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Why changing APIs  
might become  
a criminal offense

void makeTV(bool isB
lackAndWhite, bool isF

latScreen)   Select(re
adCopy, w

riteCopy, errorCopy, In
t32.MaxValue);

venum ColorType { Color, BlackAndWhite }; 

enum ScreenType { CRT, FlatScreen };
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After more than 25 years as a software engineer, I still find 
myself underestimating the time it will take to complete 
a particular programming task. Sometimes, the resulting 
schedule slip is caused by my own shortcomings: as I dig 
into a problem, I simply discover that it is a lot harder 
than I initially thought, so the problem takes longer to 
solve—such is life as a programmer. Just as often I know 
exactly what I want to achieve and how to achieve it, 
but it still takes far longer than anticipated. When that 
happens, it is usually because I am struggling with an API 
that seems to do its level best to throw rocks in my path 
and make my life difficult. What I find telling is that, 
after 25 years of progress in software engineering, this 
still happens. Worse, recent APIs implemented in modern 
programming languages make the same mistakes as their 
two-decade-old counterparts written in C. There seems to 
be something elusive about API design that, despite many 
years of progress, we have yet to master.

Good APIs ArE HArd
We all recognize a good API when we get to use one. 
Good APIs are a joy to use. They work without friction 

and almost disappear from sight: the right call for a 
particular job is available at just the right time, can be 
found and memorized easily, is well documented, has an 
interface that is intuitive to use, and deals correctly with 
boundary conditions.

So, why are there so many bad APIs around? The 
prime reason is that, for every way to design an API 
correctly, there are usually dozens of ways to design it 
incorrectly. Simply put, it is very easy to create a bad API 
and rather difficult to create a good one. Even minor 
and quite innocent design flaws have a tendency to get 
magnified out of all proportion because APIs are provided 
once, but are called many times. If a design flaw results in 
awkward or inefficient code, the resulting problems show 
up at every point the API is called. In addition, separate 
design flaws that in isolation are minor can interact with 
each other in surprisingly damaging ways and quickly 
lead to a huge amount of collateral damage.

BAd APIs ArE EAsy
Before I go on, let me show you by example how seem-
ingly innocuous design choices can have far-reaching 

API 
Design Matters

void makeTV(bool isB
lackAndWhite, bool isF

latScreen)   Select(re
adCopy, w

riteCopy, errorCopy, In
t32.MaxValue);

enum ScreenType { CRT, FlatScreen };



26  May/June 2007  ACM QUEUE rants: feedback@acmqueue.com

ramifications. This example, which I came across in my 
day-to-day work, nicely illustrates the consequences of 
bad design. (Literally hundreds of similar examples can 
be found in virtually every platform; my intent is not to 
single out .NET in particu-
lar.)

 Figure 1 shows the 
interface to the .NET socket 
Select() function in C#. 
The call accepts three lists 
of sockets that are to be 
monitored: a list of sockets 
to check for readability, a 
list of sockets to check for 
writeability, and a list of 
sockets to check for errors. 
A typical use of Select() 
is in servers that accept 
incoming requests from 
multiple clients; the server 
calls Select() in a loop and, 
in each iteration of the 
loop, deals with whatever 
sockets are ready before 
calling Select() again. This 
loop looks something like 
the one shown in figure 1.

The first observation is 
that Select() overwrites its 
arguments: the lists that 
are passed into the call 
are replaced with lists that 
contain only those sockets 
that are ready. As a rule, 
however, the set of sockets 
to be monitored changes 
only rarely, and the most 

common case is that the server passes the same lists in 
each iteration. Because Select() overwrites its arguments, 
the caller must make a copy of each list before passing it 
to Select(). This is inconvenient and does not scale well: 
servers frequently need to monitor hundreds of sockets 
so, on each iteration, the code has to copy the lists before 
calling Select(). The cost of doing this is considerable.

A second observation is that, almost always, the list of 
sockets to monitor for errors is simply the union of the 
sockets to monitor for reading and writing. (It is rare that 
the caller wants to monitor a socket only for error condi-
tions, but not for readability or writeability.) If a server 
monitors 100 sockets each for reading and writing, it ends 
up copying 300 list elements on each iteration: 100 each 
for the read, write, and error lists. If the sockets moni-
tored for reading are not the same as the ones monitored 
for writing, but overlap for some sockets, constructing the 
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The .NET socket Select() function in C#
public static void Select(IList checkRead, IList checkWrite, 
                               IList checkError, int microseconds);
{

//Server code 
int timeout = ...; 
ArrayList readList = ...; // Sockets to monitor for reading. 
ArrayList writeList = ...; // Sockets to monitor for writing. 
ArrayList errorList; // Sockets to monitor for errors. 
while(!done) 
{ 
    SocketList readTmp = readList.Clone(); 
    SocketList writeTmp = writeList.Clone(); 
    SocketList errorTmp = readList.Clone(); 
    Select(readTmp, writeTmp, errorTmp, timeout); 
    for(int i = 0; i < readTmp.Count; ++i) { 
        // Deal with each socket that is ready for reading... 
    } 
    for(int i = 0; i < writeTmp.Count; ++i) { 
        // Deal with each socket that is ready for writing... 
    } 
    for(int i = 0; i < errorTmp.Count; ++i) { 
         // Deal with each socket that encountered an error... 
    } 
    if(readTmp.Count == 0 && 
        writeTmp.Count == 0 && 
        errorTmp.Count == 0) { 
         // No sockets are ready... 
    } 
}
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error list gets harder because of the need to avoid placing 
the same socket more than once on the error list (or even 
more inefficient, if such duplicates are accepted).

Yet another observation is that Select() accepts a time-
out value in microseconds: if no socket becomes ready 
within the specified time-out, Select() returns. Note, 
however, that the function has a void return type—that 
is, it does not indicate on return whether any sockets are 
ready. To determine whether any sockets are ready, the 
caller must test the length of all three lists; no socket is 
ready only if all three lists 
have zero length. If the 
caller happens to be inter-
ested in this case, it has 
to write a rather awkward 
test. Worse, Select() clob-
bers the caller’s arguments 
if it times out and no 
socket is ready: the caller 
needs to make a copy of 
the three lists on each 
iteration even if nothing 
happens!

The documentation for 
Select() in .NET 1.1 states 
this about the time-out 
parameter: “The time to 
wait for a response, in 
microseconds.” It offers no 
further explanation of the 
meaning of this parameter. 
Of course, the question 
immediately arises, “How 
do I wait indefinitely?” 
Seeing that .NET Select() is 
just a thin wrapper around 
the underlying Win32 
API, the caller is likely to 
assume that a negative 
time-out value indicates 
that Select() should wait 
forever. A quick experi-
ment, however, confirms 
that any time-out value 
that is equal to or less 
than zero is taken to mean 
“return immediately if 
no socket is ready.” (This 
problem has been fixed 
in the .NET 2.0 version of 

Select().) To wait “forever,” the best thing the caller can 
do is pass Int.MaxValue (231-1). That turns out to be a little 
over 35 minutes, which is nowhere near “forever.” More-
over, how should Select() be used if a time-out is required 
that is not infinite, but longer than 35 minutes?

When I first came across this problem, I thought, 
“Well, this is unfortunate, but not a big deal. I’ll simply 
write a wrapper for Select() that transparently restarts the 
call if it times out after 35 minutes. Then I change all calls 
to Select() in the code to call that wrapper instead.”
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The doSelect() function
public void doSelect(IList checkRead, IList checkWrite, 
                         IList checkError, int milliseconds) 
{ 
    ArrayList readCopy;   // Copies of the three parameters because 
    ArrayList writeCopy;  // Select() clobbers them. 
    ArrayList errorCopy; 
 
    if (milliseconds <= 0) { 
        // Simulate waiting forever. 
        do { 
            // Make copy of the three lists here... 
 
            Select(readCopy, writeCopy, errorCopy, Int32.MaxValue); 
        } while ((readCopy == null || readCopy.Count == 0) && 
                     (writeCopy == null || writeCopy.Count == 0) && 
                     (errorCopy == null || errorCopy.Count == 0)); 
    } else { 
        // Deal with non-infinite timouts. 
        while ((milliseconds > Int32.MaxValue / 1000) && 
                  readCopy == null || readCopy.Count == 0) && 
                  writeCopy == null || writeCopy.Count == 0) && 
                  errorCopy == null || errorCopy.Count == 0)) { 
 
            // Make a copy of the three lists here... 
 
           Select(readCopy, writeCopy, errorCopy, 
                    (Int32.MaxValue / 1000) * 1000); 
           milliseconds -= Int32.MaxValue / 1000; 
        } 
        if ((readCopy == null || readCopy.Count == 0) && 
             (writeCopy == null || writeCopy.Count == 0) && 
             (errorCopy == null || errorCopy == 0)) { 
            Select(checkRead, checkWrite, checkError, milliseconds * 1000); 
        } 
    } 
    // Copy the three lists back into the original parameters here... 
}



28  May/June 2007  ACM QUEUE rants: feedback@acmqueue.com

So, let’s take a look at creating this drop-in replace-
ment, called doSelect(), shown in figure 2. The signature 
(prototype) of the call is the same as for the normal 
Select(), but we want to ensure that negative time-out 
values cause it to wait forever and that it is possible to 
wait for more than 35 minutes. Using a granularity of 
milliseconds for the time-out allows a time-out of a little 
more than 24 days, which I will assume is sufficient.

Note the terminating condition of the do-loop in the 
code in figure 2: it is necessary to check the length of 
all three lists because Select() does not indicate whether 
it returned because of a time-out or because a socket is 
ready. Moreover, if the caller is not interested in using 
one or two of the three lists, it can pass either null or an 
empty list. This forces the code to use the awkward test 
to control the loop because, when Select() returns, one or 
two of the three lists may be null (if the caller passed null) 
or may be not null, but empty.

The problem here is that there are two legal param-
eter values for one and the same thing: both null and 
an empty list indicate that the caller is not interested in 
monitoring one of the passed lists. In itself, this is not a 
big deal but, if I want to reuse Select() as in the preceding 
code, it turns out to be rather inconvenient.

The second part of the code, which deals with restart-
ing Select() for time-outs greater than 35 minutes, also 
gets rather complex, both because of the awkward test 
needed to detect whether a time-out has indeed occurred 
and because of the need to deal with the case in which 
milliseconds * 1000 does not divide Int.MaxValue without 
leaving a remainder.

We are not finished yet: the preceding code still con-
tains comments in place of copying the input parameters 
and copying the results back into those parameters. 
One would think that this is easy: simply call a Clone() 
method, as one would do in Java. Unlike Java, however, 
.NET’s type Object (which is the ultimate base type of 

all types) does not provide a Clone method; instead, for 
a type to be cloneable, it must explicitly derive from 
an ICloneable interface. The formal parameter type of 
the lists passed to Select() is IList, which is an interface 
and, therefore, abstract: I cannot instantiate things of 
type IList, only things derived from IList. The problem 
is that IList does not derive from ICloneable, so there is 
no convenient way to copy an IList, except by explicitly 
iterating over the list contents and doing the job element 
by element. Similarly, there is no method on IList that 
would allow it to be easily overwritten with the contents 
of another list (which is necessary to copy the results back 
into the parameters before doSelect() returns). Again, the 
only way to achieve this is to iterate and copy the ele-
ments one at a time.

Another problem with Select() is that it accepts lists 
of sockets. Lists allow the same socket to appear more 
than once in each list, but doing so doesn’t make sense: 

conceptually, what is passed are sets of sockets. So, why 
does Select() use lists? The answer is simple: the .NET 
collection classes do not include a set abstraction. Using 
IList to model a set is unfortunate: it creates a semantic 
problem because lists allow duplicates. (The behavior of 
Select() in the presence of duplicates is anybody’s guess 
because it is not documented; checking against the actual 
behavior of the implementation is not all that useful 
because, in the absence of documentation, the behavior 
can change without warning.) Using IList to model a set is 
also detrimental in other ways: when a connection closes, 
the server must remove the corresponding socket from 
its lists. Doing so requires the server either to perform a 
linear search (which does not scale well) or to maintain 

API 
Design Matters

Poor APIs lead 
directly to increased 
development cost.



ACM QUEUE  May/June 2007  29  more queue: www.acmqueue.com

the lists in sorted order so it can use a split search (which 
is more work). This is a good example of how design flaws 
have a tendency to spread and cause collateral damage: 
an oversight in one API causes grief in an unrelated API.

I will spare you the details of how to complete the 
wrapper code. Suffice it to say that the supposedly simple 
wrapper I set out to write, by the time I had added param-
eter copying, error handling, and a few comments, ran to 
nearly 100 lines of fairly complex code. All this because of 
a few seemingly minor design flaws:
• Select() overwrites its arguments.
•  Select() does not provide a simple indicator that would 

allow the caller to distinguish a return because of a 
time-out from a return because a socket is ready.

•  Select() does not allow a time-out longer than 35 min-
utes.

• Select() uses lists instead of sets of sockets.
Here is what Select() could look like instead:

public static int 
Select(ISet checkRead, ISet checkWrite, 
          Timespan seconds, 
          out ISet readable, out ISet writeable, 
          out ISet error);

With this version, the caller provides sets to monitor 
sockets for reading and writing, but no error set: sock-
ets in both the read set and the write set are automati-
cally monitored for errors. The time-out is provided as a  
Timespan (a type provided by .NET) that has resolution 
down to 100 nanoseconds, a range of more than 10 mil-
lion days, and can be negative (or null) to cover the “wait 
forever” case. Instead of overwriting its arguments, this 
version returns the sockets that are ready for reading, 
writing, and have encountered an error as separate sets, 
and it returns the number of sockets that are ready or 
zero, in which case the call returned because the time-out 
was reached. With this simple change, the usability prob-
lems disappear and, because the caller no longer needs to 
copy the arguments, the code is far more efficient as well.

There are many other ways to fix the problems with 
Select() (such as the approach used by epoll()). The point 
of this example is not to come up with the ultimate ver-
sion of Select(), but to demonstrate how a small number 
of minor oversights can quickly add up to create code 
that is messy, hard to maintain, error prone, and ineffi-
cient. With a slightly better interface to Select(), none of 
the code I outlined here would be necessary, and I (and 
probably many other programmers) would have saved 
considerable time and effort.

THE CosT of Poor APIs
The consequences of poor API design are numerous and 
serious. Poor APIs are difficult to program with and often 
require additional code to be written, as in the preced-
ing example. If nothing else, this additional code makes 
programs larger and less efficient because each line of 
unnecessary code increases working set size and reduces 
CPU cache hits. Moreover, as in the preceding example, 
poor design can lead to inherently inefficient code by 
forcing unnecessary data copies. (Another popular design 
flaw—namely, throwing exceptions for expected out-
comes—also causes inefficiencies because catching and 
handling exceptions is almost always slower than testing 
a return value.)

The effects of poor APIs, however, go far beyond inef-
ficient code: poor APIs are harder to understand and more 
difficult to work with than good ones. In other words, 
programmers take longer to write code against poor 
APIs than against good ones, so poor APIs directly lead 
to increased development cost. Poor APIs often require 
not only extra code, but also more complex code that 
provides more places where bugs can hide. The cost is 
increased testing effort and increased likelihood for bugs 
to go undetected until the software is deployed in the 
field, when the cost of fixing bugs is highest.

Much of software development is about creating 
abstractions, and APIs are the visible interfaces to these 
abstractions. Abstractions reduce complexity because they 
throw away irrelevant detail and retain only the informa-
tion that is necessary for a particular job. Abstractions do 
not exist in isolation; rather, we layer abstractions on top 
of each other. Application code calls higher-level librar-
ies that, in turn, are often implemented by calling on the 
services provided by lower-level libraries that, in turn, call 
on the services provided by the system call interface of an 
operating system. This hierarchy of abstraction layers is 
an immensely powerful and useful concept. Without it, 
software as we know it could not exist because program-
mers would be completely overwhelmed by complexity.

The lower in the abstraction hierarchy an API defect 
occurs, the more serious are the consequences. If I 
mis-design a function in my own code, the only per-
son affected is me, because I am the only caller of the 
function. If I mis-design a function in one of our proj-
ect libraries, potentially all of my colleagues suffer. If 
I mis-design a function in a widely published library, 
potentially tens of thousands of programmers suffer.

Of course, end users also suffer. The suffering can take 
many forms, but the cumulative cost is invariably high. 
For example, if Microsoft Word contains a bug that causes 
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it to crash occasionally because of a mis-designed API, 
thousands or hundreds of thousands of end users lose 
valuable time. Similarly, consider the numerous security 
holes in countless applications and system software that, 
ultimately, are caused by unsafe I/O and string manipula-
tion functions in the standard C library (such as scanf() 
and strcpy()). The effects of these poorly designed APIs are 
still with us more than 30 years after they were created, 
and the cumulative cost of the design defects easily runs 
to many billions of dollars.

Perversely, layering of abstractions is often used to 
trivialize the impact of a bad API: “It doesn’t matter—we 
can just write a wrapper to hide the problems.” This argu-
ment could not be more wrong because it ignores the cost 
of doing so. First, even the most efficient wrapper adds 
some cost in terms of memory and execution speed (and 
wrappers are often far from efficient). Second, for a widely 
used API, the wrapper will be written thousands of times, 
whereas getting the API right in the first place needs to be 
done only once. Third, more often than not, the wrapper 
creates its own set of problems: the .NET Select() function 
is a wrapper around the underlying C function; the .NET 
version first fails to fix the poor interface of the original, 
and then adds its own share of problems by omitting the 
return value, getting the time-out wrong, and passing lists 
instead of sets. So, while creating a wrapper can help to 
make bad APIs more usable, that does not mean that bad 
APIs do not matter: two wrongs don’t make a right, and 
unnecessary wrappers just lead to bloatware.

How To do BETTEr
There are a few guidelines to use when designing an API. 
These are not surefire ways to guarantee success, but 
being aware of these guidelines and taking them explic-
itly into account during design makes it much more likely 
that the result will turn out to be usable. The list is neces-
sarily incomplete—doing the topic justice would require 

a large book. Nevertheless, here are a few of my favorite 
things to think about when creating an API.

An API must provide sufficient functionality for the 
caller to achieve its task. This seems obvious: an API that 
provides insufficient functionality is not complete. As 
illustrated by the inability of Select() to wait more than 
35 minutes, however, such insufficiency can go undetec-
ted. It pays to go through a checklist of functionality dur-
ing the design and ask, “Have I missed anything?”

An API should be minimal, without imposing undue 
inconvenience on the caller. This guideline simply says 
“smaller is better.” The fewer types, functions, and 
parameters an API uses, the easier it is to learn, remember, 
and use correctly. This minimalism is important. Many 
APIs end up as a kitchen sink of convenience func-
tions that can be composed of other, more fundamental 
functions. (The C++ standard string class with its more 
than 100 member functions is an example. After many 
years of programming in C++, I still find myself unable 
to use standard strings for anything nontrivial without 
consulting the manual.) The qualification of this guide-
line, without imposing undue inconvenience on the caller, is 

important because it draws attention to real-world use 
cases. To design an API well, the designer must have an 
understanding of the environment in which the API will 
be used and design to that environment. Whether or 
not to provide a nonfundamental convenience func-
tion depends on how often the designer anticipates that 
function will be needed. If the function will be used 
frequently, it is worth adding; if it is used only occasion-
ally, the added complexity is unlikely to be worth the rare 
gain in convenience.

The Unix kernel violates this guideline with wait(), 
waitpid(), wait3(), and wait4(). The wait4() function is 
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sufficient because it can be used to implement the func-
tionality of the first three. There is also waitid(), which 
could almost, but not quite, be implemented in terms of 
wait4(). The caller has to read the documentation for all 
five functions in order to work out which one to use. It 
would be simpler and easier for the caller to have a single 
combined function instead. This is also an example of 
how concerns about backward compatibility erode APIs 
over time: the API accumulates crud that, eventually, does 
more damage than the good it ever did by remaining 
backward compatible. (And the sordid history of stum-
bling design remains for all the world to see.)

APIs cannot be designed without an understanding 
of their context. Consider a class that provides access to 
a set of name–value pairs of strings, such as environment 
variables:

class NVPairs { 
      public string lookup(string name); 
      // ... 
}

The lookup method provides access to the value stored 
by the named variable. Obviously, if a variable with the 
given name is set, the function returns its value. How 
should the function behave if the variable is not set? 
There are several options:
• Throw a VariableNotSet exception.
• Return null.
• Return the empty string.

Throwing an exception is appropriate if the designer 
anticipates that looking for a variable that isn’t there 
is not a common case and likely to indicate something 
that the caller would treat as an error. If so, throwing an 
exception is exactly the right thing because exceptions 
force the caller to deal with the error. On the other hand, 
the caller may look up a variable and, if it is not set, 
substitute a default value. If so, throwing an exception is 
exactly the wrong thing because handling an exception 
breaks the normal flow of control and is more difficult 
than testing for a null or empty return value.

Assuming that we decide not to throw an exception if 
a variable is not set, two obvious choices indicate that a 
lookup failed: return null or the empty string. Which one 
is correct? Again, the answer depends on the anticipated 
use cases. Returning null allows the caller to distinguish a 
variable that is not set at all from a variable that is set to 
the empty string, whereas returning the empty string for 
variables that are not set makes it impossible to distin-
guish a variable that was never set from a variable that 

was explicitly set to the empty string. Returning null is 
necessary if it is deemed important to be able to make 
this distinction; but, if the distinction is not important, it 
is better to return the empty string and never return null.

General-purpose APIs should be “policy-free;” special-
purpose APIs should be “policy-rich.” In the preceding 
guideline, I mentioned that correct design of an API 
depends on its context. This leads to a more fundamental 
design issue—namely, that APIs inevitably dictate policy: 
an API performs optimally only if the caller’s use of the 
API is in agreement with the designer’s anticipated use 
cases. Conversely, the designer of an API cannot help 
but dictate to the caller a particular set of semantics and 
a particular style of programming. It is important for 
designers to be aware of this: the extent to which an API 
sets policy has profound influence on its usability.

If little is known about the context in which an API 
is going to be used, the designer has little choice but to 
keep all options open and allow the API to be as widely 
applicable as possible. In the preceding lookup example, 
this calls for returning null for variables that are not set, 
because that choice allows the caller to layer its own 
policy on top of the API; with a few extra lines of code, 
the caller can treat lookup of a nonexistent variable as a 
hard error, substitute a default value, or treat unset and 
empty variables as equivalent. This generality, however, 
comes at a price for those callers who do not need the 
flexibility because it makes it harder for the caller to treat 
lookup of a nonexistent variable as an error.

This design tension is present in almost every API—the 
line between what should and should not be an error is 
very fine, and placing the line incorrectly quickly causes 
major pain. The more that is known about the context of 
an API, the more “fascist” the API can become—that is, 
the more policy it can set. Doing so is doing a favor to the 
caller because it catches errors that otherwise would go 
undetected. With careful design of types and parameters, 
errors can often be caught at compile time instead of 
being delayed until runtime. Making the effort to do this 
is worthwhile because every error caught at compile time 
is one less bug that can incur extra cost during testing or 
in the field.

The Select() API fails this guideline because, by 
overwriting its arguments, it sets a policy that is in direct 
conflict with the most common use case. Similarly, the 
.NET Receive() API commits this crime for nonblocking 
sockets: it throws an exception if the call worked but no 
data is ready, and it returns zero without an exception if 
the connection is lost. This is the precise opposite of what 
the caller needs, and it is sobering to look at the mess of 
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control flow this causes for the caller.
Sometimes, the design tension cannot be resolved 

despite the best efforts of the designer. This is often the 
case when little can be known about context because 
an API is low-level or must, by its nature, work in many 
different contexts (as is the case for general-purpose 
collection classes, for example). In this case, the strat-
egy pattern can often be used to good effect. It allows 
the caller to supply a policy (for example, in the form 
of a caller-provided comparison function that is used to 
maintain ordered collections) and so keeps the design 
open. Depending on the programming language, caller-
provided policies can be implemented with callbacks, 
virtual functions, delegates, or template parameters 
(among others). If the API provides sensible defaults, such 
externalized policies can lead to more flexibility without 
compromising usability and clarity. (Be careful, though, 
not to “pass the buck,” as described later in this article.)

APIs should be designed from the perspective of the 
caller. When a programmer is given the job of creating 
an API, he or she is usually immediately in problem-solv-
ing mode: What data structures and algorithms do I need 
for the job, and what input and output parameters are 
necessary to get it done? It’s all downhill from there: the 
implementer is focused on solving the problem, and the 
concerns of the caller are quickly forgotten. Here is a typi-
cal example of this:

makeTV(false, true);

This evidently is a function call that creates a TV. But 
what is the meaning of the parameters? Compare with 
the following:

makeTV(Color, FlatScreen);

The second version is much more readable to the caller: 

even without reading the manual, it is obvious that the 
call creates a color flat-screen TV. To the implementer, 
however, the first version is just as usable:

void makeTV(bool isBlackAndWhite, 
                    bool isFlatScreen) 
{ /* ... */ }

The implementer gets nicely named variables that 
indicate whether the TV is black and white or color, and 
whether it has a flat screen or a conventional one, but 
that information is lost to the caller. The second version 
requires the implementer to do more work—namely, to 
add enum definitions and change the function signature:

enum ColorType { Color, BlackAndWhite }; 
enum ScreenType { CRT, FlatScreen }; 
void makeTV(ColorType col, ScreenType st);

This alternative definition requires the implementer to 
think about the problem in terms of the caller. However, 
the implementer is preoccupied with getting the TV cre-
ated, so there is little room in the implementer’s mind for 
worrying about somebody else’s problems.

A great way to get usable APIs is to let the customer 
(namely, the caller) write the function signature, and to 
give that signature to a programmer to implement. This 
step alone eliminates at least half of poor APIs: too often, 
the implementers of APIs never use their own creations, 
with disastrous consequences for usability. Moreover, 
an API is not about programming, data structures, or 
algorithms—an API is a user interface, just as much as a 
GUI is. The user at the using end of the API is a program-
mer—that is, a human being. Even though we tend to 
think of APIs as machine interfaces, they are not: they are 
human–machine interfaces.

What should drive the design of APIs is not the needs 
of the implementer. After all, the implementer needs 
to implement the API only once, but the callers of the 
API need to call it hundreds or thousands of times. This 
means that good APIs are designed with the needs of the 
caller in mind, even if that makes the implementer’s job 
more complicated.

Good APIs don’t pass the buck. There are many ways 
to “pass the buck” when designing an API. A favorite way 
is to be afraid of setting policy: “Well, the caller might 
want to do this or that, and I can’t be sure which, so 
I’ll make it configurable.” The typical outcome of this 
approach is functions that take five or ten parameters. 
Because the designer does not have the spine to set policy 
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and be clear about what the API should and should 
not do, the API ends up with far more complexity than 
necessary. This approach also violates minimalism and 
the principle of “I should not pay for what I don’t use”: 
if a function has ten parameters, five of which are irrele-
vant for the majority of use cases, callers pay the price 
of supplying ten parameters every time they make a call, 
even when they could not care less about the functional-
ity provided by the extra five parameters. A good API is 
clear about what it wants to achieve and what it does not 
want to achieve, and is not afraid to be up-front about it. 
The resulting simplicity usually amply repays the minor 
loss of functionality, especially if the API has well-chosen 
fundamental operations that can easily be composed into 
more complex ones.

Another way of passing the buck is to sacrifice usabil-
ity on the altar of efficiency. For example, the CORBA 
C++ mapping requires callers to fastidiously keep track of 
memory allocation and deallocation responsibilities; the 
result is an API that makes it incredibly easy to corrupt 
memory. When benchmarking the mapping, it turns out 
to be quite fast because it avoids many memory alloca-
tions and deallocations. The performance gain, however, 
is an illusion because, instead of the API doing the dirty 
work, it makes the caller responsible for doing the dirty 
work—overall, the same number of memory allocations 
takes place regardless. In other words, a safer API could 
be provided with zero runtime overhead. By benchmark-
ing only the work done inside the API (instead of the 
overall work done by both caller and API), the designers 
can claim to have created a better-performing API, even 
though the performance advantage is due only to selec-
tive accounting.

The original C version of select() exhibits the same 
approach:

int select(int nfds, fd_set *readfds, 
               fd_set *writefds, fd_set *exceptfds,
               struct timeval *timeout);

Like the .NET version, the C version also over-
writes its arguments. This again reflects the needs of 
the implementer rather than the caller: it is easier and 
more efficient to clobber the arguments than to allocate 
separate output arrays of file descriptors, and it avoids the 
problems of how to deallocate the output arrays again. All 
this really does, however, is shift the burden from imple-
menter to caller—at a net efficiency gain of zero.

The Unix kernel also is not without blemish and 
passes the buck occasionally: many a programmer has 

cursed the decision to allow some system calls to be inter-
rupted, forcing programmers to deal explicitly with EINTR 
and restart interrupted system calls manually, instead of 
having the kernel do this transparently.

Passing the buck can take many different forms, the 
details of which vary greatly from API to API. The key 
questions for the designer are: Is there anything I could 
reasonably do for the caller I am not doing? If so, do I 
have valid reasons for not doing it? Explicitly asking these 
questions makes design the result of a conscious process 
and discourages “design by accident.”

APIs should be documented before they are imple-
mented. A big problem with API documentation is that it 
is usually written after the API is implemented, and often 
written by the implementer. The implementer, however, 
is mentally contaminated by the implementation and 
will have a tendency simply to write down what he or 
she has done. This often leads to incomplete documen-
tation because the implementer is too familiar with the 
API and assumes that some things are obvious when they 
are not. Worse, it often leads to APIs that miss important 
use cases entirely. On the other hand, if the caller (not 
the implementer) writes the documentation, the caller 
can approach the problem from a “this is what I need” 
perspective, unburdened by implementation concerns. 
This makes it more likely that the API addresses the needs 
of the caller and prevents many design flaws from arising 
in the first place.

Of course, the caller may ask for something that turns 
out to be unreasonable from an implementation perspec-
tive. Caller and implementer can then iterate over the 
design until they reach agreement. That way, neither 
caller nor implementation concerns are neglected.

Once documented and implemented, the API should 
be tried out by someone unfamiliar with it. Initially, that 
person should check how much of the API can be under-
stood without looking at the documentation. If an API 
can be used without documentation, chances are that it is 
good: a self-documenting API is the best kind of API there 
is. While test driving the API and its documentation, the 
user is likely to ask important “what if” questions: What 
if the third parameter is null? Is that legal? What if I want 
to wait indefinitely for a socket to become ready? Can 
I do that? These questions often pinpoint design flaws, 
and a cross-check with the documentation will confirm 
whether the questions have answers and whether the 
answers are reasonable.

Make sure that documentation is complete, particularly 
with respect to error behavior. The behavior of an API 
when things go wrong is as much a part of the formal 
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contract as when things go right. Does the documenta-
tion say whether the API maintains the strong excep-
tion guarantee? Does it detail the state of out and in-out 
parameters in case of an error? Does it detail any side 
effects that may linger after an error has occurred? Does 
it provide enough information for the caller to make 
sense of an error? (Throwing a DidntWork exception from 
all socket operations just doesn’t cut it!) Programmers do 
need to know how an API behaves when something goes 
wrong, and they do need to get detailed error informa-
tion they can process programmatically. (Human-readable 
error messages are nice for diagnostics and debugging, 
but not nice if they are the only things available—there 
is nothing worse than having to write a parser for error 
strings just so I can control the flow of my program.)

Unit and system testing also have an impact on APIs 
because they can expose things that no one thought of 
earlier. Test results can help improve the documentation 
and, therefore, the API. (Yes, the documentation is part of 
the API.)

The worst person to write documentation is the 
implementer, and the worst time to write documentation 
is after implementation. Doing so greatly increases the 
chance that interface, implementation, and documenta-
tion will all have problems.

Good APIs are ergonomic. Ergonomics is a major field 
of study in its own right, and probably one of the hardest 
parts of API design to pin down. Much has been written 
about this topic in the form of style guides that define 
naming conventions, code layout, documentation style, 
and so on. Beyond mere style issues though, achieving 
good ergonomics is hard because it raises complex cogni-
tive and psychological issues. Programmers are humans 
and are not created with cookie cutters, so an API that 
seems fine to one programmer can be perceived as only 
so-so by another.

Especially for large and complex APIs, a major part of 

ergonomics relates to consistency. For example, an API is 
easier to use if its functions always place parameters of a 
particular type in the same order. Similarly, APIs are easier 
to use if they establish naming themes that group related 
functions together with a particular naming style. The 
same is true for APIs that establish simple and uniform 
conventions for related tasks and that use uniform error 
handling.

Consistency is important because not only does it 
make things easier to use and memorize, but it also 
enables transference of learning: having learned a part of 
an API, the caller also has learned much of the remainder 
of the API and so experiences minimal friction. Transfer-
ence is important not only within APIs but also across 
APIs—the more concepts APIs can adopt from each other, 
the easier it becomes to master all of them. (The Unix 
standard I/O library violates this idea in a number of 
places. For example, the read() and write() system calls 
place the file descriptor first, but the standard library I/O 
calls, such as fgets() and fputs(), place the stream pointer 
last, except for fscanf() and fprintf(), which place it first. 
This lack of parallelism is jarring to many people.)

Good ergonomics and getting an API to “feel” right 
require a lot of expertise because the designer has to 
juggle numerous and often conflicting demands. Finding 
the correct tradeoff among these demands is the hallmark 
of good design.

API CHANGE rEQUIrEs CUlTUrAl CHANGE
I am convinced that it is possible to do better when it 
comes to API design. Apart from the nitty-gritty techni-
cal issues, I believe that we need to address a number of 
cultural issues to get on top of the API problem. What we 
need is not only technical wisdom, but also a change in 
the way we teach and practice software engineering.

Education
Back in the late ’70s and early ’80s, when I was cutting 
my teeth as a programmer and getting my degree, much 
of the emphasis in a budding programmer’s education 
was on data structures and algorithms. They were the 
bread and butter of programming, and a good under-
standing of data structures such as lists, balanced trees, 
and hash tables was essential, as was a good under-
standing of common algorithms and their performance 
tradeoffs. These were also the days when system libraries 
provided only the most basic functions, such as simple   
I/O and string manipulation; higher-level functions such 
as bsearch() and qsort() were the exception rather than 
the rule. This meant that it was de rigueur for a competent 
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programmer to know how to write various data structures 
and manipulate them efficiently.

We have moved on considerably since then. Virtually 
every major development platform today comes with 
libraries full of pre-canned data structures and algorithms. 
In fact, these days if I catch a programmer writing a 
linked list, that person had better have a very good reason 
for doing so instead of using an implementation provided 
by a system library.

Similarly, in the ’70s and ’80s, if I wanted to create 
software, I had to write pretty much everything from 
scratch: if I needed encryption, I wrote it from scratch; 
if I needed compression, I wrote it from scratch; if I 
needed inter-process communication, I wrote it from 
scratch. All this has changed dramatically with the open 
source movement. Today, open source is available for 
almost every imaginable kind of reusable functionality. 
As a result, the process of creating software has changed 
considerably: instead of creating functionality, much of 
today’s software engineering is about integrating existing 
functionality or about repackaging it in some way. To 
put it differently: API design today is much more impor-
tant than it was 20 years ago, not only because we are 
designing more APIs, but also because these APIs tend to 
provide access to much richer and more complex func-
tionality than they used to.

Looking at the curriculum of many universities, it 
seems that this shift in emphasis has gone largely unno-
ticed. In my days as an undergraduate, no one ever both-
ered to explain how to decide whether something should 
be a return value or an out parameter, how to choose 
between raising an exception and returning an error code, 
or how to decide if it might be appropriate for a function 
to modify its arguments. Little seems to have changed 
since then: my son, who is currently working toward a 
software engineering degree at the same university where 
I earned my degree, tells me that still no one bothers to 
explain these things. Little wonder then that we see so 
many poorly designed APIs: it is not reasonable to expect 
programmers to be good at something they have never 
been taught.

Yet, good API design, even though complex, is some-
thing that can be taught. If undergraduates can learn 
how to write hash tables, they can also learn when it is 
appropriate to throw an exception as opposed to return-
ing an error code, and they can learn to distinguish a 
poor API from a good one. What is needed is recognition 
of the importance of the topic; much of the research and 
wisdom are available already—all we need to do is pass 
them on.

carEEr Path
I am 47, and I write code. Looking around me, I realize 
how unusual this is: in my company, all of my program-
ming colleagues are younger than I and, when I look at 
former programming colleagues, most of them no longer 
write code; instead, they have moved on to different posi-
tions (such as project manager) or have left the industry 
entirely. I see this trend everywhere in the software indus-
try: older programmers are rare, quite often because no 
career path exists for them beyond a certain point. I recall 
how much effort it took me to resist a forced “promo-
tion” into a management position at a former company—
I ended up staying a programmer, but was told that future 
pay increases were pretty much out of the question if I 
was unwilling to move into management. 

There is also a belief that older programmers “lose 
the edge” and don’t cut it anymore. That belief is mis-
taken, in my opinion: older programmers may not burn 
as much midnight oil as younger ones, but that’s not 
because they are old, but because they get the job done 
without having to stay up past midnight.

This loss of older programmers is unfortunate, particu-
larly when it comes to API design. While good API design 
can be learned, there is no substitute for experience. 
Many good APIs were created by programmers who had 
to suffer under a bad one and then decided to redo the 
job, but properly this time. It takes time and a healthy 
dose of “once burned, twice shy” to gather the expertise 
that is necessary to do better. Unfortunately, the industry 
trend is to promote precisely its most experienced people 
away from programming, just when they could put their 
accumulated expertise to good use.

Another trend is for companies to promote their best 
programmers to designer or system architect. Typically, 
these programmers are farmed out to various projects as 
consultants, with the aim of ensuring that the project 
takes off on the right track and avoids mistakes it might 
make without the wisdom of the consultants. The intent 
of this practice is laudable, but the outcome is usually 
sobering: because the consultants are so valuable, having 
given their advice, they are moved to the next project 
long before implementation is finished, let alone testing 
and delivery. By the time the consultants have moved on, 
any problems with their earlier sage advice are no longer 
their problems, but the problems of a project they have 
long since left behind. In other words, the consultants 
never get to live through the consequences of their own 
design decisions, which is a perfect way to breed them 
into incompetence. The way to keep designers sharp and 
honest is to make them eat their own dog food. Any pro-
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cess that deprives designers of that feedback is ultimately 
doomed to failure.

ExtErnal controls
Years ago, I was working on a large development project 
that, for contractual reasons, was forced into an operat-
ing-system upgrade during a critical phase shortly before 
a delivery deadline. After the upgrade, the previously 
working system started behaving strangely and occasion-
ally produced random and inexplicable failures. The pro-
cess of tracking down the problem took nearly two days, 
during which a large team of programmers was mostly 
twiddling its thumbs. Ultimately, the cause turned out 
to be a change in the behavior of awk’s index() function. 
Once we identified the problem, the fix was trivial—we 
simply installed the previous version of awk. The point 
is that a minor change in the semantics of a minor part 
of an API had cost the project thousands of dollars, and 
the change was the result of a side effect of a programmer 
fixing an unrelated bug.

This anecdote hints at a problem we will increas-
ingly have to face in the future. With the ever-growing 
importance of computing, there are APIs whose correct 
functioning is important almost beyond description. 
For example, consider the importance of APIs such as 
the Unix system call interface, the C library, Win32, or 
OpenSSL. Any change in interface or semantics of these 
APIs incurs an enormous economic cost and can intro-
duce vulnerabilities. It is irresponsible to allow a single 
company (let alone a single developer) to make changes 
to such critical APIs without external controls.

As an analogy, a building contractor cannot simply try 
out a new concrete mixture to see how well it performs. 
To use a new concrete mixture, a lengthy testing and 
approval process must be followed, and failure to follow 
that process incurs criminal penalties. At least for mis-
sion-critical APIs, a similar process is necessary, as a mat-

ter of self-defense: if a substantial fraction of the world’s 
economy depends on the safety and correct functioning 
of certain APIs, it stands to reason that any changes to 
these APIs should be carefully monitored.

Whether such controls should take the form of leg-
islation and criminal penalties is debatable. Legislation 
would likely introduce an entirely new set of problems, 
such as stifling innovation and making software more 
expensive. (The ongoing legal battle between Microsoft 
and the European Union is a case in point.) I see a real 
danger of just such a scenario occurring. Up to now, we 
have been lucky, and the damage caused by malware such 
as worms has been relatively minor. We won’t be lucky 
forever: the first worm to exploit an API flaw to wipe out 
more than 10 percent of the world’s PCs would cause eco-
nomic and human damage on such a scale that legislators 
would be kicked into action. If that were to happen, we 
would likely swap one set of problems for another one 
that is worse.

What are the alternatives to legislation? The open 
source community has shown the way for many years: 
open peer review of APIs and implementations has 
proven an extremely effective way to ferret out design 
flaws, inefficiencies, and security holes. This process 
avoids the problems associated with legislation, catches 
many flaws before an API is widely used, and makes it 
more likely that, when a zero-day defect is discovered, it 
is fixed and a patch distributed promptly.

In the future, we will likely see a combination of both 
tighter legislative controls and more open peer review. 
Finding the right balance between the two is crucial to 
the future of computing and our economy. API design 
truly matters—but we had better realize it before events 
run away with things and remove any choice. Q
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