In short, he is looking for
excuses to write what he considers to be the "fun
stuff" (the development tools) rather than the "boring
stuff" (the application code). He generally has little
difficulty in finding such justifications. Most people
who work with Nick note with interest that the tools
that he writes himself are rarely of the quality of the
equivalent commercial offerings.

Open Source Oliver

Oliver is very enthusiastic about open source
software development. He contributes to several
open source projects himself, and tries to incorporate
open source products into his projects wherever
possible – and it's always possible; mainly because
Oliver begins a project for the principal purpose of
providing himself with an opportunity to try out the
latest and greatest CVS build from Apache, Jakarta
or wherever. Oliver rarely has to justify his
technology selections to his colleagues, as he is
always sure to surround himself with other open

6 HACKNOT

source believers. On occasions when he needs to
explain the failure or buggy nature of some open
source package, he relies upon the old saw "we can
always fix it ourselves". However there never seems
to be enough time in the schedule for this to actually
occur; so every release of his project bristles with the
underlying warts of its open source components. If
all else fails, it can at least be said that the price is
right.

Process Peter

If you want to see Peter get worked up, just start a
discussion with him about the poor state of software
development today. He will hold forth at length, and
with passion, on where it has all go wrong. And Peter
has decided that all of software's woes have a
common genesis – a lack of disciplined process.
Peter's career history reads like a marketing brochure
of process trends. BPR, Clean Room, Six Sigma, ISO
– he's been a whole-hearted enthusiast of them all at
one time or another. His dedication to strict process
adherence as a panacea to a project's quality ills is
absolute, and he will do almost anything to ensure
that ticks appear in the relevant boxes. Unfortunately,
this uncompromising approach is often self-
defeating, as it denies him the flexibility to adapt
quality levels on a case-by-case basis. It has also
made him more than a few enemies over the years.
He is prone to considering the people component of
software development as a largely secondary
consideration, and views programmers a little like
assembly line production workers – interchangeable
parts whose individual talents and proclivities are not
so important as the procedures they follow to do their
work. Those subject to such views tend to find it
more than a little dehumanizing and impersonal.

Quiet Quincy

Quincy is one of those guys who has no need to
brag about his technical skills or the depth of his
technical knowledge. He's not much interested in
being "alpha geek" at the office, he just wants to do a
good job and then go home to his wife and children.
Quietly spoken and unassuming, he looks on with
amusement at Zealous Zack's ever-changing
enthusiasms and shakes his head, knowing that in a
few more years Zack will have gained enough
experience to know that the computing industry is
full of "next big things" that generally aren't. Given a
task, he just sits down and does it. He doesn't
succumb to heroic bug-fixing and late night coding
efforts – his code is good enough to begin with that
there are rarely any problems with it. He probably

won't get many pats on the back from management,
whose attention will largely be captured by the
technical prima donnas that swan around the project
space, dropping buzzwords and acronyms like they
were the names of celebrities they knew personally.
But without Quincy and those of his ilk, the project
would fail – because someone has to get the work
done.

Rank Rodger

Rodger is very good at what he does. He's a techie
through and through, and delights in problem
solving. The problem is that Rodger lives in his head.
At times he feels like a brain on legs, so focused is he
upon intellectual pursuits. His body is a much
neglected container for cortical function that he
generally pays little attention to, except to meet its
basic functional requirements for food and clothing.
As a result, there is a certain funk surrounding
Rodger which nearby colleagues are all too aware of,
but of which Rodger is olfactorily ignorant. Halitosis
is his constant companion and dandruff a regular
visitor. In general, he has unkempt appearance – his
shirt often buttoned incorrectly, hair not combed and
tie (which he wears only under the greatest duress)
knotted irregularly. Rodger doesn't really care what
others think of him and is largely unaware of the
message his poor grooming and hygiene is sending to
others. Rodger is likely to remain unaware for a long
time, as nobody can think of a way of broaching the
topic with him that wouldn't cause offense.

Skill Set Sam

Sam is just passing through. If he is a contractor,
everyone will already be aware of this. If he is
permanent staff, his colleagues might be a little
surprised to know just how certain he is that he won't
be working here in a year's time. Sam is committed
to accumulating as much experience with as many
technologies as he possibly can, in order to make
himself more attractive to future employers. His
career objective is simply that he remain continually
employed, earning progressively higher salaries until
he is ready to retire.

Toolsmith Trevor

Trevor loves to build development tools. He can
whip you up a build script in a few minutes and
automate just about any development task you might
mention. In fact, Trevor can't be stopped from doing
these things. He is actively looking for things to
automate – whether they need it or not. For some

THE A TO Z OF PROGRAMMER PREDILECTIONS 7

reason, Trevor doesn't see the writing of
development tools as a means to an end, but an end
in itself. The living embodiment of the "Do It
Yourself" ethic, Trev insists on writing common
development tools himself, even if an off-the-shelf
solution is readily available. Rather than chose one of
the million commercially available bug tracking
applications, you can rely on Trevor to come up with
an argument as to why none of them are adequate for
your purposes, and there is no solution but for him to
write one. At the very least, he will have to take an
open source tool and customize it extensively. So too
with version management, document templates and
editor configuration files. Trevor is right into
metawork, with the emphasis on the meta.

Unintelligible Uri

English is not Uri's native tongue. This is blatantly
obvious to anyone who attempts to communicate
with him. He speaks with a thick accent and at such a
rapid pace that listeners can go several minutes in
conversation with him without having a clear idea of
what he has said. Trying to work with Uri can be an
excruciating experience. He cannot contribute to
technical discussions effectively, regardless of how
well informed he might be, because he is always
shouted down by those with more rhetorical flair,
regardless how uninformed they might be.
Delegating work to him is a dangerous undertaking
because you can never be certain that he has really
understood the description of his assignment; he
tends to respond with affirmative clichés that can be
easily said, but don't necessarily reflect that
information has been successfully communicated.
Very often, people choose simply not to bother
communicating with Uri, because they find it both
exhausting and frustrating. Whoever hired Uri has
failed to appreciate that fluency in a natural language
is worth ten times as much as fluency in a
programming language.

Vb Victor

Sometime in the nineties Victor underwent what is
colloquially referred to as a "Visual Basic
Lobotomy". He found himself a programmer on a
misconceived and overly ambitious VB project, and
fought to write a serious enterprise application for
some years in a language that was never conceived
for more than small scale usage. Visual Basic Land is
a warm and soothing place, and Victor let his skill set
atrophy while he slaved away at VB, until eventually
VB was all he was good for. Now, dispirited and
deskilled, he is a testament to the hazards of building

your career upon a narrow technological basis.
Victor will likely survive a few more years, pottering
from one VB project to the next, until he loses the
enthusiasm even for that.

Word Salad Warren

Unlike Uri, Warren's native tongue is English; but
it does him little good. Listening to Warren explain
something technical is like listening to Dr Seuss – all
the words make sense when taken individually, but
assembled together they seem to be mostly gibberish
with no coherent message. Such is Warren's talent for
obfuscation, he can take simple concepts and make
them sound complex; take complex topics and make
them sound entirely incomprehensible. This is big
problem for everyone attempting to collaborate with
Warren, for they generally find it impossible to
understand the approach Warren is taking in solving
his part of the problem, which virtually guarantees it
won't work properly in conjunction with other's
work. On those rare occasions when he tries to
document his code, the comments aren't useful, as
they make no more sense than Warren would if he
were explaining the code verbally. Management has
made the mistake of assuming that Warren's diatribes
are inscrutable because he is so technically advanced
and is describing something that is inherently
complex. That's why he is in a senior technical
position. But his pathetic communication skills are a
major impediment to the duties he must perform as a
senior developer, which routinely involve directing
and coordinating the technical work of others by
giving instructions and feedback. Warren is a source
of great frustration to his colleagues, who would give
anything for precise and concise communication.

X-Files Xavier

Xavier takes a little getting used to. Although his
programming skills are decidedly mature, his
personality seems to be lagging behind. He has an
unhealthy fascination with Star Trek, Dr Who and
Babylon 5. Graphic novels and Dungeons and
Dragons rule books are littered about his cubicle, and
he can often be found reading them during his lunch
break, which he always spends in front of his
computer, surfing various science fiction fan sites
and overseas toy stores. Project meetings involving
Xavier are generally ... interesting, but somewhat
tiring. He regularly interjects quotations from Star
Wars movies and episodes of Red Dwarf, laughing in
an irritating way at his own humor, oblivious to the
fact that others without his rich fantasy life are not
amused by his obscure pop culture references. Xavier

8 HACKNOT

seems to spend most of his time by himself. No one
has ever heard him mention a girl-friend. Those who
have worked with him for any length of time know
that he is best kept away from customers and other
"normal people" who would not understand his
eccentricities.

Young Yasmin

Yasmin has only been out of University for a few
years. She is constantly surprised by the discrepancy
between what she was taught in lectures and what
actually appears to happen in industry. In fact, there
seems to be a good deal that happens in practice that
was not anticipated at all by her tertiary education.
She concludes that the numerous shortcuts, reactive
management and run-away bug count of her projects
are just localized eccentricities, rather than a
widespread phenomenon. Yasmin fits well into the
startup company environment, with its prevailing
attitude of "total dedication." Indeed, she is the target
employee demographic of such firms. She is at that
stage of life where she has the stamina to work 60
and 70 hour weeks on a regular basis. She is not
distracted by family commitments, and is ambitious
and eager enough to still be willing to do what is
necessary to impress others. Lacking industry
experience and the perspective that comes with
maturity, she is not assertive enough to stand up to
management when they make excessive demands of
her.

Zealous Zack

Zack is a very enthusiastic guy. In fact, there
seems to be very little going on in the world of
computing that Zack is not enthusiastic about. Like a
kid staring in the candy store window, Zack gazes
longingly at every new buzzword, acronym and
advertising campaign that crosses his path,
immediately becoming a disciple of every new
movement and technology craze that comes along.
Sometimes these enthusiasms bring with them
certain ideological conflicts, but Zack is too busy
downloading the Beta version of the next big thing to
be worried about such matters. He runs Linux on his
home PC, has a Mac Mini in his living room, and
worships at the church of Agile. Having Zack on
your project can be challenging, particularly if he
exercises any control over technology selection. He
will invariably try and load down your project with
whatever "cool" technologies he is presently over-
enthused about, and delight in the interoperability
problems that result as an opportunity to introduce

even more technologies to save the day. Zack never
quite learnt to distinguish work from play.

* First published 24 Jan 2006 at
http://www.hacknot.info/hacknot/action/showEntry?eid=81

THE HAZARDS OF BEING QUALITY GUY 9

The Hazards of Being Quality Guy*

Perhaps you've seen the Dilbert comic about
Process Girl. At a meeting, the Pointy Haired Boss
introduces Process Girl as "the one who has the
answer to everything", at which point Process Girl
chimes in parrot-like with "Process!" She then
denounces the meeting as inefficient because the
participants have no process to describe how to
conduct a meeting. By a unanimous vote she is
expelled from the meeting. As he escorts her out of
the room, Dilbert offers by way of consolation "at
least you lasted longer than Quality Guy."

And now I must reveal a shocking truth ... ladies
and gentlemen (rips open shirt to reveal spandex
body suit with "Q" emblazoned on the front) ... I am
Quality Guy. I am that much maligned coworker that
you love to hate. I am your local ISO champion, the
leader of the Software Engineering Process Group
and the mongrel who overflows your inbox with
links to articles about process improvement. I'm the
trouble maker that asks embarrassing questions in
meetings like "why aren't we doing code reviews?"
and "where's the design documentation?" I am the
one that dilutes your passionate discussions on J2EE
and SOAP with hideously unfashionable prattle
about CMM and the SEI.

And like my namesake in the Dilbert comics, I am
ostracized by my peers and colleagues. I am
renounced as being a "quality bigot" and dismissed
as impractical and too focused upon meta-issues to
actually achieve anything worthwhile. I am perceived
as an impediment to real work and characterized as a
self-righteous, holier-than-thou elitist. My
suggestions of ways to improve my team's work
habits are interpreted as personally directed
criticisms and thereby evidence that I am "not a team
player".

From my point of view at the periphery of the
team, the earnest activity of you and your geek
friends seems somewhat farcical. You seem to be
perpetually distracted by the shiny new technology
toys that the vendors are constantly grunting out.
You are hopelessly addicted to novelty and
consumed by the frenetic pursuit of the latest
bandwagon. You seem to be entirely unconcerned
that "beta" is synonymous with "buggy" and "new"
with "unproven". The projects of my successive
employers march by me like a series of straight-to-
video movies, each baring the same formulaic plot
wherein only the names of the participating
technologies have been changed to protect the

innocent. I feel compelled to yell out "stop!",
"think!" and "why?", but it is hard to be heard when
you're in geostationary orbit around Planet Cool and
in space, no one can hear you scream.

Friends, this is what it is to be Quality Guy, and it
ain't no party.

If you think you or a loved one might be in danger

of becoming a Quality Guy sidekick, let me offer you
this one piece of advice – never reveal your true
identity to your coworkers. It is a sure recipe for
alienation and isolation. Keep your shirt closed to the
top button, so that your superhero garb will go
unnoticed. Eschew all quality-related terminology
from your public vocabulary and substitute terms
from the jargon file1. Hide any books you might have
that do not relate directly to a technology.

When it comes to development practice, with a
little ingenuity you can institute a number of quality-
related practices within the sandbox of your own
development machine, without needing to reveal to
others that your sphere of concern extends beyond
the acronymic:

• If you find yourself in an environment without
version control, install a free version control
system such as CVS or CS-RCS on your own
machine. You can at least maintain control over
those files that you are immediately involved
with.

• If there is no prevailing coding standard, employ
one for your own code without revealing to
others that there is any guiding hand of
consistency in your code (that would be un-
cool).

• If there is no unit testing, write your own in a
parallel source tree visible only to yourself using
the free xUnit package appropriate to your
platform.

• If there is no design documentation, reverse
engineer the existing code into some hand-drawn
UML diagrams and then stash them away where
others won't find them, keeping them just for
your own reference.

• No requirements? Start your own mini-
requirements document as a local text file, and
question the developers and senior team
members around you to try and flesh it out. You
can at least try and restrict uncertainty with
regard to your own development objectives.

Remember, the secret to surviving as a Quality
Guy is to keep your true identity a closely guarded

10 HACKNOT

secret. That way you can still be one of the gang and
remain non-threatening whilst still being able to take
some satisfaction from the limited degree of quality
enforcement you can achieve through isolated effort.

* First published 3 Sep 2003 at
http://www.hacknot.info/hacknot/action/showEntry?eid=20
1 http://www.jargonfile.com/

A DOZEN WAYS TO SUSTAIN IRRATIONAL TECHNOLOGY DECISIONS 11

A Dozen Ways to Sustain
Irrational Technology Decisions*

External observers often think of programmers as
being somewhat cold and emotionless. Because our
day-to-day activities are largely analytical in nature,
it has become a part of the developer stereotype that
we are dispassionate and rational in our manner and
decision making. Those who have watched
programmers up close for any length of time will
know that this is far from the case. I believe that
emotion plays a far larger part in IT decision making
than many would be willing to admit. Frequently
developers try and disguise the emotive nature of
their thinking by retrospectively rationalizing their
decisions, but not being well-skilled in interpersonal
communication, are often unconvincing. If you've
ever witnessed or taken in part in a technological
"holy war", then you'll already have witnessed the
unhealthy way that stances held by emotional
conviction can be misrepresented as being the result
of rational analysis.

The Causes

Novelty

The majority of irrational technical selections I've
seen have their origin in a senior techie's fascination
with a new technology. For an uncommon number of
developers, the lure of an untried API or the novelty
of a new development model is simply irresistible.
Such folks seem to be focused on the journey rather
than the destination – which is philosophically
delightful but practically frustrating. The urge to play
with a new toy seems to overwhelm the ability to
rationally evaluate a technology on its merits, as if
it's "newness" excused any faults and weaknesses it
might have. There seems to be a strong "grass is
greener" effect at work here. The weaknesses of
existing technologies are known because they have
been teased out by the development community's
experience with it. But a new technology has an
unblemished record. The absence of community
experience means that no one has encountered its
inevitable flaws, or pushed the boundaries of its
capabilities. Psychologically, it is easy to be drawn to
the new technology based on the implied promise of
perfection, as compared to the manifest
imperfections of current technologies.

Ego

Programmers are not a group lacking in self-
confidence; at least when it comes to technical
matters. In fact, the intellectual arrogance of some
can be quite stunning. For those with decision-
making authority, the burden of ego can be a
substantial liability. A technology selection based
solely upon technical merit is easily defended by
dispassionate reference to facts, but once the
outcome is identified with the individual who made
it, ego comes into play. Any challenge to the decision
tends to be interpreted as a challenge to the authority
of the decision maker. Any criticism of the selected
technology tends to be emotionally defended,
because the party who selected it feels that fault is
being found with them personally. They are likely
also sensitive to the potential for injury to their image
and reputation that might come from being
responsible for a poor technology decision. It is
difficult to retain status as the alpha geek when you
are known to have made poor technical decisions.
Managers, in particular, are acutely aware of the way
their behavior and ability is perceived by others.
Having been drawn in by the false promises of glossy
product brochures, the misinformed technical
manager is poorly positioned to subsequently defend
technology decisions. Such managers are frequently
those to be found most passionately and aggressively
defending their decisions.

Fashion

An alarming number of developers seem to be
slaves to technical fashion. Plagued by a "gotta get
me some of that" mentality, the arrival of almost any
new product or development tool is accompanied by
an almost salivatory response. They rush to evaluate
the new offering and to share their experiences with
like-minded others who also like to be at the leading
edge. These programmers fit well and truly into the
"early adopter" category, or as I like to call them
"crash test dummies." Like their mannequin
counterparts, they are forever running head long into
collisions – in this case, with technologies. By
observing the results, the rest of us can learn from
their often hard-won experiences, without having to
suffer the frequent injuries that tend to result.

Ideology

As frequent as it is unrecognized, ideological
conviction seems to be a major driver behind many
technology decisions. Many developers remain
convinced that open source software will save the
world, enable black and white peoples to live in

12 HACKNOT

racial harmony, cure cancer and eliminate hunger and
poverty. They may be right, but none of these are
rational reasons to select a particular offering over a
proprietary alternative for a particular commercial
application. But for many, it is automatic and
unquestioned that open source software is the way to
go, as a matter of moral imperative, regardless of the
merits or otherwise of that software.

The Techniques

Once the commitment to a particular technology
has been publicly made, its proponents must then be
prepared to defend their decision in the light of any
negative development experience. If the technology
was selected for irrational reasons, then those
identified with its selection must now become
apologists for the technology, seeking to minimize
and quash any information that might reflect poorly
on the technology and transitively, upon themselves.

Here are twelve techniques I have seen used to
sustain a bad technology decision in the face of
experience that puts that technology's selection in
doubt.

1. Deny That Negative Experiences Exist

This is a common technique amongst the "kick
ass" school of management. When faced with
evidence that casts your technology selection in an
unfavorable light, simple deny that the evidence
exists. Even if someone can demonstrate to you first
hand the problems that have been encountered, you
can employ a "shoot the messenger" approach to
distract attention away from the evidence being
presented, and put the messenger on the defensive.
You will need to be in a position of sufficient
authority, and surrounded by suitably spineless
colleagues, to make "black is white" declarations
hold fast and create a localized reality distortion
zone. It may sound fantastic, but in practice it is quite
common for authority to usurp reality.

It is not a technique unique to the IT profession. In
his memoirs "Inside the Third Reich", Albert Speer
relates a situation in which Hermann Göering
employed exactly this technique. When Göering was
advised that American fighters had began to
encroach upon German skies, he refused to accept
the report, despite being presented with irrefutable
evidence by one of his generals. He simply issued an
official order stating that nobody had seen any
fighters.

2. Claim "We'll Fix It Ourselves"

When an open source product is selected but
ultimately found wanting, the "we can fix it
ourselves" apology is often the first one that is trotted
out. The availability of the source code means that
you can ostensibly patch the product yourself, submit
that patch to the open source project, and then carry
on. Whenever a colleague finds a bug in the
technology, just dismiss their complaints with the
directive to "just fix it yourself", and the problem
will go away ... for you, anyway.

3. Claim That Bugs Are Intellectual Property

This is a sneaky but effective one. Make it known
to your colleagues that they cannot report any
problems they find with the new technology to the
vendor (or the community, in the case of open source
software) as that would equate to divulgence of
information that has been gathered at company
expense. In the strictest sense, the knowledge of the
bug’s existence is the company's intellectual
property. Exactly what kind of intellectual property it
is, is open to question. It could be "confidential", but
it seems doubtful that it is of enough significance to
possess the necessary "quality of confidence". In any
case, it doesn't really matter. You can rely upon
others being sufficiently intimidated by the implied
threat of prosecution for IP infringement to remain
silent.

4. Claim "It Will Be Fixed In The Next Release"

This piece of misdirection can be used to postpone
problems almost indefinitely. It is particularly handy
for products that are on a short release cycle, as the
promise of a fix is always just around the corner (and
with it, the potential for the introduction of new bugs
– but ignore that). If the bug is not actually fixed in
the next release, then it's hardly your fault. Blame the
vendor, blame the development community, lament
the state of software development in general ... do
anything to divert attention away from the original
source of the technology's selection.

5. Make The Bug Reporting Process Unwieldy
And Onerous

A worthwhile bug report takes a bit of effort to
produce. Sample code, screenshots and instructions
to reproduce the buggy behavior are all part of a
conscientiously compiled bug report. But if that is all
that is required, there will be some developers
willing to take the time to write them. You can make
the lodging of a bug report more daunting by

A DOZEN WAYS TO SUSTAIN IRRATIONAL TECHNOLOGY DECISIONS 13

requiring developers to lodge an entire specification
of the desired (non-buggy) behavior, including
requirements, a mock-up or prototype, design
specification and test specification. This can take
days. They'll quickly learn that it's simply not worth
the effort to report bugs via such a lengthy process,
and to move directly from discovery of a bug to the
search for workarounds or alternative approaches.

6. Claim "It Works For Me"

An indirect form of denial exists in claiming that
you have been unable to reproduce the bug yourself,
so the complainant must be doing something wrong.
Due to the almost unlimited potential for interactions
between software components, libraries and
operating system functions, it is easy to simply point
somewhere in the direction of this programmatic
thicket and declare "the problem's probably in there."

7. Appeal To Non-Quantifiable Benefits Yet To
Be Realized

If enough difficulties are encountered with your
chosen technology, it's only a matter of time until
someone starts suggesting alternatives. When your
opponents open fire with the feature list of their
favorite competing technology or product, you need
a reply. It is best to appeal to non-quantifiable and
non-functional benefits as it is impossible to prove
that they have not been realized. "Flexibility" and
"maintainability" are a few non-functional favorites
that you can claim are being realized by your
technology selection, regardless of what the reality
may be.

8. Employ The Power Of Standards

A technology that has been embodied in a
standard already has a significant head start on non-
standardized competitors. If the standard is one that
has been accepted by major vendors as a basis for
their own product offerings, then all the better. The
psychological principal being appealed to here is that
of "social proof" - the belief that popularity is
indicative of worth. Indeed, widespread acceptance
of a standard (or a technology implementing a
standard) is unlikely to occur if the notion is
completely without value, but there is no guarantee
of you achieving the same success in your own
context as others have achieved in theirs. However,
many will ignore the need to consider application-
specific issues in deciding the merit of a technology.
If IBM, Microsoft or some other big name says it's
good, then it must be good - for everyone, all the

time, regardless of what the constraints of their
particular problem may be. To appreciate how
seductive this faulty reasoning can be, consider how
many times you've seen a J2EE application that was
written simply for the sake of using J2EE, even
though there was no real need for a solution with a
distributed architecture.

9. Maximize Investment

One of the best ways to get a technology on a
solid foothold in your organization is to maximize
your investment in it as quickly as possible. This can
be achieved by forward-scheduling tasks that use the
technology the most, so that the number of hours
invested in using it accrue quickly. You might justify
this by presenting the host project to management as
a "pilot" of some sort, where the technology is being
evaluated on its merits. But so long as you can
silence any negative findings that might emerge from
that ersatz "evaluation", you are also strengthening
the project's commitment to the continued use of that
technology. What project wants to incur the schedule
burden of having to swap technologies and re-
implement those parts of the project based upon the
now defunct technology? If you can just suppress
criticism for long enough, the project will soon reach
a point of no return, after which it becomes infeasible
to make technology changes without incurring an
unacceptable schedule penalty.

The bigger a company's financial investment in a
technology, the more reticent it will be to discard it.
So you will find it easier to keep expensive
technologies in use. You can increase expenditure by
purchasing entire product suites, or choosing
products so complex that you can justify hiring
highly paid consultants to tailor them to your project
environment or teach your staff how to use them.
Once all that time and money has been invested, it
will become extremely difficult for anyone to
abandon the technology due the financial inertia it
has acquired.

10. Exclude The Technically Informed From The
Decision Making

As a self-appointed evangelist for your chosen
technology, your worst enemy is the voice of reason.
The technology's inability to fulfill the promises its
vendor makes should be no obstacle to its adoption in
your organization – and indeed, it won't be, so long
as you can keep those who make the decisions away
from those who know about the technology's failings.
Let their be no delusion amongst your staff and
colleagues that it is management's purview to make

14 HACKNOT

these decisions, and the techie’s job to implement
their decision. Some will try and argue that those
who know the technology most intimately (technical
staff) are in the best position to judge its value.
Assure them that this is not so and that only those
with an organizational perspective (management) are
in a position to assess the technology's "fit" with the
corporate strategy. Allude to unspoken factors that
influence the decision to use this technology, but are
too sensitive for you to discuss openly (conveniently
making that decision unassailable).

11. Sell The Positives To Upper Management,
Hide The Negatives

Question: How does a fish rot?

Answer: From the head down.

If you can get those in senior management to
develop some identification with the technology then
you will have made some powerful allies. Assuming
they are technically uninformed, make your
management a sales pitch for the technology in
which you emphasize all the positives and
completely neglect the negatives. Give them glossy
brochures advocating the technology, and appeal to
their competitiveness by providing testimonials from
big-name managers, as if to suggest "this technology
is what the best managers are getting behind"; the
implication being that your own management are not
amongst "the best" unless they follow suit. The ego-
driven push from above is almost impossible to
counter with a factual push from below. Authority
trumps reason in many organizations.

12. Put A Head On A Pike

It is part of the barbarian tradition to place a head
on a pike at the entrance to your domain, to warn
those approaching of the fate that awaits them if they
don't follow the rules. It's crude, but undeniably
effective. Actual decapitation is frowned upon in
most office environments, but you can still put a
figurative "head on a pike" to make it clear to others
that dispute over your chosen technology will not be
tolerated. If you have the authority, firing someone
who expresses a dissenting opinion should be
adequate to ensure the remaining staff fall into line.
Otherwise, some form of public humiliation – a
verbal dressing down in a common area of the office,
for instance – will have to do. In either case, it is
important that you adopt some pretense for your
actions that is not directly related to the issue of
technology selection. Unfair dismissal laws being
what they are, you need to be a bit careful here.

Witnesses will know, however, from the greater
context that the real reason for this retribution is the
target's opposition to the technology decision you
made, and will make a note to themselves not to
express their own concerns about the technology, lest
they also be made an example of.

Conclusion

IT managers, developers and other technical staff
are no less susceptible to self-deception and political
ambition, simply because they work in a field in
which analytical thought is traditionally valued.
When it comes to the selection of a technology from
a field of competitors, the complexity and number of
factors to consider often leads to a tendency to
abandon detailed, rational analysis and make
decisions on an arbitrary, emotive basis. If the
technology selected fails to live up to its promise,
those who selected it then face the difficult task of
rationalizing its continued usage, lest their decision
be overturned and they lose face as a result. By
employing one or more of the techniques identified
above, a skilful manager or senior technician can
avoid this embarrassment and force the continued
usage of an unsuitable technology, while they work
by other means to distance themselves from the
original decision.

* First published 5 Oct 2005 at
http://www.hacknot.info/hacknot/action/showEntry?eid=79

MY KINGDOM FOR A DOOR 15

My Kingdom for a Door*

“All men's miseries derive from not being able to
sit in a quiet room alone.” – Blaise Pascal

In some interviews there comes a point where you

realize that you don't want the job. It might be the
moment you discover that the employer has
conveniently omitted from the published job
description the requirement for the incumbent to
spend 50% of their time maintaining a one million
line legacy application, written in Visual Basic. It
may be shortly after you state your salary
expectation, only to be greeted with a look of blank
astonishment. For me, it is often the point at which
the interviewer reaches into their bag of interview
clichés and asks a question so trite that it betrays the
total absence of advance preparation and original
thought. Once the role has been safely relegated to
the "no thanks" pile, it is difficult to resist adopting a
certain playfulness while waiting out the duration of
the interview, as courtesy demands.

For example, when asked "Where do you see
yourself in five years time?" I like to borrow a
witticism from comedian Steven Wright, and respond
"I don't know – I don't have any special powers like
that." If asked "Why are manhole covers round?" I
might reply "Because God made them that way",
simply to see if they will dare broach a topic
traditionally considered taboo in interviews. And if
they should enquire "What are your career goals?" I
will almost certainly reply "I have only one – I want
a door."

But in this last I'm only partially being facetious,
for one of the most consistently difficult aspects of
every software development effort I've been a part of
has been the physical environment in which it is
conducted. Having abandoned the lofty career goals
of my youth (such as producing quality software) I
have deliberately set my sights a little lower. These
days, my sole ambition is to have an office with a
door. My professional nirvana would then be to close
that door, so I can get on with my work undisturbed.

As challenging as technical issues can be, they are
at least considered approachable by most
organizations. But environmental problems,
particularly noise levels, seem to universally receive
short shrift, and are often dismissed as an unfortunate
but unavoidable part of office life and beyond
anyone's ability to deal with.

Of course, the problem of office noise is far from
intractable. Numerous approaches can be taken to
relieve or at least ameliorate the problem, the most
obvious of which involves the reintroduction of an
antiquated and long neglected piece of spatial
division technology – the door. The real reasons that
environmental issues go unattended are somewhat
different.

Brain Time Versus Body Time

Software developers are knowledge workers. Our
job is to produce intellectual property. You would
think it self-evident that work of this nature requires
sustained concentration, and that it is easier to
concentrate when things are quiet.

Back in my school days, these facts seemed to be
widely known and accepted. When you went to the
library, the school librarian (who, in my school, was
a particularly ferocious woman the students referred
to as "Conan The Librarian") would do her best to
see that the library was quiet. Why? Because people
were trying to study, to think, to concentrate. When
there was an exam to be done, the exam would be
conducted in complete silence. Why? Because it's
easier to concentrate on your exam when it's quiet.
When the teacher gave the class time to work on an
assignment, the class was expected to be silent.
Why? Because it's easier to think about your
assignment when it's quiet.

In university too, there was little dispute about the
necessity for a quiet environment when doing
intellectual work. The libraries and exam halls are
silent, the lecture theaters and tutorial rooms are
quiet so that the speaker may be heard and their
message understood.

Prior to entering the workforce, I thought nothing
of it. It all seemed to be just common sense. Imagine
my surprise then to discover that the corporate world
had decided that none of it was true. That, in fact,
you don't need quiet in order to concentrate
effectively – you can work just as well when
immersed in an environment that is a noisy as your
local shopping center. Or so I infer is the reasoning,
because the standards in both office accommodation
and behavior seem to have been determined with
such an assumption in mind.

Sitting at my desk at work, I am surrounded by
distraction and diversion, which everyone just seems
to accept will not impair my ability to work at all.
But my own impression is very much to the contrary.
I find myself constantly frustrated and annoyed by
the ceaseless chatter around me and the incessant

16 HACKNOT

whir of printers and photocopiers. I have never
known a workplace to be any different.

How is it that the corporate and academic worlds
seem to have completely different ideas about what
characterizes an environment conducive to
intellectual activity? Why is it that the academic
community seems to have got it right, and the
corporate community ubiquitously has it wrong?
Surely employers are not knowingly paying their
staff to be only semi-productive, are they? Unless the
corporate world is consistently behaving in a self-
defeating and irrational way, I must simply be
mistaken about the effect this office noise is having
on me.

Perhaps I am actually quite unaffected by the
conversations that my cubicle neighbors are having,
on matters unrelated to my work ... all day. Perhaps
the four foot high partition which separates me from
them is actually enough to reduce their inane chatter
and laughter to a distant whisper – I guess the sound
dampening cloth on it must have some effect.
Although the partition only covers two of the four
sides of my "cubicle", perhaps adopting a "glass half
full" attitude would make the lack of privacy less
disturbing. Perhaps the sound of the printers and
copiers in the facilities area, just three feet away
from my desk, really isn't that loud. Perhaps the guy
in the next cubicle who insists on checking his voice
mail through the speakerphone isn't the sociopath he
appears to be, and I'm just not sufficiently tolerant of
others. Perhaps it's not really all that visually
distracting to have people walking through the
corridor beside my cubicle every few minutes.
Maybe some blinkers, like those given to cart horses,
would lessen the effect of constant movement at the
periphery of my vision. And perhaps the ten mobile
phone calls that my surrounding cubies seem to get
every day, each one heralded by a distinctive and
piercing ring-tone sampled from some Top 10 dance
hit, really isn't as wearing as what I think it is. And
maybe having a pair programming partner leaning
over your shoulder, barking in your ear and
correcting your every typographic error isn't an
obnoxious novelty that removes what little remaining
chance there is of thoughtful consideration occurring
in the modern workplace, but a mechanism for
solving complex problems by having a chat over a
nice cup of tea.

Or perhaps, just perhaps, the cubicle farm is a
fundamentally unsuitable work environment for
software developers. But how could that be, when
the "open plan" office is the corporate norm? Could
organizations really be so blind as to routinely give
their staff an environment which is not conducive to
the conduct of their work?

How could such a patently irrational trend develop
and persist?

It's About Money

The modern cubicle had its genesis in 1968, when
University of Colorado fine-arts professor Robert
Propst came up with the "Action Office" – later
commercialized by Herman Miller1. At the time,
offices usually contained rows of desks, without any
separation between them. At least cubicles were an
improvement. But once the facilities management
people cottoned onto the idea of putting people in
boxes, their focus became achieving maximum
packing density and consideration of noise and
interruption went out the window (if you could find
one). That mentality persists today, largely because
the costs associated with office accommodation and
office space rental are concrete expenditures that
appear on a balance sheet somewhere. Somebody is
accountable for those costs, and therefore seeks to
minimize them. But the costs of lost productivity due
to an unsuitable work environment aren't readily
quantified, they just disappear "into the air", and so
are easily forgotten or disregarded. There are also tax
breaks in some localities, where legislation exists
making it quicker to write off the depreciation of
cubicles more quickly than traditional offices.2

It's About Rationalization

The ostensible benefits of an open-plan office are
its moderate cost, flexibility, facilitation of teamwork
and efficient use of space. These are the attributes by
which cubicle systems are marketed3. Note that the
ability to create an environment suitable for
knowledge workers is not amongst those features.

Flexibility, although a possibility, is seldom
realized in IT-centric environments where the need to
re-route power and network cabling makes people
reticent to re-arrange cubicles to any significant
extent. Even individual variation and customization
is discouraged in many workplaces, where such non-
conformity is viewed as a threat to the establishment.

It is also commonly held that cubicles "promote
communication" amongst staff. Unfortunately, one
man's "communication" is another man's
"distraction", the difference being whether the desire
to participate is mutual. Alistair Cockburn, never one
stuck for a metaphor, describes the wafting of
conversation from one cube to the next as
"convection currents of information"4 and promotes
the benefits that might arise from incidental
communication. But when one is trying to

MY KINGDOM FOR A DOOR 17

concentrate, these currents of information become
rip-tides of noise pollution that one cannot escape.
The result is frustration and aggravation for the party
on the listening end.

Unsurprisingly, companies that produce modular
office furniture claim that cubicles are fabulous, and
choose to selectively ignore their manifest
disadvantages. In the advertising literature 7 for their
"Resolve" furniture system, Herman Miller lauds the
necessity of teamwork:

All the accepted research in this field says you have
to have more visual and acoustic openness to get
the benefits of a team-based organization.

... and downplays the need for individual work:

Although there will always be types of work that
require intense concentration and protection from
distraction, our research suggests that these needs
can be effectively met outside assigned, enclosed
workstations – through remote work locations or on-
site, shared, "quiet rooms" for instance.

In other words, the workplace should be optimized
for collaborative work, and those who want to
concentrate can go elsewhere. Indeed, it seems to be
a growing misconception amongst designers and
managers that a high level of interaction and
collaboration is a universal good, the more the better,
and that the downsides don't matter.

For knowledge workers, who spend the vast
majority of their time in isolated contemplation, this
is decidedly bad news. Those who fit out offices
seem to be either gullible enough to believe glib
rhetoric such as the above, or more likely, choose to
remain willfully ignorant of the fundamental
requirements of their staff. Herman Miller would
have you believe that the cubicle environment is
good for your software development effort as well:

But the benefits of physical openness are gaining
recognition even among the "gold-collar"
engineers and programmers of Silicon Valley.

"The programming code we write has to work
together seamlessly, so we should work together
seamlessly as well", says a Netscape
Communication programmer and open-plan
advocate quoted recently in the New York Times.

Clearly, it is inane to suggest that software can be
invested with desirable runtime behavior by adopting
parallel behavior in the team that develops it. Does
the code execute more quickly if we write it more
quickly? Will it be more user friendly if the
developers are more friendly toward each other? No
– it is just nonsensical wordplay. But the use of such

faulty "proof by metaphor" techniques is illustrative
of how desperate the furniture industry is to ignore
the workplace realities they are producing, and the
superficial level of thought that they employ in
promoting their ostensible success.

Consider the following statement, again from
Herman Miller:

Recent studies also indicate that people become
habituated to background office noise after
prolonged exposure. Over time, people get used to
the sounds of a given environment, and noises that
initially have a negative impact on performance
eventually lose their disruptive effect.

Or perhaps, workers simply give up on the issue of
office noise after their prolonged attempts to deal
with it are continually met with stonewalling and
denial. No references are given, so it is impossible to
gauge the validity or relevance of these studies. But
it sounds so inconsistent with known research in this
area that one cannot help but be suspicious.

Many studies have examined the effect of
background speech on human performance.5 One
phenomena that consistently recurs is the "Irrelevant
Speech Effect" (ISE). In ISE experiments,
participants are given tasks to do while being subject
to speech that is unrelated to the task at hand.
Susceptibility to ISE varies between individuals, but
in general ISE is found to be "detrimental to reading
comprehension, short-term memory, proofreading
and mathematical computations."6 In general, work
that requires focus and ongoing access to short-term
memory will suffer in the presence of ISE and other
distractions and interruptions.

It's About Status

Real estate has always been an indicator of status.
Whether you're a feudal lord or a middle manager,
the area in your command is usually proportional to
your perceived status and importance. Those who
suggest that the cubicle is an unavoidable part of the
office landscape are often those whose status
precludes them from ever having to occupy one, and
who have a vested interest in the distribution of
office space remaining exactly as it is – in their
favor. The unstated purpose of the cubicle is to serve
as a container for the "have-nots", to more obviously
distinguish them from the "haves." The
preoccupation with offices (and the number of
windows therein) and car parking spaces is often
quite baffling to techies, who think first in terms of
utility rather than perception. But for those more
"image oriented," the true worth of corporate real

18 HACKNOT

estate has nothing to do with functionality and
everything to do with positioning.

Float Your Mind Upstream

I would like to be able to say that companies are
gradually realizing that knowledge workers such as
software developers need support for both team
interaction and distraction-free individual work, and
are making changes to workplace accommodation
accordingly. But I would be lying.

In truth, the workplace's suitability as a place to
work is likely to sink below even its currently
deplorable standard. The trend is towards ever
smaller cubicles with fewer and lower dividing
partitions. A 1990 study by Reder and Schwab found
that the average duration of uninterrupted work for
developers in a particular software development firm
was 10 minutes. That's revealing, because it
generally takes about 15 minutes to descend into that
deep state of contemplative involvement in work
called "flow". During the period in which one is
transitioning to a state of flow, one is particularly
sensitive to noise and interruption7. If you're
interrupted every 10 minutes or so, chances are you
spend your day struggling to focus on what you're
doing, being constantly prevented from thoughtful
contemplation of the problem before you by visual
and auditory distractions around you ... and that's the
typical working day of many software developers. As
DeMarco and Lister comment "In most of the office
space we encounter today, there is enough noise and
interruption to make any serious thinking virtually
impossible." With the addition of some doors into the
environment, developers could at least control their
noise exposure.

Look around you now, and what do you see?
Chances are there will be at least one and probably
many of your colleagues wearing headphones. It's
common practice for software developers to retreat
into an isolated sonic world as the only way they
have of overcoming the incessant distraction around
them. Some companies pipe white noise into
individual cubicles to try and mask the surrounding
noise. I've found it helpful to run a few USB-
powered fans from my computer – their quiet hum
serves much the same purpose, as well as
compensating for the often inadequate air
conditioning.

Why don't developers revolt? Why is it so rare to
hear them vocalize their complaints? Talk to them in
private and they'll likely concede that their work
environment is too noisy to enable them to work
effectively. But they're unlikely to make those

concerns public, for fear of retribution or simply
because they know that the noise level will be
dismissed as being an inherently intractable problem.

So we will continue to grind our teeth and shake
our heads in disbelief while listening to the dull roar
of the combined efforts of the printers, fax machines,
photocopiers, telephones, speakerphones,
inconsiderate coworkers, slamming doors, hallway
conversations immediately beside our desks and
wonder how we can be expected to work effectively
amidst such a furor. And as long as developers
continue to tolerate unsatisfactory noise levels, and
work longer hours to compensate for their negative
effect on their productivity, organizations will
continue to ignore their dissatisfaction.

* First published 11 Sep 2005 at
http://www.hacknot.info/hacknot/action/showEntry?eid=78
1 Death to the Cubicle!, Linda Tischler, FastCompany, June 2005
2 The Man Behind the Cubicle, Yvonne Abraham, Metropolis,
November 1998
3 “Resolve” product literature, Herman Miller
4 Agile Software Development, Alistair Cockburn, Addison
Wesley, 2002
5 Human Performance Lecture, Dr Nick Neave, Northumbria
University
6 Collaborative Knowledge Work Environments, J. Heerwagen,
K.Kampschroer, K. Powell and V. Loftness
7 Peopleware, T. DeMarco and T. Lister, Dorset House, 1987

INTERVIEW WITH THE SOCIOPATH 19

Interview with the Sociopath*

Recently I have had the misfortune to be playing
the interview circuit again; parading from one
interrogation to the next like some prisoner of
technical war. The experience has been both
frustrating and humiliating – and unpleasant
reminder of how appallingly most technical
interviews are conducted.

So ignorant is the conduct of many interviewers,
one could be forgiven for thinking they have
undertaken the interview process with the deliberate
intent of minimizing the chances of finding the right
person for the job, and maximizing the opportunity
for their own ego gratification. Such behavior is a
common feature of the sociopathic personality.

Based on my recent interview experiences, I've
assembled below a list of the techniques commonly
practiced by the sociopathic interviewer.

Put No Effort Into The Position Description

The best way to ensure you don't accidentally get
the right person for the job is to have no idea who
you're looking for and what role they will be
fulfilling in your organization. A meager and
perfunctory PD (position description) helps to
convey that "don't care" attitude right from the start
of the hiring process. If you're working through a
recruiting service, simply tell the recruiter that you
don't have time to write out a decent PD. Rattle off a
few buzzwords and acronyms and leave them to
patch something together themselves.

If you are somehow compelled to write a PD, fill
it out with the usual platitudes about "excellent
communication skills", "ability to work well in a
team", "delivering high quality code" ... and other
such nonsense that 90% of programmer PDs include
and which nobody can effectively appraise in an
interview situation.

Conduct Phone Interviews With A Poor Quality
Speakerphone

Phone interviews provide an excellent opportunity
to explore the aural aspects of discourtesy. Always
use a low quality speakerphone; even if you are the
sole interviewer. Make the call from the largest,
echo-filled room that you have access to, and sit a
long way from the speakerphone. If there is more
than one interviewer, make sure you constantly
interrupt and talk over each other, making it
impossible for the candidate to distinguish who they

are currently talking to. The frustration of the
constant struggle to understand and be understood
will eventually wear down even the most ardent of
candidates, often with comic effect.

Be Poorly Organized

Some candidates have the audacity to view the
organization of an interview as being representative
of the organizational capabilities of your company as
a whole. They reason that finding someone to fill a
role is effectively a mini-project in itself, and if you
can't schedule and coordinate even a minor project
like that, how could you manage a larger and more
complex undertaking like a software project? These
people are clearly thinking too hard and too
critically. They are exactly the ones that you want to
turn off. Therefore you should make every effort to
have the interviewing process reflect the abysmal
state of project management in your company as
closely as possible.

Demonstrate your inability to estimate and track
tasks by scheduling candidates' interviews too close
together, booting one candidate out the door just as
the next is about to give up hope that their own
interview will ever commence. Having started the
interview late, make it clear from the outset that you
don't have much time to devote to each individual so
you will have to rush. This will demonstrate your
tendency to meet deadlines by making heroic efforts
rather than rational adjustments of scope.

Then reveal that you have no questions prepared
for the candidate. Just “um” and “ah” your way
through a random series of queries that reveal no
overall structure or intent, thereby conveying your
inability to structure a work effort appropriately.

Focus On Technical Arcana

Technical interviews are a sociopath's utopia, for
they provide you with infinite opportunity to
humiliate a candidate while engendering feelings of
supreme inadequacy. Even if a candidate has been
using a particular technology for many years,
chances are that they have only dealt with the most
commonly used 80% or so of that technology's
features. Therefore your questions relating to that
technology should target the seldom encountered
20% at the periphery. Identify those aspects of the
technology so infrequently used that most developers
have either never been called upon to use them, or if
they have, have not done so sufficiently to internalize
the finer points of its operation. Drill the candidate
mercilessly on these obscure and largely irrelevant
details. When they fail to provide the correct

20 HACKNOT

answers, assume a facial expression that betrays your
amazement that they have managed to survive in the
industry without having immediate recall on every
aspect of the technology they deal with.

Hire A List Of Products And Acronyms, Not A
Person

The topic of "business value" should be avoided at
all costs. Do not ask about the candidates'
contributions to the businesses they have worked in,
as this implies that all that boring business stuff is
actually of concern to you. The sort of person you
want is one who is solely focused upon decorating
their CV with the latest buzzwords, and playing
around with whatever "cool" technologies that
vendors have most recently grunted out. You'll get
such a person by ignoring the business aspect of
software development, and assessing candidates
solely on the amount of technical trivia they know.
Clearly, those who take a "technology first" approach
are motivated more by self-interest than professional
responsibility, and are more likely to be suitable
company for the sociopathic interviewer.

Pose Unsolvable Problems

A favorite ploy of sociopathic interviewers
everywhere is to ask questions that have no concrete
answer. The standard defense of this technique is the
claim that it verifies the candidates' ability to take a
logical approach to problem solving. Of course, there
is no empirical evidence correlating the ability to
solve logic puzzles with the ability to develop
software - but no matter.

The real reason for asking questions that permit no
solution is to watch the candidate squirm "on the
hook", and to experience that feeling of smug self-
satisfaction that you get when you finally
acknowledge that there is no solution to the problem
– it's just an exercise.

Such questions include:

• "How would you count the number of gas
stations in the US?"

• "How would you measure the number of liters of
water in Sydney Harbor?"

• "How would you move Mount Fuji?"

... which are all variants on the classic quandary
"How long is a piece of string?" and equally
deserving of serious consideration.

Ask About MVC

For some reason, it has become accepted in
technical circles that all programming interviews
must contain a question about the Model-View-
Controller pattern. Every candidate expects it, every
interviewer asks it – and there's no good reason for
you to challenge the tradition. At least it chews up
some interview time and spares you having to think
of your own questions.

Ask General Questions But Expect A Specific
Answer

This technique is the staple of anti-social
interviewers everywhere. It's particularly handy if
you want to devote no cognitive energy whatsoever
to the proceedings. Ask a question that is general
enough to permit multiple answers, but badger the
candidate until they provide the specific answer that
you have in mind. Thus a technical query turns into a
guessing game, which is great fun for everyone –
providing you're not the one doing the guessing.

Take Every Opportunity To Demonstrate How
Clever You Are

For the sociopath, the interview is mainly about
them and only peripherally about the candidate. They
view an interview as an opportunity to demonstrate
their natural intellectual and technical superiority.
That they control the questions and have had time to
research the answers doesn't hurt either.

You should make frequent, derogatory references
to the quality of the candidates you have previously
interviewed, the implication being that the current
candidate can expect to be discussed in similarly
negative terms once they are absent.

Don't hesitate to mock the candidate if they
answer a question incorrectly. If it looks like they are
about to provide a correct answer, interrupt them and
change or augment the original question with
additional complexities, creating a moving target that
they will eventually abandon hope of ever hitting.

A technique that will certainly annoy the candidate
(and people react in so much more interesting ways
once they're angry, don't they?) is to deliberately
misinterpret the candidates answer, exaggerate or
distort it, then throw it back to them as a challenge
i.e. create a straw man from their answer. Here is an
example from one of my recent interviews:

Interviewer: Have you participated in code
reviews before?

Ed: Yes. I've reviewed other team
member's code on many
occasions.

INTERVIEW WITH THE SOCIOPATH 21

Interviewer: So you don't trust your
colleagues, then?

An attitude of willful antagonism will enable you
to goad even the most dispassionate of candidates
into an angry (and entertaining) response.

Set COMP101 Programming Problems

Companies intent upon creating the impression
that they really care about the quality of their people
will give potential candidates a hokey COMP101-
level programming problem to solve prior to granting
them an audience. The solution provided is then
dissected carefully and assessed according to criteria
that the candidate was not made aware of at the time
the assignment was set. Ridiculous extrapolations
and inferences about the author's general
programming ability are then made based upon the
given code sample.

The beauty of this technique is that because the
problem has been offered context-free, the candidate
has no idea what design forces should influence their
solution. They don't know what importance to assign
to non-functional criteria such as performance,
extensibility, genericity and memory consumption.
The weight of these factors might significantly
influence the form of the solution. By withholding
them, and because these factors are often in conflict
with each other, it is impossible for the candidate to
submit a solution that is correct. Simply change the
criteria for evaluation to the opposite of whatever
qualities their solution actually contains.

For example, if their solution is readily extensible,
claim that it is too complex. If they have favored
clarity over efficiency, criticize their solution for its
verbosity and memory footprint. If they have
provided you only with code, select documentation-
level and handover-readiness as the criteria-du-jour –
question the absence of release notes.

Treat Senior Candidates The Same As Junior
Candidates

Those who have been in the industry for a few
decades will probably arrive at the interview
expecting you to draw upon their extensive
experience as a source of examples of problems you
have solved, applications you have implemented and
difficulties you have overcome. A sociopathic
interviewer should demonstrate their contempt for
the candidates' life's work by completing ignoring
their work history. Make it clear that you don't care
about the past by treating even the most senior of
candidates like a fresh-faced rookie, demonstrating
an appropriately condescending and patronizing

attitude. After all, even the most worldly-wise
candidate appears naive when put alongside your
own towering genius.

The most effective means of convey your disdain
for the candidate that I have witnessed is to ask them
to take an IQ test, thereby implying that it is not their
professional qualifications which are in doubt, but
their native intelligence.

Make The Interview Process Long And Arduous

There is a lot of folk wisdom surrounding the
hiring process. One common misperception is that
the more arduous the interview process (i.e. the more
rounds it contains, the greater the size of the
interview panel etc.) then the more worth the position
actually has. In other words, the harder the journey
the better the destination must be. Clearly, the logic
is flawed – it is quite possible for a long and
demanding journey to conclude in a cesspit.

In an organizational context, a protracted
interview process may simply indicate that the
company is disorganized, indecisive and have failed
to gather the information they needed in an efficient
manner. But the myth persists, so you can exploit it
to maximum effect, creating ever greater hoops for
the candidate to jump through, on the pretext that
you are being thorough or somehow testing their
commitment. Be careful not to let on that you are
really only demonstrating your own ineptitude and
disrespect for the candidate's time.

Don't Hire Too Smart

One of the biggest hiring mistakes you can make
is to hire someone who is better than you, and whose
subsequent performance makes you look bad by
comparison. As soon as you've formed an impression
of the candidate's ability, adjust your interview
technique accordingly. If the candidate is too good,
step up the difficulty and obscurity of the questions
you ask until you reach the point where they are
struggling, and thereby creating a bad impression
with any other interviewers present. If you sense the
candidate is just good enough to do the job but not so
good that they could do your job, then ease up on the
questions and let them shine.

Remember that there may also be some career
advantage in simply not filling the position at all;
concluding that you simply couldn't find a suitable
candidate. You may be able to emphasize how lucky
your company was to have hired the last decent
software developer out there – you.

22 HACKNOT

Conclusion

The senior ranks of the software development
community seems to attract more than it's fair share
of sociopaths. Such people undertake the interview
process with the same intent as they approach all
activities – to create advantage for themselves.
Whether you are amongst the self-adoring
community of psychopaths, or just anti-social with
psychopathic ambitions, the technical interview is a
professional construct designed with your particular
needs in mind. Using the techniques described above,
interviews can be both a means of self-gratification
and a fulcrum for leveraging your own career
advantage.

* First published 24 Nov 2004 at
http://www.hacknot.info/hacknot/action/showEntry?eid=70

THE ART OF FLAME WAR 23

The Art of Flame War*

The word "argument" has negative connotations
for many people. It is associated with heated
exchanges and passionate disagreement. But your
experience of argument need not be so negative.
Consider that the word 'argument' also means 'a line
of reasoning'. By approaching a verbal or electronic
discussion, even a hostile one, with this definition in
mind, you can learn to separate the logical content of
the exchange from its emotional content and thereby
deal with each more effectively. You may even find
the process of so doing an agreeable one.

The following are a few tips and techniques that
I've learnt in the course of a great many arguments,
flame wars and other "vigorous discussions" that
may help you argue more purposefully, and thereby
come to view argument as a stimulating activity to be
relished, rather than an ordeal to be avoided.

You Can Be Right, But You Can't Win

At the end of a formal debate, one or more
adjudicators decides which team are the victors. If
only it were that clean cut in real life. A good portion
of the time, arguments arise spontaneously, continue
in a haphazard manner and then fizzle out without
any clear resolution or outcome. When you cannot
force your opponent to concede their losses or
acknowledge your victories, it becomes impossible to
keep score. Therefore you should not enter any
dispute, particularly an online one, with visions of
your ultimate rhetorical triumph, in which you lord
your argumentative superiority over your opponent,
who shirks away, cap in hand and ego in tatters. It's
not going to happen.

So why engage in argument at all, if you can never
win? Here are a few possible motivations:

• To hone your rhetorical and logical skills i.e.
your attitude will be more playful than
combative

• To get something off your chest
• To gratify your ego
• To restore the balance of opinion
• To humiliate your opponent
• To defend your own beliefs against a real or

perceived attack
• To learn about your opponent
• To learn about yourself
• To explore the subject matter

• To protect your reputation against a real or
perceived slight

Remain As Dispassionate As Possible

This is at once the most difficult and the most
valuable aspect of arguing effectively. Strong
emotion can cloud your thinking and inhibit your
ability to reason objectively and thoroughly. Anger is
what turns a discussion into an argument and then
into a flame war. Responses you give while angry are
likely to be poorly considered, so it is invaluable to
have techniques at your disposal to moderate that
anger so that you can argue at your best and even
begin to enjoy the dispute. Here are a few techniques
that might be useful:

• When you're not arguing in real-time (e.g. via
email or discussion forums), print out the email
or message that you've found inflammatory.
Read it somewhere away from the computer and
plan how you will respond. Delay making your
actual response as long as possible.

• When arguing in person, make a deliberate effort
to slow down the pace of the discussion and
lower its volume. If you're uncomfortable with
the silence created, adopt a thoughtful
expression and pretend to be considering your
reply carefully. Use the time created to take a
few deep breaths and calm down.

• Adopt a different mental posture towards the
email or message. Pretend that the message is for
someone else. This helps to de-personalize the
argument and put it at a distance.

Realizing that your opponent is as susceptible to
emotion as you are, you may choose to use this to
your advantage. Here we venture out of the realm of
the logical and into the rhetorical. If you can identify
your opponent's "hot buttons," then you may be able
to goad them into making an unconsidered response.
Once made, the response cannot be retracted and you
may be able to play that advantage for the remainder
of the argument. When being inflammatory or
provocative, be careful not to overdo it. Lest you
appear vitriolic or juvenile, make your barbs short
and well targeted. Ensure that they are offered as
parenthetical asides rather than as a basis for
argument.

Perhaps the most effective means of disarming
your opponent's insults is with wit, as demonstrated
by the following exchange between Winston
Churchill and Lady Asbury:

24 HACKNOT

Lady Asbury: Mr. Churchill, if you were my
husband, I would put poison in
your wine.

Winston
Churchill:

Madam, if you were my wife, I
would drink it.

Be Familiar With The Basic Logical
Fallacies

Those not skilled in argument are often prone to
employing logical fallacies and being unaware that
they are doing so. It is vital that you be able to
recognize at least the basic logical fallacies so that
you don't end up trying to attack an insensible
argument, or formulating one yourself. Common
logical fallacies include:

Straw Man Arguments

Your opponent restates your argument inaccurately
and in a weaker form, then refutes the weaker
argument as if it were your own.

Argumentum Ad Hominem

Ad hominem means 'to the man'. Your opponent
attacks you rather than your argument. If you choose
to insult your opponent in order to provoke an
emotional reaction, be sure that your insults are not
used as part of your argument, otherwise you will be
guilty of argumentum ad hominem yourself.

Appeal To Popularity

The suggestion that because something is popular it
must be good, or because something is widely
believed it must be true.

Hasty Generalization

Making an unjustified generalization from too little
evidence or only a few examples.

Appeal To Ignorance

Claiming that something is true because there is no
evidence that it is false.

Appeal To Authority

Claiming that something is true because someone
important says that it is.

Seek Precision

It's easy to end up arguing at cross-purposes with
someone simply because you each have different
definitions in mind for component terms of the
subject being debated. So a good starting point when
engaging in debate is to first ensure that you and
your opponent have precisely the same
understanding of the topic being argued. Remarkably
often, the act of precisely defining the topic will
serve to circumvent any subsequent argument, as it
becomes clear that the warring parties do not have
conflicting positions on a given subject, but instead
are talking about different subjects entirely.

Ask Pointed Questions

There are several reasons why you might choose
to ask your opponent questions:

• To seek clarification on a point that they have
made

• In the hope that some of the information
volunteered will be faulty, thereby providing you
with fuel for rebuttal.

• To save effort on your part. It often takes less
effort to ask a question than answer it. In a
protracted exchange, this economy of effort can
be important. It also gives you time to think
about your next move.

• Because you know the answer. A powerful
rhetorical technique is to ask a series of
questions that leads your opponent, by degrees,
to the realization that their answer is in
contradiction with statements they have
previously made.

For example, suppose you are arguing the merits
of free software with one of Richard Stallman's
disciples. You might use questioning to tease out the
inconsistencies in their philosophy:

Free
Software
Advocate:

All software should be "free",
as in "freedom"

You: How do define "free", exactly?
FSA: "Free" means that you can do

with it whatever you want.
You: With no restrictions at all?
FSA: Yes - you have absolute

freedom to do with it whatever
you please. Anything else is an
attempt to take away your
freedom.

THE ART OF FLAME WAR 25

You: Then I would be free to make it
non-free if I wanted to?

FSA: Ummm ... I guess so.
You: But wouldn't that contradict

your original statement that "all
software should be free"?

If the last response from the FSA had been
different, the argument might have headed in a
different direction:

You: Then I would be free to make it
non-free if I wanted to?

FSA: No - that's the exception. You
can't inhibit the freedom of
others.

You: But doesn't that mean that I'm not
really free? Specifically, I'm not
free to inhibit the freedom of
others?

FSA: Sure, but you have to draw the
line when it comes to
fundamental liberties.

You: And what basis do you have for
claiming that free use of software
is a fundamental liberty?

... and so the FSA is led to an awareness of the
circular reasoning they are employing.

Don't Claim More Than You Have To

A common error is to extend the claims you're
making to a broader scope than is really necessary to
make your point. In doing so, you extend the logical
territory that you have to defend and permit counter-
argument on a broader front. This is one of the
primary benefits of maintaining a skeptical attitude.
Skeptics assume as little as possible, and therefore
have less to defend than True Believers who are
prone to making broad assumptions and sweeping
generalizations.

Suppose you're arguing about the quality of open
source software versus proprietary software. An open
source zealot may make a broad claim such as "Open
source software is always of higher quality than
proprietary software". A universal qualifier such as
"always" makes their claim easy to disprove – all that
is required is a single counter-example. A more
cautious open source enthusiast might claim "Open
source software is usually of higher quality than
proprietary software", which is a narrower claim than
the one made by the zealot, but one still requiring
evidential support. A skeptic might ask "How do you
define quality?"

Claims can be accidentally over-extended by
provision of a flawed example of the general point
you're making. Your opponent counters the particular
example you've provided and then assumes victory
over the general claim it was supposed to be
illustrating. Before choosing to illustrate your general
claim with a specific example, be very sure the
example is a true instance of your general case. It
may be more prudent to leave out your example all
together.

Seek Evidence

It's easy to make bold claims and impressive
assertions; it's not so easy to back them up with
proof. A common problem in argument is the failure
to identify which party carries the burden of proof,
and to what extent that burden exists. The general
rule is this: He who makes the claim carries the
burden of proving it. If you claim "Linux is more
reliable than Windows", then it is your responsibility
to not only specify your definition of "more reliable"
but to provide evidence that supports your claim.
Your claim is not "provisionally true" until someone
can prove you wrong; and neither is it false. It's truth
or otherwise is simply unknown.

This is an area of common misunderstanding
amongst those with pseudo-scientific beliefs. For
instance, UFO believers will look at a history of
UFO sightings for some region and note that
although 99% have been attributed to aircraft,
weather balloons and such, 1% of them are still
unexplained. They delight in this 1% figure as if it
were vindication of their beliefs. But 1% being
"unknown" does not equate to "1% being alien
beings in spaceships". It might also mean that the 1%
of reports were simply too vague or incomplete to
permit any kind of conclusion being reached. Those
claiming by implication that the 1% represent alien
beings carry the burden of proving that with
evidence.

But always remain aware of the context in which
claims are made. Different contexts bring with them
different levels of formality, and consequently
different evidentiary standards. If your friend
remarks "Boy it's hot outside", it's obviously not
appropriate to insist upon meteorological data to
back up their claim. But if an environmental activist
claims "average daytime temperature world-wide has
risen an average of 0.5 degrees in the last century"
then the first thing you'll be wanting to know is
where the data came from that supports that claim.

26 HACKNOT

When Your Opponent Is Irrational

Finally, there is a delicate ethical issue to consider
when arguing. Every so often you find yourself
locking horns with someone who appears to have a
fairly shaky grip on reality. I'm not referring to
simple eccentricity or religious fervor, but
psychiatric illness. For examples, you can refer to
some of the emails received by the James Randi
Educational Foundation1 (JREF) in response to their
million dollar challenge. James Randi is a well
known skeptic and magician. Since 1994, the JREF
has offered a prize of one million dollars to anyone
able to demonstrate paranormal or supernatural
abilities or phenomena under controlled
observational conditions. To date, no one has
successfully claimed that prize. But some of the
applications2 they receive suggest that the respondent
is unwell, perhaps delusional. If you should find
yourself in online discussion with someone whom
you suspect is unencumbered by the restrictions of
rational thought, then perhaps the best you can do is
exit the discussion immediately. To continue is to
risk antagonizing someone who may be genuinely
dangerous. This is one of the prime reasons for
conducting online arguments anonymously, where
possible.

Knowing When To Quit

There comes a point when you want to exit an
argument. Perhaps you've grown bored with it;
perhaps it has become clear that your opponent's
views are so heavily entrenched that progress is
impossible; perhaps your opponent is offering only
insults without any logical content. Here are a few
ways of bringing the argument to a definite
conclusion, rather than just letting it peter out:

• Simply walk away. For online arguments, refuse
to respond.

• Insist that any topics covered thus far be
resolved before the argument continues. This
prevents your opponent switching subjects and
responding to your rebuttals by simply making a
new batch of assertions.

• Ask your opponent what they hope to gain by
continuing the argument. To what end are they
arguing.

Reconstruct Your Opponent’s Argument

Argument reconstruction is the process of analysis
the verbal or written form of an argument and
identifying the premises (both explicit and implied)
and the conclusion/s it contains. To effectively rebut
your opponent's arguments you need to know exactly
what they are claiming, and upon what basis they are
claiming it. For each premise you identify, consider
whether the premise is true or false. If you think one
or more of them is false, call attention to each of
them and ask your opponent to justify them with
evidence. If the conclusions don't follow logically
from the premises, call attention to the logical error.
If the conclusion cannot be true without one or more
unstated premises also being true, then call your
opponent's attention to their reliance upon implicit
premises and, where those premises are in doubt,
insist that evidence be provided in support of them.

* First published 13 Mar 2005 at
http://www.hacknot.info/hacknot/action/showEntry?eid=72
1 http://www.randi.org/
2 http://forums.randi.org/forumdisplay.php?f=43

TESTERS: ARE THEY VEGETABLE OR MINERAL? 27

Testers: Are They Vegetable or
Mineral?*

There are real advantages to having a group of
people, separate from developers, whose job is solely
to find fault with your work. They have an emotional
and cognitive distance from the product that a
developer can never fully imitate. Testing is a task
requiring patience, attention to detail and a fairly
devious mindset. Sometimes managers make the
mistake of regarding testing as a second class
activity, suitable to be performed by less skilled or
more junior staff members. Such misimpressions are
a disservice to the project and the testing community.

But a common byproduct of having a distinct
testing team is the development of an adversarial
dynamic between testers and developers. I can
understand completely how easily this situation
occurs. I recently had the misfortune to work with a
testing team whose methods left myself and other
developers ready to kill them.

Below, I have listed the main work habits this
team engaged in, that made them so difficult to work
with. I hope that these items may serve as a brief
catalog of bug reporting "anti-patterns" that testers
can use as a checklist to make sure they are not
accidentally annoying the developers they work with,
and that developers can use to identify sources of
friction between themselves and their testing team.

Abbreviating Instructions For Reproducing The
Bug

Problem: Some testers believe that they can save
themselves some time by describing the
circumstances under which the bug appears in the
briefest terms possible. Often the bug report degrades
into a contracted narrative that only specifies the
milestones in the series of actions necessary to
reproduce the bug. Being unfamiliar with the
application’s internal structure, a tester can not know
which of the series of actions they have followed is
most significant when diagnosing the underlying
fault. By neglecting actions they consider
unimportant, there is a significant risk they are
omitting important information.

Solution: The best way to avoid this is to simply
enumerate all the actions that are necessary to
reproduce the buggy behavior, starting with the
launch of the application. Put the first step in a bug
reporting template to remind testers to do this e.g. "1)
Launch the application. 2) your text here"

Not Identifying The Erroneous Behavior

Problem: The description in the bug report ends
in a simple statement of application state without
identifying what aspect of that state is actually in
error. For example, the bug report concludes "The
Properties dialog appears", but the tester fails to add
"... and the property controls are enabled, even
though the selection is read-only".

Solution: Put the heading "Erroneous behavior:"
or "Actual behavior:" in your bug report template, to
remind the tester to include that information.

Not Identifying The Expected Behavior

Problem: Even when the bug report contains a
description of the erroneous behavior, testers
sometimes forget to explain what the expected
(correct) behavior is. For example, the bug report
concludes "The file saves silently", but the tester fails
to add "... but there is no visual indication that the
application is busy performing the save. The cursor
should change to an hour glass and a modal progress
dialog should appear.

Solution: Put the heading "Expected behavior: "
in your bug report template, to remind the tester to
include that information.

Not Justifying The Expected Behavior

Problem: It is not always clear why a tester has
decided that a particular behavior is buggy. The bug
report may simply claim "X should happen" without
making it clear why X is the correct behavior. A
reference to a requirement specification is an
appropriate justification. If that requirement is for
adherence to an externally specified standard, then a
reference to the relevant portion of that standard is
appropriate.

Solution: Put the heading "Requirement
reference:" in your bug report template, to remind the
tester to include that information.

Re-Opening Old Bug Reports For New Bugs With
Similar Symptoms

Problem: A bug report is marked as FIXED and
everyone thinks it is done with. But in the course of
subsequent testing, a tester sees faulty behavior
occurring that is very similar to that produced by the
bug that was thought FIXED. Reasoning that the
behavior is so similar that it must have the same
underlying cause, the tester concludes that the bug
previously marked FIXED has resurfaced. They
REOPEN the FIXED bug report. This is problematic

28 HACKNOT

for the developer, because the re-opening of the bug
implies that the original symptoms are re-occurring,
not the similar symptoms that the tester is now
observing. The tester has communicated to the
developer their incorrect diagnosis of the fault, rather
than simply reporting the faulty behavior they have
observed.

Solution: Insist that testers refrain from reusing
old bug reports unless the erroneous behavior they
see is exactly the same as that described in the old
bug report. Even then, there is some chance of
confusing two separate bugs that just happen to
produce identical observed behavior. If there is any
doubt, create an entirely new bug report. The develop
can always mark it as a duplicate of the old bug
report and re-open the old bug report themselves, if
investigation demonstrates that the new and old bugs
have the same underlying cause.

See also "Diagnosing Instead of Reporting"

Testing An Old Version Of The Software

Problem:

Developer: It's fixed!
Tester: It's NOT fixed!
Developer: It's fixed! Here's a screen shot

showing it fixed!
Tester: I don't care about your screen shot.

It's NOT fixed for me!

This developer / tester exchange quickly escalates

into justifiable homicide and arises far more often
than it should. In a testing process which permits the
version of the software being tested to change
underfoot, the conflict often arises from a developer
fixing a bug in a version yet to be released to the
tester. Both developer and tester are correct in their
assessment of the bug’s status, with respect to the
version of the software that is front of them.

Solution: Institute a process to enable version
coordination between developers and testers. Label
each new version with a unique number and make
the version numbers currently being tested and
developed readily available to all. Ensure someone
has the responsibility to update this version number
whenever a new version is released to the testers.
When a bug report is declared FIXED, ensure
developers include the version number in which the
fix will appear.

Inventing Requirements Based Upon Personal
Preference

Problem: Generally a set of requirements is not so
complete as to explicitly specify program behavior in
every possible circumstance. Quite aside from
inevitable oversights by those assembling the
requirements, some requirements are left to
"common sense". A requirement such as "shall
conform to Microsoft Windows User Interface
Guidelines" is broad and may be difficult to interpret
in any particular instance. Rather than interrogate the
standard thoroughly, some testers will try and
substitute their own version of "common sense" for
the requirement, bringing with it their mistakes and
misinterpretations. For instance, I received a UI bug
report indicating that "a sub-menu should not appear
if all menu items within it are disabled." The tester
regarded this as "common sense". However, the UI
standards explicitly dictated that such sub-menus
should always appear, even when all of their menu
items are disabled, so that the user could at least see
the contents of the sub-menu and would know where
to find a particular option when it did become
available. Yet the bug report stated quite
emphatically that the behavior "should" be different.
The tester had fabricated the requirement, and
decided to lend it authority by using the word
"should", so as to imply the presence of such a
requirement.

Solution: See "Not Justifying the Expected
Behavior"

Omitting Screen Shots

Problem: Many bug tracking systems provide the
facility to attach a file to a bug report, the way one
might attach a file to an email. But testers frequently
forget (or can’t be bothered) making use of this
facility. Particularly for GUI-related bugs, a screen
shot showing the bug occurring, or illustrating a step
in its reproduction, is an efficient way of capturing
information.

Solution: Make sure testers are aware of the
"attach" functionality in your bug tracking system
and are encouraged to use it. Image attachments can
also be a convenient way of proving to a disbelieving
developer that a bug occurs, or to a tester that a bug
has been fixed.

Using Vague Or Ambiguous Wording

Problem: In the text of the bug report, the tester
employs terminology that is imprecise or ambiguous.
For example: the tester refers to "this dialog" in the

TESTERS: ARE THEY VEGETABLE OR MINERAL? 29

bug report, intending the word "dialog" to mean "an
exchange between parties"; but the developer
interprets "dialog" as referring to a secondary
window in the interface. Another example: The tester
describes a text field as being "enabled when it
should be disabled", but really intended that the text
field is "editable when it should be uneditable".

Solution: None – however a large, blunt object
applied with extreme prejudice can at least have a
cautionary effect.

Diagnosing Instead Of Reporting

Problem: Either through arrogance or a
misguided attempt to be helpful, the tester describes
what they believe is the underlying fault exposed by
the bug, rather than simply reporting the observed
behavior. For example, the tester examines a log file
and deduces from the name of an exception
appearing in a stack trace that the application is
running out of memory. Having provided this insight,
they omit the rest of the bug report, thinking that they
have already provided the crucial information.

Solution: See "Solution" above.

Exaggerating The Priority Of A Bug

Problem: Some testers exhibit a tendency to
elevate the priority of the bug reports they lodge later
in the testing process. As testing proceeds and the
identification of new bugs becomes harder and
harder, it seems that the extra effort involved in their
location is justified by raising their priority - by way
of psychological compensation, I suppose.
Developers find that bugs which would have been
regarded minor in early testing are suddenly
becoming major issues. This effect may also be
attributable to increasing stress or approaching
deadlines.

Solution: For each priority level your bug
reporting system allows, provide a clear definition
that can be referred to in order to resolve disputes
over bug priority.

Justifying Partial Coverage With Appeals To Bad
Assumptions

Problem: Rather than exhaustively test all
possible combinations of inputs or circumstances,
testers choose a limited subset of these for testing,
reasoning that the chosen subset will be sufficient to
exercise the underlying code. In effect, they are
making assumptions about the code coverage that
results from manipulating the application’s interface
in various ways.

Solution: Sometimes assumptions of this nature
can legitimately be made. If there is insufficient time
to perform exhaustive testing, then it is the
developers who should be choosing the
representative subset of operations to test, not the
testers.

See "Diagnosing Instead of Reporting"

* First published 13 Oct 2004 at
http://www.hacknot.info/hacknot/action/showEntry?eid=68

30 HACKNOT

Corporate Pimps:
Dealing With Technical Recruiters*

Anyone who has had any substantial dealings with
technical recruiters invariably has a poor opinion of
them. This is because the standard of practice in the
recruiting industry is so low. To be a recruiter you
don’t need any formal qualification, or any particular
experience.

Recruiting, as it is generally practiced, is little
more than telemarketing. As with telemarketing,
people are drawn to it because of the opportunity to
make money without having to satisfy any particular
educational requirements. A recruiter’s commission
is generally 15-20% of the candidate’s first year’s
salary, which explains why recruiters are not
generally altruistically motivated. They share the
ethical and moral shortcomings of workers in other
commission-based occupations such as used car
salesmen, real estate agents and pimps.

In your interaction with recruiters, it pays to keep
the following firmly in mind:

• The recruiter is first and foremost a salesman, so
their prime objective is to make money. They do
this by finding someone who satisfies their
client’s requirements for long enough to earn
them a commission.

• You don’t need the recruiter’s good favor, you
just need to convince them to pass your resume
onto their client. Because recruiters are
universally maligned, their clients have no more
respect for their opinions than you do.

• The recruiter has no technical knowledge. The
skills you’ve spent years acquiring are just
empty keywords and acronyms to them.

• Never allow yourself to be talked into doing
something you don’t want to. Recruiters are
good talkers, and know how to railroad the
introverted techie into a particular course of
action. They will speak quickly, loudly and with
unwarranted familiarity in order to influence you
into doing what they want.

• Above all, remember that it’s your career you’re
dealing with. You are the only one who
exercises any control over that, not the recruiter.

When I began speaking with recruiters again
recently, I went in search of a guide to help me deal
with them more effectively. Finding no such guide
available, I decide to write one. The following

presents some tips on dealing with that most useless
of creatures, the IT recruiter.

Phone Calls

Tip: Don’t Bother Leaving Voicemails

You will find that recruiters rarely return your
voicemail messages. The perceived justification for
this discourtesy is "I’m too busy,” although the real
reason is "Contacting you doesn’t hold the immediate
promise of financial reward". Therefore, don’t bother
to leave messages – keep calling until you can speak
to them in person.

Tip: Be Cautious When Answering Certain
Questions

Recruiters will try and gather more information
than is necessary, in the hope of learning something
that can be used to their advantage. Only discuss
what is strictly relevant to the job in question. In
particular, look out for the following questions:

Do You Have Any Other Opportunities In Hand?

Recruiters will often make a "friendly enquiry"
about how your job hunting prospects are at the
moment. This is not idle small talk. The recruiter is
trying to gauge:

• How desperate you are i.e. how much leverage
they have

• The number of opportunities out there for people
with your skill set. At best, this enquiry could be
called "market research."

• The names of companies that are currently hiring
– so they can approach them.

It is of no advantage to you to provide any of this
information to the recruiter, and it could weaken your
bargaining position in future. A suitable response
might be “I’d prefer not to discuss the status of my
job search.” Above all, never appear desperate – it
will be a signal to the recruiter that they can get away
with dramatically cutting your rate, thereby
increasing their profit margin.

What Recruiter Did You Apply Through?

If you tell them you have already made application
for the position through another recruiter, they may
try and find out who that recruiter is, and what
agency they work for. It’s none of their business –
tell them so. The same response as above will
suffice.

CORPORATE PIMPS: DEALING WITH TECHNICAL RECRUITERS 31

Do You Know Anyone Else Who Might Be Interested
In This Job?

Here, the recruiter is trying to get you to refer
them to another candidate. Never do this, if you want
to keep your friends. Once that information gets into
the recruiter’s hands, there is no telling what will
happen to it. The only appropriate answer to the
above question is “no.” If you do know someone
who is interested, still tell the recruiter “no”, and then
contact that person yourself so they can approach the
recruiter at their leisure, if they so choose.

Who Did You Work For While You Were At Company
X?

A common technique recruiters use to broaden
their client base is to use candidates to get contacts
within companies the candidate has worked for. For
example:

Recruiter: Did you work for fictional-name while
you were at J-Corp?

You: No – I’ve never heard of fictional-
name. I reported to John Smith.

Now the recruiter has a contact name within J-
Corp that they can use to get past the company
switchboard (companies often have switchboard
blocks on recruiters). They can ring J-Corp’s
switchboard, ask to speak to John Smith – without
revealing that they are a recruiter – and be in a
position to market their services directly to someone
who is reasonably senior.

What Was Your Rate/Salary In Your Last
Contract/Job?

The danger in quoting a contract rate is that the
rate at which you actually work (assuming you’re
awarded the contract) is yet to be negotiated. If the
recruiter can subsequently negotiate a higher rate
with his client, he can keep that information to
himself and absorb the surplus into his margin.

Tip: Learn A Few Rote Answers

All recruiters tend to ask the same questions. It
may surprise you to know that recruiters often follow
scripts – the same way that telemarketers follow
scripts when cold calling potential customers. They
may have worked with the script so long that they’ve
now internalized it, or perhaps they’ve developed the
script themselves, refining it over the course of
hundreds of phone calls. The point is, the recruiter is
far more rehearsed in asking questions than you are
in providing answers. To level the playing field, you

can prepare your own scripts by rehearsing answers
to some commonly asked questions:

Why Did You Leave Your Last Job?

Some recruiters will ask this, as if they had the
right to know and could put the info to any sensible
use. Prepare a brief and suitably vague answer that
suggests you bear no animosity towards your last
employer, and that your performance wasn’t
questioned in any way. A tried and true comeback is
“It was just time for a change” – which is impossible
to refute or question further.

What Is Your Ideal Job?

Occasionally a recruiter asks this, just on the off
chance that your ideal job is currently on their books.
Not surprisingly, it never is. They’re not really
interested in your response, so much as that you have
one and asking it makes it sound like they’re
displaying due diligence. Learn a brief and
dismissive answer.

Tip: Determine The Purpose Of The Call Early In
The Conversation

It’s not uncommon to have recruiters contact you
even though they don’t actually have a suitable
position to discuss with you – the operative word
being “suitable.” You may find that they have a
position that is clearly unsuitable for you, but will try
and use that position to establish contact with you,
ask you to come and see them for a chat, and
generally begin the recruiting process. These
recruiters are desperate and are trying to match the
few positions they have to whatever candidature they
can dig up, no matter how inappropriate the match.
Don’t let them waste your time. If they’re not
prepared to put a job specification down on the table,
walk away.

Tip: Protect Your Referees From Unnecessary
Interruption

There’s no need to put “references available upon
request” on your resume – that is understood. Out of
consideration for your referees, you should aim to
minimize the number of occasions they are
contacted. Therefore, never give away your
references until there is a job offer on the table, for
the following reasons:

• Some recruiters will use your referees as contact
points for marketing their services.

32 HACKNOT

• If the recruiter contacts your referees, there is no
guarantee that their client will not also want to
contact them. Then your referees end up getting
hounded with phone calls.

• If the recruiter contacts your referees prior to a
job offer being made, and the client does not
decide to hire you, then your referees have been
pestered for nothing.

Some recruiters will try to tell you that they can’t
even submit your resume to their client without
references. This is nonsense, and certainly an attempt
to collect your referees as contacts.

Tip: Be Suspicious Of Phone Calls From Agents
You’ve Never Heard Of

Once you have been circulating your resume for a
while, and it has been entered in the résumé
databases of enough agencies, you’ll find that you
start getting cold calls from agents that you’ve never
heard of. What’s happened in these cases is that the
agent has done a keyword search on their agency’s
résumé database for a particular skill set, got back
several dozen matches, and then placed a phone call
to every person whose resume was a match. Your
resume happens to be in the agencies database as a
result of your previous contact with some other agent
working at that agency.

If an unknown recruiter leaves you a message, if
you do call them back, you can expect the following:

• The recruiter doesn’t remember who you are.

• The recruiter doesn’t remember what job
description they rang you in relation to.

• Once they’ve worked out those two things, they
search their database for your résumé.

• Then they read out their job’s skill requirements
and you have to respond “yes” or “no” to each
… even though that info is on the screen in front
of them.

For this reason I generally don’t return calls from
recruiters I’ve never heard of. I have better things to
do than read out my résumé over the phone.

Tricks Of The Trade

Trick: Bait And Switch

This is an old salesman’s scam that still finds
application in the recruiting industry. The practice
consists of luring in a candidate with an inviting (but
inaccurate or incomplete) job description, and once

the candidate is “hooked”, revealing the true nature
of the position. The hope is that the sense of positive
expectation already created will make the candidate
more receptive to the true job description.

Trick: Salary/Contract Rate Negotiation

Never forget that the recruiter is paid by the client
company to find employees, and he who pays the bill
gets the service. Perhaps this is the way recruiters
self-justify their poor treatment of candidates. It is
also significant when the recruiter is negotiating a
salary/rate on your behalf – they are negotiating with
the same party that pays their commission, so it is as
well to have a good idea of what money you’re worth
and to set definite boundaries for the recruiter so that
you don’t get sold out. Recruiters will try and get you
to lower your rate by claiming that their client has
one or more alternatives of similar experience/ability
as yourself, and they are willing to work at a lower
rate. You can never tell whether your competitors are
real or are phantoms created by the recruiter. Any
enquiries you might make to determine the
authenticity of these competitors will be foiled by the
recruiter’s claims of privileged information.

Trick: Vague Job Descriptions

At times, recruiters will publish deliberately vague
job descriptions in the hope of garnering as wide a
response as possible. Their motivation is in part to
refresh their internal resume database, and in part to
assess the amount of interest associated with
particular skills sets (market research). There may be
an actual job behind it all, or there may not.

Trick: Agent Interviews

The “agent interview” is one of the biggest
conceits in the recruiting industry. A small
percentage of recruiters will want to speak with you
in person before putting your résumé forward to their
client. Some will even claim that they are required by
company policy to do so. The ostensible purpose of
these chats is for the recruiter to get a better idea of
who you are, thereby enabling them to present your
strengths more effectively to their client. If you were
wondering exactly what a recruiter will learn about
you in a 20 minute chat that they can’t gather over
the phone, then you wouldn’t be the first. The real
purpose of agent interviews are:

• For the recruiter to see how attractive you are.
Statistically, good-looking candidates are more
likely to interview successfully. If the recruiter
has a choice of candidates to put forward, they

CORPORATE PIMPS: DEALING WITH TECHNICAL RECRUITERS 33

are better off choosing the more attractive ones.
Of course, discrimination based on appearance is
illegal, so you’ll never hear any public
admission that this sort of assessment occurs.

• To increase your degree of investment in the
agent and the job. Once you’ve gone to the effort
of meeting with a recruiter, you will have a
natural tendency in future to act in a way that
retrospectively justifies having made that
investment. In future you are more likely to
favor that agent, and to be more kindly disposed
towards positions put forward by that agent. If
this sort of psychological manipulation strikes
you as being beyond the average recruiter’s
capability, remember that most recruiters have at
least an intuitive grasp of sales techniques.
Exploiting your need to appear consistent with
previous actions is a common technique
employed by salesmen. The door-to-door
salesman who offers a free demonstration of his
product knows that the hidden expense is the
cost of your time, which is only justified if you
later make a purchase. The car salesman who
lets you take a vehicle for a test drive is relying
upon the same principle.

• To establish a power dynamic. It is significant
that you go to the recruiter, and not the other
way around. This suggests that the recruiter is in
control, as they would like to believe, and as
they would like you to believe.

Trick: X-Rayers And Phone Lists

Recruiters will go to extraordinary lengths to get
leads to clients and candidates. There are a number
of software packages available, called web site “x-
rayers” or “flippers”, designed to automatically probe
corporate websites for names and phone numbers.
Lurking on Usenet groups is another way of getting
relevant email addresses. Looking to fill a Java job?
A few weeks lurking on comp.lang.java enables the
recruiter to identify the technically savvy and
geographically appropriate posters. I suspect the vast
majority of recruiters are not technically savvy
enough to use these sorts of techniques. However,
that such possibilities exist does illustrate why it’s
worthwhile being very careful with how much
information you give away.

Trick: Wooden Ducks

Particularly unscrupulous recruiters will submit
candidates to their client to act as placeholders – for
the purposes of making another candidate appear

good by comparison. It’s going to be difficult to
determine when you are being used as a wooden
duck because you have no knowledge of the other
candidates your recruiter is putting forward. Tell tale
signs may be:

• The recruiter is pushing hard for you to attend an
interview, even though they have previously
expressed doubts about your chances against
other candidates.

• The recruiter makes no effort to coach you about
the interview, what to expect or how to prepare.

• The recruiter has hinted that you may be
competing against internal candidates i.e.
candidates already employed by the client.

• The recruiter has made statements such as “not
getting your hopes up” or similar, indicating
they are anticipating failure.

* First published 12 Jul 2003 at
http://www.hacknot.info/hacknot/action/showEntry?eid=1

34 HACKNOT

Developers are from Mars,
Programmers are from Venus*

Many of us use the terms "programmer" and
"developer" interchangeably. When someone asks
me what I do for a living I tend to describe my
vocation as "computer programmer" rather than
"software developer", because the former seems to be
understood more readily by those unfamiliar with IT.
Even when writing pieces for this site, I tend to swap
back and forth between the two terms, to try and
avoid sounding repetitive. But in truth, there is a
world of difference between a computer programmer
and a software developer.

The term "programmer" has historically referred
to a menial, manual input task conducted by an
unskilled worker. Predecessors of the computer, such
as the Hollerith machine, would be fed encoded
instructions by operators called "programmers".
Early electro-mechanical, valve and relay-based
computers were huge and expensive machines,
operated within an institutional environment whose
hierarchical division of labor involved, at the lowest
level, a "button pusher" whose task was to
laboriously program the device according to
instructions developed by those higher up the
technical ladder. So the programmer role is
traditionally concerned only with the input of data in
machine-compatible form, and not with the relevance
or adequacy of those instructions when executed.

A modern programmer loves cutting code – and
only cutting code. They delight in code the way a
writer delights in text. Programmers see their sole
function in an organization as being the production
of code, and view any task that doesn't involve
having their hands on the keyboard as an unwanted
distraction.

Developers like to code as well, but they see it as
being only a part of their job function. They focus
more on delivering value than delivering program
text, and know that they can't create value without
having an awareness of the business context into
which they will deploy their application, and the
organizational factors that impact upon its success
once delivered.

More specifically ...

Developers Have Some Knowledge Of The
Domain And The Business

Programmers like to stay as ignorant as possible of
the business within which they work. They consider

the problem domain to be the realm of the non-
technical, and neither their problem or concern.
You'll hear programmers express their indifference to
the business within which they operate - they don't
care if it's finance, health or telecommunications. For
them, the domain is just an excuse to exercise a set of
programming technologies.

Developers view the business domain as their
"second job." They work to develop a solid
understanding of those aspects of it that impact upon
their software, then use that knowledge to determine
what the real business problems are that the
application is meant to be solving. They make an
effort to get inside the heads of their user base – to
see the software as the users will see it. This
perspective enables them to anticipate requirements
that may not have occurred to the users, and to
discover opportunities to add business value that the
users may have been unaware was technically
possible.

Developers Care About Maintenance Burden

Programmers crave new technologies the way
children crave sweets. It's a hunger that can never be
satiated. They are forever flitting from one
programming language, framework, library or IDE to
the next; forever gushing enthusiastically about the
latest silver bullet to have been grunted out by some
vendor or open source enthusiast, and garnished with
naive praise and marketing hype. They won't hesitate
to incorporate the newest technology into critical
parts of their current project, for no reason other than
that it is "cool", and all the other kids are doing it.
They will be so intent on getting this new technology
working, and overcoming the inevitable troubles that
immature technologies bring, that there will be no
time to spare for documentation of their effort.
Which is exactly how they like it – because
documentation is, they believe, of no use to them.
Sure, it might be useful to future generations of
programmers, but who cares about them?

Developers have a much more cautious approach
to new technology. They know that a new technology
is inevitably hyped through the roof by those with a
vested interest in its success, but that the reality of
the technology's performance in the field often falls
short of the spectacular claims made by proponents.
They know that a technology that is new is also
unproven, and that its weaknesses and shortcomings
are neither well known or publicized. They know that
part of the reason it takes time for the negative
experiences with technologies to become apparent is
that many developers will be hesitant to say
something critical amongst that first flush of

DEVELOPERS ARE FROM MARS, PROGRAMMERS ARE FROM VENUS 35

community enthusiasm, for fear that they will be
shouted down by the newly-converted zealots, or
dismissed as laggards who have fallen behind the
curve. So developers know to stand back and wait for
the hype to die down, and for cooler heads to prevail.
Developers also know the organizational chaos that
can result from too many changes in technical
direction. A company can quickly accumulate a
series of legacy applications, each written in a host of
once-popular technologies, that few (if any) currently
on staff possess the skills to maintain and extend.
Those that first championed those technologies and
forced them into production may have long since
moved onto other enthusiasms, perhaps other
organizations, leaving behind the byproduct of their
fleeting infatuation as a maintenance burden for the
organization and future staff to bare.

Developers Know That Work Methods Are More
Important Than Technical Chops

Programmers often focus so intently upon the
technologies they use that they come to believe that
technology is the dominant factor influencing the
ultimate success or otherwise of their projects. The
mind set becomes one of constantly looking over the
horizon for the next thing that might solve their
software development woes. The expectation
becomes "Everything will be better once we switch
to technology X."

Developers know that this "grass is greener" effect
is a falsehood – one often promulgated by vendors,
marketers and technology evangelists in their quest
to sell a product. The dominant factors influencing
the quality of your application, and ultimately its
success or otherwise, are the quality of the people
doing the development and the work methods that
they follow. In most cases, technology choice is
almost incidental (the one possible exception being
where there is a generational, revolutionary change
in technology, such as the transition from low level
to high level programming languages). Therefore
developers frequently posses an interest in QA and
software engineering techniques that their
programmer counterparts do not.

Programmers Try To Solve Every Problem By
Coding

It is characteristic of the programmer mentality
that every problem they encounter is perceived as an
opportunity to write more code. A typical
manifestation is the presence of a "tools guy" on a
development team. This is the guy who is continually
writing new scripts and utilities to facilitate the

development process, even if the process he is
automating is only performed once in a blue moon,
meaning that there is more effort expended in writing
the tool than the resulting automation will ever save.

Developers know that coding effort is best
reserved for the application itself. After all, this is
what you are being paid to produce. They know that
tool development is only useful to a point, after
which it becomes just a self-indulgent distraction
from the task at hand. Typically, a retreat sought by
those with a love of "plumbing" and infrastructure-
level development. Developers know that there are
many development tasks that it is simply not worth
automating and, where possible, will buy their
development tools rather than roll their own, as this
is the most time- and cost-efficient way of meeting
their needs.

Developers Seek Repeatability, Programmers
Like One-Off Heroics

If development were an Aesop's fable, then
programmers would be the hares, and developers the
tortoises. Programmers, prone to an over-confidence
resulting from excessive faith in technology's ability
to save the day, will find themselves facing
impending deadlines with work still to go that was
meant to be made "easy" by that technology, but was
unexpectedly time-consuming. Not surprisingly, the
technology doesn't ameliorate the impact of too little
forethought and planning. These last-minute saves,
and the concentrated effort they require, are later
interpreted as evidence of commitment and
conviction, rewarded as such, and thereby
perpetuated.

Developers are very aware that there are no silver
bullets, be they methodological or technological.
Rather than pinning their hopes on new methods or
tools, they settle down to a period of detailed
analysis and planning, during which they do their
best to anticipate the road ahead and the sorts of
obstacles they will encounter. They only proceed
when they feel that they can do so without
entertaining too much risk of making faulty
assumptions, and having to later throw work away.

Programmers Like Complexity, Developers Favor
Simplicity

It's not uncommon for programmers to
deliberately over-engineer the solutions they
produce, simply because they enjoy having a more
complex problem to solve. They may introduce
requirements that are actually quite unnecessary, but
which give them the opportunity to employ some

36 HACKNOT

technology that they have been itching to play with.
Their users will have to bear this extra complexity in
their every interaction with the system; maintenance
programmers will have to wade through it in every
fix and patch; the company will have to finance the
extensions to the project schedule necessary to
support the additional implementation effort; but the
programmers care about none of this – as long as
they get to play with a shiny new tech toy.

Developers continually seek the simplest possible
resolution to all the design forces impinging on their
project, regardless of how cool or trendy the
technology path it takes them down. If the project's
best interests are served by implementing in Visual
Basic, then VB is what you use, even though VB isn't
cool and may not be something you really want to
see on your CV. If the problem doesn't demand a
distributed solution, with all the scalability that such
an architecture provides, then you don't foist a
distributed architecture upon the project just so you
can get some experience with the technologies
involved, or just because it is possible to fabricate
some specious "what if" scenario to justify its usage,
even though this scenario is never likely to occur in a
real business context.

Developers Care About Users

Programmers often view their user base with
disdain or even outright contempt, as if they are the
ignorant hordes to whose low technical literacy they
must pander. They refer to them as "lusers", and
laugh at their relative inexperience with computing
technology. Their attitude is one of "What a shame
we have to waste our elite programming skills
solving your petty problems" and "You'll take
whatever I give you and be thankful for it."
Programmers delight in throwing technical jargon at
the user base, knowing that it won't be understood,
because it enables them to feel superior. They are
quick to brush off the user's requests for help or
additional functionality, justifying their laziness by
appealing to "technical reasons" that are too involved
to go into.

Developers don't consider users beneath them, but
recognize and respect that they just serve the
organization in a different capacity. Their
contribution is no less important for that. When
speaking with users, they try to eliminate
unnecessary technical jargon from their speech, and
instead adopt terminology more familiar to the user.
They presume that requests for functionality or
guidance are well intended, and endeavor to
objectively appraise the worth of user's requests in
terms of business value rather than personal appeal.

Developers Like To Satisfy A Need,
Programmers Like To Finish

Programmers tend to rush headlong into tasks,
spending little time considering boundary conditions,
low-level details, integration issues and so on. They
are keen to get typing as soon as possible, and
convince themselves that the details can be sorted out
later on. The worst that could happen is that they'll
have to abandon what they've done and rewrite it –
which would simply be an opportunity to do more
coding and perhaps switch technologies as well.
They enjoy this trial and error approach, because it
keeps activity focused around the coding.

Developers know that the exacting nature of
programming means that "more haste" often leads to
"less speed." They are also mindful of the temptation
to leap into coding a solution before having fully
understood the problem. Therefore they will take the
time to ensure that they understand the intricacies of
the problem, and the business need behind it. Their
intent is to solve a business problem, not just to close
an issue in a bug tracking system.

Developers Work, Programmers Play

Many software developers enter the work force as
programmers, having developed an interest in
software from programmer-like, hobbyist activities.
Once they learn something of the role that software
plays in an organizational context, their sphere of
concern broadens to encompass all those other
activities that constitute the difference between
programmer and developer, as described above.

However, some never make the attitudinal
transition from the amateur to the professional, and
continue to "play" with computers in the same way
they always have, but do so at an employer's
expense. Many will never even appreciate that there
could be much more to their work, if only they were
willing to step up to the challenge and responsibility.

Software engineering, not yet a true profession,

places no minimum standards and requirements upon
practitioners. Until that changes, hobbyist
programmers will remain free to masquerade as
software development professionals.

It is the developers that you want working in your
organization. Programmers are a dime a dozen, but
developers can bring real value to a business. Wise
employers know how to tell the difference.

* First published 9 Oct 2006 at
http://www.hacknot.info/hacknot/action/showEntry?eid=90

Management

38 HACKNOT

To The Management*

I am frequently frustrated and disappointed in the
standard of management I am subject to. Discussions
with my peers in the software industry lead me to
believe that I am not alone in my malaise. So on
behalf of the silent multitude of software
professionals who are disappointed with their
management, I would like to remind you - the project
manager, team leader or technical manager - of those
basic rights to which your staff are entitled.

The Right To Your Courtesy And Respect

Of the complaints I hear directed towards
management, the most frequent concern dishonest,
abusive or otherwise inappropriate behavior.
Remember that no matter how angry or frustrated
you may be feeling, it is never okay to direct that
anger towards your associates. Intemperate outbursts
only engender disrespect and generate ill feeling. As
a leader, you are obliged to behave in an exemplary
manner at all times.

Respecting your staff implies valuing their
opinions, and being prepared to accept their
determinations in areas where their expertise is
greater than your own. It means acknowledging and
accommodating the technical obstacles they
encounter, rather than trying to usurp reality with
authority.

The Right To Adequate Resources

Skimping on software and hardware resources is
an obviously false economy, as a deficit of either
impedes your most expensive resource – your
people. More commonly overlooked are such
environmental resources as lighting, storage space,
desk space, ergonomic aids and whiteboards.
Workers quickly become dissatisfied if the basic
elements of a productive environment are absent.

The resource generally in shortest supply in a
software development environment is time. It’s not
surprising then that unrealistic scheduling is one of
the greatest sources of conflict between technical
staff and their management. Please keep this in mind
- successful scheduling is a process of negotiation,
not dictation. Nobody knows more about how long a
particular task will take to complete than the person
who is to complete it. Your team has the right to be
consulted on the scheduling of those tasks they are
responsible for, and to be able to meet their
commitments without undue stress or hardship.

The Right To Emotional Safety

In many corporate cultures there is a stigma
associated with being the bearer of bad news. To
ensure that individuals feel safe in expressing
unpopular truths, you must not only accept, but also
welcome bad news as an opportunity to avert a more
serious problem later. Ultimately, you are reliant
upon others to keep you apprised of the project’s
technical progress, so it is obviously beneficial to
obtain their insights in uncensored form. For their
part, technical staff need to feel that they can openly
seek help with their problems, without risk of
punitive repercussions.

In a human-based endeavor like software
development, mistakes and failures are inevitable.
Staff rightfully expects a compassionate attitude
from you when dealing with their own failures.
When they underestimate a task’s completion time,
or inject a defect into the code base, they need help
in correcting the underlying problem, not castigation
for the symptom.

The Right To Your Support

Your staff has the right to expect your assistance
in dealing with the issues they encounter.
Responsiveness is paramount - issues need to be
dealt with in a timely manner, before they can fester
into full-blown crises. You must be willing to put
aside self-regard and do whatever is necessary to
resolve the issue as quickly as possible. This may
mean making an unpopular decision, or entering into
conflict with other managers. Without the courage
and integrity to support your team in this manner,
you compromise the well being of the project and the
people on it.

Failure to proactively support your team’s efforts
will necessarily disadvantage them. They have a
right to presume you will use your experience and
your high level view of the project to forecast the
risks they may encounter, and prepare mitigation
strategies accordingly.

The Right To Know

Your team expects decisions affecting project
staffing, scheduling and scope to be communicated
to them quickly and honestly. Unnecessary delays
can limit their ability to respond effectively to
changing conditions, with consequent stress and time
pressure.

Some managers feel they have to shield their
subordinates from the political machinations of their
organization. This attitude betrays little respect for
their team member’s maturity, and a basic ignorance

TO THE MANAGEMENT 39

of the technical personality, which values painful
truths over comforting lies. Your staff has the right to
know about anything that impacts on their work, so
that they can maximize the chances of achieving
their goals.

The Right To Self-Determination

There is nothing so disempowering as to be set
goals, but have no control over the means by which
one is to achieve them. This is the predicament in
which you place your staff if you deny them the
flexibility to tailor their work practices to the
problem at hand, insisting instead on rigid adherence
to methodological or corporate dogma. You may find
political safety in playing it by the book, but your
people want to work in a way that makes best use of
their time and energy, and expect your support in
achieving that goal.

It is my recurring observation that management

practices that infringe upon the abovementioned
rights are common. Equally common is the software
professional’s lamentation that their management
"doesn’t have a clue." The two may well be causally
related.

So I urge you to put aside your spreadsheets and
Gantt charts for a moment and consider the rights of
your subordinates. Focus on the basic principles of a
humane management style - integrity, respect,
courtesy and compassion. Their application cannot
guarantee your success as a manager, but their
absence will guarantee your failure.

* First published 12 Jul 2003 at
http://www.hacknot.info/hacknot/action/showEntry?eid=7

40 HACKNOT

Great Mistakes in Technical
Leadership*

“If you are a good leader who talks little, they will
say when your work is done and your aim fulfilled,
‘We did it ourselves.’” – Lao-Tse, cited in 1

Perhaps the most difficult job to do on any
software development project is that of Technical
Lead. The Technical Lead has overall responsibility
for all technical aspects of the project – design, code,
technology selection, work assignment, scheduling
and architecture are all within his purview.
Positioned right at the border of the technical and
managerial, they are the proverbial "meat in the
sandwich." This means that they have to be able to
speak two languages – the high-level language of the
project manager to whom they report, and the low-
level technical language of their team. In effect,
they're the translator between the two dialects.

Observation suggests that there are not that many
senior techies who have the skills and personal
characteristics necessary to perform the Technical
Lead role well. Of those I have seen attempt it,
perhaps ten percent did a good job of it, twenty
percent just got by, and the remaining seventy
percent screwed it up. Therefore most of what I have
learnt about being a good Technical Lead has been
learnt by counter-example. Each time I see a
Technical Lead doing something stupid, I make a
mental note to avoid that same behavior or action
when I am next in the Technical Lead role.

What follows is the abridged version of the list of
mistakes I have assembled in this manner over the
last thirteen years of watching Technical Leads get it
wrong. It is my contention that if you can just avoid
making these mistakes, you are well on your way to
doing a good job as a Technical Lead. You might
consider it a long-form equivalent of the Hippocratic
Oath "First do no harm," although given the self-
evident nature of many of these exhortations, it is
more like "First do nothing stupid."

Mistake #0: Assuming The Team Serves You

Perhaps the most damaging mistake a Technical
Lead can make is to assume that their seniority
somehow gives them an elevated status in their
organization. Once their ego gets involved, the door
is open to a host of concomitant miseries such as
emotional decision making, defensiveness and intra-
team conflict.

I can't emphasize enough how important it is to
realize that although the Technical Lead role brings
with it many additional responsibilities, it does not
put you "above" the other team members in any
meaningful sense. Rather, you are on an exactly
equal footing with them. It's just that your duties are
slightly different from theirs.

If anything, it is you that is in service of them,
given that it is part of your role to facilitate their
work. To put it another way, you are there to make
them look good, not the other way around.

Mistake #1: Isolating Yourself From The Team

In some organizations, having the title of
Technical Lead gives you entitlements that the rank
and file of your team do not enjoy. Sometimes, the
title is considered sufficiently senior to entitle you to
an office of your own, or at least a larger workspace
if you must still dwell in cubicle land.

It is a mistake to take or accept such perquisites,
as they serve to distance you (both physically and
organizationally) from the people that you work most
closely with. As military leaders know, it creates an
artificial and ultimately unhealthy class distinction
between soldiers and officers if the latter are afforded
special privileges. To truly understand your team's
problems and be considered just "one of the guys"
(which you are), you need to be in the same
circumstances as they are.

Mistake #2: Employing Hokey Motivation
Techniques

Different sorts of people are motivated by
different sorts of rewards. Programmers and
managers certainly have very different natures, yet it
is surprising the number of managers and aspiring
managers who ignore those differences and try to
reward technical staff in the same way they would
like to be rewarded themselves.

For example, managers value perception and
status, so being presented with an award in front of
everyone, or receiving a plaque to display on their
wall where everyone can see it, may well be
motivating to them. However programmers tend to
be focused on the practical and functional, and value
things that they can use to some advantage.
Programmers regard the sorts of rewards that
managers typically receive as superficial and trite.
They have a similar view of "team building"
activities, motivational speeches and posters and the
like.

So if you want to motivate a developer, don't start
cheering "Yay team" or force him to wear the team t-

GREAT MISTAKES IN TECHNICAL LEADERSHIP 41

shirt you just had printed. Instead, give him
something of use. A second monitor for his computer
will be well received, as will some extra RAM, a
faster CPU, cooler peripherals, or a more
comfortable office chair. It's also hard to go wrong
with cash or time off.

Developers are also constantly mindful of keeping
their skill sets up to date, and so will value any
contribution you can make to their technical
education. Give them some time during work hours
to pursue their own projects or explore new
technologies, a substantial voucher from your local
technical book store, or leave to attend a training
course that interests them – it doesn't have to be
something that bears direct relationship to company
work, just as long as it has career value to them.

Mistake #3: Not Providing Technical Direction
And Context

A common mode of failure amongst Technical
Leads is to focus on their love of the "technical" and
forget about their obligation to "lead." Leading
means thinking ahead enough that you can make
informed and well-considered decisions before the
need for that decision becomes an impediment to
team progress.

The most obvious form of such leadership is the
specification of the software's overall architecture.
Before implementation begins, you should have
already considered the architectural alternatives
available, and have chosen one of them for objective
and rationally defensible reasons. You should also
have communicated this architecture to the team, so
that they can always place the units of work they do
in a broader architectural context. This gives their
work a direction and promotes confidence that the
team’s collective efforts will bind together into a
successful whole.

A Technical Lead lacking in self-confidence can
be a major frustration to their team. They may find
themselves waiting on the Lead to make decisions
that significantly effect their work, but find that there
is some reticence or unwillingness to make a firm
decision. Particularly when new in the role, some
Technical Leads find it difficult to make decisions in
a timely manner, for they are paralyzed by the fear of
making that decision incorrectly. Troubled that a bad
decision will make them look foolish, they vacillate
endlessly between the alternatives, while their team-
mates are standing by wondering when they are
going to be able to move forward. In such cases, one
does well to remember that a good enough decision
now is often better than a perfect decision later.
Sometimes there is no choice amongst technical

alternatives that jumps out at you as being clearly
better than any other – there are merely different
possibilities, each with pros and cons. Don't belabor
such decisions indefinitely. In particular, don't hand
over such decisions to the team and hope to arrive at
some consensus. Such consensus is often impossible
to obtain. What is most important is that you make a
timely decision that you feel moderately confident in,
and then commit to it. If all else fails, look to those
industry figures whose opinions you trust, and follow
the advice they have to give.

Finally, always be prepared to admit that a
decision you've made was incorrect, if information to
that effect should come to light. Some of the nastiest
technical disasters I've witnessed have originated
with a senior techie with an ego investment in a
particular decision, who lacks the integrity necessary
to admit error, even when their mistake is obvious to
all.

Mistake #4: Fulfilling Your Own Needs Via The
Team

You will occasionally hear people opine that one
should not let the personal interfere with the
professional. In other words, difficulties at home
should not interfere with the execution of duties in
the workplace. In some environments, the obvious
expression of emotion is simply taboo. But such
ideas don't mesh with reality too well. People are
holistic creatures and our life experience is not so
conveniently compartmentalized, no matter how
desirable some Taylorist ideal may be.

Just the same, there are practical and social
limitations upon workplace behavior which some
may be tempted to flaunt, to the discomfort and
embarrassment of their colleagues. The broader one's
influence, the greater the opportunity to co-opt
activities that should be focused on work, and turn
them to personal effect.

For example, meetings (complete with buffet)
make a fine social occasion for those not concerned
with making best use of company time. Team-
building exercises provide an easily excused
opportunity to get away from the office and out into
the sun, as do off-site training courses and
conferences.

Pair programming seems to be most appealing to
those who like to chat about their work ...
continually. An excessive focus on group consensus-
based decision-making for all technical aspects of the
project, even the trivial ones, may be a sign that a
Technical Lead is more concerned with the sociology
of the project and their place amongst it, than with

42 HACKNOT

leadership and making efficient use of people's time
and effort.

Mistake #5: Focusing On Your Individual
Contribution

Changing roles from developer to Technical Lead
requires a certain adjustment in mindset. As a
developer you tend to be focused upon individual
achievement. You spend your time laboring on units
of work, mainly by yourself, and can later point to
these discrete pieces of the application and say, with
some satisfaction, "I did that."

But as a Technical Lead your focus shifts from
individual achievement to group achievement. Your
work is now to facilitate the work of others. This
means that when others come to you for help, you
should be in the habit of dropping everything and
servicing their requests immediately. A fatal mistake
some Technical Leads make is to try and retain their
former role as an individual contributor, which tends
to result in the Technical Lead duties suffering, as
they become engrossed in their own problems and
push the concerns of others aside.

The constant alternation between helping
individuals with low-level technical problems and
thinking about high-level project-wide issues is very
cognitively demanding. I've come to call the problem
"zoom fatigue" - the mental fatigue which results
from rapidly changing between the precise and the
abstract on a regular basis. It's like the physical
fatigue that the eye experiences when constantly
switching focus from long distance to short distance.
The muscular effort required within the eye to
change focal length eventually leads to fatigue,
making the eye less responsive to subsequent
demands. Similarly, you get cognitive fatigue when
in one moment you are helping someone with an
intricate coding issue, and in the next you're
examining the interaction between subsystems at the
architectural level. The latter requires a more abstract
mental state than the former, and alternating between
the two is quite taxing.

As a result, people may come to you seeking help
with something that has been the sole focus of their
attention for several hours or days, and you will find
it difficult to "task switch" from what you were just
doing into a mindset where you can discuss the
problem with them on equal terms. I find it helpful to
just ask the person to give me ten minutes to get my
head into the problem space, during which I might
retreat to my own machine and study the problem
body of code in detail, before attempting to help
them with it.

Mistake #6: Trying To Be Technically
Omniscient

Just because you have the last word in technical
decisions, don't think that it is somehow assumed that
you are the programming equivalent of Yoda. With
the variety and complexity of development
technologies always growing, it is increasingly
difficult to maintain a mastery of any given subset of
that domain. As in most growing fields, those who
call themselves "expert" will progressively know
more and more about less and less.

It is therefore entirely possible that you will be
learning new technologies at the same time as you
are first applying them. The mistakes you make and
the gaps in your knowledge will be abundantly
obvious to your team members, so it is best to
abandon at the outset any pretext of having it all
figured out.

Be open and honest about what you do and don't
know. Don't try and overstate or otherwise
misrepresent the extent and nature of your familiarity
with a technology, for once you are found out, the
trust lost will be very difficult to regain.

There is an opportunity here to widen the
knowledge and experience of all team members. You
might like to appoint certain people as specialists in
particular technologies, giving them the time and
task assignments necessary to develop a superior
knowledge of their assigned area. To avoid boredom
and unnecessary risk, be sure to give these resident
experts plenty of opportunity to spread their
knowledge around the team, and to exchange
specialties with others.

Adopting this "collection of specialists" approach
makes it clear that you are not presuming to be all
things to all people; and that you have faith in the
abilities of your colleagues. But it will require you to
park your ego at the door and be prepared to say "I
don't know" quite frequently.

But be careful not to lean on others too heavily. It
is still vitally important for you to have a good
overarching knowledge of the technologies you are
employing, particularly those elements of them that
are critical to their successful interoperation in
service of your system’s architecture.

Mistake #7: Failing To Delegate Effectively

To successfully lead a group, there must be an
attitude of implicit trust and assumed good intent
between the leader and those being led. Therefore a
Technical Lead must be willing to trust his team to
be diligent in the pursuit of their goals, without
feeling the need to watch over their shoulder and

GREAT MISTAKES IN TECHNICAL LEADERSHIP 43

constantly monitor their progress. This sort of
micromanagement is particularly loathed by
programmers, who recognize it as a tacit questioning
of their abilities and commitment.

But ineffective delegation can also arise for selfish
reasons. Several times now I've seen Technical Leads
who like to save all the "fun" work for themselves,
leaving others the tedious grunt work. For example,
the Technical Lead will assign themselves the task of
evaluating new technologies, constructing
exploratory and "proof of concept" prototypes, but
once play time is over and the need for disciplined
work arrives, hand over the detailed tasks to others.

Not only is effective delegation desirable with
respect to team morale and project risk, on large
projects it is simply a necessity, as there will be too
much information to be managed and maintained at
once for one person to be able to cope.

Mistake #8: Being Ignorant Of Your Own
Shortcomings

Some people simply don't have the natural
proclivities necessary to be good Technical Leads.
It's not enough to have good technical knowledge.
You must be able to communicate that knowledge to
others, as well as translate it into a simpler form that
your management can understand.

You also need good organizational skills.
Coordinating the efforts of multiple people to
produce a functionally consistent outcome is not
easy, and demands a methodical and detail-oriented
approach to planning and scheduling. If you can't
plan ahead successfully, you will find yourself
constantly in reactive mode, which is both stressful
and inefficient.

If you don't have these qualities naturally, you
may be able to develop them to some extent, through
training and deliberate effort. But it may ultimately
be necessary for you to lean on others in your team to
support you, should they have strengths in areas in
which you have weaknesses.

Mistake #9: Failing To Represent The Best
Interests Of Your Team

Perhaps the most nauseating mistake a Technical
Lead can make is to become a puppet of the
management above them. As the interface between
management and technicians, it is the Technical
Lead's role to go into bat with their management to
represent the best interests of their team. This means
standing up to the imposition of unreasonable
deadlines, fighting for decent tools and resources,
and preventing the prevarications of management

from disturbing the rhythm of the project. A weak-
willed or easily manipulated Technical Lead will
incur the disrespect of his team.

Unfortunately, such spineless behavior is quite
common amongst the ranks of the ambitious, and you
don't have to look far to find obsequious Technical
Leads who will gladly promise the impossible and
impose hardship on their team, in the interests of
creating a "can do" image for themselves.

Mistake #10: Failing To Anticipate

An essential part of the Technical Lead's role is
keeping an eye on the "big picture" – those system-
wide concerns that are easily forgotten by
programmers whose attention is consumed by the
coding problem they currently face.

These "big picture" issues include those non-
functional requirements sometimes called "-ilities" -
maintainability, reliability, usability, testability and
so on. If you don't make a conscious effort to track
your progress against these requirements, there is a
high probability of them slipping through the cracks
and being forgotten about until they later emerge as
crises.

If you don't have a dedicated project manager, it
m=][[[[[ay also fall to you to handle the scheduling,
tracking and assignment of tasks. It isn't uncommon
for Technical Leads to find themselves playing dual
roles in this manner. You may not be very fond of
such "administrative" duties, but their efficient
performance is critical to the smooth running of the
project, and for the developers to know where they
are and where they're going. Don't make the mistake
of ignoring or devaluing these tasks simply because
they are non-technical in nature.

Mistake #11: Repeat Mistakes Others Have
Already Made

It is common for developers to dismiss the
experience reports of others as having no relevance
to their own situation. Indeed, it is wise to approach
all anecdotal evidence with skepticism. But it is
unwise to completely disregard the advice of others,
particularly when it is accompanied by sound
reasoning, or can be independently verified. Ignoring
good advice can be very expensive; as Benjamin
Franklin said, "Experience keeps a dear school but
fools will learn in no other."

The unwillingness of developers to learn from the
mistakes of others, and the ease with which you can
encounter software project horror stories in the
literature and recognize your own projects in them, is
evidence suggesting that the software industry as a

44 HACKNOT

whole is not getting any wiser.2 You need not
contribute to that collective stupidity.

Mistake #12: Using The Project To Pursue Your
Own Technical Interests

Remarkably, developers can reach quite senior
levels in their organization without having learnt to
appreciate the difference between work and play.
Many are attracted to programming to begin with
because, as hobbyists, they enjoyed fooling around
with the latest and greatest technologies. Somehow
they carry this tendency to "play" with technologies
into their working lives, and it becomes the aspect of
their jobs that they value most. From their
perspective, the purpose of a development effort is
not to create something of value to the business, but
to create an opportunity to experiment with new
technologies and pad their CV with some new
acronyms.

Their technology selection is based upon whatever
looks "cool". But a rational approach to technology
selection may yield quite a different result to one
guided by technical enthusiasm or a fascination with
novelty. New technologies are often riskier choices,
as the development community has not had much
time to apply the technology in varying
circumstances and thereby discover its weaknesses
and shortcomings. Putting an immature technology
on a project's critical path is especially risky. So an
older, tried and true technology may be a more
rational choice than a new, unproven one.

Mistake #13: Not Maintaining Technical
Involvement

In order to fully appreciate the current status of the
project as well as the difficulties your team is facing,
it is vital that you maintain a coding-level
involvement in the project. If you're not cutting code,
it is too easy to become divorced from the effects of
your own decision making, and to be seen by other
developers as being out of touch with the technical
realities of the project.

Mistake #14: Playing The Game Rather Than
Focusing On The Target

In some organizations, being a Technical Lead is a
politically sensitive position. Technology choices,
work assignments and project outcomes are all just
tools to be used in the pursuit of personal agendas.
To some, this "game" of political influence is both
fascinating and addictive. They play it in the hope of
gaining some advantage for themselves, and do so to
the detriment of the project and the individuals upon

it. When they don't have their eye on the ball like
this, devoting more energy to Machiavellian
maneuverings than to the technical difficulties of the
project, then the project inevitably suffers.

Mistake #15: Avoiding Conflict

Many people find interpersonal conflict
distasteful. Some dislike it so much that they will do
practically anything to avoid it, including giving up
in technical disputes. Such people are prone to being
walked over by those more aggressive and forthright.

This is bad enough for the individual, but worse if
that person is meant to be representing the best
interests of a team. A meek Technical Lead can be a
real liability to a development team, who will find
themselves buffeted about by external forces that
they should have been shielded from, and burdened
by demands and goals that are not informed by the
project's reality.

With such a disposition, a Technical Lead may be
unable to even deal effectively with unruly behavior
or inadequate performance from members of their
own team.

Mistake #16: Putting The Project Before The
People

It's one thing to be focused on the project's goals,
but quite another to adopt a "succeed at all costs"
attitude. Ambitious Technical Leads, concerned with
the image they project to their management,
sometimes accept impossible goals or unreasonable
demands, because they lack the courage or integrity
to say "no." These goals then become the
development team's burden to shoulder, leading to
increased stress, higher defect injection rates, longer
working hours and lower morale. There is a tendency
to be so focused on the end goal that the effects of
the project on the developers gets overlooked. It is
not uncommon for successful delivery on a high
pressure project to be followed by the resignations of
several disgruntled team members, making the
project's triumph a pyrrhic victory indeed.

Given the costs of hiring and training staff,
treating developers as expendable resources makes
no financial sense, quite aside from the ethical
implications of such treatment. A wise Technical
Lead will know that putting the well-being of the
developers first also produces the best results for the
project and the business. Project success should leave
the participants satisfied with their achievement, not
burnt out and demoralized.

GREAT MISTAKES IN TECHNICAL LEADERSHIP 45

Mistake #17: Expecting Everyone To Think And
Act Like You

Being a Technical Lead may be the first time you
are exposed so frequently and directly to the problem
solving styles and low-level work habits of others.
Programming is traditionally an individual activity.
Programmers are often able to face the technical
difficulties of their work in isolation, emerging
sometime later with the completed solution. But as a
Technical Lead you will frequently be called on to
help those who are stuck part way through the
problem-solving process, unable to proceed. Seeing a
solution that is "under construction" might be a bit of
a shock to you at first, as you may find your
colleagues approach to problem solving dramatically
different to your own. Some people work "outside
in", others "inside out", others jump all over the
place, some work quickly with lots of trial and error,
others slowly and methodically. It is tempting to
stand in judgment of approaches and methods that
don't gel for you, pronouncing them somehow
inferior. Avoid the temptation. Learn to accept the
varieties of cognitive styles on your team, and
recognize that this cognitive diversity may actually
be an asset, for the variety of perspective it brings.

Mistake #18: Failing To Demonstrate
Compassion

Although I've put this last, it is in some ways the
most important of all the mistakes listed here.
Always remember that your team members are
people first and programmers second. You can
expect them to be temperamental, inconsistent,
proud, undisciplined and cynical – perhaps all in the
same day. Which is to say they are flawed and
imperfect, just like you and everyone else. So cut
them some slack. Everyone has good and bad days,
strengths and weaknesses; so tolerance is the order of
the day.

If someone breaks the build, it's no big deal. If a
regression is introduced, learn something by finding
out how it got there, but don't get upset over it or
attempt to assign blame. If a deadline is missed,
stand back from the immediate situation and
appreciate that in the grand scheme of things, it
really doesn't matter. Mistakes happen and you
should expect your colleagues to make many, as you
will surely make many yourself.

* First published 11 Jun 2006 at
http://www.hacknot.info/hacknot/action/showEntry?eid=87
1 Becoming A Technical Leader, G. M. Weinberg, Dorset Hourse,
1986

2 Facts and Fallacies of Software Engineering, Robert L. Glass,
Addison-Wesley, 2003

46 HACKNOT

The Architecture Group*

An organizational antipattern that I have seen a
few times now is the formation of an Architecture
Group. Architecture Groups generally have the
following purposes:

• To design the enterprise architecture shared by a
group of applications within an organization

• To review the design of projects to ensure they
are consistent with the enterprise architecture

• To prescribe the standard technologies to be
used across projects in the organization

In summary, the Architecture Group is an internal
"governing body" and "standards group" rolled into
one. Membership of the group tends to be restricted
by seniority – the architects and senior technical
staff.

In general, the Architecture Groups I've witnessed
in action have been disastrous. That's not to say that
it need necessarily be so – I have no legitimate basis
for generalizing beyond my direct experience – but
based on the reasons that I've seen these groups fail, I
conject that failure is a likely outcome of any such
group.

The negative impact of an Architecture Group
often originates from the tendency to create an "us
and them" mentality amongst staff. Because the
group makes technology and design decisions which
are then imposed upon other projects, those working
on individual projects come to resent the architecture
group for the constraints they have placed upon the
project. Working at the overview level, as an
architecture group does, it is difficult or impossible
to keep track of the low level details of a variety of
projects. And yet the details of those projects are key
determinants of the suitability of the technologies
and designs that the architecture group deals with.
Project staff come to view the architecture group as
dwelling in an ivory tower, from where they can
afford to overlook the troublesome aspects of the
projects in their influence.

Members of the architecture group can begin to
share this view. They consider their decision making
more objective and sensible precisely because it is
not influenced by the low level concerns of
individual projects. Once high level consideration
has occurred, any difficulties encountered while
implementing those decisions are dismissed as
"implementation details" that are beneath the group's
level of concern.

The major source of trouble with architecture
groups seems to be the social dynamic that builds up
around them. They have a tendency to become a
clique that is in overestimation of its own collective
abilities, because it is deprived of any negative
feedback concerning the consequences of the
decisions it makes. The absence of feedback results
in part from the unwillingness of project staff to
criticize those senior to them, and in part of the self-
imposed isolation of the architecture group, which
makes its decisions from behind closed doors.

The issue of seniority is a real stumbling block,
because senior staff may have great difficulty in
admitting that they have made a poor decision, even
when it is perfectly obvious to project staff that this
is the case. Any adjustment to the decrees of the
architecture group, once made, results in a perceived
loss of face which the members of the architecture
group can ill afford. Being senior, they are perhaps
more cognizant of the political forces at work in the
organization. Perhaps they are more ambitious, and
therefore reticent to concede wrong doing for fear of
the impact it might have on their reputation. Perhaps
they view the objections of project staff as a
challenge to their authority. In any case, members of
the architecture group develop an ego identification
with the decisions they make, which leads them to
ignore or devalue negative feedback from project
staff – leading to the reinforcement of the
architecture group's external image as being isolated
from the project community.

Consider also that people working in architectural
roles tend to be abstractionist by nature. They are
comfortable working at a high level and just trusting
that the low level details will work themselves out.
When project staff object that a decision made in the
abstract has resulted in concrete difficulties at the
implementation level, the abstractionist is prone to
characterizing the situation as one of a well
conceived plan that has been fumbled in the
execution. In other words, they shoot the messenger,
preferring to blame the implementation of their
decision rather than the decision itself, which is
perfect – as long as it is only considered in the
abstract.

Conclusion

Those who institute an architecture group in their
organization may be courting disaster. There is a
strong tendency for the group to become cliquish,
divorced from the consequences of its decision
making, and the object of wide-spread resentment
within the organization. Coordination of projects and

THE ARCHITECTURE GROUP 47

adherence to enterprise architectures should occur in
a way that does not impinge upon individual project's
chances of success, nor rob them of the ability to
solve the particular problems of their project in an
effective way.

* First published 29 Mar 2005 at
http://www.hacknot.info/hacknot/action/showEntry?eid=73

48 HACKNOT

The Mismeasure of Man*

Software developers are drawn to metrics for a
variety of reasons. Generally, their motivations are
good. They want to find out something meaningful
about the way their project is progressing or the way
they are doing their job. Managers are also drawn to
metrication for a variety of reasons, but their motives
are not necessarily honorable. Some managers view
metrics as an instrument for getting more work out of
their team and detecting if they are slacking off.

Performance metrics – metrics intended to
quantify individual or group performance – can be
useful if they are employed sensibly and in full
awareness of their limitations. Unfortunately, it is
very common for performance metrics to be gathered
and interpreted in ways that are ultimately harmful to
a project and its developers. Many is the metrics
program that, through inept implementation and
application, has engendered anger and resentment
amongst those it was intended to benefit.

Below, we consider various performance metrics
commonly encountered in development
environments, the ways they are abused, and
illustrate their misuse with some examples taken
from my own experience and the experience of
others as they have related it to me.

The Number Of The Counting

Face Time

This is perhaps the most commonly abused
"metric" in the software development world. For
reasons of both tradition and convenience, many
managers and developers alike persist in considering
the number of hours spent in front of the screen as
being some indication of how devoted a programmer
is to their work. Those that work long hours are
considered "hard workers," those that keep regular
hours are considered "clock watchers."

The fault behind such thinking is the assumption
that software development is a manufacturing-like
process, rather than a problem-solving process. If a
worker on a production line works an extra hour then
the result is an extra hours' worth of stuff. If they
work an extra three hours then the result is an extra
three hours worth of stuff; which will be exactly
three times the quantity of extra stuff they would've
produced had they only worked a single extra hour.
If their role on the production line is menial assembly
work, then the quality of the stuff they produce in

their third hour of overtime will be the same as the
quality of the work from their first hour of overtime.
In such an environment, it is reasonable to see
productivity as a direct function of time on the job.

But software development is nothing like this
mechanistic process. It is a complex, intellectual
effort conducted by knowledge workers, not a menial
assembly task performed by laborers. So more hours
spent in front of the screen does not necessarily
equate to more progress. For example, long work
hours might be a result of problems such as:

• Relying on trial and error rather than
thinking ahead

• Goofing off surfing the web or socializing
• Solving the wrong problem, and having to

start again
• Gold-plating (extending scope beyond what

is required, simply for the satisfaction of it)
• Using a lengthy, inefficient algorithm rather

than a smaller, elegant one
• Writing functionality that should have been

purchased in a third party library
• Making the solution more generic than is

necessary
• Poor understanding of the technologies

employed, resulting in a lot of thrashing
• Losing a lot of time to debugging, because

of the higher defect injection rates that
occur when working while fatigued

• Overly ambitious scheduling resulting from
poor self-insight and lack of experience

So by expecting or encouraging long working
hours, we may simply be rewarding poor
performance and inefficient work practices.

I first encountered the obsession with working
hours at a small "dot com" company I once had the
misfortune to work for. Full of bright and
enthusiastic young people, the CTO of this company
considered his stable of go-getters a resource to be
exploited to the fullest. Not being the most
technically aware of CTOs he was unable to assess
the performance of the technical staff that reported to
him in any meaningful way, so he was forced to rely
on what he considered to be secondary indicators of
performance – the number of weekly hours each
employee logged in their electronic time-sheet.

Those with more experience of his somewhat
indirect approach to assessment were quite generous
when it came to such time-keeping tasks, logging
some spectacular hours – some of which they
actually worked. Those unfamiliar with the man’s
chronological obsession, such as myself, made the

THE MISMEASURE OF MAN 49

mistake of working efficiently and recording their
work hours accurately. This did not go down so well.

In my letter of resignation I cited unscrupulous
and irrational management practice as one of the
principal reasons I was leaving. On my last day at
said company I received what is, to date, the only
written response to a resignation that I have ever
encountered. The response contained a month-by-
month tabulation of average daily working hours –
both the company average and my personal figures.
Of course, my "performance metric" was
disgustingly normal, whereas the company averages
seemed to indicate that many staff were dedicating
all their waking hours to work. The conclusion was
obvious – I was not putting in the sort of effort that
was expected of me. How right they were.

Lines Of Code

It should be common knowledge that lines of code
(LOC) and non-comment lines of code (NLOC) are
not measures of size, productivity, complexity or
anything else particularly meaningful. It is none-the-
less very common to find them being used in the
field to quantify exactly these characteristics. This is
probably because these metrics are so easily gathered
and there is an intuitive appeal to equating the
amount of code written with the amount of progress
being made.

But it is a big mistake to consider large quantities
of code necessarily a good thing, for large volumes
of code may also be symptomatic of problematic
development practices such as:

• Unnecessarily complex or generic design
• Cut-and-paste reuse
• Duplication of functionality

Large quantities of code can also bring such
problems as:

• A greater opportunity for bugs
• A greater maintenance burden
• A greater testing effort
• Poor performance

So by rewarding those who produce larger
quantities of code, we may simply be encouraging
the production of a burdensome code base.

The story is told of a team of developers whose
well-meaning but uninformed manager decided that
he would start measuring their individual
contributions to the code base by counting the
number of lines of code each of them wrote per
week. Fancying himself as more technically
informed than most other middle managers, he wrote

a simple script to count the number of lines of code
in a file.

The project was written in C. Figuring that most
statements in C ended in a semicolon, he presumed
that his script could just count the number of
semicolons in the file and that would give him the
number of C statements. He congratulated himself on
thinking of this clever counting method, which
would not be susceptible to differences in coding
style between developers, nor any of the techniques
developers sometimes employed to try and
manipulate metrics in their favor by changing the
layout of their code.

However a few of the developers got wind of the
technique their manager was using, and started
writing function comments containing long rows of
semicolons to delineate the beginning and end of the
comment block.

Their measured rate of code production
skyrocketed ... so much so that their manager became
suspicious and, looking at the code to manually
verify that his script was working correctly,
discovered what was going on. But the developers
simply claimed that their recent change in comment
style was just an innocent search for greater code
readability The manager could not prove otherwise.

Function Points

In some circles, Function Points (FPs) have
currency as a way of measuring the size of a piece of
software. There are complex counting procedures
that enable functionality to be expressed as a number
of FPs in an ostensibly language-independent way.
The formation of the IFPUG (International Function
Point Users Group) and the amount of semi-
academic study they have received has invested FPs
with a certain amount of faux credibility. However,
this credibility is undeserved, as FPs are a
fundamentally flawed metric. They are not a valid
unit of measurement, nor can they validly be
manipulated mathematically. Any metric involving
them is approximately meaningless. FPs have been
discussed at length in a previous article1.

Screens

Having worked principally in the area of rich-
client and desktop applications, I've witnessed
numerous mismeasures of progress from this domain.
The most foolish of them was to use a "screen"
(dialog / window) as a unit of measurement. Thus, if
programmer A implemented two dialogs in the time
programmer B implemented one, A was considered
to be twice as productive as B.

50 HACKNOT

The faults with such an approach are alarmingly
obvious, but often ignored by an unthinking
management that is too impressed by the fact that
they can attach numbers to something, which creates
a false impression that they are measuring
something. Such are the perils of metrication in the
hands of the ignorant.

To labor the obvious, here are a few reasons one
programmer might produce more "screens" than
another, that have nothing to do with productivity:

• Their screens were simpler in appearance and/or
behavior.

• Their screens were sufficiently similar in
appearance and/or behavior, so there could be
code re-use between them.

• Their screens could be constructed with standard
GUI components, without the need for custom
components being developed.

• Their screens were not the end result of a
usability-based design process, but were
whatever was most programmatically expedient.

By counting "screens" as a measure of progress,
we encourage programmers to race through their
tasks, giving short shrift to issues of usability and
reuse.

I once worked for a small firm in the finance
industry. Their flagship product was a client/server
application for managing investment portfolios. I was
brought in, together with another GUI guy, to extend
the functionality of the system and clean up a few of
the existing screens and dialogs. Under the hood, this
product was a disaster. Poorly coded, undocumented
and architecturally inconsistent, it was the end result
of the half-hearted, piece-meal hacking of many
previous generations of contractors.

The gentleman who had shepherded all these
contractors through the company doors, and who
considered himself both Technical Lead and Project
Manager, was not heavily into software. Indeed, he
never actually bothered to look at the application's
code. He had only one way to gauge individual or
collective progress and that was on the basis of
appearance. If a piece of work involved lots
happening on the screen, then he figured that it
represented a lot of work. If it wasn't visually
significant, then he figured there probably wasn't
much to it. Let's call him Senior Idiot.

He and I did not get on so well, right from the
start. I'm told I don't suffer fools lightly and as fools
go, this guy was an exceptional specimen. My fellow
GUI guy was no better. Examining the code that he
wrote and the work he delivered, it was clear he was

working at a level consistent with the noxious quality
of the existing code base. Let's call him Junior Idiot.

A few months after I started, Big Idiot took me
aside and asked why my progress was "so slow." I
thought this was an interesting comment, given that
by my own analysis I was generating good quality
code at a rate several times the industry average.
Both the code and the resulting interfaces were some
of the best they had in the entire, sorry product.
When I enquired how he had determined my
progress was "slow" given that he never actually
looked at code, he explained that he was comparing
the "number of screens" Little Idiot had managed to
grunt out, to what I had developed in the same time.
Little Idiot was some way in front.

He was correct. Little Idiot had produced several
rather large screens (large in the sense that they
occupied many pixels, not in the sense that they
represented a lot of functionality). They were
usability disasters, every one of them, and the
product of some pretty deft cut-and-paste but,
scatological in quality as they were, they were there
to be seen.

After some chuckling, I tried to carefully explain
to him the "discrepancy" that he saw was because
Little Idiot was spitting out rubbish as quickly as
possible, and I was taking some time to do a decent
job. Additionally, Little Idiot was producing non-
reusable code , whereas I was writing general
purpose code, reuse of which would mean that future
work, both my own and others, would progress much
more quickly than Little Idiot could ever do. He was
not convinced and my time at this little company
came to an end shortly thereafter, much to our
mutual relief.

Iterations

Unbelievable as it is, I can honestly say that I've
seen entire projects compared on the basis of what
iteration they are up to in their respective schedules.
Suppose projects A and B both employ an iterative
methodology. A is in the third of five planned
iterations, B is in the fourth of seven planned
iterations. Some observers may then conclude that
project A is behind project B because "three" is less
than "four." Others might conclude that project A is
ahead of project B because it has completed 60% of
its iterations and B only 57%.

I recall the organization in which I first
encountered this. A rather hubristic, research
oriented environment in which some very clever
people worked. Sadly, the quality of the management
was not on a par with the quality of the technical
staff. As they say, "A fish rots from the head down,"

THE MISMEASURE OF MAN 51

so it was no surprise that the manager at the top was
not as clued up in many areas as one might like.

At this time, "data warehousing", "knowledge
management", "project cross-fertilization" and
"knowledge repositories" were the buzzwords that
substituted for critical thought. Mashing all these
concepts together in his head, the top guy decided to
establish a "project wall" in the office, upon which
the project managers were required to post the Gantt
charts for their respective projects, and keep them up
to date. This strategy was meant to promote some
sort of comparison and knowledge sharing between
projects, although exactly how this was to be done
meaningfully was never quite made clear. The device
became widely known as "The Wall Of Shame", as
that was its obvious but unstated purpose – to
publicly shame those managers whose projects were
running behind schedule. Presumably, the potential
for embarrassment was meant to encourage
individual project's to maintain schedule.

It came as a surprise to no-one but the man who
instituted the scheme, that it had precisely no effect
on anything, except to become the focus of
widespread derision.

Tasks / Bugs

Many software development teams allocate work
to individuals on a per-task basis. Typically, these
tasks are tracked in some electronic form – perhaps
as bugs in a bug tracking system or tickets in a
trouble ticket system. XP projects like to track tasks
on pieces of card because the arts-and-crafts
association creates the illusion of simplicity (an
illusion which disappears when reports of any kind
are required, or when the first strong breeze comes
along).

Regardless of the mechanism used, "the task" is so
useful as a unit of work allocation that it is very
tempting and convenient to think of it as a unit of
measurement. Of course, it is not a unit of
measurement, as no two tasks are the same. A tiny,
one-line bug fix might be captured as one task, as
might the implementation of an entire subsystem.
The granularity is ever-varying, making any
mathematical comparison of task counts
meaningless.

But convenience outweighs reason and so one
frequently finds, particularly amongst the ranks of
management, the tendency to equate high rates of
task completion with high productivity and effort,
and lower rates with lower productivity and effort.
The mistake is so common that developers become
quite practiced at gaming the system to make

themselves look good. Common image enhancement
techniques include:

• Breaking work down into unusually small tasks,
thereby enabling a greater number of tasks to be
completed at a faster rate.

• Registering tasks as completed before they have
been properly tested. This enables bugs to be
readily found in the work, each of which will be
considered a separate task. These tasks can be
completed relatively quickly because the
programmer is familiar with the code at fault,
having just written it.

• Registering tasks multiple times, describing it in
slightly different ways each time. Once
completed, all the tasks are closed, with all but
one marked as duplicates. If the management
forgets to exclude duplicate tasks from their
reporting, the programmer's rate of task
completion is artificially inflated. He might also
"forget" to mark some of the duplicate tasks as
being duplicates, to further enhance the effect.

• When a task is found to be more involved than
originally thought, rather than revise the scope
of the existing task, new tasks are spawned to
capture the unanticipated work. Their eventual
completion will mean that the number of
"completed" tasks registered against the
programmer's name is greater.

• When selecting work to do, programmers
gravitate towards the short tasks which can be
easily dispensed with, enabling them to quickly
get runs on the board.

When invalid metrics are gathered, the result is
often to contort the team member's work practice so
as to create the best perceived performance,
regardless of what their actual performance might be.

A colleague once related to me the story of two
teams of developers in a multinational company who
reported to the same manager. One team contained
three developers working mainly on maintenance
tasks, documentation and bug fixing. The other,
containing six developers, worked on per-client
product customizations. Both happened to use a
common issue tracking system.

A developer from the smaller team complained to
the manager about the discrepancy in work loads
between the two teams. He felt that his own team
was dreadfully overburdened while the larger one
just seemed to be taking it easy. Although uncertain
that the developer's complaint was valid, the manager
felt compelled to "handle" the situation in a

52 HACKNOT

managerial kind of way. Turning to the issue tracking
system he did a few simple queries and discovered
that the small team was closing issues at nearly twice
the rate of the larger team. This struck him as
confirmation of the developer's complaint. After all,
a team twice as large should be getting through
issues much faster than a team half its size.

So the manager sent an e-mail to all members of
both teams, and CC'd the general manager. In this e-
mail he highlighted the discrepancy in issue closure
rate for the two teams, chastised the larger team for
slacking off and praised the smaller team for their
hard work.

The original complainant was suitably appeased,
but the other members of his team, along with the
entirety of the larger team, were not quite so happy.
The following day, the leader of the larger team
came to the managers office and explained to him, in
a tone of barely suppressed hostility, that the two
teams worked on completely different sized issues,
and so comparing issue closure rates across the two
was quite meaningless. The smaller team addressed
issues that could generally be resolved in a single
day, two days at the most, and so naturally they got
through them at a fairly rapid pace. His team, the
larger one, addressed implementation issues that
might legitimately involve weeks of effort, including
design, requirements gathering and testing. He was
more than a little offended that his hard working
team was being reprimanded on such an irrational
basis.

The manager admitted his error – but of course,
never apologized to those he had offended.

Version Control Operations

Astonishing as it may seem, some developers like
to commit changes to their version control system
frequently to create the impression that they are hard
at work. This only works if you are managed by the
technically incompetent. In other words, it works
more frequently than you would like.

Requirements Completed

Regardless of whether you capture your
requirements in tabular, use case or story card
format, individual requirements make spectacularly
bad units of measurement.

Consider the enormous variation in scope that can
exist between one requirement and another. "The
user shall not be able to enter an age greater than 120
or less than 0" counts as "one requirement"; so does
"The system shall reserve the section of track for the
given vehicle in accordance with safe-working

procedure SP-105A." But the latter is probably a far
greater undertaking than the former, and we would
expect it to take significantly more time and effort to
complete. Pity the developer who is assigned the task
of satisfying this requirement, only to have his labors
viewed as an achievement "equal" to that of his
colleague who was assigned the simpler age-related
requirement.

Noise Generated

Some programmers just get the job done. Others
seem to find it necessary to let others know that they
are getting the job done. You've probably met the
type before. Every little obstacle and difficulty they
encounter seems to be a major drama to them –
almost a theatric opportunity. These are the same
programmers who will work overtime to fix
problems of their own creation, then seek credit for
the extra hours they've put in. Although there is no
number associated with their vociferations, they
effectively multiply the amount of perceived work
they are doing, and inflate the perceived effort they
are making by drawing attention to their actions.

I once worked with such a programmer. He was a
hacker of the first order; and I use the word "hacker"
in the pejorative sense. Each day over the lunch room
table he would regale us with stories of his mighty
development efforts, the technical heights to which
he had scaled, and the complex obstacles he had
overcome – all of these adventures apparently having
happened since the previous day's story-telling
episode. But when you actually looked in the source
code for evidence of these mighty exploits, you
would find only an amateurish and confused mess,
and be left wondering how so much difficulty could
have been encountered in the achievement of such
modest results.

Pages Of Documentation

Used intelligently, documentation makes a useful
component of the development process. But when
seen as an end in itself, documentation becomes a
time-consuming ritual for comforting self-serving
administration. Strange then that we should so
frequently see, most often in heavily bureaucratic
environments, people striving to generate technical
specifications that are as voluminous as possible,
apparently fearing that brevity will be interpreted as
evidence of laziness. A page fails to measure either
effort or progress for all the same reasons that "Lines
of Code" fails. Stylistic variations mean there is little
relationship between volume of text and effective

THE MISMEASURE OF MAN 53

communication as there is between volume of code
and functionality.

Conclusion

In the above you will have noticed the same
problems occurring again and again. All these
scenarios reflect a poor understanding of the basics
of measurement theory, together with a willingness
to rationalize a metric's invalidity because of the ease
with which it can be collected.

Essentially, a valid unit of measurement is a way
of consistently dividing some real world quantity into
a linear scale. In other words, X is a valid unit of
measurement if X is half as much of something real
as 2X is, one third as much of something real as 3X,
and so on. For this to be true, all instances of X must
be the same. For example, the "meter" is a valid unit
of measurement because 2 meters is twice the linear
distance of 1 meter, and all instances of the "meter"
are the same. The "1 meter" that exists between the 0
and "1 meter" marks on your tape measure is the
same quantity of something real as the "1 meter"
between the "4 meters" and "5 meters" marks.
Compare this to an invalid metric like a "task." A
task doesn't divide any real world quantity into equal
portions. In particular, it doesn't divide effort or work
into equal portions, because different tasks might
require different amounts of work to complete. So "2
tasks" is not twice "1 task" in any meaningful sense.
Put more simply, when comparing tasks, you're not
comparing like with like.

The attraction to metrics, even false ones, perhaps
stems from the false sense of control they offer. Once
we pin a number on something, we feel that we know
something about it, that we can manipulate it
mathematically, and that we can make comparisons
with it. But these statements are only true for valid
metrics. For false metrics like bugs, tasks, function
points, pages, lines of code, iterations etc., we create
only the illusion of knowledge. The illusion may be
comforting, particularly to those of an analytical
bent, but it is also an invitation to misinterpretation
and false conclusions.

We might try and rationalize these invalid metrics,
figuring that they may not be perfect, but they are
"close enough" to still have some significance. But
really this is just wishful thinking. You might think,
"our tasks may not be exactly the same, but they're
close enough in scope that 'tasks completed' still
means something." Really? What evidence do you
have that these tasks are of approximately equal
scope? If you're honest with yourself, you'll find
you've got nothing more than gut feel to justify that

statement. Yet the very reason we use metrics is to
obtain greater surety than that provided by gut feel.
So we see we are really just trying to convince
ourselves that our own guesswork can be somehow
made better by hiding it behind a number –
borrowing the credibility often associated with
quantification.

Metrics are a tool easily abused. A common cause
of mismeasurement is their punitive application with
the intent of motivating higher productivity. In their
zeal to find some way to meet a deadline, managers
sometimes sacrifice reason for expediency, hoping
that some hastily contrived metric can be used to
convince someone that they need to be working
harder. Of course, such tactics frequently backfire,
resulting only in developers feeling resentful of such
numeric bullying.

* First published 6 Aug 2006 at
http://www.hacknot.info/hacknot/action/showEntry?eid=88
1 See Function Points:
Numerology for Software Developers

54 HACKNOT

Meeting Driven Development*

The software development arena is the land of the
perpetual "me too." Populated by an eager
community of "joiners," every band wagon that
comes along is soon laden down by a collection of
hype merchants who, recognizing the next big thing
when they see it, are keen to milk it for all it is worth.
Extreme Programming – that marketing campaign in
search of a product – was a particularly fruitful
source of commercial spin-offs. When Extreme
Testing, Extreme Database Design, Extreme
Debugging and Extreme Project Management had
run their course; when XP's agile prequel had
fostered a small industry based on old saws spruced
up with a few neologisms; those looking to make a
name for themselves turned to another member of the
XP franchise – Test Driven Development – for
entrepreneurial inspiration.

TDD: The Progenitor Of MDD

If you have not read Kent Beck's insufferable tome
"Test Driven Development,”1 let me spare you the
time and insult by presenting the expurgated version
here:

Hello boys and girls. Once upon a time there was a
thing called Test Driven Development – it looked
for all the world like an impoverished rendering of
Design by Contract 2 only much cooler.

The ditto brigade latched onto TDD and got to
work. We soon had, sprouting like weeds from
between the pavement stones, "Blah Driven
Development", for all conceivable values of Blah. It
became de rigueur to have something driven by
something else. Not since Djikstra's "Goto Statement
Considered Harmful" had there been such a rash of
imitation.

The appeal of such development models is in the
simplistic and unrealistic view that a complex
activity can be reduced to consideration of, or focus
upon, a single factor. But software development is an
inherently multivariate process requiring intelligent
compromise between competing forces.
Unfortunately, such a view is hard to sell.

The fantasy is more appealing ... focus on blah,
make it the basis of your development effort, and the
rest will fall into place as a natural consequence. If
you can convince yourself that blah is analogous to a
set of requirements or an abstract model then you can
also dispense with the unpleasantness of

requirements elicitation and design. With sufficiently
zealous adherence to BlahDD, combined with a
healthy dose of metaphor and supposition, the
formerly complex and uncertain undertaking of
developing a piece of software turns into the routine
application of a silver bullet. Or so some would have
you believe.

Such "one stop" philosophies are a recipe for
disappointment, but will no doubt continue to sell
well, for the same reasons that "get rich quick" and
"lose weight fast" schemes do – the promise of an
easy fix.

To show how it's done and perhaps make an
obtuse point or two, let's look at the latest blah to
exhibit in the software development road show –
Meeting Driven Development.

An Introduction To MDD

MDD is more than an approach to software
development, it is a cultural force. If you're lucky,
you are already working in an environment
conducive to the meeting mindset. In some corporate
cultures meetings are so endemic that they have
become an integral part of the corporate identity. For
example, an IBM insider tells me that most staff
consider IBM to stand for "I've Been to Meetings".

If your corporate culture is not so amenable to
MDD, do not despair. You can surreptitiously
introduce it into your project without much effort and
when others see how successful you have been, it
will quickly spread through the rest of your
organization like a virus.

I suggest you begin by creating a localized
"meeting zone" in your project area. Put a table and
some chairs right in the middle of your project's work
area, so that project staff need only turn their chairs
around and wheel them a short distance in order to
assume the meeting position. You will enjoy the
disgruntled mutterings of nearby programmers as
they struggle to concentrate amidst the noise such
meetings create.

The only practical skill MDD entails is the ability
to recognize and achieve meeting mode. Meeting
mode is the colloquial name for what is more
properly known as corporate catatonia – the mental
state achieved by those meeting attendees who
cannot or will not participate, instead turning their
attention inward. MDD veterans describe the state as
being peaceful, meditative and excruciatingly dull.
Some claim to have undergone "Out of Body
Corporate" experiences while in deep states of
meeting mode, during which they separate from their

MEETING DRIVEN DEVELOPMENT 55

physical bodies, leave the meeting room and go on
annual leave.

External indications that an MDD practitioner is in
meeting mode include:

• Vacant staring into the middle distance.
• Methodical doodling upon note paper.
• Slowing or cessation of respiration.
• Extended periods of silence.

Types Of Meetings

In MDD, we encourage the use of meetings at
every opportunity and for every purpose. Our motto
is "Every Meeting Is a Good Meeting". While you
can hold a meeting for almost any purpose that
comes to mind, there are certain types of meetings
that tend to feature commonly in software
development environments. It is important that you
develop some facility with each of them.

Type #1: The Morning Stand-Up Meeting

You should begin the day with a team meeting,
and in this respect MDD is in agreement with XP's
practice of holding daily "stand-up" meetings. Like
many meetings that are driven by the calendar rather
than by a need, your morning meeting will probably
devolve into a pointless ritual that serves only to give
the organizer a sense of control and influence. For
those desperately trying to fulfill a management or
leadership role, but lacking the basic proclivities that
such roles demand, these ritualistic meetings can also
help sustain their delusions of competence, as
holding and attending meetings seems like a very
managerial thing to do.

Type #2: The Requirements Meeting

A typical requirements meeting involves some
technical staff and stakeholders sitting down to
discuss the functional requirements for a unit of
work. If there are any questions concerning
requirements previously elicited, they are tabled
here. It is a chance for potential users to lobby
technical staff and their managers for the inclusion of
their favorite features. However, developers and
domain specialists speak different languages, have
different priorities and widely disparate agendas. The
developers want to cut scope down to the minimum
that will be functionally adequate so they will have
some chance of meeting the schedules imposed upon
them; potential users want an application that will
make their working lives as easy as possible.

The tension between these two forces inevitably
brings an adversarial dynamic to requirements
meetings that can be very entertaining. Domain
experts can take the opportunity to express their
resentment at the developer's intrusion into their
domain and to laugh at the folly of the developer's
attempts to capture the expertise and judgment
acquired in a lifetime's professional endeavor in a
few minutes of discussion. In turn, developers can
mock the stakeholders for their lack of technical
knowledge, their inability to express their know-how
in a succinct and consistent manner, and to proclaim
requests for even simple functionality as being
impossible to implement for technical reasons that
would take too long to go into.

Type #3: The Technical Meeting

MDD prescribes that all technical problems be
solved "by committee". The basic method is:

1. Select a group of techies having maximum
variation in technical opinion and preferences.

2. Put said techies together in a meeting room.

3. Direct them to reach consensus on the "best"
solution to the technical problem.

4. Observe resultant fireworks and carnage.

MDD practitioners are not afraid to thrash out all
technical issues amongst themselves, comparing the
merits of varying approaches in an unstructured
session of verbal sparring. As with many meeting-
based outcomes, the determining factor is the relative
rhetorical skill or obstinacy of the protagonists.
Victory goes to whoever can best "ad lib" an
argument to support their proposition, rather than
whoever actually proposes the best solution.

Of course, there may not even be a "best" solution
to the problem. It's likely there will only be a set of
alternatives having different strengths and weakness.
You'll find that if you let the fighting go on for long
enough, eventually a compromise emerges that
nobody is happy with, but which they will settle for
simply for the sake of having the issue done with and
getting out of the tense meeting room. This is how
MDD forces issues to resolution – by escalating
tension until it becomes unbearable.

From a technical lead's perspective, the MDD
approach to design is also an excellent way to
disguise your own incompetence. If you're in over
your head in some technical arena, delegating all
decisions to a meeting enables you to hide your lack
of understanding and appear egalitarian at the same
time. When the resulting design is implemented and

56 HACKNOT

found to be inadequate, the blame is spread amongst
all the meeting participants rather than being focused
upon yourself. It's a win-win situation for you.

The real magic of meetings is that they are like
mini-corporations. Just as shareholders enjoy limited
liability for the failure and misdeeds of the
corporation, meeting participants enjoy a limited
liability for the mistaken outcomes of the meeting.
The meeting becomes an artificial entity unto itself;
an additional, synthetic developer who is always
willing to take the blame when something goes
wrong.

The Progress Meeting

Progress meetings are at once the most uneventful
and easiest to institute type of meeting. Their
ostensible purpose is for team members to gather
together and somehow collectively "update" their
mutual awareness of the state of the project. Their
real purposes are both symbolic and exculpatory.
They provide an opportunity for the meeting
organizer to give themselves the impression of active
involvement with a project (even though they may
see little of the team or its work at any other time),
and also provide a way for the "hands off" manager
to find out what is going on with their own project.

The most ineffective types of progress meetings
are structured like this:

1. A chairman, usually the person who
convened the meeting, reads through the
action items from the previous progress
meeting.

2. The assignee of each action item offers
some excuse as to why they haven't attended
to it, and then makes some vague resolution
to do it before the next progress meeting.

3. The chairman reads out any new agenda
items.

4. Each new agenda item is turned into a new
action item and assigned to one of the
meeting attendants, who promptly forgets
about it.

5. The meeting is dismissed and the chairman
writes up the minutes of the meeting and
distributes them to the participants, who
ignore them.

For most of the meeting then, there is only one-
way communication from a speaker to a group of
disinterested listeners. The same effect could be
achieved through judicious use of a text-to-speech
engine and Valium.

But there is great power hidden behind this
apparently meaningless ritual. The chairman, in later
distributing the minutes of the meeting, is in a
position to engage in some historical revisionism.
The minutes are supposed to detail the activities of
the meeting and the decisions reached. But the one
writing the minutes can generally write anything that
they want, safe in the knowledge that hardly anyone
will actually bother to read them. So if a decision
doesn't go your way in the meeting, just change the
way it is recorded in the minutes. You can even
introduce items that were never discussed in the
meeting, together with your preferred outcomes, safe
in the knowledge that any participant who reads such
an item but can't remember it from the meeting will
probably conclude that they must have fallen asleep
or been otherwise distracted during that part of the
proceedings. Their unwillingness to admit their
inattention means that your fabricated version of
events will go unchallenged. The minutes are also
invaluable for assigning blame when trouble occurs,
as they can be used to substantiate claims that a
particular resolution was arrived at with the
agreement of all parties present (remembering that
many will choose not to say anything at these
meetings, lest they end up with work assigned to
them, But their silence will forever condemn them to
having offered implicit support for any decision you
chose to put into the minutes).

Should the more rational members of the
gathering ever object that these progress meetings
seem pointless, you can always justify them by
pointing out that they are an opportunity for
communication to occur, and that communication is
good. The complainant will be hard pressed to argue
that communication is bad, and your point is won.

Review Meetings

Technical artifacts should always be reviewed by a
group, for the practice offers numerous advantages ...
to the reviewers, not the author of the work being
reviewed. Reviews are a good opportunity to gang up
on your enemies and humiliate them in front of an
audience. Developers have a notoriously strong ego
investment in their work, so tearing apart the finely
tuned code they have been poring over for weeks is
sure to provoke an interesting reaction. This is the
principle goal of group code reviews. The reviewers
function like a self-appointed council of inquisitors
looking for evidence of witchcraft in the accused.
And like a witchcraft trial, incriminating evidence
can always be found, as few developers can write
code or produce a design that cannot be criticized in
some way for something. Review meetings also

MEETING DRIVEN DEVELOPMENT 57

allow individuals to find fault with impunity, as any
degree of pettiness or vindictiveness they might
exhibit can be excused as a diligent attempt to make
constructive criticism.

Once you can conduct all of the above types of
meetings, and enter meeting mode at will, you may
consider yourself a competent MDD practitioner.

Conclusion

So that's a brief overview of the magic that is
Meeting Driven Development. This approach to
software development has been around since the
beginning of corporate activity in the programming
arena. In many corporations, the developmental norm
is indistinguishable from MDD. Meetings are so
much a part of the corporate culture it would not
occur to anyone to take any other approach.

You will find that many programmers are afraid of
meetings, having come to view them as pointless,
"busy work" activities. This is simply because they
have not yet learnt to appreciate that futility is
actually a strength of meetings, not a weakness. The
ability to convincingly create the illusion of
coordinated effort and activity is invaluable in many
situations.

Meetings are not a knee-jerk reaction to problem
solving as some suggest, but a vehicle for creating a
synthetic corporate entity – a virtual member of the
development team – that can adopt the responsibility
for the participant's poor decision making and
manifest inabilities. Only when they have abandoned
their reflexive animosity towards meetings and
recognized them for the ritual scapegoat that they
are, can developers really appreciate the benefits of
MDD.

* First published 30 Mar 2006 at
http://www.hacknot.info/hacknot/action/showEntry?eid=84
1 Test Driven Development, Kent Beck, Addison Wesley, 2003
2 Object Oriented Software Construction, 2nd Ed., Ch 11, Bertrand
Meyer, Prentice Hall, 1997

Extreme Programming and Agile
Methods

EXTREME DEPROGRAMMING 59

Extreme Deprogramming*

In recent weeks I’ve read two books by cult
survivors. The first, "Inside Out” by Alexandra
Stein1, describes her ten year embroilment in a
Minneapolis political cult called “The O.” The
second, "Seductive Poison" by Deborah Layton2,
details the author’s involvement with the “Peoples
Temple,” the religious cult lead by Jim Jones, who
engineered the mass suicide of 900 of his followers
in 1978.

Reading each I became aware of the similarities in
the methods for control, manipulation and persuasion
that both cults employed. It also occurred to me that
those techniques were not just features of groups that
would conform to the traditional definition of a cult,
but also extended to what might be called benign
cults. Think of the fierce loyalty of members of
pyramid organizations such as Amway and Mary
Kay; think of brands with a loyal consumer base like
Apple and Harley Davidson3; and finally, think of the
ardent supporters of Extreme Programming.

By examining some of the characteristic features
of cults (benign and otherwise) and calling out their
presence in the recently popular XP movement, I
hope to throw some light on why this technical cult
incites such fervor and emotion in certain members
of the development community.

Drawing on the work of thought reform specialist
Robert Lifton and others, consider the following
characteristics of a cult, all of which are displayed by
XP:

• Sense of higher purpose
• Loaded language
• Creation of an exclusive community
• Persuasive leadership
• Revisionism
• Aura of sacred science

Sense Of Higher Purpose

Cult members believe that they are privy to special
truths and insights not known to the general
community, and that it is their mission to spread
this knowledge to others.

I could only laugh when I read Scott Ambler’s
response4 to a letter taking issue with an article on
outsourcing that he wrote for Software Development
magazine. In the July 2003 issue he wrote "While it’s
nice that so many Indian companies have high CMM
ratings, it doesn’t reflect modern thinking about

software development. CMM and Six Sigma have a
tendency to lead to prescriptive, documentation-
heavy processes." These are the words of a zealot,
who is so convinced of the righteousness of his
beliefs that he is willing to elevate them to the status
of being representative of "modern thinking about
software development." In unguarded moments, it is
occasionally conceded that XP is not the answer to
all software development problems, but that is
certainly the attitude portrayed by many of its
devotees. Spend any time reading
comp.software.extreme-programming and you will
not be able to help but notice the thinly veiled
arrogance and elitist attitude behind the postings of
many of XP’s most zealous followers. This is
definitely a group of people who think they have got
it, and that anyone else not similarly enthused is a
laggard.

Loaded Language

Cults create a custom vocabulary for their
members. New words are invented, existing words
are redefined, and a jargon of trite and pat clichés
is developed.

Perhaps XP’s most egregious effect on the broader
software development community has been to infect
communication with cutesy slogans and acronyms.
No one could overlook the overuse the word
"extreme" has been put to in the marketing of a host
of unrelated products and concepts. The only
common meaning amongst Extreme Programming,
Extreme Project Management, Extreme Design and
Extreme Testing is the implication of identifying a
product that is sufficiently different from previous
offerings to warrant purchase.

"Refactoring" has been abducted from its proper
home in the algebraic texts and elevated to the status
of an essential work method, which one must apply
"ruthlessly." If we consider that "rework" or
"restructuring" are essentially synonyms for
"refactoring", we see that this piece of custom
terminology is only dignifying the act of investing
effort to correct ill-considered implementation
decisions for no functional gain. In general usage, I
have noticed the term being used as an even broader
euphemism to disguise and minimize bug fixing and
functional extension.

Particularly offensive is the frequent
characterization of XP as "disciplined". XP may
satisfy the weakest definitions of the word
"disciplined" in so far as there is some regularity and
control in its methods. But these minor concessions
to true rigor are in fact just the leftovers remaining

60 HACKNOT

after the elimination of particular activities from a
truly disciplined development process – one that
includes formal documentation and design. The
abandonment of these activities is precisely where
XP’s principal appeal to many lies – that there are
fragments of a rigorous development process
remaining after the unpleasant stuff has been cast
aside is hardly sufficient basis upon which to claim
that the overall work pattern exhibits discipline –
unless one considers the determined pursuit of the
path of least resistance to evidence discipline.

The XP jargon serves the same purpose as it does
in any cult, to elevate the mundane to the significant
through relabelling, and to misdirect attention away
from failings and inconsistencies in the cult’s value
system. It is a shame that the XP community did not
apply its own YAGNI (You Ain't Gonna Need It)
principle to the invention of such novel terminology.

Creation Of An Exclusive Community

A cult provides a surrogate family for its members,
who feel somehow separated and at odds with
mainstream society.

Cults are a refuge for the uncertain. For those
feeling lost or without direction, the faux certainty of
a cult provides welcome relief. Software
development is a field full of uncertainty. The
increasing societal reliance upon software and the
attendant but conflicting requirements for speedy and
reliable development, has outpaced our ability to
learn better ways to do our work. Faced with this
unsatisfactory situation and desperate for a solution,
the development community is vulnerable to the
claims and promises made by XP. The fact that there
is a community of enthusiastic proponents behind XP
serves only to enhance its credibility via the principle
of social proof5. In truth, the presence of such a
community only evidences the widespread confusion
about software development methods, coupled with
the hope that there is some answer that doesn’t entail
unpleasant activities such as documentation.

Persuasive Leadership

Central to almost all cults is the founding member,
a figure who through the strength of their own
conviction is able to attract others to their cause.

The leaders of the XP movement are three
members of the C3 project where XP was piloted –
Kent Beck, Ron Jeffries and Ward Cunningham –
and to a lesser extent the industry figures who have
adopted it as their personal cause – Scott Ambler and

Martin Fowler being amongst these. These people
have generated an impressive amount of literature
which forms the basis for the ever growing XP
canon. They also serve as the XP community’s
ultimate arbiters of policy and direction. Reading the
comp.software.extreme-programming newsgroup I
notice people continually directing questions about
their own interpretations of the XP doctrine to these
central figures, seeking their approval and the
authority of their advice. That there is a need for
personal consultation in addition to the information
provided by the large amount of literature on XP
speaks of the imprecise and variable definition of the
subtleties of XP practice. That knowledge of what is
and isn’t OK is seen to be held by a central authority
and is not in the hands of the practitioners
themselves, echoes the authoritarian distribution of
sacred knowledge that is present in most cults.

Revisionism

Cults often craft alternative interpretations of
world events, both present and historical, that
serve to reinforce their belief system.

There are a number of examples of revisionism in
XP. The most blatant concern the C3 project – the
original breeding ground for XP. Proponents of XP
repeatedly use this project as their poster child, the
tacit claim being that its success is evidence of the
validity of XP. However the reality is that the C3
project was a failure – ultimately being abandoned
by the project sponsor and replaced with an off-the-
shelf solution6. XP advocates have chosen to cast this
failure as a success, by carefully defining the criteria
for success that they claim is relevant. It is typical
cult behavior to interpret real world events in a light
that confirms existing beliefs, and to deny contrary
evidence as being inauthentic.

One of the advantages of having a central
authority is the ability to reconceive fundamental
beliefs when necessary. The change in the attitude of
the XP "inner circle" with regard to the production of
documentation is an example of this. In its initial
conception, documentation was regarded as
unnecessary. In the light of real world experiences
with XP, this stance softened to include the
production of documentation "if you are required to."
More recently, the philosophy has been stated as "if
it’s valuable to you, do it." Some would dismiss this
as a result of XP’s infancy, claiming that it is still
being developed and refined; but I believe these
shifts in position are the thought reformer's attempts
to incorporate unflattering real world experience into
their original ideation. Whatever real practitioner’s

EXTREME DEPROGRAMMING 61

experiences are, we can be sure that the primacy of
XP doctrine will remain.

Aura Of Sacred Science

Which implies that the laws and tenets of the cult
are beyond question.

Central to XP is the notion of the 12 core
practices. These technical equivalents of the Ten
Commandments are considered interdependent and
so the removal of any one of them is likely to cause
the collapse of the whole. This all-or-nothing
thinking is typical of cults. Members must display
total dedication to the cult and its objectives, or they
are labeled impure and expelled from the
community. This discourages members from
questioning the cult’s fundamental beliefs.

In the case of XP, the organizational
circumstances required to perform all the core
practices are so particular that it is doubtful if more
than a handful of companies could ever host an
authentic XP project. Therefore practitioners are
forced to perform partial implementations of XP. If
they are unsuccessful, then failure is attributed to the
impurity of their implementation rather than any
failing or infeasibility of XP itself. The quest for
individual purity is a feature common to many cults,
as is the contrivance of circumstances that render it
ultimately unachievable.

Much is made of the "humanity" of the
methodology, the transition from "journeyman" to
"master", and the focus upon individual qualities and
contributions. Consideration of these softer, cultural
aspects of XP has devolved into the sort of
pseudoscience we often find in new age cults
centered on the notion of "personal power" and
"personal growth". To quote one zealot "XP is a
culture, not a method."7 The elevation of a new and
unproven methodology to the philosophical status of
a Zen-like belief system demonstrates the skewed
perspective that typifies cult mentality.

Conclusion

Whether you choose to label XP a cult is not as
important as whether you recognize that it displays
cult-like attributes. I believe that the psychological
and social phenomenon underlying these six
characteristics account in no small part for the
current popularity that XP enjoys. I also believe that
they point to its future.

Cults tend to have a very limited life. The hype
and fervor can only sustain the devotion of the

members for so long, and eventually they will look to
other sources for inspiration – those leaving a cult are
frequently drawn into another within a short time.

I believe that XP will eventually lose its luster and
fall into disrepute like so many other religious,
commercial and technical cults of the past. Many of
the current adherents will cast about for a new cause
to follow, and no doubt the marketing departments of
the technical book publishers and software vendors
will be only too happy to provide them with a new
subject upon which to focus their devotion.
Meanwhile, software projects will continue to fail or
succeed with the same frequency as always, as our
industry continues its search for a panacea to the ills
of software development.

* First published 29 Jul 2003 at
http://www.hacknot.info/hacknot/action/showEntry?eid=11
1 Inside Out, Alexandria Stein, North Star Press, 2002
2 Seductive Poison, Deborah Layton, Anchor Books, 1999
3 The Power of Cult Branding, M. Ragas and B. Bueno, Prima
Publishing, 2002
4 Software Development, July 2003
5 Influence: The Psychology of Persuasion, Robert Cialdini, Quill,
1993
6 Extreme Programming Refactored, M. Stephens and D.
Rosenberg, Apress, 2003
7 Enculturating Extreme Programmers, David M. West

62 HACKNOT

New Methodologies or New Age
Methodologies?*

I first encountered the coincidence of the aesthetic
and the technical in a secondary school mathematics
class. After leading the class through an algebraic
proof, my teacher said "You have to admit there's a
certain beauty to that." As I recall, he was met by a
room of blank stares, one of which was my own. I
remember thinking "You sad, sad man." I really
couldn’t see how a mathematical proof could be
called "beautiful". Beauty was an attribute reserved
for the arts – a song could be beautiful, a painting
could be beautiful, but a mathematical proof might at
best be called "ingenious."

It wasn’t until some years later at University,
while studying data structures and algorithms that I
would come to some appreciation of what my
mathematics teacher had meant. An appreciation of
certain algorithms would leave me with a smile on
my face, and an ineffable feeling of satisfaction. I
believe that to appreciate the beauty of something
technical first requires the observer to care a lot
about the subject at hand, and that what we
experience has something to do with a sense of
admiration for the mind that produced the thing,
rather than the thing itself.

That it is possible to appreciate the technical in an
aesthetic way is a realization that I suspect comes to
many people after spending long enough in a
particular technical field. But that aesthetic is a
quality of an existing artifact, not a basis for its
production. The sense of "rightness" that we
associate with an elegant solution to a problem is the
end result of a rather less romantic, technical
struggle. It is not the starting point for that struggle,
but rather a flag that indicates that we have arrived at
a good resolution.

The New Age Methodologies

One of the more disturbing characteristics of the
New Methodologies of software development is the
tendency to impose a new aesthetic upon existing
knowledge, and then interpret that aesthetic as
evidence that something new has been discovered.
Hence, we find the literature of the New
Methodologies littered with references to Zen
philosophy, craftsmanship, martial arts and personal
empowerment. This is the stuff of pseudo-science
and mysticism. By indulging in this sort of
"discovery by metaphor," we risk descending into a

stasis of vague, self-referential navel gazing that
characterizes the delusional New Age movement.

In the following sections I look at a number of the
software development metaphors that recent authors
have proposed as a means of gaining insight into the
software development process.

Personal Empowerment

The New Methodologies purport to be more
focused on people than on process. This is often
construed as empowering the programmers against a
harsh and dictatorial management. The New
Methodologies have values and principles at their
foundation, on an equal footing with actual
techniques and practices. Commonly touted values
are communication, simplicity, feedback, courage
and humility. No doubt these are worthwhile values,
not only in software development but in practically
every other field of human endeavor. So why would
we chose to focus on these values particularly, and
their relationship to software development? Perhaps
the biggest effect of highlighting this arbitrary
selection of values is to add a certain faux credibility
to a methodology by associating it with noble
concepts.

The irony of the "empowerment" message is that
the vagueness of this values-based approach actually
has the opposite effect – it disempowers the
programmer. The power is placed instead in the
hands of the methodologists, who must be consulted
as to what the appropriate interpretation of these
values is, in the situations the programmers actually
encounter in the field. These spokesmen have
become moral arbiters. A more precise and objective
methodological foundation would empower
individuals to unambiguously interpret the
methodology’s recommendations in their local
environment, without the need to continuously seek
clarification from the methodologists.

For more rational discussion of the predilections
and working habits of software developers see:

• "The Psychology of Computer Programming" by
Gerald Weinberg

• "Peopleware" by Tom DeMarco and Timothy
Lister

• "Constantine on Peopleware" by Larry
Constantine

• "Understanding the Professional Programmer"
by Gerald Weinberg

NEW METHODOLOGIES OR NEW AGE METHODOLOGIES? 63

Eastern Mysticism

Nowhere do the New Methodologies and the New
Age movement intersect to more egregious effect
than in the area of Zen philosophy. In an attempt to
elevate the ordinary to the profound, or to disguise
self-contradiction as sagacity, the New
Methodologists will often invoke the inexplicable
wisdom of Zen.

In the new edition of "Agile Software
Development", Alistair Cockburn offers us this:

"It is paradoxical, because it is not the case, and at
the same time it is very much the case, that
software development is mathematical ...
engineering ... craft ... a mystical act of creation".

Worse yet, this obfuscating nonsense is later
followed by:

 "The trouble with using engineering as a reference
is that we, as a community, don’t know what that
means."

So the "engineering" metaphor is unacceptably
difficult to understand, but koan-like homilies are
OK?

Cockburn then introduces his Shu-Ha-Ri model of
software development practice. Shu, Ha and Ri are
the three levels of practice in Aikido, and roughly
translate into learn, detach and transcend. In drawing
this obtuse metaphor, Cockburn manages to
simultaneously insult the intelligence of his readers
and the martial arts tradition whose authenticity he is
trying to co-opt. Much is made of the fact that
software developers can be considered to pass
through successive stages of facility that correspond
to Shu, Ha and Ri. Nothing is made of the fact that
the same analogy can be drawn with every other
occupation whose practitioners grow in expertise
over time.

One keeps waiting for the admission that all this
armchair philosophizing is just self-deprecating jest,
but it seems it is not going to be forthcoming. If you
need a laugh, I'd encourage you read Kent Beck's
message to a young extremist1 and the comments that
follow it. A greater pile of pseudo-intellectual
backslapping you will not find anywhere outside of
the self-congratulatory annals of the New Age
movement.

Craftsmanship

The portrayal of "software development as craft"
reached its most irksome zenith in Pete McBreen’s
loathsome book "Software Craftsmanship"2. The

book presents a false dichotomy between engineering
and craft. Engineering is mischaracterized as a soul-
less and impersonal undertaking that ignores the
contribution of, and variations between, individuals.
However craftsmanship values the individual and
nurtures their development through apprenticeship-
like relationships with other practitioners.

McBreen makes the profound observation: "...
large methodologies and formal structures don’t
write software; people do." Who’d have thought? I
rather thought these structures were there to support
the people in their efforts, not to supplant them. But
apparently the Big M Methodologists are conspiring
to eliminate the human contribution altogether and
our only chance to save our jobs and our identities is
to embrace our "craft" and our role in its
development.

I’m sure many developers like to think of
themselves as craftsmen – it strokes their egos and
elevates their self-perceived status. However the
notion of a craft is usually reserved for activities
where artifacts are produced through manual skill
and dexterity e.g. carpentry, painting, sculpture. In
common usage you will also find it applied to certain
intellectual artifacts (as in "well crafted prose") but
not those artifacts of a more technical origin, of
which software is surely one (we don’t speak of
"well crafted formulae")

To liken software developers to craftsmen may be
superficially appealing, but it represents a retreat into
the vague and inscrutable domain of the New Age
theorist.

This Is Engineering

Engineering is the use of scientific knowledge to
solve practical problems. It is characterized by
activities such as planning and construction.
Engineers maintain such values as precision, realism
and integrity. Taking an engineering-based approach
to software development in no way denies the
significant influence that individual abilities and
social dynamics exert over the outcomes we produce.

I believe engineering remains a suitable basis
upon which we can make concrete advances in
software development practices. The kind of New
Age humanism we are seeing incorporated into the
New Methodologies only encourages endless
philosophizing, metaphysical thinking and wasted
effort spent in the exploration of non-falsifiable
premises.

Follow The Money

64 HACKNOT

If the New Methodologies continue to follow the
examples of their New Age counterparts, it can only
be a matter of time before they begin to employ some
of the same merchandising tactics. Only half in jest, I
contend that before too long we will see the
following items available for your convenient online
purchase:

• Tapes and CDs of lectures given by notable New
Methodologists, that you can listen to in your car
on the way to work. Titles may include "The
Path To Agility" and "Power Programming".

• Office decorations in the mould of the
Successories products. Inspirational plaques
with panoramic landscapes and themes like
courage, simplicity, humility etc. Matching
mouse pads, mugs and badges.

• The "Agile Thought of the Day" email services

• Hokey accessories like diaries and calendars
featuring slogans like "You Ain’t Gonna Need
It" and "Do The Simplest Thing That Could
Possibly Work". The XP Programmer’s cube3
may be an early prototype.

Finally, let me leave you with a Zen parable. Make
of it what you will:

Bazen and an Engineer were out walking together.
Bazen turned to the Engineer and said, "Tell me
Engineer, what is the sound of one hand
clapping?" The Engineer, swatting at the air near
one ear, replied "It's sort of a 'wooshing' noise,
isn't it?" At this, Bazen was enlightened.

* First published 10 Nov 2003 at
http://www.hacknot.info/hacknot/action/showEntry?eid=34
1 http://c2.com/cgi/wiki?ToAyoungExtremist
2 Software Craftsmanship, Pete McBreen, Addison Wesley, 2002
3 http://xp123.com/xplor/xp0006/index.shtml

RHETORICAL ANTIPATTERNS IN XP 65

Rhetorical AntiPatterns in XP*

Over the past few years, I’ve spent more time in
consideration of XP and its followers than is in the
best interests of one’s mental health. My pre-
occupation with it springs from my broader interest
in skepticism. It’s fascinating to watch the same
forces that drive cults, pseudo-science and other
popular delusions at work in one’s own profession.
It’s like driving past a road accident. It’s tragic and
disturbing, but so entrancing that you just can’t look
away.

One of the aspects of XP that is particularly
intriguing is the way that certain rhetorical devices
are used repeatedly to prop up the XP belief system
in the face an uncooperative reality.

This post describes the four main rhetorical
devices that XPers use to influence their audience
and each other. Once you see how it’s done, you’ll
find yourself able to "talk XP" like a native.

The four techniques are:

• Adopt A Tone Of Authority And Eschew
Equivocation

• Make Bold Assertions And Broad
Generalizations

• Use Evidence Whose Veracity Can Not Be
Challenged

• Create Slogans And Neologisms

Adopt A Tone Of Authority And Eschew
Equivocation

No matter what questions you might have, there is
someone out there that is willing to sell you the
answers. And although the vendors come in many
different forms they have one characteristic in
common – they all appear absolutely sincere and
absolutely sure of themselves. So must you be if you
are to talk like a true XPer.

Fortunately, the impression of authority is easily
created with some linguistic sleight of hand:

• Never qualify your statements or concede error.
If you say "I don’t think that is true" nobody will
notice. But if you say "That is absolutely false"
you can capture people’s interest and attention.

• Intimate that you are speaking on behalf of
others. For example, the statement "Software
developers don’t work that way" is more
compelling than the statement "I don’t work that
way." Stating that "Everybody knows X" is more
impressive than stating "I know X."

Exercise some restraint with these techniques. It’s
easy to go too far and sound like a born-again
prophet. You will find it useful to temper your
pontifications with the occasional self-deprecatory
statement, just to make it clear to your audience that
although you know you are very wise, you don’t
think you’re the Messiah.

Another way of elevating your own perceived
authority is to denigrate others. For example, those
not enamored of pair programming may be accused
of being socially inept or sociopathic. More recently,
we have seen attempts to attribute a distaste for pair
programming to genetic disorders such as autism and
Asperger’s syndrome. Statements so personal are
delightfully controversial, and can also be used to
goad detractors into overly emotive responses, which
can be interpreted as further evidence of mental
instability. Applied frequently enough, such
pathologizing will discourage your detractors from
making public criticisms, knowing that they will be
virtually waving their "freak flag" for all the world to
see.

Finally, boost your own credibility by borrowing it
from elsewhere. Make occasional references to:

• Eastern philosophies and spiritual traditions
• Movies, literature and personalities from pop

culture
• Advanced mathematics and physics, particularly

chaos theory and quantum mechanics
• Political ideologies

Make Bold Assertions And Broad Generalizations

XP rhetoric is characterized by broad and
sweeping generalizations about software
development practice, projects and developers. A
classic example is the following, from Kent Beck:

Unacknowledged fear is the source of all software
project failures.1

It takes a special kind of person to make such
claims – specifically, one that is breathtakingly
arrogant. If this arrogance doesn’t come naturally to
you, then you will have to affect it. The more
spectacular and entertaining your statements, the
better the chance that they will be turned into a sound
bite or quoted by a journalist. The media loves
attention grabbing one-liners and there is little you
can say that is so ridiculous that the determined
reader will not find some way to interpret it as both
meaningful and insightful.

Do not let an absence of supporting evidence
constrain your imagination. If detractors point out
exceptions to your generalizations, simply dismiss

66 HACKNOT

those exceptions as being so atypical or statistically
insignificant as to not warrant revision of an
otherwise useful rule of thumb.

In argument, coupling these generalizations with
baseless assertions is an effective "one-two" punch to
your opponent’s frontal lobes. If they should be
rendered speechless at the audacity of your
statements, seize the opportunity to change the
subject or offer some non-sequitur, so that they will
not have the opportunity to challenge you.

Most importantly, remember that the credibility of
your propositions rests almost exclusively on your
ability to deliver them with absolute conviction. The
software development community are a gullible lot,
and provided that you sound like you know what
you’re talking about, a great number of them will
simply assume that you’ve got the facts to back it up.
For those unencumbered by integrity, this is the ideal
flock to lead out of the programmatic wilderness, if
only you can make the cattle-call compelling enough.

To get you started, here are some bold assertions
and baseless generalizations that are anti-XP in
nature. Feel free to use them in your next exchange
with an XPer.

• It is inevitable that XP will fade into technical
obscurity, just like every other fad the software
industry has witnessed in the last thirty years.

• The fervor with which XPers cling to their code-
centric methodology betrays the underlying fear
which drives them: the fear that if they should
ever stop typing someone might realize that
coding is their only skill. In a modern business
context the ability to code is useless if not
accompanied, in equal or greater measure, by the
ability to perform a whole host of non-coding
activities that XP does not even address.

• Extreme programming is not about
programming. It is about the attempts of a small
group of attention-seeking individuals to make
their mark on the computing landscape.

• The irony of Extreme Programming is that to
make it work in the real world, you have to
moderate the "extremeness" to such an extent
that you’re left with just "programming."

Use Evidence Whose Veracity Can Not Be
Challenged

The software development community has a very
low evidentiary standard – somewhere approaching
zero. In other words, personal observations and
testimonials are the only corroboration that most will
require for any statement you might make. Empirical

software engineering is not a popular field and the
task of gathering empirical data sounds altogether
like too much hard work for most to be bothered with
it. All the numbers and statistics that it generates
make really boring reading. Additionally, it takes
time to conduct experiments, and who has that sort of
time when you’re busy "riding the wave" of the latest
technology fad?

These factors are a gift to you, the burgeoning XP
orator. With suitably contrived "anecdotal evidence"
you can justify any claim you might make, no matter
how preposterous. Whether such evidence has any
basis in fact is almost entirely irrelevant. Anecdotal
evidence is qualitative in nature, which lends itself
readily to exaggeration and confabulation. You can
create anecdotal statistics, safe in the knowledge that
nobody has any better information with which to
challenge you. Here’s an example from Robert
Martin:

We find that only one in twenty programmers
dislike pairing so much that they refuse to continue
after trying it. About one in ten programmers start
out being strongly resistant to the idea, but after
trying for a couple of weeks about half of them find
that pairing helps them.2

If anyone does try to challenge your statistics, just
ask them why they are so hung up on numbers, and
suggest that an emphasis upon quantification in
software development is unreasonable and
impractical.

If the purported evidence originates from your
own experiences, prefix it with "in my experience"
and claim "I’ve seen it with my own eyes." Who
could doubt that? If you want evidence to have come
from someone else, to create the impression of
independence, remember that you can always get the
answers you want by asking the right questions of the
right people.

Create Slogans And Neologisms

If you’ve ever wondered why the XP lexicon
contains so many trite catch phrases like "embrace
change" and cutesy terms like "planning game" and
"YAGNI", then you’ve hit upon two of the most
important features of the vernacular – slogans and
neologisms.

Slogans are a frequently used marketing device.
They’re like the "hook" in a pop song – they are
music to the ears of the masses. As an added bonus,
they lend themselves to being parroted off
dogmatically – which will discourage people from
thinking (critically or otherwise) about the validity of
the propositions they embody. XP slogans are the

RHETORICAL ANTIPATTERNS IN XP 67

rhetorical equivalent of the pre-prepared meals that
TV cooking show hosts introduce with the phrase
"here’s one I made earlier."

To get you started, here are a few anti-XP slogans
you might like to put on a t-shirt or poster:

• Pair programming – for those with only half a
brain

• eXtreme Propaganda not welcome here
• Embrace Change (You’re Gonna Need It after

you get fired)
• IfXPIsSoGreatWhyCan’tTheyFindTheSpaceBar

?

Neologisms are a trademark of many
methodologies. By creating new terms you also
create the impression of invention; of having
discovered or created something so novel that no
existing term adequately describes it. Conveniently
then, neologisms allow you to take old knowledge,
give it a new name, and then portray it as being
something new. What’s more, if you created the
term, then you have a monopoly over its definition,
which you are free to change from time to time as
suits your purpose. You can even furnish common
terms like "success" and "simple" with methodology-
specific definitions, if this is what it takes to preserve
the truth of some rather brash statements you made
earlier. Do not be hampered by the bug-bear of
consistency. Feel free to develop conflicting
definitions of terms, giving you the freedom to later
invoke whatever definition is most convenient for the
situation you’re in. If anyone should highlight your
self-contradiction, simply excuse it as evidence of a
deeper wisdom that defies even your complete
understanding.

A Catechism

To illustrate how these techniques can be used in
combination, I offer you the following dialog that I
may or may not have had recently (hey, it's anecdotal
evidence – how are you going to challenge me?) with
a hard-core XPer. I chose to abandon my usual
skeptical mode of argument and get "down and dirty"
with some XP lingo. I encourage you to try it
sometime. It’s quite liberating to be free of the
constraints of logic, and the burden of proof.

XPer Hey Ed, want to do some pair programming
with me?

Ed: No thanks - pair programming isn’t for me.
XPer: Have you tried it?
Ed: Briefly, but I disliked it - which wasn’t

surprising. It’s quite at odds with my
personality.

XPer: How long did you try it for?
Ed: Oh - about four days or so
XPer: (laughing) That's not nearly long enough.

And you’ve got to make sure you're doing it
right, otherwise it won't work.

Ed: No … really. No amount of persistence is
going to change the situation. I know
enough about my own nature to say that
with some confidence.

XPer: But why not try it again? What are you
afraid of?

Ed: [switching to XP lingo] I'm afraid of ending
up in a state of total cognitive surrender, like
yourself and other similarly disillusioned
XP zealots. Anyway – why do you need to
program with someone else? Aren't you
good enough to work by yourself?

XPer: :[taken aback] It's not about "good enough",
it's about "better". I'm more productive
when I work with someone else.

Ed: So you claim. If I claimed to be more
productive with a whiskey and soda by my
side, would that warrant charging up a bottle
of Jack Daniels to the project? Playing
around with novel work methods at the
customer's expense is professionally
irresponsible.

XPer: But pair programming works! I've
experienced it for myself!

Ed: No, what you've experienced is having a
nice time with a buddy. Then you justified it
to yourself by claiming a productivity
improvement. People see what they want to
see.

XPer: I don't think you can comment – you haven't
really tried pair programming

Ed: Or to put it another way – I'm not the slave
to technical fashion that you are – which
actually gives me a more objective
viewpoint from which to comment. Pair
programming is a fantasy - there is simply
no evidence that it works. Those who think
it does are kidding themselves.

XPer: How can you say that? There was this
university study that demonstrated
experimentally that it works!

Ed: Are you talking about the study by Laurie
Williams at the University of Utah?

XPer: Yeah – that's the one.
Ed: Tell me – have you read William's thesis?
XPer: Well – no, but I've read about it.
Ed: So I can't comment on pair programming

because I haven’t really tried it, but you can
comment on experiments that you haven't

68 HACKNOT

even read
XPer: Look – I may not have read the details, but I

know what it proved.
Ed: What it proved is that it's easy to do bad

experiments, and that many software
developers like yourself are gullible enough
to believe anything they hear, so long as it
fits in with their preconceptions. If you
really knew about pair programming, you'd
already know that the Williams experiment
proves absolutely nothing.

XPer: I've paired with plenty of developers in the
past, but nobody got upset about it like you.
Have you got some kind of problem?

Ed: If you think that others should necessarily
have the same preferences as you, then I’d
suggest it’s you that’s got the problem. I'm
happy for you to pair program if you want,
but I must decline the offer to participate in
your hallucination.

XPer: [shaking head] Ed, you've got to learn to
"embrace change". The whole XP thing is
taking off – "agile" is the way software
development is gonna be from now on. Get
on board or step aside.

Ed: "Change imposed is changed opposed."
XPer: How do you mean?
E:

For one so agile, you’re a bit slow on the
pick-up. In this context, it means that if you
try and force people to work a way they
don’t want to, then they'll fight back.

XPer I don't hear anyone fighting against XP.
Ed: Then where have you been for the last five

minutes? You just demonstrated my point –
people hear what they want to hear.

XPer: Ok, maybe some folks don’t get it, but there
are plenty of people who do, and who are
achieving success.

XPer: At least as many people have tried XP and
failed. Some of them go on to claim success
anyway, because admitting to failure would
be too embarrassing. Most of them just say
nothing and hope nobody notices their stuff-
up. If you think the success-stories you read
about in the media are representative, you’re
kidding yourself. The real story is very, very
different. "Success has many fathers, but
failure is an orphan."

XPer: OK, maybe there's some truth to that. But
you can’t be saying that all these XP
proponents are lying?

Ed: No – not all of them, but some of them are,
and some of them are exaggerating. The rest
are probably what we call "pious frauds" -

that is, they genuinely believe what they’re
saying, but are really misconstruing the
influence of XP on their projects. It's easy to
do if you play down the negatives and
emphasize the positives.

XPer: Say – didn't you tell me once that you're a
skeptic? Shouldn't a skeptic keep an open
mind?

Ed: Yes, but not so open that their brains fall
out.

* First published 19 Apr 2004 at
http://www.hacknot.info/hacknot/action/showEntry?eid=51
1 Planning Extreme Programming, Kent Beck and Martin Fowler,
p8
2 Artima web logs forum, posted November 15, 2003, R. Martin

THE DEFLOWERING OF A PAIR PROGRAMMING VIRGIN 69

The Deflowering of a Pair
Programming Virgin*

In your readings of the voluminous XP canon, you
will no doubt have encountered mention of the
practice of Pair Programming1. If, like me, you are of
a solitary disposition, you will have found yourself
thinking – nice idea, but not for me.

Many of us are attracted to software development
as a career because we enjoy the experience of
solitary problem solving. We relish those times when
we are "in the zone" – where our locus of concern
narrows to exclude everything but ourselves, the
keyboard and the problem at hand. This state can
produce a feeling of mild euphoria, and gives us a
place of retreat from the worries and concerns of our
immediate environment.

The practice of Pair Programming puts an end to
all of this. The problem solving medium moves from
an interior dialogue to an exterior one. The silence
we traditionally associate with deep thought and
focused effort is replaced with the interaction and
debate we more usually expect from a meeting or
brainstorming session.

It was with some trepidation then that I recently
accepted an offer from a colleague to engage in some
Pair Programming as a way of extending my
knowledge of certain subsystems of our application
in which he had a greater degree of involvement than
myself. The activity lasted about four days – long
enough to complete the implementation and testing
of a minor system feature in its entirety. The
experience was an interesting one, but on the whole,
not one that I'd care to repeat with any regularity.

Pair Programming studies so far conducted have
tended to originate from academic environments, and
so focus on novice-novice pairings amongst students.
It is not clear that their findings translate into a
commercial programming context staffed by more
mature professionals. By contrast, myself and the
colleague I paired with have been doing whatever it
is that we do for 10+ years each. In the period
described herein, we sat together for approximately
six hours on each day, using the same person's
computer each time.

Following is a point-form summary of my
experiences over this period, both positive and
negative.

Positives

• When pairing, one programmer keeps the other
from goofing off and wasting time web surfing
etc.

• You tend to be more diligent in the construction
of unit tests and more careful in general when
you know that someone is watching you and
looking for error. Also, as a matter of
professional pride, you don’t want to be seen to
be hacking by a colleague.

• The quality of code produced is marginally
better than I would achieve at a first cut when
coding individually.

• When two people have participated in the
construction process, familiarity with the code is
spread further amongst the team members which
mitigates the dependence upon any individual. If
there is no external documentation, it may be
more efficient to acquire familiarity with a piece
of code on this basis, than by the alternative –
reverse engineering.

• There is the opportunity to pick up tricks and
shortcuts from watching someone else go about
the arcana of their job (e.g. learning to use IDE
features that you were previously unaware of).

• Mistakes are picked up more quickly due to the
overseeing of one's partner.

Negatives

• The constant interaction is very tiring. Most days
I went home absolutely exhausted from the
enervating effect of continuous dialog, and
frequently with a headache.

• There is a lot of noise produced, which tends to
disturb those in the surrounding area. A room
full of pair programmers, as advocated by XP,
would be very noisy indeed.

• There are numerous ergonomic problems when
two people share a computer. My colleague
prefers a conventional keyboard with
international settings activated (he is bilingual),
a trackball and a medium screen resolution. I
prefer a split keyboard, no extended character set
capability, a wheelie mouse and a slightly higher
screen resolution. We had to swap hardware
whenever we "changed drivers," which was
annoying. Had our preferences in screen
resolution not been similar, working from the

70 HACKNOT

one VDU could have been impossible (for
example, if one of us had low vision).

• There is a lot of "pair pressure" created from
having someone watching every character you
type. It tends to produce a self-consciousness
that is inhibiting and constitutes a low-level and
constant stressor.

• There is a tendency to feel constantly under time
pressure when typing, because someone is
waiting for your every keystroke. This produces
a certain degree of "hurry up" sickness, which
discourages any delay in doing more typing,
such as that produced by thoughtful
consideration of design issues.

• Groupthink can occur, even when there are only
two people in the group. When you are working
so closely with another, you are very wary of
argument or disagreement, lest it sour the
working relationship. Therefore people tend to
agree too readily with one another, and seek
compromise too quickly. Whoever chimes in
first with a suggestion is likely to go unopposed.

• Time spent away from one’s pair partner tends
to be non-productive as your thoughts are
dominated by the task the pair is currently
tackling. This makes it difficult to effectively
interleave other tasks with an extended Pair
Programming session.

• Both myself and my colleague concede that we
work in a different way when pairing than when
working individually. Alone, our work patterns
tends to consist of short bursts of productivity,
separated by periods of mental slouching, by
way of recuperation and cogitation. When
pairing, those intermittent rest breaks are
removed for fear of hindering someone else’s
progress, and because the low level details of
different people’s work habits will be unlikely to
exactly coincide.

Conclusions

From this brief experience in Pair Programming it
seems clear to me that the appeal (and therefore
success) of the practice is likely to vary significantly
between individuals. More gregarious programmers
may enjoy the conversation and teaming effects,
whereas more introverted programmers will find the
constant interaction draining.

I am particularly interested to note that reports of
Pair Programming experiences commonly available
through the media tend to have a positive reporting

bias. Experience reports of the form "we tried pair
programming and we loved it" are not difficult to
come by 2(which is not to say they are significant in
number, but simply that a few studies are very
frequently cited), but anecdotes that end "... and then
he resigned because he couldn’t bear the constant
pair programming" are not as readily available. (for
some of these, see the soon-to-be-reviewed-on-
Hacknot "Extreme Programming Refactored: The
Case Against XP").3

I don’t believe my take on Pair Programming is
likely to be singular. My personality type and
communication preferences are not at all uncommon
amongst developers. In Myers-Briggs terms I am an
ISTJ4, which is the most common personality type in
the IT industry. I believe that many developers will
find Pair Programming to be a difficult and
ultimately unsustainable work practice – one that
removes from their work day some of the basic
elements that first attracted them to their occupation.

For a pairing of mature developers, I believe the
effect on code quality is vastly overstated amongst
the XP community. That there is some marginal
improvement in the quality of the code when first cut
seems clear. That this improvement justifies the
investment of effort required to produce it, or that it
could not be obtained more efficiently through
regular code review techniques, is not at all clear.

Finally, I believe that Pair Programming is a very
inefficient way to share knowledge amongst team
members. The total man hours invested in doubling
up can result in at best two people being familiar
with the code being worked on. A good design
document could guide an arbitrary number of future
developers to an equivalently detailed understanding
of the code, saving the expense of continual,
unassisted reverse engineering on their parts.

Addendum

Shortly after posting this, a reader asked for the
basis of my statement that ISTJ is the most common
personality type in the IT industry. The findings of
two large studies are relevant here, both of which I
found referenced in "Professional Software
Development", Steve McConnell, Addison Wesley,
2004, p63:

• "Effective Project Teams: A Dilemma, a Model,
a Solution," Rob Thomsett, American
Programmer, July-August 1990, pp.25-35

• "The DP Psyche," Michael L. Lyons,
Datamation, August 15, 1985, pp. 103-109

THE DEFLOWERING OF A PAIR PROGRAMMING VIRGIN 71

McConnell cites these two studies as finding the
most common personality type for software
developers to be ISTJ. My statement generalizes this
conclusion to the entire IT industry, which is
obviously unwarranted.

McConnell cites further studies from Thomsett,
Lyons, Bostrom and Kaiser as finding that ISTJs
comprise 25-40 percent of all software developers.

* First published 16 Sep 2003 at
http://www.hacknot.info/hacknot/action/showEntry?eid=22
1 http://www.pairprogramming.com/
2 http://www.cs.utah.edu/~lwilliam/Papers/ieeeSoftware.PDF
3 http://www.hacknot.info/hacknot/action/showEntry?eid=23
4 http://www.typelogic.com/istj.html

72 HACKNOT

XP and ESP: The Truth is Out
There!*

“Eclipses occur, and savages are frightened. The
medicine men wave wands –- the sun is cured –-
they did it.”– Charles Fort1

People have a vast capacity for self-deception.
Even members of the scientific community, from
whom we expect objectivity, can unwittingly allow
their personal beliefs and preconceptions to color
their interpretation of data. Professional ambition and
wishful thinking can turn their stance from one of
neutral observance into passionate adherence to a
position, sustained by willful ignorance of contrary
evidence. Such attitudes are common amongst the
ranks of pseudo-scientists and paranormal
researchers. Enthusiasts in this domain reward these
ersatz scientists by buying their books and journals in
numbers proportionate to the impressiveness of the
alleged experimental findings. In doing so, they
become complicit in their own deception.

Many of these enthusiasts labor under the
misimpression that the existence of ESP, PK and
other paranormal phenomena has been "proved" by
creditable scientists. Many of the researchers are
similarly deceived.

Curiously, we may be seeing exactly the same
effects currently at work in the software development
community with regard to XP. If there is sufficient
desire to find "evidence" favorable to XP, it will be
found. If there is sufficient reward for publication of
XP success stories, they will be published. The belief
that XP has been "proved" in the field can develop, if
there is sufficient desire to believe it. And if
sustaining that belief makes it necessary to ignore
conflicting evidence and censor stories of failure,
then that will also occur.

Be it XP trials or ESP experiments, there are two
sorts of bias that make it possible to find significance
where there is none, and sustain false belief. This
post examines how these biases manifest in both
domains.

Positive Outcome Bias:
Embrace Change Or Exaggerate
Chance?

Positive outcome bias is defined as:

The tendency of researchers and journals to
publish research with positive outcomes much more
frequently than research with negative outcomes.2

Suppose 100 researchers conduct an experiment in
ESP. Each professor chooses a single subject who
believes they have ESP and asks them to "sense" a
series of randomly chosen Zener cards being "sent"
to them by the person who selects the cards. Suppose
that in 50% of these experiments, the subject
achieves an accuracy greater than that which could
be attributed to chance alone. The 50 researchers
conducting those experiments are intrigued, and
decide to conduct a further round of tests with the
same subject. The other 50 researchers, knowing that
failed attempts to detect ESP are unlikely to get them
published, abandon their experiments.

In the next round of experiments, the same pattern
occurs, and 25 more researchers give up. Eventually,
all the researchers give up, but not before one has
witnessed his subject beat chance in 6 or 7
consecutive experiments - which is quite a
spectacular result! Deciding to neglect the final
experiment that caused him to stop (figuring the
subject was probably tired, anyway) the researcher
writes up his results and sends them to the editor of
the Journal of Parapsychology, in which they are
published.

Consider the deception which results:

• The PSI research community's pro-ESP bias has
been further confirmed by their receipt of this
latest research evidence

• The readers of the Journal of Parapsychology
are impressed with the evidence, and any pre-
existing belief in ESP is further cemented.

• Other researchers, perhaps even some outside
the PSI community, conclude "Maybe there's
really something to this ESP stuff after all" and
decide to conduct their own experiments in ESP,
thereby propagating the effect into another round
of investigations.

Note that neither the researcher who was
published, the research community, nor any of the
readers of the Journal of Parapsychology ever
become aware of the 99 experiments that were
abandoned because they were deemed unpublishable.
Taken in isolation, the published result may be
impressive. But taken in the context of the other 99
experiments that have silently failed, the published
result may simply be an outlier whose occurrence
was actually quite likely.

The following factors contribute to positive
outcome bias:

XP AND ESP: THE TRUTH IS OUT THERE! 73

1. Researchers who conduct uncontrolled
experiments

2. Researchers who self-censor negative results

3. Researchers who can justify to themselves the
imposition of optional starting and stopping
conditions.

4. A publication environment that favors success
stories

All three of these are features of the environment
in which the software development community
examines and reports on your favorite methodology
and mine, XP:

1. XP is often trialed on a single project, on a
non-comparative basis (controlled
experimentation would be prohibitively
expensive).

2. When an XP project fails, it will probably fail
quietly. Companies and individuals have
reputations to protect.

3. In a series of XP-related experiences, initial
negative experiences are dismissed as
"teething trouble". For an example, see Laurie
William's pair programming experiment. Her
dismissal of the last of four data sets, and
devaluing of the first of those four data sets, is
a good example of "optional starting and
stopping conditions."

4. There can be no doubt that the IT media just
loves those "XP saves the day" stories. Success
stories sell magazines.

In such an environment, XP enthusiasts will
declare "Wow, everywhere you look, XP is
succeeding" – which is true. But it's in the places that
you haven't looked that the real story lies.

Confirmation Bias

Confirmation bias is defined as:

The tendency to notice and to look for what
confirms one's beliefs, and to ignore, not look for, or
undervalue the relevance of what contradicts one's
beliefs.

When it is pointed out to PSI researchers who
claim to have successfully demonstrated ESP, that
hundreds of non-PSI researchers have tried to
replicate their results and failed, they sometimes
attribute this to the ostensible influence that the
attitude of both experimenter and subject can have
over the results. An experimenter who is hostile

towards the concept of ESP, they claim, can exert a
negative influence over the results, thereby
counteracting any positive ESP effects that may be
present. This is one of the many "outs" PSI
researchers have developed that enable them to
attribute negative results to extraneous causes, and
preserve only the data that is favorable to their
preferred hypotheses.

We see exactly the same thing happening in the
XP community's evaluation of experience reports
from the field.

When presented with a claim of success using XP,
the community accepts it without challenge, for it is
a welcome confirmation of pre-existing beliefs.
However, a claim that XP has failed is an unwelcome
affront to their personal convictions. So these claims
are scrutinized until an "out" is found - some
extraneous factor to which the blame for failure can
be assigned. If all else fails, one can claim, as PSI
researchers are wont to do, that the attitude of the
participants is to blame for the failure.

To illustrate, consider the tabulation below of the
four types of experience reports that the XP
community can be presented with. The columns
represent the two basic modes of XP usage – full and
partial. Either you're doing all the XP practices or
you're only doing some of them. The rows represent
the claimants assessment of the project outcome –
success or failure. The table shows the interpretation
an XP proponent can confer upon each type of
experience report so as to confirm their pre-existing
belief in XP.

 Full XP Subset of XP

Success "XP has succeeded" "See how
powerful XP is?
Even a subset of
the practices
can yield
success"

Failure "You weren't doing
xxx as well as you
could have",
"You weren't
committed enough",
"There's something
wrong with you"
etc.

"You weren't
doing all the
practices, so you
weren't really
doing XP"

The XPers have all their bases covered. No matter
what the experience report, there is no need to ever
cast doubt upon XP itself – there are always rival

74 HACKNOT

causes to be blamed.3 In this way, XP becomes non-
falsifiable.

Conclusion

There is an "essential tension"4 between being so
skeptical of new technologies and methods that we
miss the opportunity to exploit genuine innovations,
and being so credulous that we are ourselves
exploited by those willing to subjugate integrity to
self-interest. Given the software industries' history of
fads, trends and passing enthusiasms, we would be
wise to approach claims of innovation with caution –
where those claims are accompanied by fanaticism
and zeal, doubly so. As Thomas Henry Huxley
warned:

Trust a witness in all matters in which neither his
self-interest, his passions, his prejudices, nor the
love of the marvelous is strongly concerned. When
they are involved, require corroborative evidence
in exact proportion to the contravention of
probability by the thing testified.

There is no logical basis for dismissing out of
hand every "next big thing" that comes along. But an
awareness of confirmation bias, positive outcome
bias and their contribution to the development of
false beliefs should encourage us to seek evidence
beyond that provided by popular media and effusive
testimonial.

* First published 5 May 2004 at
http://www.hacknot.info/hacknot/action/showEntry?eid=53
1 Cited in Voodoo Science, Robert Park, Oxford, 2000
2 The Skeptic’s Dictionary, Robert Carroll, Wiley, 2003
3 http://c2.com/cgi/wiki?IfXpIsntWorkingYoureNotDoingXp
4 Why People Believe Weird Things, M. Shermer, Owl Books,
2002

THOUGHT LEADERS AND THOUGHT FOLLOWERS 75

Thought Leaders and Thought
Followers*

Fowler On "Appeals To Authority"

For a brief, shining moment there was hope.
Through the exaggeration and braggadocio that so
permeates the conversation of the Agile community,
there came a fleeting glimpse of self-awareness – a
flash of social perspective that could have
precipitated a greater moderation and rationality in
the methodological discourse. And then it was gone –
swept aside by the force of yet another ill-considered
generalization.

I’m referring to a recent blog entry by Martin
Fowler entitled AppealToAuthority.1 In this entry,
Fowler relates how he occasionally receives the
comment "When a guru like you says something, lots
of people will blindly do exactly what you say."
Fowler denies the existence of such an effect, and
counters that what appear to be appeals to authority
may really be just an artifact of lazy argument or
sloppy self-expression.

The argument from authority is everywhere in the
Agile and XP communities, and is a far more potent
force than Fowler seems to appreciate. Here are just
a few ways that the various so-called "thought
leaders" and "spokesmen" employ direct and indirect
appeals to authority.

• Statements prefixed with "In my experience",
combined with the suggestion that this
experience is extensive, are attempts to cast the
speaker as a seasoned veteran whose word
should be taken seriously. Having many years of
experience only establishes that one is old, not
that one is correct.

• Sweeping statements and broad generalizations
can make for powerful-sounding oratory, and
suggest that the speaker possesses some kind of
absolute knowledge i.e. that they are simply
declaring information that they know to be
factual. By abandoning the uncertainty and
qualification, the speaker sacrifices accuracy for
the sake of impact and elevates opinion to fact.

• By inventing and promulgating cute slogans,
folksy homilies and other media-friendly sound
bites, speakers encourage others to quote them
verbatim and dogmatically. Such quotation
invests the statement, and thereby the speaker,
with a faux authority.

• With rare exception, the aforementioned
comment from Fowler’s being one such case, the
"thought-leaders" and "spokesmen" rarely
acknowledge, let alone reject, their decoration
with such grand titles. There is no attempt to
discourage the use of such titles, beyond the
occasional token self-deprecation.

• Speakers claiming to represent the opinions and
experiences of a group are naturally encouraging
a view of themselves as leaders. Such speakers
will not hesitate to claim "The Agile community
believes X" or "The XP community does X",
even though the communities in question have
not been consulted or surveyed, and in fact may
have wildly varying and inconsistent views on
the matter.

Fowler's claim that appeals to authority are not a
significant influence strikes me as disingenuous. Not
only are such appeals frequent, they are at the very
heart of the rhetoric. It should be kept firmly in mind
that those most outspoken in this space are almost
always consultants specializing in AM/XP.2
Consultants make their money by promoting
themselves as authorities on some subject, so that
others will hire them for their perceived expertise.

Ruin Your Career With Agility

An interesting blog entry, author unknown, came
to my attention recently. Entitled How Agile
Development Ruined My Career (Sort Of)3 it is the
story of a Senior Director’s attempts to introduce
Agile work practices into a company, and the
consequences for himself. I have commented on the
blog itself, and the XP fraternity has just begun to
dissect it on comp.software.extreme-programming4
(posted 23 May 2004) which should make for
entertaining reading.

* First published 24 May 2004 at
http://www.hacknot.info/hacknot/action/showEntry?eid=55
1 http://martinfowler.com/bliki/AppealToAuthority.html
2 Agile Methods / Extreme Programming
3 http://www.undefined.com/ia/archive/000158.html
4 http://groups.google.com/groups?group=comp.software.extreme-
programming

Requirements

DUDE, WHERE’S MY SPACECRAFT? 77

Dude, Where’s my Spacecraft?*

The Mars Polar Lander (MPL) that NASA
launched in 1999 is now a rather attractive and very
expensive field of tinsel-like shrapnel scattered over
several square kilometers of the Martian surface. It is
not functional in any capacity. It is no more. It has
ceased to be.

Its demise was the result of the flight control
software incorrectly answering the question that car-
bound children have been plaguing their parents with
for years – "are we there yet?" About 40 meters
above the ground, the software succumbed to the
constant nagging of its digital offspring and
answered too hastily "Yes! We’re there!" – triggering
the shutdown of the MPL’s descent engines. The
craft’s final moments were spent free falling towards
the Martian soil at 50 mph (80km/h) – ten times the
impact speed it was designed to withstand.

Monitoring the MPL’s progress from Earth,
NASA had expected a 12 minute period of broadcast
silence during the descent to the landing area, due to
the cant of the craft during re-entry. Shortly after
touchdown, the MPL was scheduled to begin a 45
minute data transmission to Earth, but this
transmission never occurred. NASA kept attempting
contact with the MPL for the next six weeks, until
finally giving up hope of ever hearing from it again.

Of course, it was not long before the faecal matter
hit the rotary air distribution device.

In-depth mission reviews were conducted at
NASA Headquarters, JPL and Lockheed Martin
Astronautics. An independent assessment team was
also established. Initially there were considered to be
a number of possible causes for the mission’s failure,
but extensive investigations singled out one of them
as being the most likely failure mode, with a high
degree of confidence.

The assessment team concluded that a spurious
signal from one or more of the touchdown sensors at
the ends of the MPL’s legs caused the software to
conclude incorrectly that the craft had already made
contact with the Martian soil and to therefore
shutdown the descent engines prematurely.

However, this wasn’t an unexpected hardware
fault. The tendency of the Hall Effect touchdown
sensors to generate a false momentary signal upon
leg deployment was well known to NASA engineers,
having been discovered in early testing. The software
should have screened out these spurious signals, but
this functionality was never actually implemented.

More precisely, the series of events leading to
failure was likely the following:

1. 1500m above the surface of Mars, the legs of
the MPL deployed. The touchdown sensor at
the end of one or more of the legs generated a
characteristic false touchdown signal while
being deployed. The false touchdown event
was registered by the flight control software
and buffered.

2. 40m above the surface, the software began
continuous sampling of the values from the
touchdown sensors.

3. The first value read was the buffered false
touchdown event that occurred upon leg
deployment.

4. The software immediately triggered the
shutdown of the Lander’s descent engines,
believing that the Lander was now on the
surface of Mars.

Reasons For Failure

One of the main reasons the flight software did not
behave correctly is because the definition of
"correct" was changed in response to field testing.
With respect to detecting touchdown, the system
requirements initially stated:

"The touchdown sensors shall be sampled at 100
Hz rate. The sampling process shall be initiated
prior to Lander entry to keep processor demand
constant"

When the false signal characteristic of the
touchdown sensors was later discovered, the
following clause was added:

"However, the use of the touchdown sensor data
shall not begin until 40 meters above the surface.”

 The intended effect of this addendum was to
disregard the false touchdown signal previously
generated during leg deployment at 1500m. This
change was never propagated to the lower level
software requirements.

Also note there is no explicit mention of the
spurious signal generation. Even if this addendum
had been propagated into the lower level
requirements correctly, the software engineers would
not have been aware that a false touchdown event
might already have been registered at the time the
use of the sensor data began.

78 HACKNOT

Moral #1

The story contains two obvious lessons about
requirements:
• Requirements tracking is useful in maintaining

integrity between multiple requirements sources.

• Requirements should include a rationale i.e.
specify why, not just what.

And now a few words from some XP spokesmen
on requirements tracking:

I think I get, from the term, the idea of what
RequirementsTracking is. It sounds like you keep
track of changes to the requirements, who made the
change, why they made it, when, stuff like that. If
that’s wrong, correct me now. If that’s what
RequirementsTracking is, I don’t see the benefit.
Please tell me a story where the moral is, “And
that’s why I am ever so happy that I tracked
requirements changes." 1

– Ron Jeffries, with assistance from Kent Beck

Moral #2

You would think that a thorough testing program
would uncover the flight software’s shortcomings.
However, later testing did not detect the software’s
inability to cope with these signals because the
touchdown sensors were incorrectly wired when the
tests were performed. When the wiring error was
discovered and corrected, the tests were not re-
executed in their entirety. Specifically, the
deployment of the Lander leg was not included in the
test re-runs. The moral is: Thou shall fully regression
test.

* First published 4 Nov 2003 at
http://www.hacknot.info/hacknot/action/showEntry?eid=33
1 http://c2.com/cgi/wiki?RequirementsTracking

USER IS A FOUR LETTER WORD 79

User is a Four Letter Word*

The term "user" is not just a pronoun, it is a
powerful buzzword that pervades the software
development literature, to both good and bad effect.
On the up side, the development community has been
made aware of the dominating role that end user
experience plays in determining the success or failure
of many projects. On the down side, the message of
the importance of user feedback to the development
process has been adopted by some with uncritical
fervor.

In their efforts to be "user focused," guided by
simplistic notions of "usability," many managers and
programmers uncritically accept whatever users tell
them as a mandate. "The customer is always right"
makes a nice slogan but a poor substitute for critical
thought. If you want to deliver a product that is
genuinely useful, it is important to moderate the user
feedback you receive with your own knowledge of
usability principles, and to seek independent
confirmation of the information they relate. For it is a
fact seldom acknowledged in the text books that
users are frequently uninformed, mistaken or
deliberately deceptive.

User Fraud

There are two types of fraud - the deliberate fraud
and the pious fraud. Both make false statements; the
former knowing that they are false, the latter
believing them to be true. The user community
contains both types.

Suppose you are writing a system that will
facilitate the workflow of some subset of a
company's employees. As future users of your
software, you go to them to find out exactly how they
do their work each day, so that you can understand
their work processes. Some users find it difficult to
articulate their basic work methods, even though they
may have been in the same role for many years.
Their routine becomes so internalized that it is no
longer readily available by introspection. They may
appear unsure and vague when describing how
particular tasks are accomplished, and when you ask
why things are done in a given way, you may get
dismissive responses such as “Because that's the way
we've always done it.”

Are you being told the truth? The naive developer
will take what the user offers as gospel, and run away
to implement it in software. The more experienced
developer will simply take it on board for

consideration, knowing that the user may be a fraud.
Many users are pious frauds, in that they will give
you their opinion on what workflow they and others
are following, but state it as if it were an
incontestable fact. Long-serving employees are very
likely to consider themselves unassailable authorities
on their company's processes.

But you must not lose sight of the fact that even
the most genuine of users can be mistaken or have
incomplete knowledge. When surveying employees
who all participate in a common workflow, it is not
at all uncommon to find that each participant has a
different conception of the overall process.
Sometimes there are only minor discrepancies
between their individual accounts; sometimes there
are direct conflicts and outright contradictions. This
is particularly common in small organizations that
function in a "cottage industry" manner, where
nothing is written down and the work processes
survive only through verbal instruction, not unlike
the folkloric traditions that exist in tribes. The
"Chinese whispers" effect can give rise to individuals
having significantly different understandings of what
is ostensibly a common work practice. Such users are
not much to blame for their status as pious frauds,
having become so through common psychosocial
mechanisms.

Pious fraud also results from the common
tendency to over-estimate one's own level of
expertise in relation to others. For example, drivers
involved in accidents or flunking a driving exam
predict their performance on a reaction test less
accurately than more accomplished drivers1. This
self-serving bias will be also be present amongst
your users, who may consider themselves experts in
their domain and therefore convey their responses
with greater authority and certainty than their true
level of expertise actually justifies.

The user may describe a particular interface
mechanism as having greater usability than another,
when they are in fact only acknowledging the greater
similarity of that design to the paper forms they are
already familiar with. Users are not interface
designers any more than drivers are automotive
engineers.

On the border of pious and deliberate fraud are
those users that are not lying outright, but neither are
they making much effort to help you gather the
information you need. They may simply be apathetic
or cynical – perhaps having witnessed many failed IT
initiatives within their organization in the past. When
interviewed, their participation is begrudging, and
they will make it obvious that they would rather be
back at their post getting on with some "real work".
They are only involved because their management

80 HACKNOT

has forced them to be so; they would really just like
you to go away.

The answers you get from them may be the truth,
but not necessarily the whole truth. Rather than
describe to you all the variations and exceptional
circumstances they encounter in the course of doing
their job, they will simply give you a basic
description of the usual way of doing things. Then it
will be up to you to tease out of them all the
boundary conditions and how they are handled. For
the purposes of process automation, these special
cases are particularly important.

Hardest for the software developer to deal with are
the deliberate frauds. The developer is at a distinct
disadvantage, for he is reliant upon the user for
information, but is generally not familiar enough
with the domain to be able to adduce that
information's authenticity.

Asked to review documents that capture their
workflow, the deliberate fraud may declare the
document correct, when in fact they have not even
read it. Or perhaps they actually have attempted to
read it but are unwilling to admit that they have
failed to understand it. A user may announce that
their job requires judgments too complex or heuristic
to be captured in software, when in fact they are
simply unwilling to release their accumulated
wisdom and expertise because they fear becoming
expendable. The user may declare a particular
procedure to be the correct one, but actually describe
how they would like the procedure to be, in the hope
that your software will result in things being done in
accord with their personal preference.

Perhaps the most common ploy of the passive
aggressive user is procrastination. When asked to
participate in interviews or submit to any demand on
their time, the user offers only perfunctory
compliance, complaining that they just can't find the
time to put in greater effort, given the demands of
their existing duties. They know that if they demur
frequently enough, you will probably stop assigning
them tasks altogether.

Conclusion

There is a common tendency in the development
community to conflate a "user focused" approach
with one that unquestioningly accepts arbitrary
dictation from users. The result is a gullible and
over-confident development team that has
unwittingly compromised their ability to effect the
success of their own project.

While it is essential for developers to maintain a
focus on their user's needs and expectations, they

must be careful to think critically about the feedback
they receive. To this end, it is important to
independently verify the user's statements, obtain
feedback from as broad a demographic as possible,
and maintain an awareness of the potential for both
deliberate and unintentional user error.

* First published 29 Jan 2006 at
http://www.hacknot.info/hacknot/action/showEntry?eid=82
1 Incompetent And Unaware Of It, J. Kruger and D. Dunning,
Journal of Personality and Social Psychology, 1999, Vol. 77, No.
6, 1121-1134

Design

82 HACKNOT

The Folly of Emergent Design*

One of the most pernicious ideas to proceed from
the current focus on lightweight methodologies is
that of Emergent Design. It's difficult to find a
precise description of emergent design – most
discussion on the subject carefully avoids
committing to any particular definition. One of the
most succinct descriptions I've encountered is this,
from the adaptionsoft web site:

"Many systems eventually require drastic changes.
You cannot anticipate them all, so stop trying to
anticipate any of them. Code for today, and keep
your code and your team agile." 1

Proponents of Emergent Design tout the following
advantages of such an approach:

• Visible signs of progress appear more quickly .

• The system reaches a state in which it can be
evaluated by customers sooner, which is useful
for verifying existing requirements and teasing
out as yet undiscovered requirements.

• The risk of "analysis paralysis" is eliminated.

• No effort is wasted in the preparation of
infrastructure to support anticipated
requirements that never actually manifest.

• An increased ability / willingness to adapt to
changing requirements, as the development
effort is not burdened by prior commitment to a
particular solution approach.

Opponents of Emergent Design claim the
following disadvantages:

• Exploration of alternative solutions takes much
longer when using code as the vehicle for
exploration, rather than a more abstract medium
such as UML.

• The "code for today" approach discourages the
reaping of long term savings in implementation
effort by investing in supporting functionality in
the short term.

Proponents will counter these by referencing the
incremental nature of constant refactoring.
Opponents will counter this with appeals to the
benefits of a middle ground where "just enough"
design is partnered with early prototyping 2.
Eventually, somebody makes comment on somebody
else’s mother and her preference for military
footwear, and all hope of rational discussion is lost.

An Example Of The Hazards Of
Emergent Design

As near as I can ascertain, the project upon which
I am currently working employs Emergent Design,
although there has been no explicit statement to that
effect. At the beginning of the year there were one or
two group design sessions, which identified the
major subsystems of the product and how they would
collaborate to achieve one of the principal use cases.
Since then, any design efforts which have occurred
have been of an incremental nature, and generally
done "on the back of an envelope" as individuals
have struggled to implement various aspects of a
subsystem's functionality against pressing deadlines.
Thus, developers have only done what was necessary
to achieve the functionality need for the task at hand
– which seems consistent with the philosophy of
Emergent Design.

The resulting code base bears some interesting
characteristics which I believe illustrate some of the
difficulties inherent with the practical application of
an Emergent Design approach. To illustrate, consider
the following three classes from the application's
current code base, presented here in abbreviated
form:

public class YearLevel {
 public YearLevel(NormYearLevel,
Country, String, String);
 public getNormYearLevel() :
NormYearLevel;
 public getCountry() : Country;
 public getScanText() : String;
 public getLabel(): String;
}

public class NormYearLevel {
 public static final NormYearLevel
NORM_YEAR_1 =
 new NormYearLevel(1);
 public static final NormYearLevel
NORM_YEAR_12 =
 new NormYearLevcel(12);
 private NormYearLevel(int aYearLevel);
}

public class RawYearLevel {
 public RawYearLevel(String aScanText);
}

The main purpose of this application is to process
the responses of junior and secondary school students
to multiple choice exams. A given exam may be
taken by students from different countries and
therefore different educational systems. The results
are captured in individual and aggregate reports,
which are printed and dispatched to the participating
schools.

It takes as input the data files resulting from the
optical scanning of the exam papers. Students
indicate their "year level" as defined by the

THE FOLLY OF EMERGENT DESIGN 83

educational system in force in their country (a "year"
is variously referred to as a "grade", "form" etc). For
example, a student in year 3 in Australia would
indicate a "3"; a student in Grade 4 in France would
indicate a "4" and so on.

What is notable about these three classes is that
they represent three different aspects of the same
concept, and might well have been collapsed into a
single abstraction. More significant than the choice
and number of abstractions used to represent the
concept, is the way these disparate representations
came into being. Each was created by a different
developer, working in a different subsystem from the
others, and employing a philosophy consistent with
Emergent Design. A review of the version control
history for each class traces their genesis.

First came RawYearLevel, conceived of and
implemented by a developer concerned with the early
stages of the data processing pipeline, as a way of
representing the student’s literal indication of what
year they were in.

In parallel with RawYearLevel, the YearLevel
class was created by a second developer working in
another subsystem, who was focusing on the
opposite end of the pipeline, where the results are
embodied in hard copy reports. The YearLevel class
(without the NormYearLevel association) captured
enough information to print on a report "This student
was in Year 6" or "This student was in Grade 8",
depending on the country and the educational system
it employed.

Lastly came the NormYearLevel class, created by a
third developer working in a subsystem between the
two mentioned above, that was responsible for
calculating individual and population statistics. In the
course of these calculations it becomes necessary to
relate a year level in one country with its educational
equivalent in another country. So the concept of a
Normative Year Level was introduced, and the
country-specific YearLevel abstraction was
augmented to be associated with it’s normative
equivalent.

Each of these classes has "emerged" from an
individual developer’s immediate need to implement
some portion of a subsystem’s functionality. To meet
that need, they have done the simplest thing that
could possibly work 3. That often means writing a
class from scratch. If another developer creates the
same or a similar abstraction in parallel, each will be
unaware of the duplication until their work is
integrated. Sometimes it is considered simpler to get
partial leverage from an existing abstraction. In
either case, the imperative is to achieve the target
functionality as quickly as possible, such is the time

pressure the developers are under (a situation
common to many development shops). It is by no
means certain that the design issues surrounding
these abstractions will ever be revisited.

Just Refactor It

The inefficiency of maintaining the above three
abstractions is compounded by the amount of
surrounding code that does little more than map from
one type to another. Proponents of Emergent Design
would suggest that the problem can be very simply
overcome – just refactor the code. Of course, this is
entirely possible. However there are some very real
reasons why the abstractions have persisted in the
application for 6 months or more, and have not been
eliminated through refactoring.

• Nobody considers the refactoring to be of high
enough priority to warrant spending our limited
developer resources on. The task is not
immediately related to any particular operational
requirement, and so it is viewed as being less
important than making functional progress.

• There is considerable psychological inertia
associated with a body of code that is basically
functional. Refactoring will mean losing that
functionality for the duration of the refactoring
task, and so superficially appears a retrograde
step.

• The classes have become part of the vocabulary
of the developers, and they have come to think
of them as being an intrinsic part of the system
i.e. their presence is not openly questioned.

Constraining Evolution Leads To
Mutants

Emergent Design is frequently likened to the
process of evolution. Proponents speak of "evolving
a design" , the implication being that some software
equivalent of natural selection is weeding out the
inferior mutants, leaving only the fittest to survive. If
this is the case, why have the three classes above not
evolved into a better design? Or is that evolution yet
to occur? Or are these three classes actually the fittest
to survive already, for some suitable definition of
"fittest"?

I conject that the practical application of Emergent
Design so constrains the evolution of the design
elements that we cannot expect such an approach to
have a reasonable chance of giving rise to a good
design.

84 HACKNOT

Comparing the evolution of a software design with
the evolution of a species, we see the following
significant differences:

• Evolution can take its time exploring as many
dead ends and genetic cul-de-sacs as it likes.
There is no supervising authority standing by
looking for visible signs of monotonic progress.
There are no time constraints or fiscal limitations
that require evolution to produce a workable
result within a certain number of generations.

• Evolution can explore many alternatives in
parallel, but a development group will rarely
have sufficient resources to try a large number of
different design alternatives in parallel. A very
limited number of resources assigned to a design
task must try alternatives in series, if at all.
Obviously there is a strong tendency to stick
with the first one tried that appears to hold
promise.

• Evolution is objective in its evaluation of the
success of each alternative. There is no
attachment to a genetic alternative that is nearly
good enough. However software developers
often favor "pet" design approaches, or try and
force non-optimal designs further than they
should go because there is the promise of
success just around the corner, and the attendant
resolution of an uncompleted task. That is to say,
it is very human to normalize deviation.

• Evolution is not required to be predictable. No
one has bet their financial future on the lesser
fairy penguin evolving heat dissipation
mechanisms to cope with increasing Arctic
temperatures, and doing it in no more than 3
generations. But stakeholders in software
development efforts will commonly invest large
sums to see successful designs produced (and
thereby business problems solved) within a
limited contract period.

You will find any number of elegant analogies in
the Emergent Design literature – but finding one that
addresses the above constraints is quite another
matter.

For example, there is the delightful story
(probably apocryphal) of the landscaping engineer
who was asked to cement pathways at a University,
after the buildings had been erected. Rather than
predict the correct place to put the pathways, the
engineer stood back for one semester and let the
students make their own way between buildings. The
furrows they wore in the ground were adopted as the
courses for the cement pathways.

How very Zen... really, it's a terrific tale. I love it.
But before we spin our prayer wheels and marvel at
the engineers’ wisdom, let’s think of the liberties that
the landscape engineer was allowed in pursuing such
a solution method. Liberties which would be denied a
great many University contractors in the real world:

• The landscape engineer was allowed to take the
time necessary to wait for the paths to emerge.
What if the University had required completion
sooner than that – say, before the semester
started?

• The landscape engineer was allowed an entire
semester in which he was not required to
demonstrate visible progress. What if a
competitor had taken advantage of this lull and
offered to complete the job using best guesses of
the correct routes for the pathways.

• The landscape engineer was free to distribute the
labor and materials cost over the course of the
project as he saw fit. What if the budgeting
system of the University had made allowances
for expenditure on landscaping in this semester,
but not in the following one?

• An entire University cohort spent a semester
walking through the mud after every rainfall.
They were willing to put up with this discomfort
so that the engineer could let his design emerge.
I wonder how the senior lecturers felt about this.
More importantly, I wonder how those students
in wheelchairs coped.

Emergent Design has the capacity to lead to some
very elegant solutions – eventually. That design may
be wonderfully efficient – if you have the financial
stamina to await its arrival and the confidence that
you will recognize it when it appears.

Conclusion

Does Emergent Design work? Of course - just
look in the mirror. You and every other product of
evolution is testament to the potential success of the
approach.

Does that imply that it is a suitable model for
designing software? No.

While the idea has aesthetic appeal, the practical
context in which the emergence occurs makes all the
difference. The requirements for timeliness and
predictability in a software development project,
together with the subjective nature of those who
gauge the cost/benefit of a particular approach, mean
that true, uninhibited evolution cannot occur. If the
compromises embodied in an emergent design are

THE FOLLY OF EMERGENT DESIGN 85

consistent with our corporate priorities, then it will
be by coincidence only – and that’s too important a
matter to leave to chance.

* First published 14 Oct 2003 at
http://www.hacknot.info/hacknot/action/showEntry?eid=29
1 http://www.adaptionsoft.com/xp_practices_simple_design.html
2 Extreme Programming Refactored, M Stephens and D
Rosenberg, Apress, 2003
3
http://xp.c2.com/DoTheSimplestThingThatCouldPossiblyWork.ht
ml

86 HACKNOT

The Top Ten Elements of Good
Software Design*

“You know you've achieved perfection in design,
not when you have nothing more to add, but when
you have nothing more to take away.”
– Antoine de Saint-Exupery

Much is spoken of "good design" in the software
world. It is what we all aim for when we start a
project, and what we hope we still have when we
walk away from the project. But how do we assess
the "goodness" of a given design? Can we agree on
what constitutes a good design, and if we can neither
assess nor agree on the desirable qualities of a
design, what hope have we of producing such a
design?

It seems that many software developers feel that
they can recognize a good design when they see or
produce one, but have difficulty articulating the
characteristics that design will have when completed.
I asked three former colleagues – Tedious Soporific,
Sparky and WillaWonga – for their "Top 10
Elements of Good Software Design". I combined
these with my own ideas, then filtered and sorted
them based upon personal preference and the
prevailing wind direction, to produce the list you see
below. A big thanks to the guys for taking the time to
write up their ideas.

Below, for your edification and discussion, is our
collective notion of the Top 10 Elements of Good
Software Design, from least to most significant. That
is, we believe that a good software design ...

10. Considers The Sophistication Of The Team
That Will Implement It

Does it seem odd to consider the builder when
deciding how to build? We would not challenge the
notion that a developer’s skill and experience has a
profound effect on their work products, so why
would we fail to consider their experience with the
particular technologies and concepts our design
exploits? Given fixed implementation resources, a
good design doesn’t place unfamiliar or unproven
technologies in critical roles, where they become a
likely point of failure.

Further, team size and their collocation (or
otherwise) are considered. It would not be unusual
for such a design’s structure to reflect the high level
structure of the team or organization that will
implement it.

9. Uniformly Distributes Responsibility And
Intelligence

Classes containing too much intelligence become
both a point of contention for version control
purposes, and a bottleneck for maintenance and
development efforts. They also suggest that a class is
capturing more than a single data abstraction.

8. Is Expressed In A Precise Design Language

The language of a design consists of the names of
the entities within it, together with the names of the
operations those entities perform. It is easier to
understand a design expressed in precise and specific
terms, as they provide a more accurate indication of
the purpose of the entities and the way they
cooperate to achieve the desired functionality. Look
for the following features:

• The objective of the designed thing can be
described in one or two sentences completely.

• The interface requirements of the entities are
stated precisely.

• The contracts between an entity and its callers
are stated precisely and contract adherence is
enforced programmatically (Design by
Contract).

• Entities are named with accurate and concrete
terms, and specified fully enough to form a
suitable basis for implementation.

7. Selects Appropriate Implementation
Mechanisms

Certain mechanisms are problematic and more
likely to produce difficulties at implementation time.
A good design minimizes the use of such
mechanisms. Examples are:

• Reflection and introspection
• Dynamic code generation
• Self-modifying code
• Extensive multi-threading

Sometimes the use of such mechanisms is
unavoidable, but at other times a design choice can
be made to sacrifice more complex, generic
mechanisms for those easier to manage cognitively.

6. Is Robustly Documented

As long as a design lies hidden in the complexities
of the code, so too does our ability arrive at an
understanding of the code’s structure as a whole. As
the abstract structure becomes apparent to us, either

THE TOP TEN ELEMENTS OF GOOD SOFTWARE DESIGN 87

through rigorous examination of the code or study of
an accompanying design document, we gradually
develop a course understanding of the code’s
topography. A good design document is used before
or during implementation as a justification and guide,
and after construction as a way for those new to the
code base to get an overview of it more quickly than
they can through reverse engineering. Captured in
abstract form, we can discuss the pros and cons of
different approaches and explore design alternatives
more quickly than we can if we were instead
manipulating a code-level representation of the
design.

But as soon as the abstract and detailed records of
a design part company, discrepancy between the two
becomes all but inevitable. Therefore it is essential to
document designs at a level of detail that is
sufficiently abstract to make the document robust to
changes in the code and not unnecessarily
burdensome to keep up to date. A good design
document should place an emphasis upon temporal
and state relationships (dynamic behavior) rather
than static structure, which can be more readily
obtained from automated analysis of the source code.
Such a document will also explain the rationale
behind the principal design decisions.

5. Eliminates Duplication

Duplication is anathema to good design. We
expect different instances of the same problem to
have the same solution. To do otherwise introduces
the unnecessary burden of understanding two
different solutions where we need only understand
one. There are also attendant integrity problems with
maintaining consistency between the two differing
solutions. Each design problem should be solved just
once, and that same solution applied in a customized
way to different instances of the target problem.

4. Is Internally Consistent And Unsurprising

We often use the term "intuitive" when describing
a good user interface. The same quality applies to a
good design. Something is "intuitive" if the way you
expect (intuit) it to be is in accord with how it
actually is. In a design context, this means using
well-known and idiomatic solutions to common
problems, resisting the urge to employ novelty for its
own sake. The philosophy is one of "same but
different" – someone looking at your design will find
familiar patterns and techniques, with a small amount
of custom adaptation to the specific problem at hand.
Additionally, we expect similar problems to be
solved in similar ways in different parts of the

system. A consistency of approach is achieved by
employing common patterns, concepts, standards,
libraries and tools.

3. Exhibits High Cohesion And Low Coupling

Our key mechanism for coping with complexity is
abstraction – the reduction of detail in order to
reduce the number of entities, and the number of
associations between those entities, which must be
simultaneously considered. In OO terms this means
producing a design that decomposes a solution space
into a half dozen or so discrete entities. Each entity
should be readily comprehensible in isolation from
the other design elements, to which end it should
have a well defined and concisely stateable purpose.
Each entity, be it a sub-system or class, can then be
treated separately for purposes of development,
testing and replacement. Localization of data and
separation of concerns are principles which lead to a
well decomposed design.

2. Is As Simple As Current And Foreseeable
Constraints Will Allow

It is difficult to overstate the value of simplicity as
a guiding design philosophy. Every undertaking
regarding a design – be it implementation,
modification or rationalization – begins with
someone developing an understanding of that design.
Both a detailed understanding of a particular focus
area, and a broader understanding of the focus area’s
role in the overall system design, are necessary
before these tasks can commence.

It is necessary to distinguish between accidental
and essential complexity1. The essential complexity
of a solution is that which is an unavoidable
ramification of the complexity of the problem being
solved. The accidental complexity of a solution is the
additional complexity (beyond the essential
complexity) that a solution exhibits by virtue of a
particular design’s approach to solving the problem.
A good design minimizes accidental complexity,
while handling essential complexity gracefully.
Accidental complexity is often the result of the
intellectual conceit of the designer, looking to show
off their design "chops." Sometimes a "simple"
approach is misinterpreted as being "simple-minded."
On the other hand, we might make a design too
simple to perform efficiently. This seems to be a
rather rare occurrence in the field. As the scope of
software development broadens at the enterprise
level and attracts greater essential complexity, the
reduction of accidental complexity becomes ever
more important.

88 HACKNOT

1. Provides The Necessary Functionality

The ultimate measure of a design’s worth is
whether its realization will be a product that satisfies
the customer’s requirements. Software development
occurring in a business context must provide
business value that justifies the cost of its
construction. Also of significant importance is the
design’s ability to accommodate the inevitable
modifications and extensions that follow on from
changes in the business environment in which it
operates.

But it is necessary to exercise great caution when
predicting future requirements. An excessive focus
upon anticipatory design can easily result in wasted
effort resulting from faulty predictions, and
encumber a design with unnecessary complexity
resulting from generic provisions which are never
exploited. Terms like "product line" and
"framework" may be warning signs that the design is
making high-risk assumptions about the future
requirements it will be subject to.

It is easy to overlook the non-functional
requirements (e.g. performance and deployment)
incumbent upon the design. Taking different "views"
of the design, in the manner of the "4+1"
architectural views in RUP 2, can help provide
confidence that there are no gaping holes (functional
or otherwise) and that the design is complete.

* First published 18 May 2004 at
http://www.hacknot.info/hacknot/action/showEntry?eid=54
1 The Mythical Man Month, Anniversary Edition, F. Brooks,
Addison-Wesley,, 1995
2 Rational Unified Process, P Kruchten, Addison-Wesley, 1999

Documentation

90 HACKNOT

Oral Documentation:
Not Worth the Paper it’s Written
On*

The Agile Manifesto1 states:

 "The most efficient and effective method of
conveying information to and within a development
team is face-to-face conversation."

Forgive me for questioning a holy proclamation,
but isn't it rather well established that verbal
communication is often incomplete and ambiguous,
and that human memory is inaccurate and prone to
confabulation? The plethora of psychological
research in such areas as false memories, the veracity
of eyewitness testimony, and the effect of
predisposition on the interpretation of sensory data
has surely given us a big hint that our perceptual and
communicative capabilities are erratic and dubitable?

So where comes the apparently wide spread
acceptance of (or at least, lack of challenge to) such
outrageous Agile sophistry? For my part, it is
difficult to ignore the manifest problems associated
with a development team's reliance upon face-to-face
communication. Over the last 3 or 4 months, as the
inheritor of a code base whose authors preferred the
"verbal tradition" style of documentation, I suffer
daily from the flow-on effects of this laziness. Let
me illustrate by providing you with a summary of a
typical day for me in recent months, so you too can
marvel at the feel-good richness and super-duper
efficiency of face to face communication amongst
software developers.

Fade in.

Scene 1 - a cubicle. Ed is slouched in an office
chair staring forlornly at the screen in front of him.
Except for the occasional insouciant jab at his
keyboard, he gives the appearance of being
comatose..

The day begins with my desire to extend the
functionality of a legacy application, approximately
600K lines of code. I need to locate that portion of
the code responsible for performing function X, so
that I can insert function Y just after it. I go looking
for function X amongst the code. I can’t find it. In
fact, I started looking for it sometime yesterday, and
haven’t found it yet. I check the folder marked
"docs", to find it contains only a single README.txt
file, the sole contents of which is the teaser "This
directory will contain the docs" – apparently the

dying message of a long extinct group of developers
whose brains exploded before being able to make
good on their promise. I find a piece of code that
looks like it’s in the same ballpark as the code I’m
looking for, and examine the revision history of the
file it is in, to find that it has principally been
developed by "Bob". I must find Bob. I need to find
Bob. Bob will know where function X is.

Here is my first problem. I cannot contact Bob
directly, because I am but a lowly contractor. Bob is
a valuable and in-demand member of my client’s
staff, and I can’t just go up to him and steal his
valuable time. There’s a chain of command to be
observed here! I must lodge a request with my
manager to see Bob, who will forward that request to
a liaison officer, who will forward that request to
Bob’s manager, who will then cue it up with Bob. If
he’s not too busy.

Scene 2 - a meeting room. Ed sits opposite a
brown-skinned man wearing a turban.

The next day, I get to meet Bob. He can only spare
15 minutes to talk to me, because he’s busy
preparing for the next release of some whiz-bang
new pile of crud. It’s at this point that I discover that
Bob’s real name is "Sharmati Sanyuktananda", but
everyone just calls him "Bob" for short. Bob is
Indian. Bob’s formal exposure to English was limited
to the 15 minutes he spent reading "Miffy Learns
English" while waiting in line at Immigration for his
visa to be processed.

I try and talk with Bob, but it is like talking with
Dr Seuss. At the end of 15 minutes, I have learnt
almost nothing from him, and he keeps repeating
something about public transport, which seems to
have no relevance. His final word is "Sue", who I
know is another member of the client’s staff. So I
contact my manager to organize some time with Sue.

Scene 3 - a meeting room. Ed sits opposite a
nerdish looking woman wearing glasses with a very
strong prescription.

Next day, I discover, to my significant relief, that
Sue speaks English quite well. Unfortunately, her
memory is a little hazy on the bit of code I’m asking
her about. She remembers dealing with it about a
year ago, but there’s been a lot of water under the
bridge since then. At this point, I am beginning to
consider tying weights around my feet and jumping
off that bridge. She can’t tell me where functionality
X is, but she’s pretty sure it isn’t where I’m looking.
"Have you tried asking John?", she queries. So I
contact my manager and request a meeting with
another client staff member, John.

ORAL DOCUMENTATION 91

Scene 4 - a meeting room. Ed sits opposite a cool
dude with sideburns and shoulder length hair.

Next day, John is disarmingly candid about the
code I’m dealing with. "Oh yeah, I remember this
crap", he begins. "We wrote that it in about a week,
sometime last year, when we were up against the
wall. It is absolute rubbish." "No kidding", I think.
John is my guardian angel – he knows that function
X got ripped out at the last moment, so they could
meet their deadline. But then they put it back in a bit
later, when things slowed down, and it’s kept in a
different module in the version control system.
Which one? "You’ll have to ask Declan", says John
in a matter of fact way. I ask my manager to queue
up some time with Declan.

Scene 5 - a cubicle. Ed is slouched in an office
chair, browsing the advertisements on an
employment web site.

My manager replies a few hours later, saying that
Declan left the company a few months ago – maybe
someone else knows. Have I tried asking Bob?

Fade to black.

And that, ladies and gentlemen, is the delight of
face-to-face communication amongst software
developers. See how efficient and effective it is? No
one wasted any time writing nasty old documents,
which saved them a bit of time – once. Everyone
since then has wasted the time they saved, multiplied
tenfold, trying to recover the information the original
author could have documented in an hour or two, but
was too busy, choosing to rely instead on good old
"face to face" communication.

When it comes to the maintenance and extension
of legacy code, and clearing the organizational
hurdles associated with the handover of code from
one party to another, a reliance on "face to face"
communication is very convenient for the first
generation of developers, and a chain around the leg
of every other developer and organization involved
thereafter.

It all sounds very folksy and appealing when you
just say the words. If you’re just talking in general
terms about how much easier it is to have a bit of a
chin wag with the bloke sitting next to you, then it
sounds so reasonable to point out how much is being
saved by just talking about stuff rather than writing it
down. Of course! We’ll just have a little chat about it
and everything will be alright. That same simplicity
is a large part of its appeal to many developers.
Unfortunately, reality is not quite so simple.

For a maintenance programmer, the reality of
dealing with your predecessor’s reliance upon "oral
documentation" is:

• The people you need to talk to are often not
available – their time may be spoken for, or they
may have left the company.

• The people that are available to talk with are
often inarticulate techies with the verbal
communication skills of a mime.

• The people you talk to have fuzzy memories,
particularly where low level details are
concerned. Frequently, they simply can't recall
the information you need.

• The people you talk to all give you a different
account of how things work. You’re not getting
the facts anymore, you’re getting opinions and
best guesses.

• The people you talk to have moved on to new
duties and are not particularly interested in
answering your queries about a system they
would prefer to forget.

The "out" offered by XP/AM2 and other idealistic
retreats is that you just "do the documentation as
needed". Brilliant! If only I’d thought of that, maybe
I could’ve been a thought leader too! The problem is,
"as needed" and "when time is available" are rarely
coincident for reasons entirely beyond the
developer’s control. Try and convince a manager that
you need to take a week out to catch up on some
documentation. During that week you won’t be
writing code, you won’t be making any functional
progress towards a measurable or billable outcome,
but the schedule will be taking a hit. Good luck with
that one.

Fowler has a few delightful stories of "handover"
scenarios in which face-to-face communication has
been achieved by paradropping an "ambassador" into
an enemy territory full of maintenance programmers,
so that knowledge can be still be transferred verbally,
and documentation produced as required by those
maintenance programmers. I would like to enunciate
a question that has long been in my mind, but
heretofore unexpressed: "Martin, what part of the
Twilight Zone do you live in, and where can I get a
ticket?" Really ... is it just me or do the folksy
anecdotes and one-off case studies that some Agile
enthusiasts put forward sound just a little too
contrived to be realistically transferred to your
average corporate setting? Where are these
companies they speak of, that have the latitude to
abandon their normal procedures and protocols and
set about bending over backwards in an effort to
provide just the right climate to support these

92 HACKNOT

processes, no matter how involved the
accommodation may be?

Whenever I read these fabulous accounts of the
stunning success of AM/XP in some corporate
environment, and how it didn’t really matter that the
team prepared no documentation whatsoever, I feel
like I’m reading some sort of fairy tale, where
everybody finishes their projects without difficulty,
and then goes off to have a picnic in some bucolic
setting, where they eat cucumber sandwiches and
drink lashings of ginger beer. Hurrah!

By contrast, here’s how handover happens in my
world. One day – sometime before you’ve actually
finished what you’re working on – some pointy-
haired manager comes up to you and says "You’re
changing to Project W tomorrow". No thought, no
discussion, no campfire chat and singing of old
spirituals. Just the immediate transferal of resources
from one emergency to the next emergency.
Whatever difficulties you might leave behind – too
bad. What happens to the programmers that come
after you is of no immediate concern. This dooms the
poor sods to spending inordinate amounts of time, as
I have recently, wandering the halls like a restless
spirit, shuffling from one vague and apathetic source
of information to the next.

The reliance upon face-to-face communication
that the XP/AM contingent favor is not the straight-
talking, light-weight, near-telepathic communicative
fantasy of the Agile dream, but a prescription for
pain and suffering for every maintenance
programmer that has to come along and clean up
after the original programming team has done a hit-
and-run on the code base.

Are my experiences unique here, or do others find
this whole "fireside chat" model of developer
communication a little hard to swallow?

* First published 10 Jun 2004 at
http://www.hacknot.info/hacknot/action/showEntry?eid=57
1 http://www.agilemanifesto.org
2 Extreme Programming / Agile Methods

FUDD: FEAR, UNCERTAINTY, DOUBT AND DESIGN DOCUMENTATION 93

FUDD: Fear, Uncertainty, Doubt
and Design Documentation*

"Think twice, cut once" – Carpenter's adage

In the years that I've been doing software
development, the one source of recurring dispute
between myself and colleagues is the issue of design
documentation. I am of the opinion that the
production and review of design documentation
significantly increases the chances of producing
quality software, and that such documentation should
be an integral part of the development of any piece of
commercial software.

In the course of advancing this argument, I believe
I have heard every counter-argument known to man
(or "excuses," as I prefer to call them). It would
require a small book to document them thoroughly,
in all their variation and inventiveness, but the
following list covers the main ones:

• We have a tight schedule and the sooner I begin
coding, the better.

• The document will quickly drift out of synch
with the code.

• I can always produce a design document later, if
I have to.

• No one looks at design documents anyway.
• The information you capture can be obtained

directly from the code.
• I'm paid to write software, not technical

documents.
• The customer wants working software, not

documents.
• Nobody does Big Design Up Front anymore.
• Never had to do it on any of my previous

projects.
• Everyone on the team knows how the system is

designed.
• A good design will emerge once we begin

coding.
• It's better just to write the code, then recover the

design later with a CASE tool.
• I comment the source code thoroughly.
• You can't really understand how the software

will work until you write the code.

I'm not going to try and disprove any of these
statements. The state of empirical research in the area
and the vagueness of many of the statements
themselves forbids disproof. Additionally, it is quite
possible to develop and deliver software without a

shred of design documentation. Indeed, it is common
practice.

But I believe that we can do better with design
documentation than without it. In other terms, though
a tradesman might achieve his end with blunt tools,
the going is harder and the result messier than if he
had used sharp tools. My experience suggests that
design documentation is a sharp tool that we blunt
with our own misconceptions and false beliefs about
the role it plays in the development process. Given
that I can't prove that to you, I will try and persuade
you of it by challenging some of the beliefs
underlying the above statements.

It should first be acknowledged that for many
developers, the notion of writing documentation of
any type is a task they anticipate with the same
distaste as root canal work. In other words, any of the
above stated reasons for eschewing design
documentation may really just be an attempt to
rationalize the real reason:

I hate writing documentation

I believe the enmity toward documentation that we
see so much of in the development community
derives largely from the cognitive shortcomings (real
or perceived) of the average software developer.
Many developers come from mathematics, science
and engineering backgrounds, and talent in those
areas is often accompanied by a proportional lack of
ability in the humanities. Documentation requires
expression in natural language, and a disturbing
number of developers have approximately the same
facility with the written word as a high school junior.
Nobody enjoys doing things that they're no good at.
It's frustrating and tiring.

From the reasons given above, I have tried to
distill the core underlying beliefs.

• Well written/commented code substitutes for
design documentation

• The team already knows the design, so there's no
need to document it

• Code is the only meaningful work product and
sign of progress

• The maintenance cost of design documentation
is prohibitively high

Let me challenge each of these beliefs in turn.

Well Written/Commented Code Substitutes For
Design Documentation

Design documentation can provide value before
the code is even written.

94 HACKNOT

Senior technical staff frequently maintain an
architecture-level view of the system being
developed, leaving front-line developers to focus on
whatever functional area they are currently
preoccupied with. These are two distinctly different
mindsets, and switching back and forth between
them is tiring. When you've got your head buried in a
complex multi-threading problem, you're not inclined
to be thinking about how your code fits into the
overall scheme of things. Similarly, when you're
sorting out architectural issues, you're not concerned
with lower level implementation details. By having
the design of a low level subsystem reviewed by
someone with a high level view of system structure,
we can ensure that individual units of work go
together in an architecturally consistent manner.

Additionally, the very act of externalizing a design
to a level of detail that convinces a reviewer that it is
sufficient, can lead the developer to discover aspects
of the problem they might otherwise gloss over in
their haste to begin coding. The problem with "back
of the envelope" designs and hastily scribbled
whiteboard designs is that they make it easy to
overlook small but problematic details.

The Team Already Knows The Design, So
There's No Need To Document It

Those who have taken part in the construction of a
system have had the opportunity to witness the
evolution of its design and absorb it in a piecemeal
fashion over a period of time. But new team
members and maintainers are thrown in at the deep
end and confronted with the daunting task of gaining
sufficient familiarity with an unknown body of code
to enable them to fix and enhance it. For these
developers, design documentation is a blessing. It
enables them to quickly acquire an abstract
understanding of a body of code, without having to
tediously recover that information from the code
itself. They can come up to speed with greater ease
and more quickly than they might without the
guidance of the design documentation.

Code Is The Only Meaningful Work Product And
Sign Of Progress

This statement is true if the only lifecycle activity
you recognize is coding, and the only goal towards
which you proceed is "code complete." As a design
matures and different aspects of the solution space
are explored, the designers' understanding of the
problem deepens. This progress in understanding is
real progress towards a solution, even though it is not
captured in code. The exploration and evaluation of

design alternatives is also real progress, the end
result of which is captured in a design document.

The Maintenance Cost Of Design Documentation
Is Prohibitively High

Many developers view design documentation as a
programmatic after-thought; something that you do
after the real work of writing code is done, perhaps to
satisfy a bureaucrat and create a paper trail. Any type
of documentation produced in such a desultory
fashion and out of a sense of obligation is likely to be
low in quality, and of little use. So the preconception
becomes a self-fulfilling prophecy.

It's not difficult at all to create useful design
documentation, as long as you know what use you're
going to put it to. I've found that useful design
documentation can be achieved by following these
two simple guidelines:

1. Include only those details that have explanatory
power. There's no need to put every class on a
class diagram, or to include every method and
attribute. Only include the most significant
classes, and only those features that are critical
to the class’s primary responsibilities; generally,
these are the public features. Omit method
arguments if you can get away with it. In other
words, seek minimal sufficiency. This also
makes the resulting document more robust to
change.

2. Focus on dynamic behavior, not static structure.
If possible, restrict yourself to a single class
diagram per subsystem. Associations and
inheritance hierarchies are relatively easy to
recover from source code, but the interactions
that occur in order to fulfill a subsystem's main
responsibilities are much harder to identify from
the code alone. This is why reverse engineering
of interactivity diagrams by CASE tools is
ubiquitously done poorly. The primary function
of the design document is to explain how the
classes interact in order to achieve the most
important pieces of functionality

That code can be written in such a way as to
obviate the need for documentation is a retort of the
documentation-averse that I've been hearing for
many years. Those not keen on commenting their
code will appeal to the notion of "self-commenting
code". Those not keen on design documentation will
claim "the code is the design". This phrase, as it is
commonly used, is intended to convey the idea that
the code is the only manifestation/representation of
the software's design that can be guaranteed to be
accurate. While a design document will drift out of

FUDD: FEAR, UNCERTAINTY, DOUBT AND DESIGN DOCUMENTATION 95

synch with the code, the code will always serve as
the canonical representation of the design it
embodies.

I believe such reasoning constitutes a scarecrow
argument in that it presents an image of design
documentation as necessarily so detailed and
rigorous that it is fragile and brittle. Certainly it is
possible to write design documentation in that
manner, but it is also possible to make it quite robust
by exercising some common sense regarding content
and level of detail.

To the XPers who promote such fallacies, I would
ask this:

“If you believe you can write code in such a way
that the cost of change becomes negligible, why
can't you employ those same techniques to write
design documentation with the same properties? A
design document does not demand the same
accuracy or contain the same complexity as source
code; so why can't you just refactor a design
document with the same ease with which you
refactor your code?”

 This inconsistency points to "the code is the
design" argument as a failed attempt to rationalize
personal preference. Twiddling with the code is fun,
twiddling with diagrams is not (apparently).

Conclusion

Explicit consideration of design as a precursor to
implementation has numerous benefits, most of
which have their origin in the limited abilities of the
brain to cope with complexity. Embarrassingly, there
are those in our occupation who would deny the
applicability of the mechanisms commonly employed
in other fields to cope with these limitations.
Abstraction, planning and forethought are as useful
to software engineers as civil engineers. Design
recovery from complex artifacts is just as difficult for
us as for those in other construction-based
occupations.

To get value from design documentation:

• Make it a part of your development cycle - don't
treat it as an optional afterthought. Document as
part of the design of each subsystem (NB: design
documentation does not imply BDUF).

• Keep it as concise as possible, in the interests of
maintainability.

• Eschew CASE tools offering round trip
engineering and use a simple drawing tool
(personally, I like the UML stencils in Visio).

• Concentrate on capturing dynamic behavior
rather than static structure.

* First published 27 Jan 2004 at
http://www.hacknot.info/hacknot/action/showEntry?eid=46

Programming

GET YOUR FILTHY TAGS OUT OF MY JAVADOC, EUGENE 97

Get Your Filthy Tags Out of My
Javadoc, Eugene*

Recently I've been instituting a code review
process on a number of projects in my workplace. To
kick start use of the process, I took a sample of the
Java code written by each of my colleagues and
reviewed it.

While doing so I was struck by the degree of
individual variation in the use of Javadoc comments,
and reminded of how easy it is to fulfill one's
obligation to provide Javadoc without really thinking
about how effectively one is actually communicating.

I think the quality of Javadoc commenting is
important because - let's be honest - it's the only form
of documentation that many systems will ever have.

Here are some of the problems in Javadoc usage
that I frequently observe:

• Developers never actually run the Javadoc utility
to generate HTML documentation, or do so with
such irregularity they can have no confidence
that their copy of the HTML documentation is
up to date.

• Developers use their IDE's facility to auto-
generate a comment skeleton from a method
signature, but then fail to flesh out that skeleton.

• HTML tags are overused, severely impairing the
readability of comments when viewed as plain
text.

• Comment text is diluted with superfluous
wording and duplication of information already
conveyed by data types.

• Valuable details are omitted e.g. method pre-
conditions and post-conditions, the types of
elements in Collections and the range of valid
values for arguments (in particular, whether an
object reference can be null).

• The conventional single sentence summary at
the beginning of a method header comment is
omitted.

• Non-public class features are not commented.

My conclusion is that many developers are just
"going through the motions" when writing Javadoc
comments. With a little more thought, more effective
use of both the author's and the reader's time can be
made.

I propose the following guidelines for effective
Javadoc commenting ...

Do Not Use HTML Tags

This maximizes the readability of the comment
when viewed in situ, and saves the author some time
(which is better spent adding meaningful text to the
comment). Use simple typographic conventions1 to
create tables and lists.

Javadoc All Class Features, Regardless Of Scope

While third parties using your code as an API
don't need it, the developers and maintainers of your
code base do - and they are your principal audience.

Don't Prettify Comments

Cute formatting such as lining up the descriptions
of @param tags wastes space you could devote to
meaningful description and makes the comments
harder to maintain.

Drop The Description For Dimple Accessors

For methods that simply set or get the value of a
class attribute, this sentence duplicates the
information contained in an @param or @return
clause respectively.

Assume Null Is Not OK

Adopt the convention that object references can
not be null unless otherwise stated. In the few
circumstances where this is not true, specifically
mention that null is OK, and explain what
significance the null value has in that context.

Use Terse Language

Feel free to use phrases instead of full sentences,
in the interest of brevity. Avoid superfluous
references to the subject like "This class does ...",
"Method to ...", "An integer that ...", "An abstract
class which ...".

Be Precise

• For classes: precisely describe the object being
modeled.

• For methods: describe the range of valid values
for each @param and @return.

• For fields: describe the types of objects in
Collections and the range of valid values.

* First published 6 Aug 2003 at
http://www.hacknot.info/hacknot/action/showEntry?eid=14
1 http://docutils.sourceforge.net/rst.html

98 HACKNOT

Naming Classes: Do it Once and
Do it Right*

The selection of good class names is critical to the
maintainability of your application. They form the
basic vocabulary in which developers speak and the
language in which they describe the code’s every
activity. No wonder then that vague or misleading
class names will quickly derail your best efforts to
understand the code base.

Because we are called on to invent class names so
frequently, there is a tendency to become somewhat
lackadaisical in our approach. I hope the following
guidelines will assist you in devising meaningful
class names, and encourage you to invest the effort
necessary to do so. As always, these are just
guidelines and ultimately you should use your own
discretion.

1. A Class Name Is Usually A Noun, Possibly
Qualified.

The overwhelming majority of class names are
nouns. Sometimes you use the noun by itself:

• Image
• List
• Position
• File
• Exception

Other times you qualify the noun with one or more
words which help to specialize the noun:

Class Name Grammatical Breakdown

JPEGImage The noun Image is qualified
by the noun JPEG

LinkedList The noun List is qualified by
the adjective Linked

ParsePosition The noun Position is
qualified by the verb Parse

RandomAccessFile The noun File is qualified by
the adjective Random and the
verb Access

FormException The noun Exception is
qualified by the noun Form

When searching for a noun to serve as a class
name, consider the following suffixes which are
often used to form nouns from other words:1

Suffix Example Class Names
-age Mileage, Usage

Suffix Example Class Names

-ation Annotation, Publication,
Observation

-er User, Broker, Listener, Observer,
Adapter

-or Decorator, Creditor, Author,
Editor

-ness Thickness, Brightness,
Responsiveness

-ant Participant, Entrant

-ency Dependency, Frequency, Latency

-ion Creation, Deletion, Expression,
Enumeration

-ity Plasticity, Mutability, Opacity

-ing Tiling, Spacing, Formatting

-al Dismissal, Removal, Committal

2. Avoid Class Names That Have Non-Noun
Interpretations

Suppose that while maintaining an application you
come across a class called Empty. As a noun,
instances of Empty might represent a state in which
some vessel is devoid of contents. However the word
"empty" can also function as a verb, being the act of
removing all the contents of a vessel. So there is
potential confusion as to whether the class models a
state or an activity. This ambiguity would not arise if
the class had been called EmptyState or
EmptyActivity.

3. A Class Name Is Sometimes An Adjective.

There is a special type of class called a structural
property class2, which is often named with an
adjective. Such classes exist to confer specific
structural properties upon their subclasses (or
implementers, in the case of interfaces). They are
often suffixed with -able. Examples include:

• Comparable
• Undoable
• Serializable
• Printable
• Drawable

4. Use Commonly Accepted Domain
Terminology

Specialist domains come ready-made with their
own vernacular. This can be both a curse and a
blessing. The down side is that newcomers to the
domain have a lot of new terminology to master. The
up side is that, once mastered, that terminology
makes for efficient and precise communication with
others fluent in the domain’s jargon. Incorporating

NAMING CLASSES: DO IT ONCE AND DO IT RIGHT 99

domain terminology in your class names is a good
idea, as it succinctly communicates a lot of
information to the reader. But you must be careful to
use only terminology that is commonly known and
has a precise definition, and ensure that your usage
of the term is consistent with that definition. Avoid
region-specific slang and colloquialisms. Examples:

• DichotomousItem
• CorrigendaSection
• DeweyDecimalNumber
• AspectRatio
• OrganicCompound

5. Use Design Pattern Names

Incorporating design pattern names like Factory,
Proxy and Singleton into your class names is a good
idea, for the same reasons that it is useful to use
terminology from the application domain – because a
lot of information is communicated succinctly. Just
be careful not to get pattern-happy, and start thinking
“everything is an instance of some pattern.” Only
refer to design pattern names if they have direct
relevance to the intrinsic nature of the class.
Examples:

• ConnectionFactory
• ClientProxy
• AccountObserver
• DocumentBuilder
• TableDecorator

6. Aim For Clarity Over Brevity

Many developers demonstrate a form of scarcity
thinking when it comes to naming classes – as if
there were a shortage of characters in the world and
they should be conserved. The days when we needed
to constrain identifiers to particular length
restrictions are long gone. Today we should be
focused upon selecting class names that
communicate effectively, even if at the expense of a
little extra length. With many developers using IDEs
that support auto-completion, the traditional
arguments in favor of abbreviation (typographical
error and typing effort) are no longer applicable. The
one case where abbreviation is warranted is specialist
acronyms that are commonly used in the application
domain e.g. CMOSChip is clearer than
ComplimentaryMetalOxide-
SemiconductorChip. Examples:

• ProductionSchedule is clearer than
ProdSched

• LaunchCommand is clearer than LaunchCmd

• ThirdParty is clearer than ThrdPrty
• ApplicationNumber is clearer than AppNum
• SystemCorrespondence is clearer than

SysCorro

7. Qualify Singular Nouns Rather Than Pluralize

When a class represents a collection of some type,
it can be tempting to name it as the plural of the
collected type e.g. a collection of Part classes might
be called Parts. Although correct, you can
communicate more about the nature of the collection
by using qualifying nouns such as Set, List,
Iterator and Map. Examples:

Class Name Group Semantics
PartList Parts are ordered

PartSet Parts are unordered and each Part can not
appear more than once

PartPool Parts are interchangeable

8. Find Meaningful Alternatives To Generic
Terms

Terms like Item, Entry, Element, Component and
Field are very common and rather vague. If these
terms really are the standard terminology in your
application domain then you should use them. But if
you are free to use class names of your own
invention then search for something more specific
and meaningful.

9. Imply Relationships With Other Classes

Naming a class provides you with the opportunity
to communicate something about that class’s
relationship with other classes in the application.
This will help other developers understand that
class’s place in a broader application context.

Some techniques that may be helpful in this
regard:

• Use the name of a super-class or interface as a
suffix e.g. call implementations of the Task
interface PrintTask, ExecuteTask and
LayoutTask.

• Prefix the name of abstract classes with the word
Abstract.

• Name association classes by pre-pending and
appending the class names on either side of the
association e.g. the association between
Student and Test could be called
StudentTakesTest.

100 HACKNOT

* First published 9 Mar 2004 at
http://www.hacknot.info/hacknot/action/showEntry?eid=48
1 Bloomsbury Grammar Guide, Gordon Jarvie
2 Object Oriented Software Construction, 2nd Edition, Bertran
Meyer

IN PRAISE OF CODE REVIEWS 101

In Praise of Code Reviews*

I have a woeful sense of direction — the
navigational abilities of a lemming combined with
the homing instinct of a drunk. But like much of my
gender, I continue to entertain the fantasy that I
possess an instinctive ability to find my way, an
evolutionary artifact of the male's traditional role as
the hunter; an unerring inner compass that will guide
me safely through the hunt of everyday life, despite
voluminous evidence to the contrary. It is a fantasy
that gets me in trouble on a regular basis.

Whenever I am driving to somewhere new, the
scenario generally plays out like this: I begin the
journey looking through my street directory, tracing
out the path I need to follow. After memorizing the
first few turns I set the directory down and depart,
resolving to stop and consult the directory again once
I've completed those turns. Within a few minutes I
have traveled over the first part of the journey that
I've already memorized, and have reached a decision
point. Will I pull over to the side of the road and
reacquire my bearings as planned, or will I just
follow my nose? Invariably, I choose the latter.

"I'm bound to see a relevant sign before too much
longer," I think. And so I drive on, keeping an eye
out for the anticipated sign. If it doesn't shortly
appear, I begin to make speculative turns based on
my own "gut feeling" about which way to head. If
I'm heading to a popular destination, I might simply
follow the path I perceive most of the traffic is
taking, figuring that they're all probably headed to
the same place as I am. Through a combination of
guess-work, dubious reasoning and random turns I
eventually reach the point where I have to admit to
myself that I'm lost. Only then will I pull over to the
side of the road, get the street directory out of the
glove compartment to find out where I am and how
to get to my original destination from here.

This insane behavior has been a characteristic of
my driving for many years. It usually manifests when
I am driving home alone from some event which has
left me feeling tired and distracted. I slip into a worn
out fugue, adopt a "she'll be right" attitude and head
off to goodness-knows-where. About a year ago,
driving home from a job interview in a distant city, I
strayed off course by over 100 kilometers – all the
while resolutely refusing to pull over and consult my
directory, which I could have done at any time.

Thanks to these unexpected excursions, I have
seen parts of the country side that I might otherwise

have missed, but I have no idea where they were or
how to get back there.

So why do I do it? Why not spend five minutes by
the side of the road working out where I've been and
where I'm going, rather than just keep driving
aimlessly in hope of finding some visible prompt to
get me on course? As strange as the habit is, I think
it's exactly the same behavior that many people
exhibit when they make self-defeating decisions. It
stems in part from short-term thinking.

Driving along in my pleasant reverie, I am faced
with a choice. Stopping to consult my street directory
will require some mental energy. I'll have to break
the flow of my journey, find a significant landmark
or intersection, locate it in the directory, and re-plot a
path to my destination. The alternative is just to keep
drifting along and hope for the best. If your scope of
consideration is only the next few minutes, then it's
very easy to decide to avoid the short-term
inconvenience of pulling over in favor of continuing
to do what you're already doing – even though it isn't
working out and has already got you into difficulty.

A smoker indulges in similar thinking every time
they light up. They know full well that they're killing
themselves by having that next cigarette, but
considering only the next five minutes, what is
easier: Resisting the craving for a cigarette, or giving
in?

This desire to minimize small, short-term pain
even at the expense of significantly more pain in the
long term is at the core of much self-defeating
behavior.

We'll return to this theme in a moment. But first, a
short divergence on code reviews.

Code Reviews

For many types of work it is standard practice to
have one's work checked by another before the work
product is put into service. Authors have editors;
engineers have inspectors and so on. But in software
development it is common for code to flow directly
from the programmer's fingertips into the hands of
the end users without ever having been seen by
another pair of eyes.

This is despite there being a large body of
empirical evidence establishing the effectiveness of
code review techniques as a device for defect
prevention. Since the early history of programming, a
number of different techniques for reviewing code
have been identified and assessed. A code
walkthrough is any meeting in which two or more
developers review a body of code for errors. A code
walkthrough can find anywhere between 30 and 70

102 HACKNOT

percent of the errors in a program1. Code reading is a
more formal process in which printed copies of a
body of code are distributed to two or more
reviewers for independent review. Code reading has
been found to detect about twice as many defects as
testing2. Most formal of all is the code inspection,
which is like a code walkthrough where participants
play pre-defined roles such as moderator, scribe or
reviewer. Participants receive training prior to the
inspection. Code inspections are extremely effective,
having been found to detect between 60 and 90
percent of defects3. Defect prevention leads to
measurably shorter project schedules. For instance,
code inspections have been found to give schedule
savings of between 10 and 30 percent.

I estimate that about 25 percent of the projects I
have worked on conducted code reviews, even
though 100 percent of them were working against
tight schedules. If we can save time and improve
quality with code reviews, why weren't the other 75
percent of projects doing them?

I believe the answer is mostly psychological, and
the basic mechanism is the same one that I engage in
every time I go on one of my unplanned excursions
in my car. The essential problems are short-term
thinking, force of habit and hubris.

Suppose you have just finished coding a unit of
work and are about to check it into your project's
version control system. You're faced with a decision
– should you have your code subjected to some
review procedure, or should you just carry on to the
next task? Thinking about just the next five minutes,
which option is easier? On the one hand you'll have
to organize the review, put up with criticism from the
reviewers, and probably make modifications to your
code based upon their responses. On the other hand,
you can declare the task "finished', get the feeling of
accomplishment that comes along with that, and be
an apparent step closer to achieving your deadlines.
So you make the decision which minimizes
discomfort in the short term, the same way I decide
to just keep on driving in search of a road sign rather
than pull over and consult my street directory.

But then, you've got to rationalize this laziness to
yourself in some way. So you reflect on previous
experience and think "I've gotten away with not
having my code reviewed in the past, so I'll almost
certainly get away with it again". Similarly, I'm
driving along thinking "I've never failed to
eventually get where I'm going in the past, so I'll
almost certainly get there this time as well."
Complacency breeds complacency.

Finally, although it is difficult to admit, there is
some comfort in not having your code reviewed by
others. We would like to think that we can write

good code all by ourselves, without the help of
others, so avoiding code reviews enables us to avoid
confronting our own weaknesses. In the same way,
by following my nose rather than following my street
directory, I can avoid having to confront the
geographically exact evidence of my hopeless sense
of direction that it will provide. Ignorance is bliss.

Even when you quote the empirical evidence to
programmers, many will still find a way to excuse
themselves from performing code reviews, by
assuming that the touted reductions in schedule and
improvements in quality were derived through
experimentation upon lesser developers than
themselves. The thinking goes something like "Sure,
code reviews might catch a large percentage of the
defects in the average programmer's work, but I'm
way above average, don't write as many defects, and
so won't get the same return on investment that
others might." Unfortunately it is very difficult to tell
simply by introspection whether you really are an
above average programmer, or whether you just think
you are. Most people consider that they are "above
average" in ability with respect to a given skill, even
though they have little or no evidence to support that
view. For example, most of us consider ourselves
"better than average drivers". The effect is sometimes
referred to as self-serving bias or simply the above
average effect.

Those that have bought into the Agile propaganda
(can we call it "agile-prop"?) may have been
deceived into thinking that pair programming is a
substitute for code reviews. To the best of my
knowledge, there is no credible empirical evidence
that this is the case. In fact, there are good reasons to
be highly skeptical of any such assertions – in
particular, that a pair programmer does not have the
independent view of the code that a reviewer
uninvolved with its production can have. Much of the
benefit of reviews comes from the reviewers
different psychological perspective on the product
under review, the fact that they have no ego
investment in it, and that they have not gone through
the same (potentially erroneous) thought processes
that the original author/s have done in writing it. A
pair programmer is not so divorced from the work
product or the process by which it was generated,
and so one would expect a corresponding decrease in
ability to detect faults.

So we sustain self-defeating work practices the
same way we sustain many other sorts of self-
defeating behavior – by lying to ourselves and
putting long term considerations aside.

IN PRAISE OF CODE REVIEWS 103

Do Code Reviews Have A Bad
Reputation?

There is perhaps another factor contributing to a
hesitance to perform code reviews, which is the
reputation they have as being confrontational and
ego-bruising experiences. This reputation probably
springs from consideration of the more formal review
processes such as code inspections, in which the
reviewing parties can be perceived as "ganging up"
on the solitary author of the code, subjecting them to
a famously unexpected Spanish Inquisition.

This is a legitimate concern, and it is certainly
easy for a review of code to turn into a review of the
coder, if a distinct separation is not encouraged and
enforced. I therefore recommend that code reviews
be conducted by individual reviewers in the absence
of the code's author. This tends to depersonalize the
process somewhat, and remove some of the
intimidatory effect that a group process can have.
There is in fact some evidence to suggest that an
individual reviewer is no less effective than a group
of reviewers in detecting faults in code.

The code can be printed out and written comments
attached to it, or comments can be made in the source
file itself, perhaps as "TODO" items that can be
automatically flagged by an IDE. Personally, I prefer
paper-based reviews because a paper-based review
system is quick and easy to institute, and equally
applicable to reviews of written artifacts such as
design and requirements documents.

Conclusion

There is much to recommend the practice of
conducting code reviews on a regular basis, and few
negatives associated with them, provided they are
conducted sensitively and with regard for the feelings
of the code's author. All it takes is for one other
programmer on your team to be willing to undertake
the task, and you can establish a simple code review
process that will likely produce noticeable benefits in
improved code quality and reduced defect counts.
Not everyone is good at reviewing code, so if you
have the option, have your code reviewed by
someone who demonstrates an eye for detail and is
known for their thoroughness. If you have the
authority to do so, it is well worth incorporating code
reviews into your team's development practice,
perhaps as a mandatory activity to be undertaken
before new code is committed to the code base, or
perhaps on a random basis. It may also be
worthwhile to have junior staff review the code
written by their more experienced counterparts, as a

way of spreading knowledge of good coding
techniques and habits.

When introducing code reviews, you will likely
encounter some initial resistance, simply because the
short-term thinking which has so far justified their
absence is a habit that is superficially attractive and
requiring of a certain determination to break.
However, once they have had the opportunity to
participate in code reviews, many programmers will
concede that it is a habit worth forming.

* First published 27 Feb 2006 at
http://www.hacknot.info/hacknot/action/showEntry?eid=83
1 Rapid Development, Steve McConnell, pg 70, citing Myers 1979,
Boehm 1987b, Yourdon 1989b
2 Ibid, pg 71, citing Card 1987
3 Ibid, pg 71

User Interfaces

WEB ACCESSIBILITY FOR THE APATHETIC 105

Web Accessibility for the
Apathetic*

If you're like me, you approach the subject of
accessibility with a certain self-conscious guilt. On
the one hand, you recognize that there are excellent
ethical and legal reasons for making your
applications – be they web-based or rich client –
accessible to those with sensory or cognitive
impairments; but on the other hand you can't ignore
the fact that the extra work required to add that
accessibility is only going to make a difference to a
very small percentage of your users.

In recent years, the legal impetus has begun to
gain strength, forcing those of us to action who might
otherwise have been willing to put our internal ethics
department on hold in the name of conserving time
and energy. Having spent some time recently
working inside a department of the Australian
government, I have learnt that the issue of
accessibility, in particular web accessibility, has a
reasonably high profile. Because government web
sites are required to adhere to accessibility
guidelines1, there has developed a group, comprised
of either moralists or opportunists, who spend their
time scouring the web pages of government web sites
looking for non-conformances to use as the basis for
legal prosecution. American courts have recently
ruled that the accessibility requirements pertinent to
US governmental web sites are also applicable to
privately held web sites. Even your blog counts as
material that is made "publicly available," and must
therefore be equally available to all.

With these ideas in mind, and also to assuage my
growing feelings of guilt regarding the accessibility
(or lack thereof) of this site, I decided to undertake a
bit of a site revamp, the cosmetic results of which
you will already have noticed. This article provides a
brief overview of the process I followed, and thereby
gives a general introduction to the tools and
techniques necessary to retro-fit accessibility to a site
that was designed without specific consideration of
that issue.

General Approach

In general, web accessibility can be achieved by
adhering to the following two principles:
• Separate presentation from content by restricting

your use of HTML to the standard structural
elements, and using CSS (Cascading Style

Sheets) to control the way that structure is
presented.

• Emphasize textual content. Where non-textual
content is used, always provide a textual
equivalent.

A good portion of the details appearing below are
in support of these two principles. The steps below
show you how to transform a non-accessible web
page into an accessible one.

Step 1: Ensure All HTML Elements Are
Structural

Structural elements those which describe the
semantic units of an HTML document. Examples of
structural HTML elements are:

• <h1> … <h6>
• <p>
•
•
•
•
• <div>
•

Over the years, browser vendors have added
proprietary non-structural elements and attributes to
the HTML grammar their browser understands, in an
effort to differentiate their product from their
competitor's. The result is a tag set which invites
misuse, is interpreted differently (or not at all) in
different browsers, and awkwardly combines content
and presentation. By removing elements that specify
some aspect of the document's presentation,
accessibility can be improved.

Examples of non-structural HTML elements you
should remove are:

• <hr>
• <i>
•
• <u>
• <big>
• <small>
•
• <basefont>
•

•
• <tt>

The layout effects produced by these non-
structural tags can, and should be, achieved with
style sheets. Using these tags only pollutes your
HTML document with presentation information that
may well be useless or misleading to those with low
vision. For instance, elements should be removed

106 HACKNOT

because bold text has no meaning to a blind user.
This doesn't mean that text can't be made bold, but
rather that CSS rather than HTML should be the
means by which the bolding is achieved.

Note that in some cases there is a structural tag
that you should put in place of the deleted non-
structural tag. For example:

• If you have removed tags that were used to
emphasize words, insert tags where
the tags used to be.

• If you have removed tags that were used to
create a heading, insert a heading tag like <h3>
where the tags used to be.

• If you have removed tags that were used to
add emphasis, insert tags where the
tags used to be.

In other cases, there is no structural element
already defined in HTML that adequately captures a
structural aspect of your web page, so you must
invent your own using the or <div> elements.
For instance, you might create a of class "footnote"
to denote footnote references:

This is a
footnote.

The way that span elements of class footnote are
displayed is later specified in a CSS.

Step 2: Ensure All HTML Attributes Are
Structural

Non-structural attributes should be removed for
the same reasons that structural elements should be
removed. Examples of non-structural attributes you
can delete are:

• align
• link
• alink
• halign
• valign
• background
• color
• text
• bgcolor
• vspace
• height
• width
• hspace
• border

Again, all the layout effects that were produced by
these attributes can be achieved with CSS, leaving
the basic HTML document more accessible.

Step 3: Remove Misused Structural
HTML Elements

Structural elements should not be used as ersatz
layout mechanisms as this will confuse those
accessing your web page with a text browser.

Examples of the misuse of structural elements for
layout purposes include:

• Using empty paragraphs (<p>) to put a vertical
space between consecutive blocks of text.

• Using the <table> element to achieve columnar
alignment of material that is not inherently
tabular.

• Drawing lines by stretching a 1-pixel .

• Using <blockquote> purely to achieve
indentation.

Step 4:
Ensure All Non-Textual Content Has A
Textual Equivalent

Users with visual impairment may use a text
browser, Braille bar or screen reader to access your
web page. These mechanisms can only deal with text
as input. So you need to supply a textual equivalent
to any non-textual content on your web page. A
common examples is using the alt attribute of
tags to describe the significance of the image.

There are certain mechanisms which should be
used sparingly, if at all, because they are inherently
inaccessible. These include:

• Image maps
• Javascript
• Side-by-side frames
• Secondary windows
• Shockwave animations

Not only are these mechanisms difficult for some
users to access, but they may be deliberately disabled
by any user in their browser.

Step 5:
Add In Attributes Or Elements That Aid
Accessibility

There are a few HTML structural elements and
attributes that are particularly helpful from an
accessibility perspective:

• The <abbrev> and <acronym> elements can be
used to specify the expansion of abbreviations

WEB ACCESSIBILITY FOR THE APATHETIC 107

and acronyms when they first occur in a
document.

• The <th> element should be used to identify
column headers. Tables are linearized in text
browsers, and knowing which table cells are
headers helps the user interpret them.

• In HTML forms, use the <label> element
around the form labels. Additionally, field labels
should be immediately to the left of, or
immediately above, the field.

• Provide a logical tab order for elements by
specifying the tabindex attribute for <input>
elements.

• Use the title attribute of <a> elements to provide
more information about the target of the
hyperlink.

Checkpoint

At this point, you should have an HTML
document that is marked up solely with structural
elements and attributes. This is a good time to
preview your page in a text browser like Lynx2, or
with a screen reader like IBM Home Page Reader3.

It is also a good time to run your HTML through
one of the automated accessibility-checker sites on
the web. Such sites enable you to provide your
HTML – either directly with cut/paste, or by
nominating a URL – and then scan the document
looking for accessibility problems. I found
www.bobby.com to be quite useful.

Step 6:
Recreate The Layout Using
Cantankerous Style Sheets

And now for the tricky bit. Converting your web
page to use only structural HTML elements and
attributes is easy compared to using CSS to achieve
your desired layout. Mostly the difficulty stems from
the variations in the way different browsers render
CSS directives. Behavior of "floating" elements
seems to be particularly problematic. Therefore it is
essential to test the layout in as many different
browsers as you can. This lack of standardization in
behavior is the most frustrating aspect of using CSS.
I found the following books useful in getting up to
speed on CSS:

• CSS - The Definitive Guide 2nd Edition, Eric A.
Meyer, O'Reilly Media Inc, 2004

• CSS - Designing for the Web 2nd Edition, H. Lie
and Bert Bos, Addison Wesley, 1999

• More Eric Meyer on CSS, Eric Meyer, New
Riders, 2004

Once you've got a style sheet that presents the
HTML document the way you want, you're done.
Just be sure that your choice of layout effects doesn't
aggravate those suffering from particular medical
conditions:

• Those with light-triggered epilepsy can seizure
when subject to blinking text or images.
Sensitivity varies between the 4Hz and 59Hz
frequencies, with peak sensitivity around 20Hz.

• Color perception problems are quite common –
more so in males than females. Make sure your
layout doesn't rely on color as the sole
discriminator between different objects. The
filter available at www.visicheck.com can show
you what your page looks like to users with
different color perception difficulties.

• Do not use text sizes that are too small. The
minimum size should appear to be equivalent to
a 10pt font, but 12pt is preferable. Note that you
should not actually use pt or px units to specify
font sizes, as these don't scale up when the user
changes the text size in their browser. The em
unit should be used instead.

* First published 2 Nov 2004 at
http://www.hacknot.info/hacknot/action/showEntry?eid=69
1 http://www.w3.org/TR/WAI-WEBCONTENT/
2 http://lynx.browser.org/
3 http://www-3.ibm.com/able/solution_offerings/hpr.html

108 HACKNOT

SWT: So What?*

If you are about to undertake a major project using
SWT, I suggest you think very carefully before doing
so. Compared to its obvious competitor, Swing, SWT
is very lacking in functionality, support and
community development experience. Little wonder
that there is not a lot of detailed information to be
found from people who are using SWT in anger to
create serious applications. There is a certain amount
of fan-boy stuff1, written by people in the first blush
of initial enthusiasm, convinced that everything is
"cool" and "awesome", but very little from people
who have been through a significant implementation
effort extending over months or years. The closest
one can get to finding "veteran" users is on the
eclipse.org.swt newsgroup. In surveying opinions
on SWT from the development community, I have
found that people's enthusiasm for SWT is inversely
proportional to the amount of experience they have
had with it.

Let me briefly outline the principle differences
between SWT and Swing, at a high level:

• Sun first released Swing in 1997. It is bundled
with Java and is considered the "standard" for
GUI development in Java. Swing creates a GUI
using only emulation - that is, Java draws the
buttons, menus and other widgets on a blank
window using primitive graphic operations. It
entirely ignores whatever widgets are made
available by the native platform, but through its
pluggable "Look and Feel" facility it imitates the
appearance and behavior of those widgets.

• IBM released SWT as open source in 2001,
having written it to support development of the
Eclipse IDE. IBM began developing Eclipse in
Swing, found it unacceptably slow, and so
decided to write their own widget toolkit instead.
In general, SWT wraps the native widgets from
the underlying platform, which is intended to
give better performance than Swing, and make
interfaces written with SWT indistinguishable
from native applications.

Discussions of the relative merits of Swing and
SWT fall tend towards religious war. SWT advocates
champion SWT's fidelity to native applications,
performance and efficiency. They deride Swing’s
responsiveness, memory consumption and
complexity. Swing advocates champion Swing’s
maturity, power and support. They deride SWT's
capabilities, quality and small developer base.

Advocates from both sides consider their opponents
to be of questionable parentage.

Problems In Using SWT

There are numerous obstacles for the would-be
SWT programmer to overcome. Collectively, you
will find them a source of great frustration.

Bugs

Unless you are developing a trivial interface, you
will be forced to become very well acquainted with
the Bugzilla at eclipse.org. As further examples,
try doing a query on the Bugzilla to find the number
of bugs raised by the principal developers of
Azureus2 and BitTorrent3 - probably the two most
well-known SWT applications at this time. You will
see that each has raised fifty or more issues in the
course of developing their products. That may be fine
if you're working on an open source application
without strict deadlines or resource limitations, but in
a commercial context, losing so much time and effort
to bugs is a major problem.

You don't want your project to have critical issues
to be fixed on a time line that is beyond your control.
The old open source standby of "just fix it yourself"
is a non-sequitur here. In a commercial context, one
is paid to advance the business interests of the client,
not to overcome shortcomings in a widget toolkit.
Besides, making additions to SWT requires a low-
level knowledge of the behavior of five different
operating systems and windowing environments, and
how many people have that kind of expertise?

The fact that each bug fix must be made to work
for different native implementations is a significant
multiplication of effort, and the source of often
lengthy delays when it comes to bug fixes and
functional enhancements. This was stated by Steve
Northover, the original architect of SWT, in a recent
message to the eclipse.org.swt newsgroup. He
responded to one programmer's frustrated complaints
about bugs in the Table widget which had been
outstanding for several years, in this way:

If you stop to think about it, we support 5
different operating systems using totally
different code bases and somehow knit
together and implement a portable API to all
of them and we do this for free. It's a full time
job, 24-7.

This problem is an unavoidable byproduct of the
architectural decision that underlies SWT – the use
of native widgets necessitates the development and

SWT: SO WHAT? 109

maintenance of numerous distinct code bases. The
burden is significant and, to quote James Gosling, "a
bad place to be".4

Limited Functionality

Those coming to SWT from a Swing background
will probably be shocked by the absence of many bits
of functionality that they are accustomed to having at
their fingertips. For instance, Swing programmers
will think nothing of having a Button widget that
displays both a text label and image, and be surprised
they can't do that in SWT unless the Button appears
within a ToolBar or CoolBar [Ed. 2006 – This issue
has since been resolved]. They will be used to
attaching Borders to widgets as they see fit, using the
Swing BorderFactory, but wonder why borders are
only supported on some SWT widgets such as Text
and Label. They will be accustomed to setting up
input masks on text fields using the facilities on
JTextField, but find in SWT they will have to write
that themselves by listening to individual keystrokes
on a Text widget.

Eclipse Driven Development

We do well to remember that SWT was originally
developed in service of Eclipse. Now that Eclipse is
open source and SWT is being touted by some as an
alternative to Swing for general interface
development, this heritage is turning out to be quite a
burden. There is a bipartite division in issue response
times that seems to be related to relevance to Eclipse.
If a bug is found that effects Eclipse, then there is
some chance of it being attended to in a reasonable
time frame. If the bug doesn't effect Eclipse – then
the situation is quite different. Such bugs appears to
attract a much lower priority. And given the resource
restrictions the Eclipse GUI team struggles with,
getting enhancement requests done is quite an
achievement. This Eclipse-centric approach to
maintenance and extension is a problem when the
application you're constructing is not from the same
domain as Eclipse. The facilities required to
construct the interface for, say, a warehousing or
inventory-tracking system are different from those
required to construct a programmer's IDE. The
former makes demands of SWT not made by the
latter – but maintenance and enhancement appears to
be prioritized according to relevance to Eclipse.
Therefore you'll find SWT less and less relevant the
further away you stray from the programming
domain.

Myths

There is a lot of urban myth and misinformation
surrounding both SWT and Swing. When evaluating
the relative merits of these two technologies, your
first task will be to distinguish fact from opinion.
There is much of the latter masquerading as the
former. Below, I address a few of the common
misconceptions in this area.

SWT Is Fast, Swing Is Slow

Apparently it was performance concerns with
Swing that prompted IBM to begin development of
SWT. It would be interesting to know if they would
make this same decision now, especially given the
Swing performance improvements in JDK1.5. In
practice, both Swing and SWT applications can be
made to appear unresponsive if you perform long-
running operations in the GUI event thread (a
concept shared by both) or if a big garbage collection
cycle arrests the entire application. The best way to
compare Swing and SWT performance would be via
benchmarks, however it is difficult to construct a fair
comparison that truly compares like with like when
the underlying technologies differ in such
fundamental ways.

SWT Exposes The Native Widgets Of The
Underlying Platform

In general, SWT exposes the behavior of the
native platform's own GUI widget set. However this
is only part of the story. There are some inferences
people tend to make based on this, that are incorrect.

Some believe that the entirety of the underlying
widget's behavior is exposed through SWT. This is
not necessarily so. SWT must produce the same
behavior across all the platforms it caters to. If
widget W has behaviors A, B and C on its native
platform, but C is missing from one platform's
implementation of the widget W, then only A and B
are provided by W on all platforms. In other words,
behavior C will be masked out on its native platform,
because it was not available on all platforms. This
"lowest common denominator" approach can be very
limiting. For example, you would not think it a great
challenge to put both an image and a text label on a
button. However, unless the button is in a Toolbar or
CoolBar, you can't do it in SWT [Ed. 2006 – This
issue has since been resolved]. This is because it's
not permitted on one of the platforms that SWT
supports, therefore it can't be available on any of
them. Every few weeks, somebody posts a message
to the SWT newsgroup wanting to know how to do

110 HACKNOT

this, and is surprised to find that they can't ... they
have to write their own button widget if they want
that functionality.

However, the situation is not that simple.
Sometimes the "lowest common denominator" is
augmented using emulation in SWT. In other words,
somebody has determined that the lowest common
denominator is simply not acceptable, and those
platforms where the behavior is not available
natively have that behavior added on by SWT itself.
In some cases this extends to emulation of an entire
widget. For example, Motif has no tree widget.
Rather than hide the tree widget on all platforms,
SWT emulates the entire tree widget for Motif.

There are both advantages and disadvantages to
SWT's partial exposure of native widgets. On the up
side, you get fidelity to platform appearance and
behavior. On the down side, that fidelity may not
extend to the inclusion of features outside of the
LCD. Further on the down side, not only do you get
the native widget's behavior, you also get its bugs.
On the up side, sometimes SWT can compensate for
those bugs so that they appear fixed to the SWT user.

Platform Fidelity Increases Usability

The rationalization that SWT proponents
constantly offer for attaching such importance to
absolute platform fidelity is that it increases
usability. SWT is meant to offer greater platform
fidelity than Swing, which makes the usability of
SWT applications better. I believe this argument is
specious, for several reasons.

First, this argument gets voiced by programmers,
not users. This is significant because what is
important to programmers is not necessarily
important to the general user population. There is
also the possibility of programmers letting their
technical convictions influence their perception of
usability. Consider, it was feedback from
programmers that drove the development of SWT to
begin with. In the forward to "SWT: The Standard
Widget Toolkit", Erich Gamma states:

I was part of the team with the mission to
build a Java based integrated development
environment for embedded applications that
was shipped as the IBM
VisualAge/MicroEdition. ... We felt pretty
good about what we had achieved! However,
our early adopters didn't feel as good as we
did... they complained about the performance
and most importantly about the fact that the
IDE didn't look, feel and respond like a native
Windows application. Some of the

performance problems were our fault and
some of them could be attributed to Swing.
The performance problems didn't bother us
that much; they could be engineered away
over time. What worried us more was the non-
native criticism. While we could implement a
cool application in Swing that runs on
Windows, we couldn't build a true Windows
application. Fixing this problem required
more drastic measures. 5

So SWT sprung from an IDE development effort,
and the feedback of the IDE’s early adopters - who
are themselves programmers. I suspect that the issue
of platform fidelity is of very little significance to
non-programmers. Personally, I have seen no
evidence that whatever discrepancies exist between
Swing's emulation of Windows and the native
Windows appearance make any appreciable
difference in usability at all. Many users don't even
notice, and those that do only have a vague
awareness that something is a bit different about the
application, but they're not quite sure what.

Second, due to the LCD effect already described,
SWT often doesn't expose the exact behavior or
appearance of the native widget set. Where is the
evidence that the difference in fidelity between the
SWT version of widgets and the Swing emulation of
those widgets actually results in a difference in
usability? In fact, there is much to suggest that it is
not the case. Consider the success of applications
such as iTunes for Windows, QuickTime, Winamp
and the Firefox browser. All of these have interfaces
very different from that of native Windows
applications – yet they are successfully used by even
novice Windows users. When users upgrade from
one version of Windows to another, say from 2000 to
XP, there are numerous cosmetic differences in the
interface presented, but do they suddenly find
themselves lost and unable to use the applications?
No, of course not. The reason is that minor aesthetics
are not key determinants of usability. Overall
interface structure, task orientation and affordance
are the key factors. Whether a button has a 3-pixel
wide or 2-pixel wide shadow is not important. As
long as a user can recognize the controls presented to
them, and those controls behave in a predictable way,
then usability is unaffected.

Finally, if usability and platform fidelity are so
inextricably linked, what are we to make of the Flat
Look part of SWT – that subset which creates
interfaces which are similar to web pages in
appearance but exhibit greater functionality? They
are entirely unlike anything in any of the native
platforms that SWT supports. If you've seen the PDE

SWT: SO WHAT? 111

in Eclipse, you've seen Flat Look. If the claim that
platform fidelity is linked to usability is true,
shouldn't Flat Look interfaces be usability
nightmares? The inconsistency between philosophy
and implementation is puzzling.

SWT Is Quicker To Learn Than Swing

SWT enthusiasts claim that it is easier to learn
than Swing. Having been through the learning curve
for both, I have not found this to be the case. There
are two main aspects to the ease of learning for any
technology – the difficulty of the technical concepts
themselves, and the way those concepts are taught.
Conceptually, there is a significant overlap between
SWT and Swing. Component hierarchies, layout
managers, threading and separation of data from
presentation are concepts present in both. The basic
selection of built-in widgets and layouts is much the
same also. The real differentiator is the quality and
quantity of instructional material available. The
Javadoc for SWT is sparse, the remaining knowledge
has to be pieced together from articles, code snippets
and asking questions on the SWT newsgroup. There
are perhaps a half dozen books on SWT available.
Beyond that, you need to look at the SWT code itself
and reverse engineer an understanding of what's
going on. The situation with Swing is very different.
The Javadoc is extensive, there is a vast amount of
tutorial information available online, and a large
number of books are dedicated to the topic.
Therefore learning Swing is generally easier than
learning SWT, because of the greater amount of plain
English information available.

Limited Third Party Widget Selection Is A Good
Thing

Any comparison of SWT and Swing must unearth
the fact that there is next to nothing in the way of
third part widgets available for SWT, but there are a
number of such offerings available for Swing. This
can have a profound effect on programmer
productivity, forcing one to write by hand what
might otherwise be available off the shelf for
considerably less cost.

Probably the most desperate pro-SWT argument
I've heard to date is the claim that this reduced
selection of COTS widgets is a good thing because it
reduced the opportunities for programmers to do the
wrong thing. If there is a wide selection of widgets
available, the argument goes, then programmers will
fill their interfaces with every cute widget they can
get their hands on. This is not a problem when using

SWT, as few such widgets are available in the first
place.

The argument is so ridiculous as to beggar belief,
but it is one I have heard SWT zealots voice, in a
desperate attempt to rationalize their ideological
convictions. Its main failing is to confuse widget
availability and widget usage. The usability of an
interface is not a function of how many different
types of widgets it contains, but of the way those
widgets are organized and used in the interface. A
good interface designer knows that novel widgets
may confuse users unfamiliar with them, and so does
not employ them unless they offer a radical
functional improvement in return for lesser
intuitiveness. A bad interface designer will construct
an interface with poor usability regardless of how
few widgets they have at their disposal. To
understand why, consider the following analogy.

Suppose you take a good artist and a bad artist,
give them each a palette of one thousand colors then
ask them to paint a picture. The good artist produces
a work of art, the bad artist an eyesore. Now, in an
attempt to make it harder for the bad artist to do the
wrong thing, you restrict them both to a palette of ten
colors. What results? The good artist produces
another work of art, perhaps less subtle than the first,
and the bad artist produces another eyesore, just with
less variation in hue. By restricting the color
selection, you haven't made it harder for the bad
artist to create a mess, you've just made it more
difficult for the good artist to use their talent to the
fullest. The worth of the final painting is a function
of the artist’s talent much more than it is the
availability of colors. So it is too with user interfaces.
The usability of the interface is mostly a function of
the designer’s talent and experience, not the number
of widgets available to them.

Conclusion

There has been a revival of interest lately in rich
client interfaces. It seems that the obsession with web
applications that the industry has experienced in
recent years may be starting to thaw. It is finally
being appreciated that it is not OK to squeeze all
interaction through the restrictions currently imposed
by web browsers. Even though programmers may be
temporarily enamored of web-based development,
their enthusiasm is not necessarily shared by the user
population who must struggle with the results of their
IT department's technical and ideological
enthusiasms.

So now it is time for programmers to impose their
technical preferences regarding rich client interfaces

112 HACKNOT

upon an unsuspecting user group, for which they will
need some ostensible justification - hence the cattle
call to SWT, and the unsubstantiated claims in its
favor.

For those interested in what actually benefits their
organization, rather than what looks best on their CV
and is "cool", there is really no competition between
Swing and SWT. SWT is simply not ready for
generalized interface development, and given that its
development lags behind Swing some seven years,
one has to wonder how its use and continued
development can be rationalized.

If you are developing a rich interface in Java, and
considering both SWT and Swing, I urge you to
consider the following issues:

• If you believe that the greater platform fidelity
of SWT will make for a more usable application,
what actual evidence do you have to support that
conclusion? Have you put both in front of your
user population?

• It's hard to find good GUI developers. Finding
good GUI developers with SWT skills is even
harder. Where are you going to find the staff to
develop your GUI in SWT? If you anticipate
getting Swing developers to cross-train in SWT,
get ready for staff turnover. Taking a Swing
developer and giving them SWT is like taking
someone used to riding a Harley Davidson and
giving them a Vespa motor scooter. They're not
likely to be delighted.

• How close is your target GUI to the Eclipse
GUI? Be aware that every time you step even a
little way beyond the functional demands of
Eclipse, you are on your own. You will likely
have to start writing custom widgets in order to
get the behavior you want. Can your
organization justify spending time and money
writing widgets that in Swing, would be
available off the shelf?

• Due to the bugs and shortcomings in SWT, your
developers will be working with a lowered
productivity, and so you should expect project
delays and/or increased resource requirements.
Can your organization justify this extra
investment?

• Before deciding that Swing applications are slow
and ugly, take the time to look at products like
Netbeans and GUI libraries such as JIDE. I have
heard people voice these opinions, having not
looked at Swing since the days of AWT.

• Is your source of information about SWT the
blogs of novice GUI developers, or those who
have had only a fleeting encounter with SWT.
Let me suggest you subscribe to the SWT
newsgroup and mailing list where you will get
the perspective of those who have been
struggling with it for a longer period of time, and
are past that initial phase of enthusiasm.

Of course, just because SWT is the technically
inferior solution doesn't mean that it will go away.
Hype, marketing, vendor over-enthusiasm and
managerial stupidity can propel a second-rate
solution to prominence. This may yet prove to be the
case for SWT.

SWT Resources

• Professional Java Native Applications with
SWT/JFace, J.L. Guojie

• Definitive Guide to SWT and JFace, R. Harris,
R. Warner

• SWT/JFace in Action, M. Scarpino et.al.
• SWT Developers Notebook, T. Hatton
• Developing Quality Plugins for Eclipse, E.

Clayberg
• Contributing to Eclipse, E. Gamma, K. Beck,

Addison Wesley, 2004
• SWT: The Standard Widget Toolkit, Volume 1,

S. Northover, M. Wilson, Addison Wesley, 2004
• SWT Designer, http://www.swt-designer.com/
• SWT Sightings,

http://www.oneclipse.com/Members/admin/new
s/swt-sightings

* First published 24 Apr 2005 at
http://www.hacknot.info/hacknot/action/showEntry?eid=74
1
http://blogs.bytecode.com.au/glen/2005/02/12/1108169609271.ht
ml
2 http://azureus.sourceforge.net/
3 http://www.bittorrent.com/
4
http://www.builderau.com.au/program/work/0,39024650,3917646
2,00.htm

Debugging and Maintenance

114 HACKNOT

Debugging 101*

“An interactive debugger is an outstanding
example of what is not needed – it encourages
trial-and-error hacking rather than systematic
design, and also hides marginal people barely
qualified for precision programming.”– Harlan
Mills

Recently, a colleague and I were working together
to resolve a bug in a piece of code she had just
written. The bug resulted in an exception being
thrown and looking at the stack trace, we were both
puzzled about what the root cause might be. Worse
yet, the exception originated from within an open
source library we were using. As is typical of open
source products, the documentation was sparse, and
wasn't providing us with very much help in
diagnosing the problem before us. It was beginning
to look like we might have to download the source
code for this library and start going through it – a
prospect that appealed to neither of us.

As a last resort before downloading this source
code, I suggested that we try doing a web search on
the text of the exception itself, by copying the last
few lines of the stack trace into the search field for a
web search engine. I hoped the search results might
include pages from online forums where someone
else had posted a message like "I'm seeing the
following exception, can anyone tell me what it
means?", followed by all or part of the stack trace
itself. If the original poster had received a helpful
response to their query, then perhaps that response
would be helpful to us too.

My colleague, who is reasonably new to software
development, was surprised by the idea and
commented that it was something she would never
have thought to try. Her response got me to thinking
about debugging techniques in general, and the way
we acquire our knowledge of them.

Reflecting on my formal education in computer
science, I cannot recall a single tutorial or lecture that
discussed how I should go about debugging the code
that I wrote. Mind you, I cannot remember much of
anything about those lectures, so perhaps it really
was addressed and I've simply forgotten. Even so, it
seems that the topic of debugging is much neglected
in both academic and trade discussions. Why is this?

It seems particularly strange when you consider
what portion of their time the average programmer
spends debugging their own code. I've not measured
it for myself, but I wouldn't be surprised if one third

or more of my day was spent trying to figure out why
my code doesn't behave the way I expected. It seems
strange that I never learnt in any structured way how
to debug a program. Everything I know about
debugging has been acquired through experience,
trial and error, and from watching others. Unless my
experience is unique, it seems that debugging
techniques should be a topic of vital interest to every
developer. Yet some developers seem almost
embarrassed to discuss it.

I suspect the main reason for this is hubris. The
ostensible ability to write bug-free code is a point of
pride for many programmers. Displaying a
knowledge of debugging techniques is tantamount to
admitting imperfection, acknowledging weakness,
and that really sticks in the craw of those developers
who like to think of themselves as "l337 h4x0r5".
But by avoiding the topic, we lose a major
opportunity to learn methods for combating our
inevitable human weaknesses, and thereby improving
the quality of the work we do.

So I've taken it upon myself to list the main
debugging techniques that I am aware of. For many
programmers, these techniques will be old hat and
quite basic. But even for veteran debuggers there
may be value in bringing back to mind some of these
tried and true techniques. For others, there might be
one or two methods that you hadn't thought of
before. I hope they save you a few hours of
frustrating fault-finding.

General Principles

Regardless of the specific debugging techniques
you use, there are a few general principles and
guidelines to keep in mind as your debugging effort
proceeds.

Reproduce

The first task in any debugging effort is to learn
how to consistently reproduce the bug. If it takes
more than a few steps to manually trigger the buggy
behavior, consider writing a small driver program to
trigger it programmatically. Your debugging effort
will proceed much more quickly as a result.

Progressively Narrow Scope

There are two basic ways to find the origin of a
bug – brute force and analysis. Analysis is the
thoughtful consideration of a bug's likely point of
origin, based on detailed knowledge of the code base.
A brute force approach is a largely mechanical

DEBUGGING 101 115

search along the execution path until the fault is
eventually found.

In practice, you will probably use a combination
of both methods. A preliminary analysis will tell you
the area of the code most likely to contain the bug,
then a brute force search within that area will locate
it precisely.

Purists may consider any application of the brute
force approach to be tantamount to hacking. It may
be so, but it is also the most expedient method in
many circumstances. The quickest way to search the
path of execution by brute force is to use a binary
search, which progressively divides the search space
in half at each iteration.

Avoid Debuggers

In general, I recommend you avoid symbolic
debuggers of the type that have become standard in
many IDEs. Debuggers tend to produce a very fragile
debugging process. How often does it happen that
you spend an extended period of time carefully
stepping through a piece of code, statement by
statement, only to find at the critical moment that
you accidentally "step over" rather than "step into"
some method call, and miss the point where a
significant change in program state occurs? In
contrast, when you progressively add trace
statements to the code, you are building up a picture
of the code in execution that cannot be suddenly lost
or corrupted. This repeatability is highly valuable –
you're monotonically progressing towards your goal.

I've noticed that habitual use of symbolic
debuggers also tends to discourage serious reflection
on the problem. It becomes a knee-jerk response to
fire up the debugger the instant a bug is encountered
and start stepping through code, waiting for the
debugger to reveal where the fault is.

That said, there are a small number of situations
where a debugger may be the best, or perhaps only,
method available to you. If the fault is occurring
inside compiled code that you don't have the source
code for, then stepping through the just-in-time
decompiled version of the executable may be the
only way of subjecting the faulty code to scrutiny.
Another instance where a debugger can be useful is
in the case of memory overwrites and corruption, as
can occur when using languages that permit direct
memory manipulation, such as C and C++. The
ability most debuggers provide to "watch" particular
memory segments for changes can be helpful in
highlighting unintentional memory modifications.

Change Only One Thing At A Time

Debugging is an iterative process whereby you
make a change to the code, test to see if you've fixed
the bug, make another change, test again, and so on
until the bug is fixed. Each time you change the
code, it's important to change only one aspect of it at
a time That way, when the bug is eventually fixed,
you will know exactly what caused it – namely, the
very last thing you touched. If you try changing
several things at once, you risk including
unnecessary changes in your bug fix (which may
themselves cause bugs in future), and diluting your
understanding of the bug's origin.

Technical Methods

Debugging is a manually intensive activity more
like solving logic problems or brain teasers than
programming. You will find little use for elaborate
tools, instead relying on a handful of simple
techniques intelligently applied.

Insert Trace Statements

This is the principle debugging method I use. A
trace statement is a human readable console or log
message that is inserted into a piece of code
suspected of containing a bug, then generally
removed once the bug has been found. Trace
statements not only trace the path of execution
through code, but the changing state of program
variables as execution progresses. If you have used
Design By Contract (see “Introduce Design By
Contract” below) diligently, you will already know
what portion of the code to instrument with trace
statements. Often it takes only half a dozen or so well
chosen trace statements to pinpoint the cause of your
bug. Once you have found the bug, you may find it
helpful to leave a few of the trace statements in the
code, perhaps converting console messages into file-
based logging messages, to assist in future debugging
efforts in that part of the code.

Consult The Log Files Of Third Party Products

If you're using a third party application server,
servlet engine, database engine or other active
component then you'll find a whole heap of useful
information about recently experienced errors in that
component's own log files. You may have to
configure the component to log the sort of
information you're interested in. In general, if your
bug seems to involve the internals of some third
party product that you don't have the source code for

116 HACKNOT

(and so can't instrument with trace statements), see if
the vendor has supplied some way to provide you
with a window into the product's internal operation.
For example, an ORM library might produce no
console output at all by default, but provide a
command line switch or configuration file property
that makes it output all SQL statements that it issues
to the database.

Search The Web For The Stack Trace

Cut the text from the end of a stack trace and use it
as a search string in the web search engine of your
choice. Hopefully this will pick up questions posted
to discussion forums, where the poster has included
the stack trace that they are seeing. If someone
posted a useful response, then it might relate to your
bug. You might also search on the text of an error
message, or on an error number. Given that search
engines might not discover dynamically generated
web pages in discussion forums, you might also find
it profitable to identify web sites likely to host
discussions pertaining to your bug, and use the site's
own search facilities in the manner just described.

Introduce Design By Contract

In my opinion, DBC is one of the best tools
available to assist you in writing quality code. I have
found rigorous use of it to be invaluable in tracking
down bugs. If you're not familiar with DBC, think of
it as littering your code with assertions about what
the state of the program should be at that point, if
everything is going as you expect it to. These
assertions are checked programmatically, and an
exception thrown when they fail. DBC tends to make
the point of program failure very close to the point of
logical error in your code. This avoids those
frustrating searches where a program fails in function
C, but the actual error was further up the call chain in
function A, which passed on faulty values to function
B, which in turn passed the values to function C,
which ultimately failed. It's best to use DBC as a
means of bug prevention, but you can also use it as a
means of preventing bug recurrence. Whenever you
find a bug, litter the surrounding code with
assertions, so that if that code should ever go wrong
again, a nearby assertion will fail.

Wipe The Slate Clean

Sometimes, after you've been hunting a bug for
long enough, you begin to despair of ever finding it.
There may be an overwhelming number of possible
sources yet to explore, or the behavior you're

observing is just plain bizarre. On such occasions it
can be useful to wipe the slate clean and start again.
Create an entirely new mini-application whose sole
function is to demonstrate the presence of your bug.
If you can write such a demo program, then you're
well on your way to tracking down the cause of the
bug. Now that you have the bug isolated in your
demo program, start removing potentially faulty
components one by one. For example, if your demo
program uses some database connection pooling
library, cut it out and run the program again. If the
bug persists, then you've just identified one
component that doesn't contribute to the buggy
behavior. Proceed in that manner, stripping out as
many possible fault sources as you can, one at a time.
When you remove a component that makes the bug
disappear, then you know that the problem is related
to the last component you removed.

Intermittent Bugs

A bug that occurs intermittently and can't be
consistently reproduced is the programmer's bane.
They are often the result of asynchronous
competition for shared resources, as might occur
when multiple threads vie for shared memory or race
for access to a local variable. They can also result
from other applications competing for memory and
I/O resources on the one machine.

First, try modifying your code so as to serialize
any operations occurring in parallel. For example,
don't spawn N threads to handle N calculations, but
perform all N calculations in sequence. If your bug
disappears, then you've got a synchronization
problem between the blocks of code performing the
calculations. For help in correctly synchronizing your
threads, look first to any support for threading that is
included in your programming language. Failing that,
look for a third party library that supports
development of multi-threaded code.

If your programming language doesn't provide
guaranteed initialization of variables, then
uninitialized variables can also be a source of
intermittent bugs. 99% of the time, the variable gets
initialized to zero or null and behaves as you
expected, but the other 1% of the time it is initialized
to some random value and fails. A class of tools
called "System Perturbers"1 can assist you in tracking
down such problems. Such tools typically include
facility for zero-filling memory locations, or filling
memory with random data as a way of teasing out
initialization bugs.

DEBUGGING 101 117

Exploit Locality

Research shows that bugs tend to cluster together.
So when you encounter a new bug, think of those
parts of the code in which you have previously found
bugs, and whether nearby code could be involved
with the present bug.

Read The Documentation

If all else fails, read the instructions. It's
remarkable how often this simple step is foregone. In
their rush to start programming with some class
library or utility some developers will adopt a trial-
and-error approach to using a new API. If there is
little or no API documentation then this may be an
appropriate approach. But if the API has some decent
programmer-level documentation with it, then take
the time to read it. It's possible that your bug results
from misuse of the API and the underlying code is
failing to check that you have obeyed all the
necessary preconditions for its use.

Introduce Dummy Implementations And
Subclasses

Software designers are sometimes advised to
"write to interfaces". In other words, rather than
calling a method on a class directly, call a method on
an interface that the class implements. This means
that you are free to substitute in a different class that
implements the same interface, without needing to
change the calling code. While dogmatic application
of this guideline can result in a proliferation of
interfaces that are only implemented once, it does
point to a useful debugging technique. If the outcome
of the collaboration between several objects is
buggy, look to the interfaces that the participating
objects implement. Where an object is invoked only
via interfaces, consider replacing the object with a
simple, custom object of your own that is hard-wired
to perform correctly under very specific
circumstances. As long as you limit your testing to
the circumstances that you know your custom object
handles correctly, you know that any buggy behavior
you subsequently observe must be the fault of one of
the other objects involved. That is, you've eliminated
one potential source of the bug. You can achieve a
similar effect by substituting a custom subclass of a
participant class, rather than a custom
implementation of an interface.

Recompile And Relink

A particularly nasty type of bug arises from
having an executable image that is a composite of

several different compile and/or relink operations.
The failure behavior can be quite bizarre and it can
appear that internal program state is being corrupted
"between statements". It's like gremlins have crept
into your code and started screwing around with
memory.

Most recently, I have encountered this bug in Java
code when I change the value of string constants. It
seems the compiler optimizes references to string
constants by inserting them literally at the point of
reference. So the constant value is copied to multiple
class files. If you don't regenerate all those class files
after changing the string constant, those class files
not regenerated will still contain the old value of that
constant. Performing a complete recompilation
prevents this from occurring. Finally, set the
compiler to include debugging information in the
generated code, and set the compiler warning level to
the maximum.

Probe Boundary Conditions And Special Cases

Experienced programmers know that it's the limits
of an algorithmic space that tend to get forgotten or
mishandled, thereby leading to bugs. For example,
the procedure for deleting records 1 to N might be
slightly different from the procedure for deleting
record 0. The algorithm for determining if a given
year is a leap year is slightly different if the year is
divisible by 400. Breaking a string into a list of
space-separated words requires consideration of the
cases where the string contains only one word, or is
empty. The tendency to code only the general case
and forget the special cases is a very common source
of error.

Check Version Dependencies

One of the most obscure sources of a bugs is the
use of incompatible versions of third party libraries.
It is also one of the last things to check when you've
exhausted other debugging strategies. If version 1.0.2
of some library has a dependency on version 2.4 of
another library, but you supply version 2.5 instead,
the results may be subtle failures that are difficult or
impossible to diagnose. Look particularly to any
libraries that you have upgraded just prior to the
appearance of the bug.

Check Code That Has Changed Recently

When a bug suddenly appears in functionality that
has been working for some time, you should
immediately wonder what has recently changed in
the code base that might have caused this regression.

118 HACKNOT

This is where your version control system comes into
its own, providing you with a way of looking at the
change history of the code, or recreating successively
older versions of the code base until you get one in
which the regression disappears.

Don't Trust The Error Message

Normally you scrutinize the error messages you
get very carefully, hoping for a clue as to where to
start your debugging efforts. But if you're not having
any luck with that approach, remember that error
messages can sometimes be misleading. Sometimes
programmers don't put as much thought into the
handling and reporting of error conditions as one
would like, so it may be wise to avoid interpreting
the error message too literally, and to consider
possibilities other than the ones it specifically
identifies.

Graphics Bugs

There are a few techniques that are particularly
relevant when working on GUIs or other graphics-
related bugs. Check if the graphics pipeline you are
using includes a debugging mode – a mode which
slows down graphics operations to a speed where
you can observe individual drawing operations
occurring. This mode can be very useful for
determining why a sequence of graphic operations
don't combine to give the effect you expected.

When debugging problems with layout managers,
I like to set the background colors of panels and
components to solid, contrasting colors. This enables
you to see exactly where the edges of the
components are, which highlights the layout
decisions made by the layout managers involved.

Psychological Methods

I think it's fair to say that the vast majority of bugs
we encounter are a result of our own cognitive
limitations. We might fail to fully comprehend the
effects of a particular API call, forget to free memory
we've reserved, or simply fail to translate our intent
correctly into code. Indeed, one might consider
debugging to be the process of finding the difference
between what you instructed the machine to do, and
what you thought you instructed the machine to do.
So given their basis in faulty thinking, it makes sense
to consider what mental techniques we can employ to
think more effectively when hunting bugs.

Wooden Indian

When you're really stuck on a bug, it can be
helpful to grab a colleague and explain the bug to
them, together with the efforts you've made so far to
hunt down its source2. It may be that your colleague
can offer some helpful advice, but this is not what the
technique is really about. The role of your colleague
is mainly just to listen to your description in a
passive way. It sometimes happens that in the course
of explaining the problem to another, you gain an
insight into the bug that you didn't have before. This
may be because explaining the bug's origin from
scratch forces you to go back over mental territory
that you haven't critically examined, and challenge
fundamental assumptions that you have made. Also,
by verbalizing you are engaging different sensory
modalities which seems to make the problem "fresh"
and revitalizes your examination of it.

Don't Speculate

Arthur C. Clarke once wrote "Any sufficiently
advanced technology is indistinguishable from
magic." And so it is for any sufficiently mysterious
bug. One of the greatest traps you can fall into when
debugging is to resort to superstitious speculation
about its cause, rather than engaging in reasoned
enquiry3. Such speculation yields a trial-and-error
debugging effort that might eventually be successful,
but is likely to be highly inefficient and time
consuming. If you find yourself making random
tweaks without having some overall strategy or
approach in mind, stop straight away and search for a
more rational method.

Don't Be Too Quick To Blame The Tools

Perhaps you've had the embarrassing experience
of announcing "it must be a compiler bug" before
finding the bug in your own code. Once you've done
it, you don't rush to judgment so quickly in the
future. Part of rational debugging is realistically
assessing the probability that there is a bug in one of
the development tools you are using. If you are using
a flaky development tool that is only up to its beta
release, you would be quite justified in suspecting it
of error. But if you're using a compiler that has been
out for several years and has proven itself reliable in
the field over all that time, then you should be very
careful you've excluded every other possibility
before concluding that the compiler is producing a
faulty executable.

DEBUGGING 101 119

Understand Both The Problem And The Solution

It's not uncommon to hear programmers declare
"That bug disappeared" or "It must've been fixed as a
side-effect of some other work". Such statements
indicate that the programmer isn't seeking a thorough
understanding of the cause of a bug, or its solution,
before dismissing it as no longer in need of
consideration. Bugs don't just magically disappear. If
a bug seems to be suddenly fixed without someone
having deliberately attended to it, then there's a good
chance that the fault is still somewhere in the code,
but subsequent changes have changed the way it
manifests. Never accept that a bug has disappeared or
fixed itself. Similarly, if you find that some changes
you've made appear to have fixed a bug, but you're
not quite sure how, don't kid yourself that the fix is a
genuine one. Again, you may simply have changed
the character of the bug, rather than truly fixing its
cause.

Take A Break

In both bug hunting and general problem solving
I've experienced the following series of events more
times than I can remember. After struggling with a
problem for several hours and growing increasingly
frustrated with it, I reach a point where I'm too tired
to continue wrestling with it, so I go home. Several
choice expletives are muttered. Doors are slammed.
The next morning, I sit down to continue tackling the
problem and the solution just falls out in the first half
hour.

Many have noted that solutions come much easier
after a period of intense concentration on the
problem, followed by a period of rest. Whatever the
underlying mechanism might be, if you have similar
experiences its worth remembering them when you're
faced with a decision between bashing your head
against a problem for another hour, or having a rest
from it.

Another way to get a fresh look at a piece of code
you've been staring at for too long is to print it out
and review it off the paper. We read faster off paper
than off the screen, so this may be why it's slightly
easier to spot an error in printed code than displayed
code.

Consider Multiple Causes

There is a strong human tendency to oversimplify
the diagnoses of problems, attributing what may be
multi-causal problems to a single cause. The
simplicity of such a diagnosis is appealing, and
certainly easier to address. The habit is encouraged
by the fact that many bugs really are the result of a

single error, but that is by no means universally the
case.

Bug Prevention Methods

"Prevention is better than cure," goes the maxim;
as true of sicknesses in code as of sicknesses in the
body. Given the inevitability and cost of debugging
during your development effort, it's wise to prepare
for it in advance and minimize it's eventual impact.

Monitor Your Own Fault Injection Habits

After time you may notice that you are prone to
writing particular kinds of bugs. If you can identify a
consistent weakness like this, then you can take
preventative steps. If you have a code review
checklist, augment the checklist to include a check
specifically for the type of bug you favor. Simply
maintaining an awareness of your "favorite" defects
can help reduce your tendency to inject them.

Introduce Debugging Aids Early

Unless you've somehow attained perfection prior
to starting work on your current project, you can be
confident that you have numerous debugging efforts
in store before you finish. You may as well make
some preparation for them now. This means inserting
logging statements as you proceed, so that you can
selectively enable them later, before augmenting
them with bug-specific trace statements. Also think
about the prime places in your design to put
interfaces. Often these will be at the perimeters of
significant subsystems. For example, when
implementing client-server applications, I like to hide
all client contact with the server behind interfaces, so
that a dummy implementation of the server can be
used in place of the server, throughout client
development. It's not only a convenient point of
interception for debugging efforts, but a development
expedient, as the test-debug cycle can be
significantly faster without the time cost of real
server deployment and communication.

Loose Coupling And Information Hiding

Application of these two principles is well known
to increase the extensibility and maintainability of
code, as well as easing its comprehension. Bear in
mind that they also help to prevent bugs. An error in
well modularized code is less likely to produce
unintended side-effects in other modules, which
obfuscates the origin of the bug and impedes the
debugging effort.

120 HACKNOT

Write A Regression Test To Prevent
Reoccurrence

Once you've fixed the bug it's a good idea to write
a regression test that exercises the previously buggy
code and checks for correct operation4. If you wish,
you can write that regression test before having fixed
the bug, so that a successful bug fix is indicated by
the successful run of the test.

Conclusion

If you spend enough time debugging, you start to
become a bit blasé about it. It's easy to slip into a rut
and just keep following the same patterns of behavior
you always have, which means that you never get
any better or smarter at debugging. That's a definite
disadvantage, given how much of the average
programmer's working life is consumed by it. There's
also a tendency not to examine debugging techniques
closely or seriously, as debugging is something of a
taboo topic in the programming community.

It's wise to acknowledge your own limitations up
front, the resultant inevitability of debugging, and to
make allowances for it right from the beginning of
application development. It's also worth beginning
each debugging effort with a few moments of
deliberate reflection, to try and deduce the smartest
and quickest way to find the bug.

* First published 17 Apr 2006 at
http://www.hacknot.info/hacknot/action/showEntry?eid=85
1 Rapid Development, Steve McConnell, Microsoft Press, 1996
2 The Pragmatic Programmer, A. Hunt and D. Thomas, Addison-
Wesley, 2000
3 Code Complete, Steve McConnell, Microsoft Press, 1993
4 Writing Solid Code, Steve Maguire, Microsoft Press, 1993

SPARE A THOUGHT FOR THE NEXT GUY 121

Spare a Thought for the Next Guy*

I just had a new ISDN phone line installed at my
house. It was an unexpectedly entertaining event, and
provided the opportunity for some reflection on the
similarity between the problems faced by software
developers and those in other occupations.

The installation was performed by a technician
who introduced himself in a Yugoslavian brogue as
"Ranko." Ranko looked at the existing phone outlets,
declared that it would be a straight forward job and
should take 30 - 45 minutes.

I sat down to read a book and let Ranko go about
his work.

Things seemed to be going well for him until 15
minutes into the procedure when I heard some veiled
mutterings coming from the kitchen. Putting my
book down to listen more carefully, I heard Ranko
talking to himself in angry tones - "What have they
done? What have they done to poor Ranko?" (he had
an unusual habit of referring to himself in the third
person).

Curious, I sauntered into the kitchen on the
pretence of making myself a cup of coffee.

I found Ranko still muttering away and staring in
angry disbelief at the display of some instrument.
Before him were a half dozen cables spewing out of
the wall like so many distended plastic intestines set
loose from the house’s abdominal cavity. Ranko
asked if he could get up into the ceiling cavity of the
house, and I assented – pointing him in the direction
of the access cover. He strode outside to his van and
reappeared in my front door a few moments later
with a step ladder under one arm.

I returned to my reading while he pounded around
above me. Shortly I heard a few exclamations of
"Bloody hell!" followed by more thumping. After a
brief pause, there came a series of "You bloody
idiots!" / "Bastards!" two-shots in rapid succession,
punctuated by some unnecessarily loud pounding of
feet upon the ceiling joists. Underneath, I listened
with growing amusement, choking back laughter
with one hand over my mouth.

For the next 10 minutes or so I was lost in my
reading, and looked up in surprise to find Ranko
standing in front of me looking slightly disheveled
but rather proud of himself.

"I have found the problem" he declared proudly,
and proceeded to explain. It appeared the previous
residents of the house had self-installed one of the
telephone extensions in my house. Rather than daisy-
chain the additional outlet on from another outlet,

they had simply spliced into the phone line up in the
ceiling cavity and run cabling from the splice point to
the new outlet. This was easier for them than daisy-
chaining, as it halved the number of times they had to
run a phone cable through a wall cavity.

But for future technicians, it meant that any wiring
changes of the type Ranko was attempting would
necessitate access to the ceiling cavity where the
splice-point was located. If done in daisy-chain style,
as is regular practice amongst phone technicians, the
wiring changes could’ve been done without having to
ascend into the crawl space above. The job took
nearly twice as long as what Ranko initially
estimated, because he had the unexpected tasks of
diagnosing the problem with the existing installation,
determining the location of the splice and then
working around it.

Sound familiar?
Ranko has experienced the same problem that

maintenance programmers face every day. We
estimate the duration of a maintenance task based on
some assumptions about the nature of the artifact we
will be altering. We begin the maintenance task, only
to find that those assumptions don’t hold, due to
some unexpected shortcuts taken by those that came
before us. Then we have to develop an understanding
of those shortcuts, before we can perform our
maintenance task.

And if we chose to work around the shortcut
rather than fix it, future maintenance programmers
will have the same problems. And so a short-term
expediency made by a programmer long ago
becomes the burden of every programmer that
follows.

And the very need to make assumptions at all
stems from the absence of any information about the
morphology of the existing system. Those that hack
into the phone line are not of the nature to document
their efforts, nor to keep existing documentation up
to date.

So next time you’re under dead line pressure and
have your fingers poised above the keyboard ready to
take a shortcut – spare a thought for the next guy
who will have to deal with that shortcut. He might be
you.

* First published 26 Apr 2004 at
http://www.hacknot.info/hacknot/action/showEntry?eid=52

122 HACKNOT

Six Legacy Code AntiPatterns*

I recently began work on a J2EE project – a
workflow assistance tool that has been under
development for a few years. The application is
totally new to me and yet is immediately familiar, for
it bears the scars and wounds so common to a legacy
system. Browsing through the code base and playing
with the GUI, the half dozen legacy code anti-
patterns that leave me with déjà vu are listed below.
How many do you recognize?

Nadadoc

The Javadoc has been written in a perfunctory,
content-free manner, giving rise to what I call
Nadadoc. Here’s an example of Nadadoc:

/**
 * Process an order
 *
 * @param orderID
 * @param purchaseID
 * @param purchaseDate
 * @return
 */
 public int processOrder(
 int orderID, int purchaseID, Date
purchaseDate);

Just enough text is used to assuage any niggling
professionalism the author might be experiencing,
without the undertaking the burden of having to
communicate useful information to the reader.
Commenting of code is an afterthought, achieved by
invoking the IDE facility for generating a Javadoc
template and performing some token customization
of the result.

Abandoned Framework

With school boy enthusiasm, the original authors
have decided they know enough about their
application domain to build a framework for the
construction of similar applications, the first use of
which will be the product they are trying to write.
Such naivety is driven by grand notions of reuse not
yet tarnished by contact with the real world. Classes
constructed early in this project are so insanely
generic that even fundamental types such as
java.util.Enumeration are rewritten with bespoke
versions that are ostensibly more general purpose.
Classes constructed later in the project, after the team
realizes that constructing a framework within the

time allowed is totally infeasible, are application
specific hack-fests.

GUI - Designed By Programmers And
Written By Borland

Software developers seem to ubiquitously suffer
the self-deception that it is easy to design a good user
interface. Perhaps they confuse the ability to program
a GUI with the ability to design one. Perhaps the
commonality of GUIs leads them to think
"everyone’s doing it, so it must be easy." In any case,
you can often spot a GUI designed by programmers
at a glance. This is certainly the case with my current
project. Common usability guidelines are violated
everywhere - no keyboard access to fields, no
keyboard accelerators, group boxes around single
controls, no progress indicators for long operations,
illogical and misaligned layouts.

At the code level, the story is even worse. Many
elements of the UI have been generated by the GUI
builder in an IDE – in this case JBuilder. Although it
is possible to generate semi-acceptable code from
these things, they are rarely used to good effect.
When the default control names and layout
mechanisms are used, the generated code becomes a
real maintenance burden, consisting of a complex
combination of components with names like panel7,
label23 and the like.

Oral Documentation Is Mostly Laughter

If you can’t be bothered writing documentation,
the lads at Fantasy Central (otherwise known as XP-
land) have provided you with a ready-made out in the
form of the oxymoron "oral documentation". When
maintenance programmers ask "Where’s the
documentation?" you need only say (preferably with
smug self assurance) "We use oral documentation."

The developers of this system relied very heavily
on oral documentation, and there are just a few
problems with it that the XP dreamers generally
neglect to mention:

• The documentation set becomes self-referential.
If you ask John about component X, he’ll refer
you to Darren, who refers you to James, who
refers you back to John. Not because they don’t
have the answers, but because explaining the
inner workings of systems they’ve left behind is
boring.

• Parts of the documentation set keep walking out
the door due to attrition. Some chapters are
unavailable due to illness.

SIX LEGACY CODE ANTIPATTERNS 123

• The documentation fades rather quickly. As
developers move on and become ensconced in
new projects, the details of the projects they’ve
left behind quickly fade.

• Certain pages in an oral documentation set are
bookmarked with laughter. In this system, a
great many of them are so marked. The laughter
disguises the embarrassment of the original
developers when you uncover the hacks and
shortcuts in their work. Not surprisingly,
developers are loathe to discuss the details of
work they know is sub-standard, and enquiries in
these areas result in information that is a guilty
mix of admission and excuse.

Cargo-Cult Development Idioms

When developers can't understand how the code
works, they tend to add functionality by just cutting
and pasting segments of existing code that appear to
be relevant to their development goal. There
develops a series of application-specific idioms that
are justified with the phrase "that’s just how we do
it." No one really knows why - sufficiently detailed
knowledge of the code base to choose amongst
implementation alternatives on a rational basis is lost
or not readily available, so the best chance of success
seems to be to follow those implementation idioms
already present in the code.

Architecture Where Art Thou?

Many developers are not very enthusiastic about
forethought. It just delays the start of coding, and
that’s where the real fun is. Alas, when there is no
pre-planned structure for that code it tends to grow in
a haphazard, organic and often chaotic way. Rather
like growing a vine - if you train the vine up a trellis,
then the resulting plant exhibits at least a modicum of
structure. Without the trellis, the vine wanders
randomly without purpose or regularity. My current
project was grown without a trellis and is riddled
with weeds and straggling limbs. The original
developers have, presumably against their will,
attempted to document the project as if there were
some intentional underlying structure. But there is
too little accord and too many inconsistencies
between the structure described and the reality of the
code base for the one to have guided the construction
of the other.

* First published 2 Feb 2004 at
http://www.hacknot.info/hacknot/action/showEntry?eid=47

Skepticism

THE SKEPTICAL SOFTWARE DEVELOPMENT MANIFESTO 125

The Skeptical Software
Development Manifesto*

“Argumentation cannot suffice for the discovery of
new work, since the subtlety of Nature is greater
many times than the subtlety of argument.”
 – Francis Bacon

The over-enthusiastic and often uncritical adoption
of XP and Agile tenets by many in the software
development community is worrying.

It is worrying because it attests to the willingness
of many developers to accept claims made on the
basis of argument and rhetoric alone. It is worrying
because an over-eagerness to accept technical and
methodological claims opens the door to hype,
advertising and wishful thinking becoming the
guiding forces in our occupation. It is worrying
because it highlights the professional gulf existing
between software engineering and other branches of
engineering and science, where claims to discovery
or invention must be accompanied by empirical and
independently verifiable experiment in order to gain
acceptance.

Without skepticism and genuine challenge, we
may forfeit the ability to increase our domain’s body
of knowledge in a rational and verifiable way;
instead becoming a group of fashion followers,
darting from one popular trend to another.

What is needed is a renewed sense of skepticism
towards the claims our colleagues make to improved
practice or technology. To that end, and to lend a
little balance to the war of assertion initiated by the
Agile Manifesto1, I would like to posit the following
alternative.

The Skeptical Software Development
Manifesto

We are always interested in claims to the
invention of better ways of developing software.
However we consider that claimants carry the burden
of proving the validity of their claims. We value:

• Predictability over novelty
• Empirical evidence over anecdotal evidence
• Facts and data over rhetoric and philosophy

That is, while there is value in the items on the
right, we value the items on the left more.

Our skepticism is piqued by claims and rhetoric
exhibiting any of the following characteristics:

• An imprecision that does not permit further
scrutiny or enquiry

• The mischaracterization of doubt as fear or
cynicism

• Logical and rhetorical fallacies such as those
listed below:2

Argumentum Ad Hominem

Reference to the parties to an argument rather than
the arguments themselves.

Appeal To Ignorance

The claim that whatever has not been proved false
must be true, and vice versa.

Special Pleading

A claim to privileged knowledge such as "you
don’t understand", "I just know it to be true" and "if
you tried it, you’d know it was true." 3

Observational Selection

Drawing attention to those observations which
support an argument and ignoring those that counter
it.

Begging The Question

Supporting an argument with reasons whose
validity requires the argument to be true.

Doubtful Evidence

The use of false, unreasonable or unverifiable
evidence.

False Generalization

The unwarranted generalization from an individual
case to a general case; often resulting from their
being no attempt to isolate causative factors in the
individual case.

Straw-Man Argument

The deliberate distortion of an argument to
facilitate its rebuttal.

Argument From Popularity

Reasoning that the popularity of a view is
indicative of its truth. e.g. "everybody’s doing it, so
there must be something to it."

126 HACKNOT

Post Hoc Argument

Reasoning of the form "B happened after A, so A
caused B". i.e. confusing correlation and causation.

False Dilemma

Imposing an unnecessary restriction on the
number of choices available. e.g. "either you’re with
us or you’re against us.”

Arguments From Authority

Arguments of the form "Socrates said it is true,
and Socrates is a great man, therefore it must be
true".

We are especially cautious when evaluating claims
made by parties who sell goods or services
associated with the technology or method that is the
subject of the claim.

Principles Behind The Skeptical Software
Development Manifesto

We follow these principles:

• Propositions that are not testable and not
falsifiable are not worth much.

• Our highest priority is to satisfy the customer by
adopting those working practices which give us
the highest chance of successful software
delivery.

• We recognize that changing requirements incur a
cost in their accommodation, and that claims to
the contrary are unproven. We are obliged to
apprise both ourselves and the customer of the
realistic size of that cost.

• It is our responsibility to identify the
degree/frequency of customer involvement
required to achieve success, and to inform our
customer of this. Our customer has things to do
other than help us write their software, so we
will make as efficient use of their time as we are
able.

• We recognize that controlled experimentation in
the software development domain is difficult, as
is achieving isolation of variables, but that is no
excuse for not pursuing the most rigorous
examination of claims that we can, or for
excusing claimants from the burden of
supporting their claims.

• Quantification is good. What is vague and
qualitative is open to many interpretations.

* First published 19 Oct 2003 at
http://www.hacknot.info/hacknot/action/showEntry?eid=30
1 http://agilemanifesto.org/
2 The Demon-Haunted World, C. Sagan and A. Druyan, Ballantine
Books, 1996
3 How To Win An Argument, 2nd Edition, M. Gilbert, Wiley, 1996

BASIC CRITICAL THINKING FOR SOFTWARE DEVELOPERS 127

Basic Critical Thinking for
Software Developers*

Vague Propositions

A term is called “vague” if it has a clear meaning
but not a clearly demarcated scope. Many arguments
on Usenet groups and forums stem from the
combatants having different interpretations of a
vaguely stated proposition. To avoid this sort of
misunderstanding, before exploring the truth of a
given proposition either rhetorically or empirically,
you should first state that proposition as precisely as
possible.

Consider this proposition:

P(1): Pair Programming works

If I were to voice that proposition on the Yahoo
XP group1, I would expect it to receive enthusiastic
endorsement. I would also expect no one to point out
that this proposition is non-falsifiable.

It is non-falsifiable because the terms "pair
programming" and "works" are so vague. There are
an infinite number of scenarios that I could
legitimately label "pair programming", and an
infinite number of definitions of what it means for
that practice to "work." Any specific argument or
evidence you might advance to disprove P(1) will
imply a particular set of definitions for these terms,
which I can counter by referencing a different set of
definitions – thereby preserving P(1).

A vast number of arguments about software
development techniques are no more than heated and
pointless exchanges fueled by imprecisely stated
propositions. There is little to be gained by
discussing or investigating a non-falsifiable
proposition such as P(1). We need to formulate the
proposition more precisely before it becomes worthy
of serious consideration.

Let’s begin by rewording P(1) to clarify what we
mean by "works":

P(2): Pair Programming results in better code

Now at least we know we’re talking about code as
being the primary determinant of whether pair
programming works. However P(2) is now implicitly
relative, which is another common source of
vagueness. An implicitly relative statement makes a
comparison with something without specifying what
that something is. Specifically, it proposes that pair
programming produces better code, but better code
than what?

Let’s try again:

P(3): Pair Programming produces better code
than that produced by individuals programming
alone

P(3) is now explicitly relative, but still so vague as
to be non-falsifiable. We have not specified what
attribute/s we consider distinguish one piece of code
as being "better" than another.

Suppose we think of defect density as being the
measure of programmatic worth:

P(4): Pair programming produces code with a
lower defect density than that produced by
individuals programming alone

Now we’ve cleared up what we mean by the word
"works" in P(1), let’s address another common
source of vagueness – quantifiers. A quantifier is a
term like "all", "some", "most" or "always". We tend
to use quantifiers very casually in conversation and
frequently omit them altogether. There is no explicit
quantifier in P(4), so we do not know whether the
claimant is proposing that the benefits of pair
programming are always manifest, occasionally
manifest, or just more often than not.

The quantifier chosen governs the strength of the
resulting proposition. If the proposition is intended as
a hard generalization (one that applies without
exceptions), then a quantifier like "always" or
"never" is applicable. If the proposition is intended as
a soft generalization, then a quantifier like "usually"
or "mostly" may be appropriate.

Suppose P(4) was actually intended as a soft
generalization:

P(5): Pair programming usually produces code
with a lower defect density than that produced by
individuals programming alone.

P(5) nearly sounds like it could be used as a
hypothesis in an empirical investigation. However
the term "pair programming" is still rather vague. If
we don’t clarify it, we might conduct an experiment
that finds the defect density of pair programmed code
to be higher than that produced by individuals
programming alone, only to find that advocates of
pair programming dismiss our experimental method
as not being real pair programming. In other words,
the definition of the term "pair programming" can be
changed on an ad hoc basis to effectively render P(5)
non-falsifiable.

"Pair programming" is a vague term because it
carries so many secondary connotations. The primary
connotations of the term are clear enough: two
programmers, a shared computer, one typing while
the other advises. But when we talk of pair

128 HACKNOT

programming we tend to assume other things that are
not amongst the primary connotations. These
secondary connotations need to be made explicit for
the proposition to become falsifiable. To the
claimant, the term "pair programming" may have the
following secondary connotations:

• The pair partners contribute more or less
equally, with neither one dominating the activity

• The pair partners get along with each other i.e.
there is a minimum of unproductive conflict.

• The benefits of pair programming are always
manifest, but to a degree that may vary with the
experience and ability of the particular
individuals.

To augment P(5) with all of these secondary
connotations will make for a very wordy statement.
At some point we have to consider what level of
detail is appropriate for the context in which we are
voicing the proposition.

Non-Falsifiable Propositions

Why should we seek to refine a proposition to the
point that it becomes falsifiable? Because a
proposition that can not be tested empirically and
thereby determined true or false is beyond the
scrutiny of rational thought and examination. This is
precisely why such propositions are often at the heart
of irrational, pseudo-scientific and metaphysical
beliefs.

I contend that such beliefs have no place in the
software engineering domain because they inhibit the
establishment of a shared body of knowledge – one
of the core features of a true profession. Instead, they
promote a miscellany of personal beliefs and
superstitions. In such circumstances, we cannot
reliably interpret the experiences of other
practitioners because their belief systems color their
perception of their own experiences to an unknown
extent. Our body of knowledge degrades into a
collective cry of "says who?".

Here are a few examples of non-falsifiable
propositions that many would consider incredible:
• There is a long-necked marine animal living in

Loch Ness.

• The aliens have landed and walk amongst us
perfectly disguised as humans.

• Some people can detect the presence of water
under the ground through use of a forked stick.

Try as you might, you will never prove any of
these propositions false. No matter how many times

you fail to find any evidence in support of these
propositions, it remains true that "absence of
evidence is not evidence of absence." If we are
willing to entertain non-falsifiable propositions such
as these, then we admit the possibility of some very
fanciful notions indeed.

Here a few examples of non-falsifiable
propositions that many would consider credible:

• Open source software is more reliable than
commercial software

• Agile techniques are the future of software
development

• OO programming is better than structured
programming.

These three propositions are, as they stand, just as
worthless as the three propositions preceding them.
The subject areas they deal with may well be fruitful
areas of investigation, but you will only be able to
make progress in your investigations if you refine
these propositions into more specific and thereby
falsifiable statements.

Engage Brain Before Engaging Flame
Thrower

Vagueness and non-falsifiable propositions are the
call to arms of technical holy wars. When faced with
a proposition that seems set to ignite the passions of
the zealots, a useful diffusing technique is to identify
the non-falsifiable proposition and then seek to refine
it to the point of being falsifiable. Often the resulting
falsifiable proposition is not nearly as exciting or
controversial as the original one, and zealots will call
off the war due to lack of interest. Also, the very act
of argument reconstruction can be informative for all
parties to the dispute. For example:

Zealot: Real programmers use Emacs

Skeptic: How do you define a "real
programmer?"

Zealot: A real programmer is someone who is
highly skilled in writing code.

Skeptic: So what you’re claiming is "people who
are highly skilled in writing code use
Emacs"?

Zealot: Correct.

Skeptic: Are you claiming that such people
always use Emacs?

Zealot: Well, maybe not all the time, but if they
have the choice they’ll use Emacs.

BASIC CRITICAL THINKING FOR SOFTWARE DEVELOPERS 129

Skeptic: In other words, they prefer to use Emacs
over other text editors?

Zealot: Yep.

Skeptic: So you’re claim is really "people who
are highly skilled in writing code prefer
Emacs over other text editors?"

Zealot: Fair enough.

Skeptic: Are you claiming that all highly skilled
coders prefer Emacs, or could there be
some highly skilled coders that prefer
other text editors?

Zealot: I guess there might be a few weird ones
who use something else, but they’d be a
minority.

Skeptic: So you’re claim is really "Most people
who are highly skilled in writing code
prefer Emacs over other text editors?”

Zealot: Yep.

Skeptic: Leaving aside the issue of how you
define "highly skilled", what evidence
do you have to support your proposition?

Zealot: Oh come on – everyone knows it’s true.

Skeptic: I don’t know it’s true, so clearly not
everyone knows it’s true.

Zealot: Alright – I’m talking here about the
programmers that I’ve worked with.

Skeptic: So are you saying that most of the
highly-skilled programmers you’ve
worked with preferred Emacs, or that
they shared your belief that most highly-
skilled programmers prefer Emacs?

Zealot: I’m talking about the editor they used,
not their beliefs.

Skeptic: So your claim is really "Of the people
I’ve worked with, those who were highly
skilled in writing code preferred to use
Emacs over other text editors".

Zealot: Yes! That’s what I’m saying, for
goodness sake!

Skeptic: Not quite as dramatic as "real
programmers use Emacs", is it?

You may find that it is not possible to get your

opponent to formulate a specific proposition. They
may simply refuse to commit to any specific claim at
all. This reaction is common amongst charlatans and

con men. They only speak in abstract and inscrutable
terms (sometimes of their own invention), always
keeping their claims vague enough to deny disproof.
They discourage scrutiny of their claims, preferring
to cast their vagueness as being mysterious and
evidence of some deep, unspoken wisdom. If they
cannot provide you with a direct answer to the
question "What would it take to prove you wrong?"
then you know you are dealing with a non-falsifiable
proposition, and your best option may simply be to
walk away.

Summary

Before engaging in any debate or investigation,
ensure that the proposition being considered is at
least conceivably falsifiable. A common feature of
non-falsifiable propositions is vagueness.

Such propositions can be refined by:

• Defining any broad or novel terminology in the
proposition

• Making implicit quantifiers explicit
• Making implicitly relative statements explicitly

relative
• Making both primary and secondary

connotations of the terminology explicit

* First published 18 Jan 2004 at
http://www.hacknot.info/hacknot/action/showEntry?eid=45
1 http://groups.yahoo.com/group/extremeprogramming

130 HACKNOT

Anecdotal Evidence and Other
Fairy Tales*

As software developers we place a lot of emphasis
upon our own experiences. This is natural enough,
given that we have no agreed upon body of
knowledge to which we might turn to resolve
disputes or inform our opinions. Nor do we have the
benefit of empirical investigation and experiment to
serve as the ultimate arbiter of truth, as is the case for
the sciences and other branches of engineering - in
part because of the infancy of Empirical Software
Engineering as a field of study; in part because of the
difficulty of conducting controlled experiments in
our domain.

Therefore much of the time we are forced to base
our conclusions about the competing technologies
and practices of software development upon our own
(often limited) experiences and whatever
extrapolations from those experiences we feel are
justified. An unfortunate consequence is that
personal opinion and ill-founded conjecture are
allowed to masquerade as unbiased observation and
reasoned inference.

So absolute is our belief in our ability to infer the
truth from experience that we are frequently told that
personal experience is the primary type of evidence
that we should be seeking. For example, it is a
frequent retort of the XP/AM1 crowd that one is not
entitled to comment on the utility of XP/AM
practices unless one has had first hand experience of
them. Only then are you considered suitably
qualified to make comment on the costs and benefits
of the practice - otherwise "you haven’t even tried
it."

Such reasoning always makes me smile, for two
reasons:

1. It contains the logical fallacy called an "appeal
to privileged knowledge". This is the claim
that through experience one will realize some
truth that forbids a priori description.

2. If a trial is not conducted under carefully
controlled conditions, it is very likely you will
achieve nothing more than a confirmation of
your own preconceptions and biases.

This post is concerned with the second point. It
goes to the capacity humans have to let their personal
needs, prior expectations, attitudes, prejudices and
biases unwittingly influence the outcomes of
technology and methodology evaluations – both
researchers and subjects. There are a number of

statistical and psychological effects whose influence
must be eliminated, or at least ameliorated, before
one can draw valid deductions from human
experiences. Some of these effects are briefly
described in the table below. Conclusions drawn
from anecdotal evidence are frequently invalid
precisely because the evidence has been gathered
under circumstances in which no such efforts have
been made.

Observational Bias

When a researcher allows their own biases to color
their interpretation of experimental results. Selective
observation is a common type of observational bias
in which the researcher only acknowledges those
results which are consistent with their pre-formulated
hypothesis.

Population Bias

When experimental subjects are chosen non-
randomly and the resulting population exhibits some
unanticipated characteristic that is an artifact of the
selection process, which influences the outcome of
an experiment in which they participate.

The Hawthorne Effect

Describes the tendency for subjects to behave
uncharacteristically under experimental conditions
where they know they are being watched. Typically
this means the subjects improve their performance in
some task, in an attempt (deliberate or otherwise) to
favorably influence the outcome of the experiment.

The Placebo Effect

Describes the tendency of strong expectations,
particularly among highly suggestible subjects, to
bring about the outcome expected through purely
psychological means.

Logical Fallacies

Conclusions drawn from anecdotal evidence often
exhibit one or more of the following deductive
errors:

Post Hoc Ergo Propter Hoc

Meaning "after this, therefore because of this".
When events A and B are observed in rapid
succession, the post hoc fallacy is the incorrect
conclusion that A has caused B. It may be that A and

ANECDOTAL EVIDENCE AND OTHER FAIRY TALES 131

B are correlated, but not necessarily in a causal
manner.

Ignoring Rival Causes

To disregard alternative explanations for a
particular effect, instead focusing only upon a
favorite hypothesis of the researcher. It is common to
look for a simple cause of an event when it is really
the result of a combination on many contributory
causes.

Hasty Generalization

The unwarranted extrapolation from limited
experimentation into a broader context.

Examples

The following scenarios demonstrate how easily
one or more of the above factors can invalidate the
conclusions that we reach based on our own
experience - thereby reducing the credibility of those
experiences when later offered as anecdotal evidence
in support of a conclusion.

The Linux Enthusiast

Chris is a Linux enthusiast. On his home PC he
uses Linux exclusively, and often spends hours
happily toying with device drivers and kernel patches
in an effort to get new pieces of hardware working
with his machine. In his work as a software
developer he is frequently forced to use Microsoft
Windows, which he has a very low opinion of. He is
prone to waxing lyrical on the unreliability and
insecurity of Windows, and the evil corporate tactics
of Microsoft. Whenever he experiences a Blue
Screen of Death on his work machine, his cubicle
neighbors know that once the cursing subsides they
are in for another of his speeches about the massive
productivity hit that Windows imposes on the
corporate developer. When surfing the web during
his lunch hours, if he should come across a reference
to Linux being used successfully as an alternative to
Windows, then he will print out the article and file it
away for future reference. He is confident that it is
only a matter of time before Linux replaces Windows
on the desktop, both in business and at home.

Analysis: Chris exhibits observational bias in a
few ways. The hours he spends getting his Linux
machine to recognize a new piece of hardware is
enjoyable to him, and so he chooses not to observe
that the same outcome might be achieved on a
Windows system in a minute, thanks to plug-and-

play. When he gets a BSOD, he chooses to observe
its negative effect on his productivity while he waits
for a reboot, but chooses to disregard the productivity
cost of his subsequent anti-Microsoft pontifications.
When surfing the web, he selectively observes those
stories which are pro-Linux and/or anti-Microsoft in
nature. Indeed, the media is complicit in this practice,
because such stories make good press. There may be
many more occasions in which Linux was
unsuccessful in usurping Windows, but they are
unremarkable and unlikely to attract media coverage.
His confidence in Linux’s ultimate victory based
upon his selective observations is a very hasty
generalization.

The XP Proponent

Ryan and his team have been reading a lot about
XP recently and are keen to try it out on one of their
own projects. They have had difficulty getting
permission to do so from their management, who are
troubled by some aspects of XP such as pair
programming and the informal approach to
documentation. Through constant badgering, Ryan
finally gets permission to use XP on a new project.
But he is warned by his management that they will
be watching the project’s progress very carefully and
reserve the right to switch the project over to the
company’s standard methodology if they think XP is
not working out. Overjoyed, Ryan’s team begins the
new project under XP. They work like demons for
the next six months, doing everything in their power
to make the project a success. At the end of that time,
the project delivers a high quality first release into
the hands of a few carefully chosen customers.
Feedback from these customers is unanimously
positive. Management is suitably impressed. Ryan
and his team breathe a sigh of relief.

Analysis: The participants are a self-selected
group of enthusiasts, which is an obvious source of
population bias. It could be that they have an above-
average level of ability in their work, and a
commensurately higher level of enthusiasm and
dedication - which drives them to try new approaches
like XP. Their project’s success may be partly or
entirely attributable to these greater capabilities they
already had. Knowing they are being closely
evaluated by management and have put their necks
on the line by trying XP despite management’s
concerns, they are also victims of the Hawthorne
Effect. They are very motivated to succeed, because
they perceive potential adverse consequences for
themselves individually if they should fail. If Ryan’s
team or their management attributes the project’s

132 HACKNOT

success to XP itself, then they are guilty of ignoring
the rival causes just described. It may be that they
succeeded despite XP, rather than because of it.

The Revolutionary

Seymour thinks there is something wrong with the
way university computing students are taught to
program. He feels there is insufficient exposure to
the sorts of problems and working conditions they
will encounter when they finish their degrees. He
strongly believes that students would become better
programmers and better employees if there were a
greater emphasis upon group programming
assignments in the academic environment. This
would enable them to develop the skills necessary to
function effectively in a team, which is the context in
which they will spend most of their working lives.
To demonstrate the effectiveness of the group
approach, he asks for some volunteers from his third
year software engineering class to participate in an
experiment. Rather than do the normal lab work for
their course, which is focused on assignments to be
completed by the individual, they will do different
labs designed to be undertaken in groups of four or
five. These labs will be conducted by Seymour
himself. About 30 students volunteer to take part. At
the end of the semester, these students sit the same
exams as the other students. Their average mark is
82% while the average mark of the other students is
71%. Seymour feels vindicated and the volunteer
students are pleased to have taken part in a landmark
experiment in the history of computing education.

Analysis: Here is a case of population bias that
any competent researcher would be ashamed of. The
volunteer group is self-selected, and so may be
biased toward those students that are both more
interested and more capable. Poor performing,
disinterested students would be unlikely to volunteer.
The Hawthorne Effect comes into play due to the
extra focus that Seymour places upon his volunteer
group. They may receive extra attention and
instruction as part of their labs, which may be
enough in itself to improve their final grades.
Additionally, knowing they are part of a select group,
at some level they will be motivated to please the
researcher and demonstrate that they have performed
well in their role as "lab rats." Their superior
performance in the final exam may be a result of
these confounding factors, and have nothing to do
with the difference between individual and group
instruction. It would certainly be a hasty
generalization to conclude that their better exam

results will translate into better performance in the
workforce.

Conclusion

I hope this post will give you pause for thought
when you next conduct a technology trial, and when
you are next evaluating anecdotal evidence supplied
to you by friends and colleagues. Because personal
experiences are particularly vivid, we often tend to
over-value them. From there, we can easily make
unwarranted generalizations and overlook the
confounding effect of our own preconceptions and
biases.

In particular, next time one of the XP/AM crowd
voice the familiar retort of "How could you know?
You haven’t even tried it" - bear in mind that in the
absence of quantification and controlled
experimental technique, they don’t know either.

* First published 22 Mar 2004 at
http://www.hacknot.info/hacknot/action/showEntry?eid=49
1 Extreme Programming / Agile Methods

FUNCTION POINTS: NUMEROLOGY FOR SOFTWARE DEVELOPERS 133

Function Points:
Numerology for Software
Developers*

"Where else can one get such a marvelous return in
conjecture from such a modest investment of fact?"
– Mark Twain

Numerology is the study of the occult meanings of
numbers and their influence on human life1.
Numerologists specialize in finding numeric
relationships between otherwise disparate figures,
and attributing to them some greater significance.

For instance, some claim that by adding up the
component numbers in your birth date, together with
the numeric equivalent of your name (where A=1,
B=2 etc) then a figure is derived that, if properly
interpreted, can yield insight into your personality.1

Others consider that the reoccurrence of the
number 19 in Islamic texts is evidence of their
authorship by a higher being 2. The Koran has 114 (6
x 19) chapters and 6346 verses (19 x 334) and
329,156 (19 x 17,324) letters. The word "Allah"
appears 2,698 (19 x 142) times. The sum of the verse
numbers that mention Allah is 118,123 (19 x 6,217).

Pyramids are a favorite topic for numerologists,
and there are dozens of "meaningful" numeric
relationships to be found in their dimensions. For
instance, the base perimeter of the Great Pyramid of
Cheops is 36,515 inches – 100 times the number of
days in the solar year. And so on.

We can laugh at such desperate searches for
meaning, but before we laugh too hard we should
consider that software development has its own
brand of numerology, which we have given the grand
name of Function Point Analysis (FPA).

Overview Of Function Points

FPs were proposed in 1979 as a way of finding the
size of a piece of software given only its functional
specification. It was intended that the FP count of an
application would be independent of the technology,
people and methods eventually used to implement
the application, focusing as it did upon the
functionality the application provided to the user.
Broadly speaking, basic FPs are calculated by
following these steps:

1. Divide a functional view of the system into
components.

2. Classify each component as being one of five
types – external input, external output, external

inquiry, internal logical file or external
interface file.

3. Classify the complexity of each component as
low, average or high. The rules for performing
this classification vary by component type.

4. For each type of component, multiply the
number of components of that type by a
numeric equivalent of the complexity e.g. low
= 3, average = 4, high = 6. The numeric
equivalents that apply vary by component type.

5. Sum the results of step 4 across all five
component types. The total is a figure called
Unadjusted Function Point count (UFP).You
can then multiply the UFP by a Value
Adjustment Factor (VAF) which is based on
consideration of 14 general system
characteristics, to yield the final Function Point
count.

I won’t bore you with the excruciating specifics of
the component calculations. The above gives you
some idea of the nature of FP counting and it’s
reliance upon subjective judgments. Specifically, the
placement of component boundaries and the values
chosen for the many weighting factors and
characteristics are all determined on a subjective
basis. Some of that subjectivity has been embodied in
the standardized FP counting rules that are issued by
the International Function Point Users Group
(IFPUG).3

So lacking have FPs been found, that there has
been a steady stream of proposed improvements and
alternatives to them since 1979. But none of these
have challenged the basic FP ethos of modeling
functional size as a weighted sum of arbitrarily
selected attributes. They simply change the number
and definition of those attributes, and the means by
which they are mangled together into a final figure.
The basic chronology of the FP family tree has been:

1979 Function Points (Albrecht)
1986 Feature Points (Jones)
1988 Mark II Function Points

(Symons)
1989 Data Points (Sneed)
1991 3 D Function Points (Boeing)
1994 Object Points (Sneed)
1997 Full Function Points (St. Pierre

et. al)
1999 COSMIC Full Function Points

(IFPUG)

To understand why the FP and its many variants
are fundamentally flawed, it is first necessary to

134 HACKNOT

understand the difference between measuring and
rating.

Measurement Vs. Rating

To measure an attribute of something is to assign
numbers to it on an objective and empirical basis, so
that the relationships between the numbers preserve
any intuitive notions and empirical observations
about that attribute.4

For example, the metric meter is a measure, which
implies:

• 4 meters is twice as long as 2 meters, because 4
is twice 2

• The difference between 9 and 10 meters is the
same as the difference between 1 and 2 meters,
because 10-9 = 2-1

• If you moved 4 meters in 2 seconds (at constant
velocity) then you moved 2 meters in the first
second and 2 meters in the last second.

• If two different people measure the same length
to the nearest meter, they will get the same
number.

To rate an attribute of something is to assign
numbers to it on a subjective and intuitive basis. The
relationships between the numbers do not preserve
the intuitive and empirical observations about the
attribute. In contrast to the above example, consider
the rating out of 10 that a reviewer gives a movie:

• A movie that gets a 4 is not twice as good as a
movie that gets a 2.

• The difference between movies that get 9 and 10
is not the same as the difference between movies
that get 1 and 2.

• A 2 hour movie that gets a 6 did not rate 3 for
the first hour and 3 for the second hour.

• Two different people rating the same movie may
award different ratings.

To clarify, suppose a reviewer expresses their
assessment of a movie in words rather than numbers.
Instead of rating a movie from 1 � 10, they rate it
from "abysmal" to "magnificent". We might be
tempted to think a movie that gets an 8 is twice as
good as a movie that gets a 4, but we would surely
not conclude that "very good" is twice as good as
"disappointing". We can express a rating using any
symbols we want, but just because we choose
numbers for our symbols does not mean that we
confer the properties of those numbers upon the
attribute we are rating.

In summary:

• A measurement is objective and can be
manipulated mathematically.

• A rating is subjective and cannot be manipulated
mathematically.

Function Points Are A Rating, Not A
Measurement

From the above, it is clear that FPs are a rating and
not a measurement, due to the subjective manner in
which they are derived. Hence, they cannot be
manipulated mathematically. And yet the software
literature is rife with examples of researchers
attempting to do just that. Many researchers and
reviewers continue to ignore the fundamental
implications of the non-mathematical nature of the
FP5, such as:

• You cannot measure productivity using FPs – If
a team completes an application of 250 FP in 10
weeks, their productivity is not 25 FP/week. The
figure "25" has no meaning. Similarly, a given
team need not take 50% longer to write a 1800
FP application as they will a 1200 FP
application.

• You cannot compare FP counts numerically –
An application of 1000 FP is not twice as big,
complex or functional as an application of 500
FP. The first application is not "twice" the
second in any meaningful sense.

• You cannot compare FPs from disparate
sources – The subjectivity of FP analysis makes
it sensitive to contextual variations in application
domain, technology, organization and counting
method.

Given such limitations, there are very few valid
uses of an application's FP count. If the FP counts of
two applications differ markedly, and their contexts
are sufficiently similar, then you may be justified in
saying that one is functionally bigger than the other,
but not by how much.3 The notion that FPs can
participate in mathematical calculations, and thereby
be used for scheduling, effort and productivity
measures, is without theoretical or empirical basis.

Why Are Function Points So Popular?

• Although their use may have declined in recent
years, Function Points are still quite popular.
There are several factors which might account
for their continued usage, despite their essential
invalidity:

FUNCTION POINTS: NUMEROLOGY FOR SOFTWARE DEVELOPERS 135

• The fact that other organizations use FPs is
enough to encourage some to follow suit.
However, we should be aware that an argument
from popularity has no logical basis. There are
many beliefs that are both widely held and false.
The popularity of FPs may only be indicative of
how desperately the industry would like there to
be a single measure of functional size that can be
calculated at the specification stage. It certainly
would be desirable for such a measure to exist,
but we cannot wish such a metric into existence,
no matter how many others have the same wish.

• Some researchers claim to have validated
function points (in their original form, or some
later variant thereof). However, if you examine
the details of these experiments, what you will
find is pseudo-science, ignorance of basic
measurement theory and statistics, and much
evidence of "fishing for results." There is a lot of
fitting of models to historical data, but not a lot
of using those models to predict future data. This
is not so surprising, for the general standard of
experimentation in software is very poor, as
Fenton observes. Altman makes an observation6
about the legion of errors that occur in medical
experimentation that could apply equally well to
software development:

• "The main reason for the plethora of statistical
errors is that the majority of statistical analyses
are performed by people with an inadequate
understanding of statistical methods. They are
then peer reviewed by people who are generally
no more knowledgeable."

• Hope springs eternal. Rather than concede that
efforts to embody functional size in a single
number are misguided, it is consoling to think
that FPs are "nearly there", just a few more
tweaks away from being useful. Hence the many
FP variants that have sprung up.

• FP enthusiasts selectively quote the "research"
that is in their favor, and ignore the rest. For
example, the variance between FP counts
determined by different analysts is often quoted
as "plus or minus 11 percent."7 However other
sources8 have reported worse figures, such as a
30% variation within an organization, rising to
more than 30% across organizations.

• Some choose to dismiss the theoretical
invalidities of FPs as irrelevant to their practical
worth. Their excuses may have some appeal to
the average developer, but don’t withstand
scrutiny. Examples of such excuses are:

• As long as FPs work, who cares what basis
they have or don’t have? - The problem is that
in general, FPs don’t work. Even FP
adherents will admit to the numerous
shortcomings of FPs, and the need to
constrain large numbers of contextual factors
when applying them. Witness the various
mutations of FP that have arisen, each
attempting to address some subset of the
numerous failings of FPs.

• It doesn’t matter if you’re wrong, as long as
you’re wrong consistently9 – Unfortunately,
unless you know why you’re wrong, you have
no way of knowing if you are indeed being
consistently wrong. FPs are sensitive to a
great many contextual factors. Unless you
know what they are and the precise way they
effect the resulting FP count, you have no
way of knowing the extent to which your
results have been influenced by those factors,
let alone whether that influence has been
consistent.

Function Point’s True Believers

FPs have attracted their own league of True
Believers – like many technical schools whose
tenets, lacking an empirical basis, can only be
defended by the emotional invective of their
adherents. I encountered one such adherent recently
in David Anderson, author of "Agile Project
Management." Anderson made some rather pompous
observations10 on his blog as to how surprising it was
that people should express disbelief regarding his
claims to 5 and 10-fold increases in productivity
using TDD, AM and (insert favorite acronym
here)FDD. I replied that their incredulity might stem
from the boldness of his claims or the means by
which he collected his data, rather than an inherently
obstreperous attitude. He indicated his productivity
data was expressed in FPs per unit time! I tried
explaining to him that FPs cannot be used to measure
productivity, because not all FPs are created equal, as
explained above. He wasn’t interested. That
discussion has now been deleted from his blog. He
also denied me permission to reproduce that portion
of it which occurred in email.

Such is the attitude I typically encounter when
dealing with self-styled gurus and experts. There is
much talk of science and data, but as soon as you
express doubt regarding their claims, there is a quick
resort to insult and posture. Ironic, given that doubt
and criticism are the basic mechanisms that give

136 HACKNOT

science the credibility that such charlatans seek to
cloak themselves in.

Why Must Functional Size Be A Single Number?

The appeal, and hence the popularity, of FPs is
their reduction of the complex notion of software
functional size to a single number. The simplicity is
attractive. But what basis is there for believing that
such a single-figure expression of functional size is
even possible?

Consider this analogy. When you walk into a
clothing store, you characterize your size using
several different measures. One figure for shirt size,
another for trouser size, another for shoe size and
another for hat size. What if, by way of misguided
reductionism, we were to try and concoct a single
measure of clothing size and call it Clothing Points.
We could develop all sorts of rules and regulations
for counting Clothing Points, including weighting
factors accounting for age, diet, race, gender, disease
and so on. We might even find that if we sufficiently
controlled the influence of external factors, given the
limited variations of the human form, we might
eventually be able to find some limited context in
which Clothing Points were a semi-reasonable
assessment of the size of all items of clothing. We
could then walk into a clothing store and say "My
size is 187 Clothing Points" and get a size 187 shirt,
size 187 trousers, size 187 shoes and size 187 hat.
The items might even fit, although we would likely
sacrifice some comfort for the expediency and
convenience of having reduced four dimensions
down to a single dimensionless number.

The search for a grand unified "measure" of
functional size may be just as foolhardy as the quest
for uni-metric clothing.

Conclusion

The continued use and acceptance of Function
Point Analysis in software development should be a
source of acute embarrassment to us all. It is a prime
example of muddle-headed, pseudo-scientific
thinking, that has persisted only because of the
general ignorance of measurement theory and valid
experimental methodology that exists in the
development community. We need to stop
fabricating and embellishing arbitrary sets of
counting rules. In doing so, we are treating these
formulae as if they were incantations whose magic
can only manifest when precisely the correct wording
has been discovered, but whose inner workings must
forever remain a mystery. Rather, we need to go back
to basics and work towards understanding the

fundamental technical dimensions that contribute to
the many and varied notions of an application's
functional size. How can we hope to measure
something when we can’t even precisely define what
that something is? Empiricism holds some promise
as a means to improve software development
practices, but the pseudo-empiricism of Function
Point Analysis is little more than numerological
voodoo.

* First published 28 Jun 2004 at
http://www.hacknot.info/hacknot/action/showEntry?eid=59
1 The Skeptic’s Dictionary, R. Carroll, Wiley and Sons, 2003.
http://www.skepdic.com/
2 Did Adam and Eve Have Navels?, M. Gardner, W.W. Norton and
Company, 2000
3 http://www.ifpug.org/
4 Software Measurement: A Necessary Scientific Basis, N. Fenton,
IEEE Trans. Software Eng., Vol. 20, No. 3, 1994
5 The Problem with Function Points, B. Kitchenhas, IEEE
Software, March/April 1997
6 Statistical Guidelines for Contributors to Medical Journals,
Altman, Gore, Gardner, Pocock, British Medical Journal, Vol.
286, 1983
7 Why We Should Use Function Points, S Furey, IEEE Software,
March/April 1997
8 Comparison of Function Point Counting Techniques, J.Jeffery,
G. Low, M. Barnes, IEEE Trans. Software Eng., Vol. 19, No. 5,
1993
9 Measurement and Estimation, Burris
10
http://www.agilemanagement.net/Articles/Weblog/WorldClassVel
ocity.html

PROGRAMMING AND THE SCIENTIFIC METHOD 137

Programming and the Scientific
Method*

In 1985 Peter Naur wrote a rather cryptic piece
entitled Programming as Theory Building1 in which
he drew an analogy between software development
and the scientific method. Since then, other authors
have attempted to co-opt this analogy as a means of
enhancing the perceived credibility of particular
programming practices. This post aims to explain the
analogy between the scientific method and
programming, and to explore the limitations of that
analogy.

The Scientific Method

There is no canonical representation of the
scientific method. Different sources will explain it in
different ways, but they are all referring to the same
logical process. For the purposes of this discussion, I
will adopt a simplified definition of the scientific
method, considering it to be comprised of the
following activities repeated in a cyclic manner:

1. Model – Form a simplified model of a system
by drawing general conclusions from existing
data.

2. Predict – Use the simplified model to make a
specific prediction about how the system will
behave when subject to particular conditions.

3. Test – Test the prediction by conducting an
experiment.

If the test confirms our prediction, we return to
step 2 and make a new prediction based upon the
same model. Otherwise, we return to step 1 and
revise our model so that it accounts for the results of
our most recent test (and all preceding tests).

More formal descriptions of the scientific method
often include the following terms:

Hypothesis – A testable statement accounting for a
set of observations. It is equivalent to the model in
the above description.

Theory – A well supported and well tested
hypothesis or set of hypotheses.

Fact – A conclusion confirmed to such an extent that
it would be reasonable to offer provisional
agreement.2

An Example Of The Scientific Method

Suppose you are given a sealed black box that has
only three external features – two toggle switches
marked A and B, and a small lamp. By playing
around with the switches you notice that certain
combinations of switch positions result in the lamp
lighting up. Your task is to use the scientific method
to develop a theory of how the box operates. In other
words, to create a model which can account for the
observed behavior of the box.

Round 1

Model: Casual observation suggests that the
switches and lamp are connected in circuit
with an internal power source. Let’s
suppose that this is the case, and that the
two toggle switches are wired in series.

Predict: If our model is accurate, then we should
find that turning both switches on causes the
lamp to light up.

Test: We get the box, turn both switches on and
find that the lamp does indeed light up. Our
model has been partially verified. But there
are other predictions we can make based
upon it.

Round 2

Model: As in experiment 1.
Predict: If our model is accurate, then we should

find that turning switch A off and switch B
on causes the lamp to go out.

Test: We get the box, turn switch A off and
switch B on and find that the lamp actually
lights up. Our prediction was incorrect,
therefore our model is wrong

Round 3

Model: Now we need to rework our model so that it
correctly accounts for all our observations
thus far. Then we can use it as a basis for
further prediction. Suppose the box were
wired with the two toggle switches in
parallel. That would account for our
observations from rounds 1 and 2. Let’s
make that our new model.

Predict: If this new model is accurate, then we
should find that turning switch A on and
switch B off causes the lamp to light up.

Test: We get the box, turn switch A on and switch

138 HACKNOT

B off and find that the lamp actually goes
off. Our prediction was incorrect; therefore
our new model is wrong.

Round 4

Model: Once again, we need to reformulate our
model so that correctly accounts for all of
our existing observations. After some
thought, we realize that if the box were
wired so that only switch B effected the
lamp, with switch A out of the circuit
entirely, then this would account for all of
our existing observations, as well as giving
us a new prediction to test.

Predict: If this latest hypothesis is true, then we
should find that turning switch A off and
switch B off causes the lamp to go out.

Test: We get the box, turn switch A off and
switch B off and observe that the lamp does
indeed go out. Our prediction was correct,
and our model is consistent with our
observations from all four experiments

You can see why the scientific method is
sometimes described as being very inefficient – there
is a lot of trial and error involved. But it’s important
to note that it’s not random trial and error. If we just
made random predictions and then tested them
through experiment, all we would end up with is a
disjoint set of cause/effect observations. We would
have no way of using them to predict how the system
would behave under situations that we hadn’t already
deserved. Instead, we choose our predictions
deliberately, guided by the intent of testing a
particular aspect of the model currently being
considered. In this way, each experiment either goes
some way toward confirming the model, or confuting
it.

Note that all we can ever have is a model of the
system. We make no pretense to know the truth
about the system in any absolute sense. Our model is
simply useful, at least until new observations are
made that our model can’t account for. Then we must
change it to accommodate the new observations. This
is why all knowledge in science (even that referred to
as fact) is actually provisional and continually open
to challenge.

A Programming Example

The following example demonstrates how
software development is similar to the scientific
method.

The task is to develop an application which
models the behavior of the black box in the above
example. The software will present a simple GUI
with two toggle buttons marked A and B, and an icon
which can adopt the appearance of a lamp turned on
or off. The lamp icon should appear to be turned on
as if the lamp were a real lamp connected to an
internal power source, and the toggle buttons were
toggle switches, with switch B in circuit with the
lamp, and switch A out of circuit.

The table below compares the activities in the
scientific method with their programming
counterparts. Keep these analogs in mind as you read
through the following example.

 Scientific Method Programming
Model Form a simplified model

of a system by drawing
general conclusions from
existing data

Developing a
mental model
of how the
software
works

Predict Use the simplified model
to make a specific
prediction about how the
system will behave when
subject to particular
conditions.

Taking a
particular case
of interaction
with that
model, and
predicting
how the
software will
respond

Test Test the prediction by
conducting an experiment.

Subjecting
software to a
test and
getting a
result.

Round 1

Model: Unlike experimentation, we begin by
assuming our model is correct. It is created
from our requirements definition and states
"The lamp icon should appear to be turned
on as if the lamp were a real lamp connected
to an internal power source, and the toggle
buttons were toggle switches, with switch B
in circuit with the lamp, and switch A out of
circuit."

Predict: If the software is behaving correctly,
toggling both buttons on should result in the
lamp icon going on.

Test: We run the software, toggling the buttons A
and B on, and observe that the lamp icon
does indeed come on. So far our hypothesis

PROGRAMMING AND THE SCIENTIFIC METHOD 139

has been confirmed; which is to say, the
software behaves as the requirements say it
should. But there are other behaviors
specified by the requirements

Round 2

Model: As per round 1
Predict: If the software is behaving correctly, then

toggling button A off and button B on will
cause the lamp icon to go on.

Test: We run the software, toggle button A off
and button B on, and find that the lamp icon
actually turns off. Our prediction was
incorrect; therefore our software is not
behaving as per its requirements. Instead of
adjusting our model to suit the software, we
adjust the software to suit the model i.e. we
debug the software. In the software world,
we can change the "reality" we are
observing to behave however we want -
unlike the real world where we have to
adjust our model to fit an invariant reality.
Once the software behaves in a manner
consistent with the above prediction, we
have to repeat our test from round 1 (i.e.
regression test), to confirm that the
prediction made there still holds i.e. that we
haven’t "broken" the software reality.

Round 3

Model: As per round 1.
Predict: If the software is behaving correctly, then

toggling button A on and button B off
should cause the lamp icon to turn off.

Test: We run the software, toggle button A on and
button B off and find that the lamp icon
actually turns on. Our prediction was
incorrect; therefore our software is in error.
Once again we debug the software until it
behaves in a manner consistent with the
above prediction. Then we regression test
by repeating the tests in rounds 2 and 3.

Round 4

Model: As per round 1.
Predict: If the software is behaving correctly, then

toggling buttons A and B off should cause
the lamp icon to turn off.

Test: We run the software, toggle buttons A and
B off and find that the lamp icon does

indeed turn off. Our prediction was correct;
therefore the software is behaving as per its
requirements.

Notice the critical difference between
programming and experimentation. In
experimentation, reality is held invariant and we
adjust our model until the two are consistent. In
programming, the model is held invariant and we
adjust our reality (the software) until the two are
consistent.

Limits Of The Analogy

Rote performance of the model/predict/test cycle
does not mean that one is doing science, or even that
one's activities are science-like. There are critical
attributes of the way these activities are carried out
that must be met before the results have scientific
validity. Two of these are objectivity and
reproducibility. Some authors have taken the analogy
between scientific method and programming too far
by neglecting these attributes.

McCay3 contends that pair programming is
analogous to the peer review process that scientific
results undergo before being published. The
reviewers of a scientific paper are chosen so that they
are entirely independent of the material being
reviewed, and can perform an objective review. They
must have no vested interest in the material itself,
and no relationship to the researcher or anyone else
involved in the conduct of the experiment. To this
end, scientific peer reviews are often conducted
anonymously. Clearly this independence is missing
in pair programming. Both parties have been
intimately involved in the production of the material
being reviewed, and as a coauthor each has a clear
personal investment in it. They have participated in
the thought processes that lead to the code being
developed, and so can no longer analyze the material
in an intellectually independent manner.

Mugridge 3 contends that the continuous running
of a suite of regression tests is equivalent to the
concept of scientific reproducibility. But here again,
the independence is missing. A single researcher
arriving at a particular result is not enough for those
results to be considered credible by the scientific
community. Independent researchers must
successfully replicate these results, as a way of
confirming that they weren’t just a chance
occurrence, or an unintentional byproduct of
situational factors. But running regression tests does
not provide such confirmation, because each run of
the regression tests is conducted under exactly the

140 HACKNOT

same circumstances as the preceding ones. The same
tests are executed in the same environment over and
over again, so there is no independence between one
execution and the next. Thus the confirming effect of
scientific reproducibility is lost.

Both Mugridge and McCay try and equate the XP
maxim "do the simplest thing that could possibly
work" (DTSTTCPW) with Occam’s Razor. Occam’s
razor is a principle applied to hypothesis selection
that says "Other things being equal, the best
hypothesis is the simplest one, that is, the one that
makes the fewest assumptions." Because the
scientific hypothesis is analogous to the system
metaphor in XP, the XP equivalent of Occam’s
Razor would be "Other things being equal, the best
system metaphor is the simplest one, that is, the one
that makes the fewest assumptions." However XPers
often invoke DTSTTCPW with regard to
implementation decisions, not choice of metaphor.
Indeed, the metaphor is one of the least used of XP
practices.4

Additionally, the "all other things being equal"
part of Occam’s razor is vital, and neglected in XP’s
DTSTTCPW slogan. We evaluate competing
hypotheses with respect to the criteria of adequacy 5
– which provide a basis for assessing how well each
hypothesis increases our understanding. The criteria
include testability, fruitfulness, simplicity and scope.
Note that simplicity is only one of the factors to
consider. The scope of a hypothesis refers to its
explanatory power; how much of reality it can
explain and predict. We have a preference for a
hypothesis of broader scope, because it accounts for
more natural phenomena. In a programming context,
suppose we have two competing models of a piece of
software’s operation. One is more complex than the
other, but the more complex one also has greater
scope. Which one is better? It’s a subjective decision;
but it should be clear that considering simplicity
alone is a naive basis for hypothesis selection.

Conclusion

OK, so there are parallels between the scientific
method and programming. Aside from the
intellectual interest, what value is there in
recognizing these parallels?

Naur claims that the theory of a piece of software
corresponds to the model that the programmer builds
up in their head of how it works. Such a theory might
say "The software is like a box with two toggle
buttons and a lamp", or "The software is like an
assembly line with pieces being added on as the item
proceeds". Perhaps multiple metaphors are used.

Once a programmer has a theory (model) of the
software in their head, they can talk about and
explain its behavior to others. When they make
changes to the code, they do so in a way that is
consistent with the theory and therefore "fits in" with
the existing code base well. A programmer not
guided by such a theory is liable to make
modifications and extensions to the code that appear
to be "tacked on" as an afterthought, and not
consistent with the design philosophy of the existing
code base. I believe there is some validity in this
notion.

Cockburn then extends this by claiming that this
theory is what is essential to communicate (in
documentation or otherwise) from one generation of
programmers to the next: "What should you put into
the documentation? That which helps the next
programmer build an adequate theory of the
program". He also sees this as validation of the
"System Metaphor" practice from XP. Perhaps so,
but I think there is only limited utility in identifying
what has to be communicated. The real problem is
identifying how to communicate; how to persist that
knowledge in a robust form, and transfer it from one
programmer to another as new programmers arrive
on a project and old ones leave.

* First published 21 Aug 2004 at
http://www.hacknot.info/hacknot/action/showEntry?eid=64
1 Programming as Theory Building, Peter Naur
2 Why People Believe Weird Things, Michael Shermer
3 if (extremeProgramming.equals(scientificMethod)), Larry
McCay
4 Agile and Iterative Development, C. Larman
5 How to Think About Weird Things, 3rd edition, T. Schik and L.
Vaughn, McGraw Hill, 2002

FROM TULIP MANIA TO DOT COM MANIA 141

From Tulip Mania to Dot Com
Mania*

“Those who cannot remember the past are
condemned to repeat it.”
 – George Santayana

Those of us working in IT tend to think of
ourselves as being modern, savvy and much more
advanced than our forebears. This conviction is often
accompanied by a certain degree of hubris, and a
somewhat derisive attitude towards older
technologies and practitioners. You’ve probably
encountered this ageist bias in your own work place,
or even displayed it yourself. Older members of our
profession are viewed as out-dated and irrelevant.
Older programming languages such as C and
FORTRAN are viewed as inherently inferior to those
more recently introduced such as Java and C#.
Contempt for that which has come before us is as
common place as the fascination with novelty and
invention that breeds it.

In our struggle to stay abreast of the rapid rate of
change in our industry, our focus is so intensely upon
the present and immediate future, that we neglect the
lessons of the past. We excuse our parochialism by
kidding ourselves that the pace of technological
makes any comparison with the past all but irrelevant
anyway. But here lies a serious error in thinking – for
although technology changes rapidly, people do not.
For example, throughout history there are numerous
examples of large groups of people succumbing to
mass panics, group delusions and popular myths.
Notable events are:

• The Martian Panic of 1938, in which many
Americans became convinced that a radio
broadcast of H.G. Well’s War of the Worlds was
a news broadcast of an actual Martian invasion,
leading some to flee their homes to escape the
alien terror.1

• The Roswell Flying Saucer crash of 1947, a
myth sustained by many even today.

• The widespread belief in Satanic Ritual Abuse of
children in America in the 1970’s and 1980’s.

• The Witch Mania of the 15th-17th centuries on
multiple continents. Exemplified by the Salem
witch trials of 1692.

• The Face on Mars myth of 1976

It is easy to dismiss such phenomena as unique to
their times, the like of which could never be
experienced by modern, technology-aware,
scientifically informed people such as ourselves. But
we view our modern world with old brains.
Psychologically, we have the same predilections and
foibles as the witch-hunters and alchemists of
centuries past. We still experience greed, we still feel
a need to belong to a group, and we can still sustain
false and irrational beliefs if we see others doing the
same.

To illustrate our continuing susceptibility to
irrational group behaviors, consider the Tulip Mania
of the 1630s, which exhibits striking parallels with
the dot-com mania that would follow it some 400
years later.

Tulip Mania

The collecting of tulips began as a fashion
amongst the wealthy in Holland and Amsterdam in
the late 16th century2. The popularity of the flower
spread to England in 1600, and filtered down from
the upper class to the middle class. By 1635 the
mania had reached its peak amongst the Dutch, and
preposterous sums were being paid for bulbs of the
rarer varieties. A single bulb of the species Admiral
Liefken sold for 4400 florins, and a Semper
Augustus for 5500 florins, at a time when a sheep
cost 10 florins.

In 1636 the demand for rare tulips became so great
that regular marts for their sale were established on
the Stock Exchange of Amsterdam. At this time,
speculation in tulip bulbs appeared, and those
fortunate enough to buy low and sell high quickly
grew rich. Seeing their friends and colleagues
profiting from the tulip mania, ordinary citizens
began converting their property into cash and
investing in bulbs. All were convinced that Europe’s
current infatuation with tulips would continue
unabated for the foreseeable future and that vast
wealth awaited those who could satiate the frenzied
demands that were sure to come from the rest of
Europe.

But the more prudent began to see that this
artificial price inflation could not be sustained for
much longer. As confidence dropped, so too did the
market price of tulips – never to rise again. Those
caught with significant investments in bulbs were
ruined, and Holland’s economy suffered a blow from
which it took many years to recover.

There are obvious similarities with the dot com
boom – the artificial escalation of value, the
widening scope of investors, the confusion of

142 HACKNOT

popularity with substance, the progression from
investor over-confidence to widely held belief, and
finally, the sudden deflation of value promoted by
the growing awareness of the role that non-financial
factors were playing in the trend.

Conclusion

It has always been the province of recent
generations to view the mistakes of earlier
generations with a contempt derived from the
assumption that they are somehow immune to such
follies. Those of us who are more technology-aware
than some others are particularly prone to this. And
yet, even the geekiest techno-junkie can fall prey to
the same psychological and sociological traps that
have plagued our species for centuries. Indeed, far
from inuring us to metaphysical thinking, it seems
that the sheer success of science has lead many to
deliberately pursue "alternative" beliefs as a way of
restoring some feeling of mystery and wonder into
their lives. A 1990 Gallup poll of 1236 adult
Americans found that 52% believed in astrology,
46% in ESP and 19% in witches.3 The result is that
superstition and technology are both coexistent and
symbiotic. As software developers, we need to heed
the lessons of the mass manias of the past,
acknowledge that we are still psychologically
vulnerable to them today, and guard against their re-
emergence by making a deliberate effort to think
critically about the trends, fashions and hype which
so predominate our industry.

* First published 5 Jun 2004 at
http://www.hacknot.info/hacknot/action/showEntry?eid=56
1 Hoaxes, Myths and Manias, R. Bartholomew and B. Radford,
Prometheus Books, 2003
2 Extraordinary Populat Delusions and The Madness of Crowds,
Charles Mackay, Wordsworth Editions, 1995
3 Why People Believe Weird Things, Michael Shermer, Henry Holt
and Company, 2002

The Industry

144 HACKNOT

The Crooked Timber of Software
Development*

“Out of the crooked timber of humanity no straight
thing was ever made.” – Immanuel Kant

Imagine you are a surgeon. You are stitching a
wound closed at the end of a major procedure, when
you are approached by the chief surgeon, clad in
theatre garb. He explains that, inkeeping with
recently introduced hospital policy, you are required
to use a cheaper, generic brand of suture material,
rather than the more common (and more expensive)
brand you are accustomed to using. He orders you to
undo the stitching you've done, and redo it using the
generic brand.

Now you are in an ethical quandary. You know
that the cheaper suture material is not of the same
strength and quality as the usual type. You also know
that it is a false economy to skimp on sutures, given
that the amount of money to be saved is trivial, but
the increased risk to the patient is decidedly non-
trivial. Further, it seems unconscionable to be
miserly on such critical materials. But on the other
hand, the chief surgeon wields a lot of political might
in the hospital, and it would no doubt be a career-
limiting move to ignore his instruction. So what do
you do?

As a health professional, there is simply no
question. You are legally and ethically obliged to act
in the best interests of the patient and there are
serious consequences if you fail to do so. The
penalties for malpractice include financial, legal and
professional remedies. You can be fined, sued for
malpractice, or struck from the register and rendered
unable to practice. In the light of the system's support
and enforcement of good medical practice, you
complete the stitching using the standard suture
material, then express your concerns to the chief
surgeon. If you don't get satisfaction, you can take
the matter further.

Now let's examine a similar situation in our own
industry. Suppose a software developer is trying to
decide which of a set of competing technologies
should be used on a project. One technology stands
out as clearly superior to the others in terms of its
suitability to the project's circumstances. Upon
hearing of the technology chosen, the company's
senior architect informs the developer that they have
made the wrong decision, although they cannot
explain why that is the case. The architect directs you

to use a technology you know to be inferior, and
makes it clear that it would be a career-limiting move
to ignore his instruction. Again, what do you do?

My observations over the last twelve years
working as a software developer leave me in no
doubt what the probable outcome is. You shake your
head in disbelief, and use the technology you are
instructed to use, knowing that the best interests of
both the project and its sponsors has just been
seriously compromised. Why is the situation so
different from the previous medical scenario? The
basic answer is this: medicine is a profession, but
software development merely an occupation.

A Profession Is More Than An
Occupation

As it is used in common parlance, the word
"profession" refers to the principle occupation by
which you earn an income. But this is not its true
meaning. A true profession has at least the following
characteristics:1

• Minimum educational requirements – Typically
an accredited university degree must be
completed.

• Certification / licensing – Exams are taken to
ensure that a minimum level of knowledge has
been obtained. These exams target an agreed
upon body of knowledge that is considered
central to the profession.

• Legally binding code of ethics – Identifies the
behaviors and conduct considered appropriate
and acceptable. Failure to observe the code of
ethics can result in ejection from professional
societies, loss of license, or a malpractice suit.

• Professional experience – A residency or
apprenticeship with an approved organization to
gain practical skills.

• Ongoing education – Practitioners are required
to undertake a minimum amount of self-
education on a regular basis, so that they
maintain awareness of new developments in
their field.

Notice that software development has none of
these elements. Anyone, regardless of ability,
education or experience can hang out a shingle
calling themselves a "software developer," without
challenge. Worse, practitioners may behave in any
manner they choose, without restraint. The strict
ethical requirements of a medical practitioner aim to
ensure that the patients needs are best served. In the

THE CROOKED TIMBER OF SOFTWARE DEVELOPMENT 145

absence of such requirements, a software developer
is free to scheme, manipulate, lie and deceive as suits
their purpose – consequently we see a great deal of
exactly this type of behavior in the field.

Integrity

The key concept in any profession is that of
integrity. It means, quite literally, "unity or
wholeness." A profession maintains its integrity by
enforcing standards upon its practitioners, ensuring
that those representing the profession offer a
minimum standard of competence. Viewed from the
perspective of a non-practitioner, the profession
therefore offers a consistent promise of a certain
standard of work, and creates the public expectation
of a certain standard of service.

Individuals, also, are required to act with integrity.
It is not acceptable for them to say one thing and do
another e.g. to promise to always act in the best
interests of a patient or client, but then let personal
interests govern their action. What is said and what is
done must be consistent.

This cultural focus upon integrity is entirely
missing from the field of software development, and
demonstrates the vast gap in maturity that exists
between our occupation and the true professions. If
we are ever to make a profession of software
development, to move beyond the currently fractured
and uncoordinated group of individuals motivated by
self-interest, with little or no concern for the
reputation or collective future of their occupation,
then some fundamental changes in attitude must
occur. We must begin to value both personal and
professional integrity and demonstrate a strong and
unwavering commitment to it in our daily
professional lives.

Think about it – what are your ethical and
professional obligations in your current position. Are
you fulfilling them? Look to ethical codes such as
those offered by the ACM2 and the IEEE-CS3, even
if you are not a member of these societies. Although
not legally binding, they at least demonstrate the
sorts of concerns you should be championing in your
everyday work. You will find that their central focus
is upon always acting with integrity; always
representing the best interests of the client.
Specifically, you will note that the following
behaviors, as commonplace as they are amongst
developers, are antithetical to ethical conduct:

• Choosing technologies and solutions because
they are "cool", have novelty value or look good
on your CV.

• "Going with the flow" or "keeping a low profile:
i.e. remaining deliberately distant from or
ignorant of issues which affect the quality of
service delivered to the customer. You must be
willing to voice unpopular facts or express
controversial opinions if you have reason to
believe that not doing so will compromise the
service delivered to a client.

• Distancing yourself from others who are
attempting to maintain a minimum standard of
work or conduct, so as to avoid any political risk
yourself. If you are aware of a challenge to the
ethical standards of your profession, you are
obliged to defend those standards, even if you
have not been directly involved.

• Letting unethical conduct go unchallenged. To
observe unethical conduct and say nothing is to
offer a tacit endorsement of that behavior.
Saying "It's not my problem," "It's none of my
business" or "I'm glad that didn't happen to me"
is not acceptable. Next time, it may be
happening to you.

There's no denying that acting ethically can have a
personal cost, perhaps quite a profound one. It would
be naive to think that attempts to contradict or
combat unethical behavior are not likely to result in
some attempt at retribution. Even in professions with
legally binding codes of ethics, this is the case. In
software development, where it is a moral free-for-
all, it is particularly so. Raising ethical objections,
voicing unpopular facts, standing up for the client's
rights where they conflict with some manager's self-
interest – all of these actions bring a very real risk of
retribution from offended parties, that may include
losing your job. Because ours is not a true profession,
there is no protection – legal or otherwise –- for a
developer who speaks the truth and in so doing defies
authority. Whoever is most adept at bullying,
intimidation and political manipulation is likely to
hold sway.

I suspect that more than a few of the incidents we
have recently seen involving the termination of
bloggers for alleged indiscretions on their blogs have
been excuses for employers to remove inconvenient
employees who threaten the status quo. Although
superficially plausible reasons may be offered for
such action, they may well be nothing more than an
excuse for retribution against the employee for
challenges they have made to the employer's
unethical behavior.

146 HACKNOT

There Was A Crooked Man

In assessing the personal cost of ethical action, it
helps to maintain a broader perspective. In our
industry, jobs come and go like the seasons. Due to
the prevalence of contract work, many software
developers will likely have dozens of employers in
their careers. Rather than viewing our work as a
series of unrelated engagements, I believe we need to
view our efforts as part of a larger process – the
maturation of an occupation into a true profession.
Seen from this angle, the significance of any
particular job (or the loss of it) is lessened and the
importance of the over-arching principles becomes
more obvious.

As they say, the chain is only as strong as its
weakest link. The strength of our reputation and
worth as a burgeoning profession is therefore
dependant upon the strength of the individual’s
commitment to maintaining a high personal standard
of ethics. The integrity of the whole is contingent
upon the integrity of the parts.

Some years ago I read the following statement,
which for its truth and boldness has stuck with me
ever since:

The best managers are the ones that come into
work each day prepared to lose their job.

In other words, unless you remain willing to walk
away from a job, the threat of termination can always
be used against you, and used as leverage to
encourage or excuse unethical behavior. The same
reasoning applies to developers as it does to
managers. The same ethical obligations and the same
obstacles to fulfilling them are present.

In 1985, David Parnas resigned his position as
member of a U.S. Defense Department Committee
advising on the Strategic Defense Initiative (SDI).
He felt, with good reason, that the goals set for the
SDI were entirely unachievable, and that the public
was being misled about the program’s potential.
Others urged him to continue, and continued with it
themselves, even though they shared his beliefs
about the feasibility of the programs fundamental
objectives. They reasoned that, even though the
desired outcomes wouldn't be achieved, there was
good funding to be had that might be put into
ostensibly "contributing efforts", and the opportunity
was too good to miss. When Parnas resigned, he
wrote a series of eight papers 4 outlining both his
reasons for doing so, and the fundamental issues
about software professionalism that the SDI issue
had bought to light. Unfortunately, he have very few
men of his quality in our occupation.

Parnas summarized a professional's responsibility
in three statements, which I conclude with here:

• I am responsible for my own actions and cannot
rely on any external authority to make my
decisions for me.

• I cannot ignore ethical and moral issues. I must
devote some of my energy to deciding whether
the task that have been given is of benefit to
society.

• I must make sure that I am solving the real
problem, not simply providing short-term
satisfaction to my supervisor.

* First published 7 Aug 2005 at
http://www.hacknot.info/hacknot/action/showEntry?eid=77
1 After The Gold Rush, Steve McConnell, Microsoft Press, 1999
2 http://www.acm.org/constitution/code.html
3 http://www.ieee.org/portal/pages/about/whatis/code.html
4 Software Fundamentals: Collected Papers by David L. Parnas,
Addison-Wesley, 2001

FROM JAMES DEAN TO J2EE: THE GENESIS OF COOL 147

From James Dean to J2EE:
The Genesis of Cool*

It has always been the purview of the young to
define what "cool" means to their generation. In the
fifties, cool was epitomized by James Dean.
Teenagers rushed to emulate him in looks and
manner. Cigarettes, leather jackets, sports cars and a
crushing sense of parent-induced angst were the
hallmarks by which these youth declared both their
distance from the previous generation and unity
within their own.

In the sixties, the hippy generation stepped off the
path to maturity their parents had planned out for
them, put flowers in their hair and went on a drug
assisted exploration of their own psyche to the
soundtrack of Jimi Hendrix and The Jefferson
Airplane. The meaning of cool became a little more
diffuse. As an adjective of laid back approval, it still
carried the antiauthoritarian flavor of the previous
decade; but was broad enough to include almost
anything of an unconventional nature.

In the seventies, bigger was better. Wide collars
and ties, flared trousers and ostentatious jewelry
were the adornments of the young and cool. Disco
was king and the Bee Gees were the kings of disco.
The definition of cool could only be broadened to
accommodate the crass symbols of consumerism that
the cultural elite filled their home and their
wardrobes with. For the first time, cool was as much
about earning capacity as it was about rebellion.

In the eighties, consumerism and technology
joined forces to highjack cool from the hands of the
kids. It became an adjunct to the management
buzzwords and marketing neologisms that littered the
corporate lingo. The electronics companies created
synthesizers that dominated the music of the decade,
and sold them back to the youth who were wondering
what had become of cool. "Behold", they said, "this
is technology and verily, it is cool."

In the nineties, cool went through its final stage of
deconstruction to become the meaningless mouth-
noise that we have today. With the unexpected rise in
popularity of the Web and its accompanying soap
bubble of financial optimism, cool became the
adjective of choice for the technically literate. In
keeping with their unfettered enthusiasm and cavalier
attitude, dot-com entrepreneurs everywhere looked
up only briefly from their Palm Pilots to heap
uncritical praise upon every new technology and
gadget that passed across their expansive desks.

The Future Of Cool

This decade, “cool” means nothing. It is a label
applied so ubiquitously and indiscriminately that it
could compete with "nice" for the title of “Most
Ineffectual Adjective in Common Usage.” The retro
punk rockers with their double basses and Gibson
Epiphones think they have it. The Feng Shui
consultants and the new age drop-outs think it has
something to do with Atlantis. The advertising
executives and middle managers know that they had
it once, but then it slipped between the cushions of
their leather lounges along with their ridiculously
miniature mobile phones.

But most laughably of all, we the techies think that
we have it. Surprised to find that technology is now
cool, we feel justified in labeling the geekiest of our
enthusiasms with this meaningless endorsement.

Pop quiz: Which of the following are cool?

• Open source
• Linux
• Visual Basic
• Windows XP
• Extreme Programming
• MP3
• Quake
• J2EE
• .NET

There are no correct answers to this quiz, and your
response means nothing – unless you voice it with
breathless enthusiasm while gazing in a shop
window.

In the coming year, cool will lead us everywhere
and nowhere, with the following predictable detours:

• Many software projects will be initiated by
software developers with a cool hammer looking
for some business-case nails to justify their
expenditure. Projects thus founded will fail, but
not before the developers have had a nice time
playing with their new hammers and increasing
their market appeal to future employers in search
of the latest coolness.

• Many vendors will grunt out another selection of
half-baked products that promise a world of
coolness but deliver instead a slew of bugs,
patches and service packs. The products these
same vendors previously marketed as cool will
be mysteriously absent from their catalog,
although many of the newer products will bare
an uncanny resemblance to their predecessors.

148 HACKNOT

• The shelves of technical book stores will
overflow with 500 page tomes promising a quick
path to mastery of these latest technologies. The
speed with which these books are issued and
revised will equal or exceed the release rate of
the technologies they describe.

• Many legacy systems that have been providing
satisfactory service for years will be
decommissioned and replaced with systems
based on newer and cooler technologies. These
replacements will be less reliable than their
predecessors.

• Technology selection based on hard-headed
empiricism will be viewed as impossibly
expensive and time consuming, and abandoned
in favor of emotive decision making based on
marketing promises and perceived tech appeal.
We will be too busy climbing the learning
curves of the latest software development gear to
have any time remaining in which to quantifying
the costs and benefits of doing so. Hamsters …
exercise wheels … same old story.

The overall success and failure rates of software
projects will remain much as it was last decade, and
everyone will bemoan the sad state of software
development.

* First published 11 Jan 2004 at
http://www.hacknot.info/hacknot/action/showEntry?eid=43

IEEE SOFTWARE ENDORSES PLAGIARISM 149

IEEE Software Endorses
Plagiarism*

plagiarize – take (the work or an idea of someone
else) and pass it off as one’s own. – The New
Oxford Dictionary of English

Ours is an occupation obsessed with invention and
novelty. Every week it seems that some new
technology or development technique arrives,
heralded by a fanfare of hype and a litany of
neologisms. So keen are we to exploit the
community's enthusiasm for newness that we will
even take old ideas and rebadge them, offering them
up to our colleagues as if they were original.

Every time I see such reinvention, I feel a certain
discomfort. There seems to me something
fundamentally wrong with positing work as being
entirely your own, when it in fact borrows, duplicates
or derives from the work of others.

In science, precedence counts for a great deal and
authors are usually generous and fastidious in
providing correct attribution and acknowledgement
of former discoveries which their own work has
benefited from. Indeed, a broad indication of the
significance of a paper is the number of subsequent
citations that the work receives. In software
development, there appears to be rather less respect
for the contributions that others make; perhaps even
a certain contempt for prior art.

Fail Fast

A particularly egregious example of this disrespect
for precedence appeared in the Sept/Oct 2004 issue
of IEEE Software, in an article in the Design section
by Jim Shore called Fail Fast 1. The section editor is
Martin Fowler.

Shore describes "a simple technique that will
dramatically reduce the number of bugs in your
software". His technique, which he considers
"nonintuitive" is to write your code so that it fails
"immediately and visibly." This is achieved by
putting assertions at the beginning of each method,
that check the validity of the values passed to the
method's arguments, throwing a run-time exception if
invalid values are encountered.

For example, if you write a method for finding the
positive square root of a non-negative argument, you
make the expectation of "non-negativity" explicit at
the beginning of the method, like this:

public void squareRoot(float value) {
 if (value < 0.0) {
 throw new SomeException(value);
 }
 // More code goes here
}

This technique is the antithesis of defensive
programming, which would encourage us to make
the method as tolerant of unexpected input as
possible.

Shore then goes to some lengths to enumerate the
strengths of this technique, such as:

• When failure occurs, the result is a stack trace
that leads directly to the source of error. Code
that doesn't fail-fast can sometimes propagate
errors to other portions of the call hierarchy,
finally to fail in a location quite distant from the
original point of error.

• Reduced use or elimination of a debugger; the
messages from the assertion failures are
sufficient to localize the error.

• Logging of assertion failures provide excellent
debugging information for maintenance
programmers who later diagnose a production
failure from log files.

• Reduced time and cost of debugging.

There are no citations anywhere within the article;
nor does it specify any references. The author (and
by extension, the editor) are apparently content to
have you believe that this concept is new and
original.

Design By Contract

You may well be familiar with the term Design by
Contract (DBC). The term was coined by Bertrand
Meyer, and a full exposition of it may be found in
Chapter 11 of his excellent text Object Oriented
Software Construction 2. Shore's Fail Fast technique
is nothing more than a re-naming of a subset of the
concepts within DBC. In short, “Fail Fast” is entirely
derivative in nature.

For those who have not previously encountered it,
DBC is a technique for specifying the relationship
between a class and its clients as a formal agreement
2 – a contract. A contract is expressed as an assertion
of some boolean conditional statement. When the

150 HACKNOT

condition is false, the contract is said to fail; which
results in the throwing of a runtime exception.

Broadly speaking there are three types of contracts
– preconditions, postconditions and invariants. The
Fail Fast technique relies only upon preconditions –
assertions placed at the beginning of a method that
specify the conditions the method assumes to be true.
The topic of DBC is fairly involved, particularly with
regard to the way that contracts accumulate across
inheritance relationships. Meyer's exegesis of DBC is
vastly superior to the limited discussion of
preconditions (under the new name “Fail Fast”)
given by Shore.

Not only does Shore co-opt the work of others, he
combines it with bad advice regarding the general
use of assertions. Shore claims:

When writing a method, avoid writing assertions
for problems in the method itself. Tests,
particularly test-driven development, are a better
way of ensuring the correctness of individual
methods.

This is the purest nonsense. Assertions are an
excellent way of documenting the assumed state of a
method mid-way through its operation, and are
helpful to anyone reading or debugging the method
body. This was first pointed out by Alan Turing back
in 1950:

How can one check a large routine in the sense
that it's right? In order that the man who checks
may not have too difficult a task, the programmer
should make a number of definite assertions which
can be checked individually, and from which the
correctness of the whole program easily follows.3

In contrast to Shore, Meyer is generous in his
acknowledgement of predecessors and contributors
to DBC itself. Section 11.1 of his text has an entire
page of "Bibliographical Notes" in which he
acknowledges the work of Turing, Floyd, Hoare,
Dijkstra, Mills and many others. Indeed, he has
delivered an entire presentation on the conceptual
history of DBC prior to his own involvement.4

Giving Credit Where Credit Is Due

Such misattribution and inattention to precedence
as Shore’s harms our profession in several ways:

• It is professionally discourteous in that it denies
those who develop and originate work their
proper credit.

• It discourages modern readers from exploring
the history of the concepts they are presented

with, thereby denying them an opportunity to
deepen their knowledge through exploration of
the prior art. Meyer has already expounded the
benefits of "fail fast" versus "defensive
programming" at length. If Shore’s article had
appropriate citations, readers would be directed
towards this better and more detailed
explanation, and would realize that the concept
can be taken much, much further through
postconditions, invariants, and inheritance of
contracts

• It garners false credit for those who ignore the
precedence of other's work, encouraging others
to do the same – diverting energy into the re-
labeling of already known concepts that could
otherwise be directed into new areas.

• It creates confusion amongst the readership and
obfuscates links with the existing body of
knowledge. Central to any epistemological effort
is a consistent naming scheme, so that links
between new discoveries and existing concepts
can be identified. Renaming makes it difficult,
particularly for those new to the field, to
distinguish new from old concepts.

Conclusion

To have work published in a peer reviewed journal
is a significant achievement. It means that one's work
has been found to make a worthwhile contribution to
the literature, and to be of a high professional
standard. By these criteria, the Fail Fast article by
Jim Shore in the Sept/Oct 2004 issue of IEEE
Software should not have been published. The
material it presents as being new and original is a
superficial (and flawed) restatement of earlier work
by Meyer, Hoare and others. It should be cause for
concern for us all that a high profile, professional
journal should publish work that is derivative and
misrepresentative. Those who reviewed Shore’s
article prior to publication, and the editor/s who
approved its publication deserve the harshest
admonishment for effectively endorsing plagiarism.

* First published 2 Oct 2004 at
http://www.hacknot.info/hacknot/action/showEntry?eid=67
1 Fail Fast, Jim Shore, IEEE Software, Sept/Oct 2004, pg 21
2 Object Oriented Software Construction, 2nd Edition, Bertrand
Meyer, Prentice Hall, 1997
3 Checking A Large Routine, Talk delivered by Alan Turing,
Cambridge, 24 June 1950.
4 Eiffel’s Design by Contract: Predecessors and Original
Contributions, Bertrand Meyer

151 EARLY ADOPTERS OR TREND SURFERS?

Early Adopters or Trend Surfers?*

Q: What are the most exciting/promising
software engineering ideas or techniques on the
horizon?

A: I don't think that the most promising ideas
are on the horizon. They are already here and
have been here for years but are not being used
properly.

– Interview with David L Parnas

Many software developers pride themselves on
being up to date with the latest software
technologies. They live by the credo "beta is better"
and willingly identify themselves as early adopters.
The term "early adopter" comes from the seminal
work on technology transfer Diffusion of Innovations
by Everett M. Rogers (1962). He categorizes the
users of a new innovation as being innovators, early
adopters, early majority, late majority and laggards.
Innovators and early adopters constitute about 16%
of the user population.

Amongst the software development population,
that percentage must be significantly higher, given
the technological orientation of most practitioners.
Consider the following selection of recent
technologies and their respective dates of
introduction. Observe how quickly these
technologies have become main stream. In about five
years a technology can go from unknown to common
place. In ten years it is passé?

Technology Introduced
JSP 1998
EJB 1998
.NET 2002
Java 1995
J2EE 1999
SOAP 2000
Microsoft Windows 1993
GUI 1974

Now consider the following software development
practices:

Practice First Noted
Source code control 1980
Inspections 1976
Branch coverage testing 1979
Software Metrics 1977
Throwaway UI prototyping 1975
Information Hiding 1972
Risk Management 1981

Why is it that after, in some cases, 20 years worth
of successful application in the field, often

accompanied by repeated empirical verification of
their worth, many of these practices are yet to be
considered even by the early majority?

Adopting new technologies is easy, but changing
work practices is hard. Technologies are "out there"
but work practices are distinctly personal. And new
technologies promise immediate gratification by way
of satisfying the hunger for novelty.

* First published 25 Sep 2003 at
http://www.hacknot.info/hacknot/action/showEntry?eid=24

152 HACKNOT

Reuse is Dead. Long Live Reuse.*

Reuse is one of the great broken promises of OO.
The literature is full of empirical and anecdotal
evidence to this effect. The failure to realize any
significant benefit from reuse is variously ascribed to
technical, organizational and people factors.
Observation of the habits and beliefs of my fellow
software engineers over many years leads me to
believe that it is the latter which poses the principle
obstacle to meaningful reuse, and which ultimately
renders it unachievable in all but the most trivial of
cases.

Hubris is a common trait amongst software
developers and brings with it a distrust and disrespect
for the work of others. This "not invented here"
attitude, as it is commonly known, leads developers
to reinvent solutions to problems already solved by
others, driven by the conviction that the work of
anonymous developers must be of dubious quality
and value. Some simply prefer "the devil you know"
- figuring that whatever the shortcomings of a
solution they may write themselves, their familiarity
with it will sufficiently reduce the cost of subsequent
maintenance to justify the cost of duplicating the
development effort. Evidence of this drive to
reinvention is everywhere. Indeed, the collective
output of the open source movement is proof of the
"I can do better" philosophy in action.

Consider what it is about software development
that attracts people to it. In part, it is the satisfaction
that comes from solving technical problems. In part,
it is attraction to the novelty of new technologies. In
part, it is the thrill of creating something that has a
life independent of its original author. Reuse denies
the developer all of these attributes of job
satisfaction. The technical problem is already solved,
the new technology has already been mastered (by
somebody else), and the act of creation has already
occurred. On the whole, the act of reuse is equivalent
to surrendering the most satisfying aspects of one’s
job.

So what degree of reuse can coexist with such a
mindset? Certainly we may abandon hope for any
broad reuse such as that promised by frameworks.
Instead, we may expect frameworks themselves to
proliferate like flowers in spring. The greater the
scope of the potential reuse, the greater the
opportunity to disguise technology lust and hubris as
genuine concerns over scalability or applicability.

I believe the only reuse likely to be actually
realized is in the form of limited utility libraries and

perhaps small GUI components. If the problem the
potentially reusable item solves is seen as technically
novel or intriguing, then reinvention will result. If
there is no entertainment, novelty or career value in
reinvention then begrudging reuse may result simply
as a way of avoiding "the boring stuff." But as long
as developers are willing to use their employer’s time
and money to satisfy their personal ambitions; and as
long as they continue to believe they hold a personal
monopoly on reliable implementation, then the cost
advantage of reuse will remain a gift that we are too
proud to accept.

* First published 4 Aug 2003 at
http://www.hacknot.info/hacknot/action/showEntry?eid=13

ALL ABOARD THE GRAVY TRAIN 153

All Aboard the Gravy Train*

“Hype is the plague upon the house of software.”

– Richard Glass

It is interesting to watch the software development
landscape change underfoot. As with many
geographies, the tremors and shifts which at first
appear random, when more closely examined reveal
an underlying order and structure that is more
familiar and less mysterious.

Recently, some of the loudest rumblings have
been coming from that quarter whose current
fascination is the scripting language Ruby, and its
database framework Rails. Think back to the last
cycle of hype you saw in our industry – perhaps the
Extreme Programming craze – and you'll recognize
many of the phenomena from that little reality
excursion now reoccurring in the context of
Rubyism. There are wild and unverifiable claims of
improved productivity amidst the breathless ravings
of fan boys declaring how cool it all is. There are
comparisons against precursor technologies,
highlight faults that are apparently obvious in
hindsight, but were unimportant while those
technologies were in fashion. And above all there is
the frenetic scrambling of the "me too" crowd,
rushing to see what the fuss is all about, desperately
afraid that the bandwagon will pass them by, leaving
them stranded in Dullsville, where nothing is cool
and unemployment is at a record high.

But this crowd faces a real dilemma, for there are
multiple bandwagons just ripe for the jumping upon.
Which to choose?

The Web 2.0 juggernaut has been on tour for some
time, despite the lack of a cogent definition. The
AJAX gang have also been making a lot of noise,
mainly because the Javascript weenies can't contain
their excitement at being in the popular group again.

But how and why does all this techno-fetishism
get started?

Now Departing On Platform One

“Welcome aboard the gravy train, ladies and
gentleman. Our next stop is Over-enthusiasm
Central. Please be advised that critical thought and
a sense of perspective are not permitted in the
passenger compartment. Please ensure that your
safety belt is unfastened while the red dollar sign is
illuminated. We know that you have a choice of

bandwagons, and thank you for your choice to bet
the farm upon this one. We promise – this time it'll
be different."

The endless cycle of technological and
methodological fashions that so characterizes our
industry is the result of a symbiotic relationship
between two groups – the sellers and the buyers.

The sellers are the parties who are out to create a
"buzz," generating a desire for some technology-
related product. They include the corporate vendors
of new technologies such as Sun and IBM. Alongside
them are the pundits and self-promoters who are
looking to make a name for themselves. They attach
themselves to particular trends in order to cross-sell
themselves as consultants, authors and speakers. Hot
on their heels are the book publishers and course
vendors, who appear with remarkable speed at the
first hint of something new, with a selection of 500
page books and offsite training courses to ease your
transition to the next big thing.

The buyers are the developers who hear the buzz
and are drawn to it. And for many, that draw is very
strong indeed, for a variety of reasons. First, many
developers are fascinated with anything new simply
because it is a novelty. The desire to play with new
tech toys is what got many into IT to begin with, and
is still their main source of enjoyment in their
working lives. For others, the lure of a new
technology lies in the belief that it might solve all
their development woes (rarely is it stated directly,
but that's the tacit promise). It's classic "silver bullet"
thinking of the sort Fred Brooks warned against 25
years ago, but which is just as deceptively attractive
now as then.

Incoming technologies have the same advantage
over their predecessors that opposition political
parties have over the governing party; the
shortcomings of the existing option have been
revealed through experience, but the shortcomings of
the incoming option are unknown because nobody
has any experience with it. This makes it easy to
make the incoming option look good by comparison.
You just focus on the problems with the old
technology, while saying nothing of the problems
that will inevitably accompany the new one. The
newer option has an image that is unblemished by the
harsh light of experience. The new technology is
promoted as a key ingredient of forthcoming
software success stories, but those pieces of software
are just vaporware, and vaporware doesn't have any
bugs or suffer any performance or interoperability
problems.

It should also be acknowledged that there is a
psychological and emotional appeal to placing such

emphasis upon the technological aspect of software
development. It alleviates the burden of self-
examination and introspection upon work practices.
It is much easier and more comfortable to think of all
one's problems as being of external origin, leaving
one's self blame free. "As long as the problem is "out
there" somewhere, rather than "in here", we can just
jump from one silver bullet to the next in the hope
that maybe this time the vendors have got it right.
Heaven forbid that the way we apply those
technologies should actually have something to do
with the sort of outcome we achieve.

But think of this:

Of all the failed and troubled software development
efforts you've been involved in, there is one
common element ... you.

Your Regularly Scheduled Program

Some developers enjoy this perpetual onslaught of
marketing efforts, for it keeps them well supplied
with new toys to play with. But some of us are both
tired of the perpetual call to revolution, and
concerned for the long term effect it has upon our
profession. I belong to the latter group.

The main danger that this ever-changing rush to
follow technological fashion has upon us is to
distract us from focusing on those aspects of our
work that really matter – the people who are doing
the work and the working methods they employ. Do
you think that the technologies you use really make
much difference to the outcomes your achieve? I
suggest they are generally quite incidental. To
understand why, consider this analogy.

Suppose a group of professional writers gather
together for a conference discussing the nature of the
writing activity. You would expect them to broach
such topics as plot, character development, research
methods, editing techniques and so on. But suppose
they spent their time discussing the brand of pen that
they preferred to write with. If one author claimed
"My writing has got so much better since I started
using Bic pens" - would you not think that author
might be missing something? If another claimed
"That book would have been so much better if it'd
been written with a Parker pen" - you might again
think that the speaker has missed the point. If a third
claimed "I write twice as much when I use a
Staedtler pen," you might think that the author is
probably making things up, or at least trying to
rationalize a behavior that is really occurring for
emotional or psychological reasons. But isn't this
exactly what we developers do when we claim "This
project would have been so much better if we'd

written it in Ruby" or "I'm twice as productive
writing in Java as I am in C++"? In other words, our
focus is all wrong. We're preoccupied with the tools
we use, but we should be focused on the skills and
techniques with which we wield those tools.

At the organizational level, this fixation with
novelty often works to create a bad impression of
IT's capabilities and proclivities. If those that make
the strategic technology decisions for a company are
the type to get carried away with the latest fads, then
that company can find itself buffeted by the ever-
changing fashions of the technical industry, always
switching from one "next big thing" to another, with
no concern for long term maintenance burden and
skills investment. It is easy to create a portfolio of
projects implemented in a broad range of diverse
technologies, requiring an equally diverse set of
skills from anyone hoping to later maintain the
project. A broad skill base is seldom very deep, so
staff become neophytes in an ever-increasing set of
technologies, none of which have been used for a
sufficient time for them to gain a high level of
expertise. From an outsider’s perspective, the IT
section seems to be a bunch of boys playing with
toys, terminally indecisive, that for some reason
needs to keep re-implementing the same old
applications in progressively newer and cooler
technologies, though successive reimplementations
don't seem to be getting any better or more reliable. It
seems that every six to twelve months they suddenly
"realize" that the technologies they're currently using
aren't adequate and a new technology direction is
spawned. All that is really happening is that the
novelty of one technology selection has worn off and
the hype surrounding some new novelty is
beckoning.

Think of the organizational detritus this leaves
behind. You've got legacy VB applications that can
only be maintained by the VB guys, legacy J2EE
systems that can only be maintained by the J2EE
guys, a few .NET applications that only the .NET
guys can comprehend, and that Python script that
turned out to be unexpectedly useful, which no one
has been game to touch since the Python enthusiast
that wrote it resigned last year.

How many companies, do you suppose, are now
left with monolithic J2EE systems containing entity
beans galore, that were written as the result of some
consultant's fascination with application servers, and
their compulsion to develop a distributed system
even if one wasn't required. And how impressed are
the executives in those companies who find
themselves with an enormous, sluggish system that
appears to have gone "legacy" about five minutes
after the consultants left the building. Can we be

ALL ABOARD THE GRAVY TRAIN 155

surprised at their cynicism when they're told their
system will have to be rewritten because it was done
poorly by people who didn't really understand the
technologies they were working with (how could
they – they were learning as they went). How can
they leverage their technology and skill investments
when both seem to become irrelevant so rapidly?

What's The Better Way?

Thankfully, it doesn't have to be like this. But
avoiding the harmful effects of technology obsession
requires some clarity.

At the organizational level, it requires senior
technicians to have the maturity and professional
responsibility to put the interests of the business
before their personal preferences. It means
developing technology strategies and standards based
solely upon benefit to the business. It means
remembering that there is no ROI on "cool."

At the individual level, it means adopting a
skeptical attitude towards the hype generated by
vendors and pundits; and turning one's focus to the
principles and techniques of software development,
which transcend any technology fashion. Your time
and energy is better invested in improving your
abilities and skills than in adding another notch to
your technology belt.

* First published 27 Aug 2006 at
http://www.hacknot.info/hacknot/action/showEntry?eid=89

