
24 May/June 2007 ACM QUEUE rants: feedback@acmqueue.com

MICHI HENNING, ZeroC

Why changing APIs
might become
a criminal offense

void makeTV(bool isB
lackAndWhite, bool isF

latScreen) Select(re
adCopy, w

riteCopy, errorCopy, In
t32.MaxValue);

venum ColorType { Color, BlackAndWhite };

enum ScreenType { CRT, FlatScreen };

ACM QUEUE May/June 2007 25 more queue: www.acmqueue.com

After more than 25 years as a software engineer, I still find
myself underestimating the time it will take to complete
a particular programming task. Sometimes, the resulting
schedule slip is caused by my own shortcomings: as I dig
into a problem, I simply discover that it is a lot harder
than I initially thought, so the problem takes longer to
solve—such is life as a programmer. Just as often I know
exactly what I want to achieve and how to achieve it,
but it still takes far longer than anticipated. When that
happens, it is usually because I am struggling with an API
that seems to do its level best to throw rocks in my path
and make my life difficult. What I find telling is that,
after 25 years of progress in software engineering, this
still happens. Worse, recent APIs implemented in modern
programming languages make the same mistakes as their
two-decade-old counterparts written in C. There seems to
be something elusive about API design that, despite many
years of progress, we have yet to master.

Good APIs ArE HArd
We all recognize a good API when we get to use one.
Good APIs are a joy to use. They work without friction

and almost disappear from sight: the right call for a
particular job is available at just the right time, can be
found and memorized easily, is well documented, has an
interface that is intuitive to use, and deals correctly with
boundary conditions.

So, why are there so many bad APIs around? The
prime reason is that, for every way to design an API
correctly, there are usually dozens of ways to design it
incorrectly. Simply put, it is very easy to create a bad API
and rather difficult to create a good one. Even minor
and quite innocent design flaws have a tendency to get
magnified out of all proportion because APIs are provided
once, but are called many times. If a design flaw results in
awkward or inefficient code, the resulting problems show
up at every point the API is called. In addition, separate
design flaws that in isolation are minor can interact with
each other in surprisingly damaging ways and quickly
lead to a huge amount of collateral damage.

BAd APIs ArE EAsy
Before I go on, let me show you by example how seem-
ingly innocuous design choices can have far-reaching

API
Design Matters

void makeTV(bool isB
lackAndWhite, bool isF

latScreen) Select(re
adCopy, w

riteCopy, errorCopy, In
t32.MaxValue);

enum ScreenType { CRT, FlatScreen };

26 May/June 2007 ACM QUEUE rants: feedback@acmqueue.com

ramifications. This example, which I came across in my
day-to-day work, nicely illustrates the consequences of
bad design. (Literally hundreds of similar examples can
be found in virtually every platform; my intent is not to
single out .NET in particu-
lar.)

 Figure 1 shows the
interface to the .NET socket
Select() function in C#.
The call accepts three lists
of sockets that are to be
monitored: a list of sockets
to check for readability, a
list of sockets to check for
writeability, and a list of
sockets to check for errors.
A typical use of Select()
is in servers that accept
incoming requests from
multiple clients; the server
calls Select() in a loop and,
in each iteration of the
loop, deals with whatever
sockets are ready before
calling Select() again. This
loop looks something like
the one shown in figure 1.

The first observation is
that Select() overwrites its
arguments: the lists that
are passed into the call
are replaced with lists that
contain only those sockets
that are ready. As a rule,
however, the set of sockets
to be monitored changes
only rarely, and the most

common case is that the server passes the same lists in
each iteration. Because Select() overwrites its arguments,
the caller must make a copy of each list before passing it
to Select(). This is inconvenient and does not scale well:
servers frequently need to monitor hundreds of sockets
so, on each iteration, the code has to copy the lists before
calling Select(). The cost of doing this is considerable.

A second observation is that, almost always, the list of
sockets to monitor for errors is simply the union of the
sockets to monitor for reading and writing. (It is rare that
the caller wants to monitor a socket only for error condi-
tions, but not for readability or writeability.) If a server
monitors 100 sockets each for reading and writing, it ends
up copying 300 list elements on each iteration: 100 each
for the read, write, and error lists. If the sockets moni-
tored for reading are not the same as the ones monitored
for writing, but overlap for some sockets, constructing the

API
Design Matters

The .NET socket Select() function in C#
public static void Select(IList checkRead, IList checkWrite,
 IList checkError, int microseconds);
{

//Server code
int timeout = ...;
ArrayList readList = ...; // Sockets to monitor for reading.
ArrayList writeList = ...; // Sockets to monitor for writing.
ArrayList errorList; // Sockets to monitor for errors.
while(!done)
{
 SocketList readTmp = readList.Clone();
 SocketList writeTmp = writeList.Clone();
 SocketList errorTmp = readList.Clone();
 Select(readTmp, writeTmp, errorTmp, timeout);
 for(int i = 0; i < readTmp.Count; ++i) {
 // Deal with each socket that is ready for reading...
 }
 for(int i = 0; i < writeTmp.Count; ++i) {
 // Deal with each socket that is ready for writing...
 }
 for(int i = 0; i < errorTmp.Count; ++i) {
 // Deal with each socket that encountered an error...
 }
 if(readTmp.Count == 0 &&
 writeTmp.Count == 0 &&
 errorTmp.Count == 0) {
 // No sockets are ready...
 }
}

FI
G

 1

ACM QUEUE May/June 2007 27 more queue: www.acmqueue.com

error list gets harder because of the need to avoid placing
the same socket more than once on the error list (or even
more inefficient, if such duplicates are accepted).

Yet another observation is that Select() accepts a time-
out value in microseconds: if no socket becomes ready
within the specified time-out, Select() returns. Note,
however, that the function has a void return type—that
is, it does not indicate on return whether any sockets are
ready. To determine whether any sockets are ready, the
caller must test the length of all three lists; no socket is
ready only if all three lists
have zero length. If the
caller happens to be inter-
ested in this case, it has
to write a rather awkward
test. Worse, Select() clob-
bers the caller’s arguments
if it times out and no
socket is ready: the caller
needs to make a copy of
the three lists on each
iteration even if nothing
happens!

The documentation for
Select() in .NET 1.1 states
this about the time-out
parameter: “The time to
wait for a response, in
microseconds.” It offers no
further explanation of the
meaning of this parameter.
Of course, the question
immediately arises, “How
do I wait indefinitely?”
Seeing that .NET Select() is
just a thin wrapper around
the underlying Win32
API, the caller is likely to
assume that a negative
time-out value indicates
that Select() should wait
forever. A quick experi-
ment, however, confirms
that any time-out value
that is equal to or less
than zero is taken to mean
“return immediately if
no socket is ready.” (This
problem has been fixed
in the .NET 2.0 version of

Select().) To wait “forever,” the best thing the caller can
do is pass Int.MaxValue (231-1). That turns out to be a little
over 35 minutes, which is nowhere near “forever.” More-
over, how should Select() be used if a time-out is required
that is not infinite, but longer than 35 minutes?

When I first came across this problem, I thought,
“Well, this is unfortunate, but not a big deal. I’ll simply
write a wrapper for Select() that transparently restarts the
call if it times out after 35 minutes. Then I change all calls
to Select() in the code to call that wrapper instead.”

FI
G

 2

The doSelect() function
public void doSelect(IList checkRead, IList checkWrite,
 IList checkError, int milliseconds)
{
 ArrayList readCopy; // Copies of the three parameters because
 ArrayList writeCopy; // Select() clobbers them.
 ArrayList errorCopy;

 if (milliseconds <= 0) {
 // Simulate waiting forever.
 do {
 // Make copy of the three lists here...

 Select(readCopy, writeCopy, errorCopy, Int32.MaxValue);
 } while ((readCopy == null || readCopy.Count == 0) &&
 (writeCopy == null || writeCopy.Count == 0) &&
 (errorCopy == null || errorCopy.Count == 0));
 } else {
 // Deal with non-infinite timouts.
 while ((milliseconds > Int32.MaxValue / 1000) &&
 readCopy == null || readCopy.Count == 0) &&
 writeCopy == null || writeCopy.Count == 0) &&
 errorCopy == null || errorCopy.Count == 0)) {

 // Make a copy of the three lists here...

 Select(readCopy, writeCopy, errorCopy,
 (Int32.MaxValue / 1000) * 1000);
 milliseconds -= Int32.MaxValue / 1000;
 }
 if ((readCopy == null || readCopy.Count == 0) &&
 (writeCopy == null || writeCopy.Count == 0) &&
 (errorCopy == null || errorCopy == 0)) {
 Select(checkRead, checkWrite, checkError, milliseconds * 1000);
 }
 }
 // Copy the three lists back into the original parameters here...
}

28 May/June 2007 ACM QUEUE rants: feedback@acmqueue.com

So, let’s take a look at creating this drop-in replace-
ment, called doSelect(), shown in figure 2. The signature
(prototype) of the call is the same as for the normal
Select(), but we want to ensure that negative time-out
values cause it to wait forever and that it is possible to
wait for more than 35 minutes. Using a granularity of
milliseconds for the time-out allows a time-out of a little
more than 24 days, which I will assume is sufficient.

Note the terminating condition of the do-loop in the
code in figure 2: it is necessary to check the length of
all three lists because Select() does not indicate whether
it returned because of a time-out or because a socket is
ready. Moreover, if the caller is not interested in using
one or two of the three lists, it can pass either null or an
empty list. This forces the code to use the awkward test
to control the loop because, when Select() returns, one or
two of the three lists may be null (if the caller passed null)
or may be not null, but empty.

The problem here is that there are two legal param-
eter values for one and the same thing: both null and
an empty list indicate that the caller is not interested in
monitoring one of the passed lists. In itself, this is not a
big deal but, if I want to reuse Select() as in the preceding
code, it turns out to be rather inconvenient.

The second part of the code, which deals with restart-
ing Select() for time-outs greater than 35 minutes, also
gets rather complex, both because of the awkward test
needed to detect whether a time-out has indeed occurred
and because of the need to deal with the case in which
milliseconds * 1000 does not divide Int.MaxValue without
leaving a remainder.

We are not finished yet: the preceding code still con-
tains comments in place of copying the input parameters
and copying the results back into those parameters.
One would think that this is easy: simply call a Clone()
method, as one would do in Java. Unlike Java, however,
.NET’s type Object (which is the ultimate base type of

all types) does not provide a Clone method; instead, for
a type to be cloneable, it must explicitly derive from
an ICloneable interface. The formal parameter type of
the lists passed to Select() is IList, which is an interface
and, therefore, abstract: I cannot instantiate things of
type IList, only things derived from IList. The problem
is that IList does not derive from ICloneable, so there is
no convenient way to copy an IList, except by explicitly
iterating over the list contents and doing the job element
by element. Similarly, there is no method on IList that
would allow it to be easily overwritten with the contents
of another list (which is necessary to copy the results back
into the parameters before doSelect() returns). Again, the
only way to achieve this is to iterate and copy the ele-
ments one at a time.

Another problem with Select() is that it accepts lists
of sockets. Lists allow the same socket to appear more
than once in each list, but doing so doesn’t make sense:

conceptually, what is passed are sets of sockets. So, why
does Select() use lists? The answer is simple: the .NET
collection classes do not include a set abstraction. Using
IList to model a set is unfortunate: it creates a semantic
problem because lists allow duplicates. (The behavior of
Select() in the presence of duplicates is anybody’s guess
because it is not documented; checking against the actual
behavior of the implementation is not all that useful
because, in the absence of documentation, the behavior
can change without warning.) Using IList to model a set is
also detrimental in other ways: when a connection closes,
the server must remove the corresponding socket from
its lists. Doing so requires the server either to perform a
linear search (which does not scale well) or to maintain

API
Design Matters

Poor APIs lead
directly to increased
development cost.

ACM QUEUE May/June 2007 29 more queue: www.acmqueue.com

the lists in sorted order so it can use a split search (which
is more work). This is a good example of how design flaws
have a tendency to spread and cause collateral damage:
an oversight in one API causes grief in an unrelated API.

I will spare you the details of how to complete the
wrapper code. Suffice it to say that the supposedly simple
wrapper I set out to write, by the time I had added param-
eter copying, error handling, and a few comments, ran to
nearly 100 lines of fairly complex code. All this because of
a few seemingly minor design flaws:
• Select() overwrites its arguments.
• Select() does not provide a simple indicator that would

allow the caller to distinguish a return because of a
time-out from a return because a socket is ready.

• Select() does not allow a time-out longer than 35 min-
utes.

• Select() uses lists instead of sets of sockets.
Here is what Select() could look like instead:

public static int
Select(ISet checkRead, ISet checkWrite,
 Timespan seconds,
 out ISet readable, out ISet writeable,
 out ISet error);

With this version, the caller provides sets to monitor
sockets for reading and writing, but no error set: sock-
ets in both the read set and the write set are automati-
cally monitored for errors. The time-out is provided as a
Timespan (a type provided by .NET) that has resolution
down to 100 nanoseconds, a range of more than 10 mil-
lion days, and can be negative (or null) to cover the “wait
forever” case. Instead of overwriting its arguments, this
version returns the sockets that are ready for reading,
writing, and have encountered an error as separate sets,
and it returns the number of sockets that are ready or
zero, in which case the call returned because the time-out
was reached. With this simple change, the usability prob-
lems disappear and, because the caller no longer needs to
copy the arguments, the code is far more efficient as well.

There are many other ways to fix the problems with
Select() (such as the approach used by epoll()). The point
of this example is not to come up with the ultimate ver-
sion of Select(), but to demonstrate how a small number
of minor oversights can quickly add up to create code
that is messy, hard to maintain, error prone, and ineffi-
cient. With a slightly better interface to Select(), none of
the code I outlined here would be necessary, and I (and
probably many other programmers) would have saved
considerable time and effort.

THE CosT of Poor APIs
The consequences of poor API design are numerous and
serious. Poor APIs are difficult to program with and often
require additional code to be written, as in the preced-
ing example. If nothing else, this additional code makes
programs larger and less efficient because each line of
unnecessary code increases working set size and reduces
CPU cache hits. Moreover, as in the preceding example,
poor design can lead to inherently inefficient code by
forcing unnecessary data copies. (Another popular design
flaw—namely, throwing exceptions for expected out-
comes—also causes inefficiencies because catching and
handling exceptions is almost always slower than testing
a return value.)

The effects of poor APIs, however, go far beyond inef-
ficient code: poor APIs are harder to understand and more
difficult to work with than good ones. In other words,
programmers take longer to write code against poor
APIs than against good ones, so poor APIs directly lead
to increased development cost. Poor APIs often require
not only extra code, but also more complex code that
provides more places where bugs can hide. The cost is
increased testing effort and increased likelihood for bugs
to go undetected until the software is deployed in the
field, when the cost of fixing bugs is highest.

Much of software development is about creating
abstractions, and APIs are the visible interfaces to these
abstractions. Abstractions reduce complexity because they
throw away irrelevant detail and retain only the informa-
tion that is necessary for a particular job. Abstractions do
not exist in isolation; rather, we layer abstractions on top
of each other. Application code calls higher-level librar-
ies that, in turn, are often implemented by calling on the
services provided by lower-level libraries that, in turn, call
on the services provided by the system call interface of an
operating system. This hierarchy of abstraction layers is
an immensely powerful and useful concept. Without it,
software as we know it could not exist because program-
mers would be completely overwhelmed by complexity.

The lower in the abstraction hierarchy an API defect
occurs, the more serious are the consequences. If I
mis-design a function in my own code, the only per-
son affected is me, because I am the only caller of the
function. If I mis-design a function in one of our proj-
ect libraries, potentially all of my colleagues suffer. If
I mis-design a function in a widely published library,
potentially tens of thousands of programmers suffer.

Of course, end users also suffer. The suffering can take
many forms, but the cumulative cost is invariably high.
For example, if Microsoft Word contains a bug that causes

30 May/June 2007 ACM QUEUE rants: feedback@acmqueue.com

it to crash occasionally because of a mis-designed API,
thousands or hundreds of thousands of end users lose
valuable time. Similarly, consider the numerous security
holes in countless applications and system software that,
ultimately, are caused by unsafe I/O and string manipula-
tion functions in the standard C library (such as scanf()
and strcpy()). The effects of these poorly designed APIs are
still with us more than 30 years after they were created,
and the cumulative cost of the design defects easily runs
to many billions of dollars.

Perversely, layering of abstractions is often used to
trivialize the impact of a bad API: “It doesn’t matter—we
can just write a wrapper to hide the problems.” This argu-
ment could not be more wrong because it ignores the cost
of doing so. First, even the most efficient wrapper adds
some cost in terms of memory and execution speed (and
wrappers are often far from efficient). Second, for a widely
used API, the wrapper will be written thousands of times,
whereas getting the API right in the first place needs to be
done only once. Third, more often than not, the wrapper
creates its own set of problems: the .NET Select() function
is a wrapper around the underlying C function; the .NET
version first fails to fix the poor interface of the original,
and then adds its own share of problems by omitting the
return value, getting the time-out wrong, and passing lists
instead of sets. So, while creating a wrapper can help to
make bad APIs more usable, that does not mean that bad
APIs do not matter: two wrongs don’t make a right, and
unnecessary wrappers just lead to bloatware.

How To do BETTEr
There are a few guidelines to use when designing an API.
These are not surefire ways to guarantee success, but
being aware of these guidelines and taking them explic-
itly into account during design makes it much more likely
that the result will turn out to be usable. The list is neces-
sarily incomplete—doing the topic justice would require

a large book. Nevertheless, here are a few of my favorite
things to think about when creating an API.

An API must provide sufficient functionality for the
caller to achieve its task. This seems obvious: an API that
provides insufficient functionality is not complete. As
illustrated by the inability of Select() to wait more than
35 minutes, however, such insufficiency can go undetec-
ted. It pays to go through a checklist of functionality dur-
ing the design and ask, “Have I missed anything?”

An API should be minimal, without imposing undue
inconvenience on the caller. This guideline simply says
“smaller is better.” The fewer types, functions, and
parameters an API uses, the easier it is to learn, remember,
and use correctly. This minimalism is important. Many
APIs end up as a kitchen sink of convenience func-
tions that can be composed of other, more fundamental
functions. (The C++ standard string class with its more
than 100 member functions is an example. After many
years of programming in C++, I still find myself unable
to use standard strings for anything nontrivial without
consulting the manual.) The qualification of this guide-
line, without imposing undue inconvenience on the caller, is

important because it draws attention to real-world use
cases. To design an API well, the designer must have an
understanding of the environment in which the API will
be used and design to that environment. Whether or
not to provide a nonfundamental convenience func-
tion depends on how often the designer anticipates that
function will be needed. If the function will be used
frequently, it is worth adding; if it is used only occasion-
ally, the added complexity is unlikely to be worth the rare
gain in convenience.

The Unix kernel violates this guideline with wait(),
waitpid(), wait3(), and wait4(). The wait4() function is

API
Design Matters

The extent to which

an API sets policy

has profound
influence on

its usability.

ACM QUEUE May/June 2007 31 more queue: www.acmqueue.com

sufficient because it can be used to implement the func-
tionality of the first three. There is also waitid(), which
could almost, but not quite, be implemented in terms of
wait4(). The caller has to read the documentation for all
five functions in order to work out which one to use. It
would be simpler and easier for the caller to have a single
combined function instead. This is also an example of
how concerns about backward compatibility erode APIs
over time: the API accumulates crud that, eventually, does
more damage than the good it ever did by remaining
backward compatible. (And the sordid history of stum-
bling design remains for all the world to see.)

APIs cannot be designed without an understanding
of their context. Consider a class that provides access to
a set of name–value pairs of strings, such as environment
variables:

class NVPairs {
 public string lookup(string name);
 // ...
}

The lookup method provides access to the value stored
by the named variable. Obviously, if a variable with the
given name is set, the function returns its value. How
should the function behave if the variable is not set?
There are several options:
• Throw a VariableNotSet exception.
• Return null.
• Return the empty string.

Throwing an exception is appropriate if the designer
anticipates that looking for a variable that isn’t there
is not a common case and likely to indicate something
that the caller would treat as an error. If so, throwing an
exception is exactly the right thing because exceptions
force the caller to deal with the error. On the other hand,
the caller may look up a variable and, if it is not set,
substitute a default value. If so, throwing an exception is
exactly the wrong thing because handling an exception
breaks the normal flow of control and is more difficult
than testing for a null or empty return value.

Assuming that we decide not to throw an exception if
a variable is not set, two obvious choices indicate that a
lookup failed: return null or the empty string. Which one
is correct? Again, the answer depends on the anticipated
use cases. Returning null allows the caller to distinguish a
variable that is not set at all from a variable that is set to
the empty string, whereas returning the empty string for
variables that are not set makes it impossible to distin-
guish a variable that was never set from a variable that

was explicitly set to the empty string. Returning null is
necessary if it is deemed important to be able to make
this distinction; but, if the distinction is not important, it
is better to return the empty string and never return null.

General-purpose APIs should be “policy-free;” special-
purpose APIs should be “policy-rich.” In the preceding
guideline, I mentioned that correct design of an API
depends on its context. This leads to a more fundamental
design issue—namely, that APIs inevitably dictate policy:
an API performs optimally only if the caller’s use of the
API is in agreement with the designer’s anticipated use
cases. Conversely, the designer of an API cannot help
but dictate to the caller a particular set of semantics and
a particular style of programming. It is important for
designers to be aware of this: the extent to which an API
sets policy has profound influence on its usability.

If little is known about the context in which an API
is going to be used, the designer has little choice but to
keep all options open and allow the API to be as widely
applicable as possible. In the preceding lookup example,
this calls for returning null for variables that are not set,
because that choice allows the caller to layer its own
policy on top of the API; with a few extra lines of code,
the caller can treat lookup of a nonexistent variable as a
hard error, substitute a default value, or treat unset and
empty variables as equivalent. This generality, however,
comes at a price for those callers who do not need the
flexibility because it makes it harder for the caller to treat
lookup of a nonexistent variable as an error.

This design tension is present in almost every API—the
line between what should and should not be an error is
very fine, and placing the line incorrectly quickly causes
major pain. The more that is known about the context of
an API, the more “fascist” the API can become—that is,
the more policy it can set. Doing so is doing a favor to the
caller because it catches errors that otherwise would go
undetected. With careful design of types and parameters,
errors can often be caught at compile time instead of
being delayed until runtime. Making the effort to do this
is worthwhile because every error caught at compile time
is one less bug that can incur extra cost during testing or
in the field.

The Select() API fails this guideline because, by
overwriting its arguments, it sets a policy that is in direct
conflict with the most common use case. Similarly, the
.NET Receive() API commits this crime for nonblocking
sockets: it throws an exception if the call worked but no
data is ready, and it returns zero without an exception if
the connection is lost. This is the precise opposite of what
the caller needs, and it is sobering to look at the mess of

32 May/June 2007 ACM QUEUE rants: feedback@acmqueue.com

control flow this causes for the caller.
Sometimes, the design tension cannot be resolved

despite the best efforts of the designer. This is often the
case when little can be known about context because
an API is low-level or must, by its nature, work in many
different contexts (as is the case for general-purpose
collection classes, for example). In this case, the strat-
egy pattern can often be used to good effect. It allows
the caller to supply a policy (for example, in the form
of a caller-provided comparison function that is used to
maintain ordered collections) and so keeps the design
open. Depending on the programming language, caller-
provided policies can be implemented with callbacks,
virtual functions, delegates, or template parameters
(among others). If the API provides sensible defaults, such
externalized policies can lead to more flexibility without
compromising usability and clarity. (Be careful, though,
not to “pass the buck,” as described later in this article.)

APIs should be designed from the perspective of the
caller. When a programmer is given the job of creating
an API, he or she is usually immediately in problem-solv-
ing mode: What data structures and algorithms do I need
for the job, and what input and output parameters are
necessary to get it done? It’s all downhill from there: the
implementer is focused on solving the problem, and the
concerns of the caller are quickly forgotten. Here is a typi-
cal example of this:

makeTV(false, true);

This evidently is a function call that creates a TV. But
what is the meaning of the parameters? Compare with
the following:

makeTV(Color, FlatScreen);

The second version is much more readable to the caller:

even without reading the manual, it is obvious that the
call creates a color flat-screen TV. To the implementer,
however, the first version is just as usable:

void makeTV(bool isBlackAndWhite,
 bool isFlatScreen)
{ /* ... */ }

The implementer gets nicely named variables that
indicate whether the TV is black and white or color, and
whether it has a flat screen or a conventional one, but
that information is lost to the caller. The second version
requires the implementer to do more work—namely, to
add enum definitions and change the function signature:

enum ColorType { Color, BlackAndWhite };
enum ScreenType { CRT, FlatScreen };
void makeTV(ColorType col, ScreenType st);

This alternative definition requires the implementer to
think about the problem in terms of the caller. However,
the implementer is preoccupied with getting the TV cre-
ated, so there is little room in the implementer’s mind for
worrying about somebody else’s problems.

A great way to get usable APIs is to let the customer
(namely, the caller) write the function signature, and to
give that signature to a programmer to implement. This
step alone eliminates at least half of poor APIs: too often,
the implementers of APIs never use their own creations,
with disastrous consequences for usability. Moreover,
an API is not about programming, data structures, or
algorithms—an API is a user interface, just as much as a
GUI is. The user at the using end of the API is a program-
mer—that is, a human being. Even though we tend to
think of APIs as machine interfaces, they are not: they are
human–machine interfaces.

What should drive the design of APIs is not the needs
of the implementer. After all, the implementer needs
to implement the API only once, but the callers of the
API need to call it hundreds or thousands of times. This
means that good APIs are designed with the needs of the
caller in mind, even if that makes the implementer’s job
more complicated.

Good APIs don’t pass the buck. There are many ways
to “pass the buck” when designing an API. A favorite way
is to be afraid of setting policy: “Well, the caller might
want to do this or that, and I can’t be sure which, so
I’ll make it configurable.” The typical outcome of this
approach is functions that take five or ten parameters.
Because the designer does not have the spine to set policy

API
Design Matters

ACM QUEUE May/June 2007 33 more queue: www.acmqueue.com

and be clear about what the API should and should
not do, the API ends up with far more complexity than
necessary. This approach also violates minimalism and
the principle of “I should not pay for what I don’t use”:
if a function has ten parameters, five of which are irrele-
vant for the majority of use cases, callers pay the price
of supplying ten parameters every time they make a call,
even when they could not care less about the functional-
ity provided by the extra five parameters. A good API is
clear about what it wants to achieve and what it does not
want to achieve, and is not afraid to be up-front about it.
The resulting simplicity usually amply repays the minor
loss of functionality, especially if the API has well-chosen
fundamental operations that can easily be composed into
more complex ones.

Another way of passing the buck is to sacrifice usabil-
ity on the altar of efficiency. For example, the CORBA
C++ mapping requires callers to fastidiously keep track of
memory allocation and deallocation responsibilities; the
result is an API that makes it incredibly easy to corrupt
memory. When benchmarking the mapping, it turns out
to be quite fast because it avoids many memory alloca-
tions and deallocations. The performance gain, however,
is an illusion because, instead of the API doing the dirty
work, it makes the caller responsible for doing the dirty
work—overall, the same number of memory allocations
takes place regardless. In other words, a safer API could
be provided with zero runtime overhead. By benchmark-
ing only the work done inside the API (instead of the
overall work done by both caller and API), the designers
can claim to have created a better-performing API, even
though the performance advantage is due only to selec-
tive accounting.

The original C version of select() exhibits the same
approach:

int select(int nfds, fd_set *readfds,
 fd_set *writefds, fd_set *exceptfds,
 struct timeval *timeout);

Like the .NET version, the C version also over-
writes its arguments. This again reflects the needs of
the implementer rather than the caller: it is easier and
more efficient to clobber the arguments than to allocate
separate output arrays of file descriptors, and it avoids the
problems of how to deallocate the output arrays again. All
this really does, however, is shift the burden from imple-
menter to caller—at a net efficiency gain of zero.

The Unix kernel also is not without blemish and
passes the buck occasionally: many a programmer has

cursed the decision to allow some system calls to be inter-
rupted, forcing programmers to deal explicitly with EINTR
and restart interrupted system calls manually, instead of
having the kernel do this transparently.

Passing the buck can take many different forms, the
details of which vary greatly from API to API. The key
questions for the designer are: Is there anything I could
reasonably do for the caller I am not doing? If so, do I
have valid reasons for not doing it? Explicitly asking these
questions makes design the result of a conscious process
and discourages “design by accident.”

APIs should be documented before they are imple-
mented. A big problem with API documentation is that it
is usually written after the API is implemented, and often
written by the implementer. The implementer, however,
is mentally contaminated by the implementation and
will have a tendency simply to write down what he or
she has done. This often leads to incomplete documen-
tation because the implementer is too familiar with the
API and assumes that some things are obvious when they
are not. Worse, it often leads to APIs that miss important
use cases entirely. On the other hand, if the caller (not
the implementer) writes the documentation, the caller
can approach the problem from a “this is what I need”
perspective, unburdened by implementation concerns.
This makes it more likely that the API addresses the needs
of the caller and prevents many design flaws from arising
in the first place.

Of course, the caller may ask for something that turns
out to be unreasonable from an implementation perspec-
tive. Caller and implementer can then iterate over the
design until they reach agreement. That way, neither
caller nor implementation concerns are neglected.

Once documented and implemented, the API should
be tried out by someone unfamiliar with it. Initially, that
person should check how much of the API can be under-
stood without looking at the documentation. If an API
can be used without documentation, chances are that it is
good: a self-documenting API is the best kind of API there
is. While test driving the API and its documentation, the
user is likely to ask important “what if” questions: What
if the third parameter is null? Is that legal? What if I want
to wait indefinitely for a socket to become ready? Can
I do that? These questions often pinpoint design flaws,
and a cross-check with the documentation will confirm
whether the questions have answers and whether the
answers are reasonable.

Make sure that documentation is complete, particularly
with respect to error behavior. The behavior of an API
when things go wrong is as much a part of the formal

34 May/June 2007 ACM QUEUE rants: feedback@acmqueue.com

contract as when things go right. Does the documenta-
tion say whether the API maintains the strong excep-
tion guarantee? Does it detail the state of out and in-out
parameters in case of an error? Does it detail any side
effects that may linger after an error has occurred? Does
it provide enough information for the caller to make
sense of an error? (Throwing a DidntWork exception from
all socket operations just doesn’t cut it!) Programmers do
need to know how an API behaves when something goes
wrong, and they do need to get detailed error informa-
tion they can process programmatically. (Human-readable
error messages are nice for diagnostics and debugging,
but not nice if they are the only things available—there
is nothing worse than having to write a parser for error
strings just so I can control the flow of my program.)

Unit and system testing also have an impact on APIs
because they can expose things that no one thought of
earlier. Test results can help improve the documentation
and, therefore, the API. (Yes, the documentation is part of
the API.)

The worst person to write documentation is the
implementer, and the worst time to write documentation
is after implementation. Doing so greatly increases the
chance that interface, implementation, and documenta-
tion will all have problems.

Good APIs are ergonomic. Ergonomics is a major field
of study in its own right, and probably one of the hardest
parts of API design to pin down. Much has been written
about this topic in the form of style guides that define
naming conventions, code layout, documentation style,
and so on. Beyond mere style issues though, achieving
good ergonomics is hard because it raises complex cogni-
tive and psychological issues. Programmers are humans
and are not created with cookie cutters, so an API that
seems fine to one programmer can be perceived as only
so-so by another.

Especially for large and complex APIs, a major part of

ergonomics relates to consistency. For example, an API is
easier to use if its functions always place parameters of a
particular type in the same order. Similarly, APIs are easier
to use if they establish naming themes that group related
functions together with a particular naming style. The
same is true for APIs that establish simple and uniform
conventions for related tasks and that use uniform error
handling.

Consistency is important because not only does it
make things easier to use and memorize, but it also
enables transference of learning: having learned a part of
an API, the caller also has learned much of the remainder
of the API and so experiences minimal friction. Transfer-
ence is important not only within APIs but also across
APIs—the more concepts APIs can adopt from each other,
the easier it becomes to master all of them. (The Unix
standard I/O library violates this idea in a number of
places. For example, the read() and write() system calls
place the file descriptor first, but the standard library I/O
calls, such as fgets() and fputs(), place the stream pointer
last, except for fscanf() and fprintf(), which place it first.
This lack of parallelism is jarring to many people.)

Good ergonomics and getting an API to “feel” right
require a lot of expertise because the designer has to
juggle numerous and often conflicting demands. Finding
the correct tradeoff among these demands is the hallmark
of good design.

API CHANGE rEQUIrEs CUlTUrAl CHANGE
I am convinced that it is possible to do better when it
comes to API design. Apart from the nitty-gritty techni-
cal issues, I believe that we need to address a number of
cultural issues to get on top of the API problem. What we
need is not only technical wisdom, but also a change in
the way we teach and practice software engineering.

Education
Back in the late ’70s and early ’80s, when I was cutting
my teeth as a programmer and getting my degree, much
of the emphasis in a budding programmer’s education
was on data structures and algorithms. They were the
bread and butter of programming, and a good under-
standing of data structures such as lists, balanced trees,
and hash tables was essential, as was a good under-
standing of common algorithms and their performance
tradeoffs. These were also the days when system libraries
provided only the most basic functions, such as simple
I/O and string manipulation; higher-level functions such
as bsearch() and qsort() were the exception rather than
the rule. This meant that it was de rigueur for a competent

API
Design Matters

ACM QUEUE May/June 2007 35 more queue: www.acmqueue.com

programmer to know how to write various data structures
and manipulate them efficiently.

We have moved on considerably since then. Virtually
every major development platform today comes with
libraries full of pre-canned data structures and algorithms.
In fact, these days if I catch a programmer writing a
linked list, that person had better have a very good reason
for doing so instead of using an implementation provided
by a system library.

Similarly, in the ’70s and ’80s, if I wanted to create
software, I had to write pretty much everything from
scratch: if I needed encryption, I wrote it from scratch;
if I needed compression, I wrote it from scratch; if I
needed inter-process communication, I wrote it from
scratch. All this has changed dramatically with the open
source movement. Today, open source is available for
almost every imaginable kind of reusable functionality.
As a result, the process of creating software has changed
considerably: instead of creating functionality, much of
today’s software engineering is about integrating existing
functionality or about repackaging it in some way. To
put it differently: API design today is much more impor-
tant than it was 20 years ago, not only because we are
designing more APIs, but also because these APIs tend to
provide access to much richer and more complex func-
tionality than they used to.

Looking at the curriculum of many universities, it
seems that this shift in emphasis has gone largely unno-
ticed. In my days as an undergraduate, no one ever both-
ered to explain how to decide whether something should
be a return value or an out parameter, how to choose
between raising an exception and returning an error code,
or how to decide if it might be appropriate for a function
to modify its arguments. Little seems to have changed
since then: my son, who is currently working toward a
software engineering degree at the same university where
I earned my degree, tells me that still no one bothers to
explain these things. Little wonder then that we see so
many poorly designed APIs: it is not reasonable to expect
programmers to be good at something they have never
been taught.

Yet, good API design, even though complex, is some-
thing that can be taught. If undergraduates can learn
how to write hash tables, they can also learn when it is
appropriate to throw an exception as opposed to return-
ing an error code, and they can learn to distinguish a
poor API from a good one. What is needed is recognition
of the importance of the topic; much of the research and
wisdom are available already—all we need to do is pass
them on.

carEEr Path
I am 47, and I write code. Looking around me, I realize
how unusual this is: in my company, all of my program-
ming colleagues are younger than I and, when I look at
former programming colleagues, most of them no longer
write code; instead, they have moved on to different posi-
tions (such as project manager) or have left the industry
entirely. I see this trend everywhere in the software indus-
try: older programmers are rare, quite often because no
career path exists for them beyond a certain point. I recall
how much effort it took me to resist a forced “promo-
tion” into a management position at a former company—
I ended up staying a programmer, but was told that future
pay increases were pretty much out of the question if I
was unwilling to move into management.

There is also a belief that older programmers “lose
the edge” and don’t cut it anymore. That belief is mis-
taken, in my opinion: older programmers may not burn
as much midnight oil as younger ones, but that’s not
because they are old, but because they get the job done
without having to stay up past midnight.

This loss of older programmers is unfortunate, particu-
larly when it comes to API design. While good API design
can be learned, there is no substitute for experience.
Many good APIs were created by programmers who had
to suffer under a bad one and then decided to redo the
job, but properly this time. It takes time and a healthy
dose of “once burned, twice shy” to gather the expertise
that is necessary to do better. Unfortunately, the industry
trend is to promote precisely its most experienced people
away from programming, just when they could put their
accumulated expertise to good use.

Another trend is for companies to promote their best
programmers to designer or system architect. Typically,
these programmers are farmed out to various projects as
consultants, with the aim of ensuring that the project
takes off on the right track and avoids mistakes it might
make without the wisdom of the consultants. The intent
of this practice is laudable, but the outcome is usually
sobering: because the consultants are so valuable, having
given their advice, they are moved to the next project
long before implementation is finished, let alone testing
and delivery. By the time the consultants have moved on,
any problems with their earlier sage advice are no longer
their problems, but the problems of a project they have
long since left behind. In other words, the consultants
never get to live through the consequences of their own
design decisions, which is a perfect way to breed them
into incompetence. The way to keep designers sharp and
honest is to make them eat their own dog food. Any pro-

36 May/June 2007 ACM QUEUE rants: feedback@acmqueue.com

API
Design Matters

cess that deprives designers of that feedback is ultimately
doomed to failure.

ExtErnal controls
Years ago, I was working on a large development project
that, for contractual reasons, was forced into an operat-
ing-system upgrade during a critical phase shortly before
a delivery deadline. After the upgrade, the previously
working system started behaving strangely and occasion-
ally produced random and inexplicable failures. The pro-
cess of tracking down the problem took nearly two days,
during which a large team of programmers was mostly
twiddling its thumbs. Ultimately, the cause turned out
to be a change in the behavior of awk’s index() function.
Once we identified the problem, the fix was trivial—we
simply installed the previous version of awk. The point
is that a minor change in the semantics of a minor part
of an API had cost the project thousands of dollars, and
the change was the result of a side effect of a programmer
fixing an unrelated bug.

This anecdote hints at a problem we will increas-
ingly have to face in the future. With the ever-growing
importance of computing, there are APIs whose correct
functioning is important almost beyond description.
For example, consider the importance of APIs such as
the Unix system call interface, the C library, Win32, or
OpenSSL. Any change in interface or semantics of these
APIs incurs an enormous economic cost and can intro-
duce vulnerabilities. It is irresponsible to allow a single
company (let alone a single developer) to make changes
to such critical APIs without external controls.

As an analogy, a building contractor cannot simply try
out a new concrete mixture to see how well it performs.
To use a new concrete mixture, a lengthy testing and
approval process must be followed, and failure to follow
that process incurs criminal penalties. At least for mis-
sion-critical APIs, a similar process is necessary, as a mat-

ter of self-defense: if a substantial fraction of the world’s
economy depends on the safety and correct functioning
of certain APIs, it stands to reason that any changes to
these APIs should be carefully monitored.

Whether such controls should take the form of leg-
islation and criminal penalties is debatable. Legislation
would likely introduce an entirely new set of problems,
such as stifling innovation and making software more
expensive. (The ongoing legal battle between Microsoft
and the European Union is a case in point.) I see a real
danger of just such a scenario occurring. Up to now, we
have been lucky, and the damage caused by malware such
as worms has been relatively minor. We won’t be lucky
forever: the first worm to exploit an API flaw to wipe out
more than 10 percent of the world’s PCs would cause eco-
nomic and human damage on such a scale that legislators
would be kicked into action. If that were to happen, we
would likely swap one set of problems for another one
that is worse.

What are the alternatives to legislation? The open
source community has shown the way for many years:
open peer review of APIs and implementations has
proven an extremely effective way to ferret out design
flaws, inefficiencies, and security holes. This process
avoids the problems associated with legislation, catches
many flaws before an API is widely used, and makes it
more likely that, when a zero-day defect is discovered, it
is fixed and a patch distributed promptly.

In the future, we will likely see a combination of both
tighter legislative controls and more open peer review.
Finding the right balance between the two is crucial to
the future of computing and our economy. API design
truly matters—but we had better realize it before events
run away with things and remove any choice. Q

LOVE IT, HATE IT? LET US KNOW
feedback@acmqueue.com or www.acmqueue.com/forums

MICHI HENNING (michi@zeroc.com) is chief scientist of
Zeroc. From 1995 to 2002, he worked on corBa as a mem-
ber of the object Management Group’s architecture board
and as an orB implementer, consultant, and trainer. With
steve Vinoski, he wrote Advanced CORBA Programming with
C++ (addison-Wesley, 1999). since joining Zeroc, he has
worked on the design and implementation of ice, Zeroc’s
next-generation middleware, and in 2003 co-authored “dis-
tributed Programming with ice.” he holds an honors degree
in computer science from the university of Queensland,
australia.
© 2007 acM 1542-7730/07/0500 $5.00

