
1

6.170 Lecture 12
Debugging

MIT EECS

Michael Ernst
Saman Amarasinghe

2

three related notions

 Validation
 Purpose is to uncover problems and increase confidence
 Combination of reasoning and test

 Debugging
 Finding out why a program is not functioning as intended

 Defensive programming
 Programming with validation and debugging in mind

 Testing ≠ debugging
 test: reveals existence of problem
 debug: pinpoint location+cause of problem

3

a bug – September 9, 1947

4

defense in depth

 First defense against bugs is to not make them
 Correctness: get things right first time

 Second defense is to make bugs immediately visible
 Local visibility of errors: if things fail, we'd rather they

fail loudly and immediately – e.g. checkRep()

 Last resort is debugging
 Needed when effect of bug is distant from cause
 Design experiments to gain information about bug

- Fairly easy, in a program with good modularity,
representation hiding, specs, unit tests etc.

- Much harder and more pain-staking with a poor design, e.g.
with rampant rep exposure

5

first defense: correctness

 Get things right first time
 Don’t code before you think! Think before you code.
 If you're making lots of easy-to-find bugs, you're also

making hard-to-find bugs – don't use compiler as crutch

 Simplicity is key
 Modularity

- Divide program into chunks that are easy to understand
- Use abstract data types with well-defined interfaces
- Use defensive programming; avoid rep exposure

 Specification
- Write specs for all modules, so that an explicit, well-

defined contract exists between each module and its clients

6

second defense: immediate visibility

 If we can't prevent bugs, we can try to localize them to a
small part of the program

 Assertions: catch bugs early, before failure has a chance
to contaminate (and be obscured by) further computation

 Unit testing: when you test a module in isolation, you can
be confident that any bug you find is in that unit (unless
it's in the test driver)

 Regression testing: run tests as often as possible when
changing code. If there is a failure, chances are there's a
mistake in the code you just changed

 When localized to a single method or small module, bugs
can be found simply by studying the program text

7

why is this good?

 Key difficulty of debugging is to find the code fragment
responsible for an observed problem

 A method may return an erroneous result, but be itself
error free, if there is prior corruption of representation

 The earlier a problem is observed, the easier it is to fix
 For example, frequently checking the rep invariant helps

the above problem

 General approach: fail-fast
 Check invariants, don't just assume them
 Don't try to recover from bugs – this just obscures them

8

don't hide bugs

 // k is guaranteed to be present in a
 int i = 0;
 while (true) {
 if (a[i]==k) break;
 i++;
 }

 This code fragment searches an array a for a value k.
 Value is guaranteed to be in the array.
 If that guarantee is broken (by a bug), the code throws an

exception and dies.

 Temptation: make code more “robust” by not failing

9

don't hide bugs

 // k is guaranteed to be present in a
 int i = 0;
 while (i<a.length) {
 if (a[i]==k) break;
 i++;
 }

 Now at least loop will always terminate
 But no longer guaranteed that a[i]==k
 If rest of code relies on this, then problems arise later
 All we've done is obscure the link between the bug's origin

and the eventual erroneous behavior it causes.

10

don't hide bugs

 // k is guaranteed to be present in a
 int i = 0;
 while (i<a.length) {
 if (a[i]==k) break;
 i++;
 }
 assert (i<a.length) : "key not found";

 Assertions let us document and check invariants
 Abort program as soon as problem is detected

 Use built-in Java assertions, or junit framework
 Drawback to built-in: ignored unless -ea flag is given

11

assertions

 If it can't happen, use assertions to ensure that it won't
 (Hunt&Thomas, “The Pragmatic Programmer”)

 Figure out conditions you expect to hold
 Then, don't just assume them, assert them

 Guidelines
 Add assertions as you write, not later
 But not to check the obvious

 x = y + 1;

 assert (x == y + 1); // don't do this
 And not to check resource limitations (these are not bugs)
 Novices usually under-assert

12

responding to failure

 How should a program respond to a detected failure?
 Try to transparently fix the failure?

- Hard to do, and often just makes problems even more
obscure (as we've seen)

 Record and Continue?
 Abort the program?

- Exactly how to do this is program dependent
- Word processor should offer to save files
- Rocket controller should try to minimize damage

 Hard to decide correct action locally

 Often want to pass responsibility back to caller
 Return null, -1, or other special value to signal error
 But this can introduce bugs, silently contaminate data

13

exceptions

 Exceptions let us bypass normal control flow
 No risk of confusion with normal data
 Two flavors in Java: checked or unchecked
 See Bloch chapter 8 (#39 – #47) for best practice

 Use an “unchecked” exception if:
 There is a convenient way for the client to avoid ever

triggering the exception
- So forcing the client to check for the exception is redundant

 Or if the exception reflects an unexpected failure
- Nothing the client can reasonably do, e.g. broken rep

 Otherwise use a “checked” exception
 Compiler forces client to deal with such exceptions

14

exceptions examples

 E Queue.remove()
 throws NoSuchElementException [unchecked]

- Retrieves and removes the head of the queue.
- Expects that client will only call method if Queue is non-

empty, since client can easily call isEmpty() if needed
- So forcing client to catch exception would be a burden

 FileInputStream.FileInputStream(String name)
 throws FileNotFoundException [checked]

- Opens a file for input
- Forces client to consider exception, since there is no easy

way to check if the file will exist at time of opening (could
be deleted externally after any check)

15

last resort: debugging

 Bugs happen
 Industry average: 10 bugs per 1000 lines of code (“kloc”)

 Bugs that are not immediately localizable happen
 Found during integration testing
 Or reported by user

 Here's how we deal with such failures
 step 1 – Clarify symptom
 step 2 – Find and understand cause
 step 3 – Fix
 step 4 – Do regression

16

the debugging process

 step 1 – find a small, repeatable test case that produces the
failure (may take effort, but helps clarify the bug, and also
gives you something for regression)

- don't move on to next step until you have repeatable test
 step 2 – narrow down location and proximate cause

- study the data / hypothesize / experiment / repeat
- may change code to get more information
- don't move on to next step until you understand cause

 step 3 – fix the bug
- Is it a simple typo, or design flaw? Does it occur elsewhere?

 step 4 – add test case to regression; run regression to see if:
- (a) the bug appears to be fixed
- (b) no new bugs have been introduced

17

example

 // returns true iff sub is a substring of full
 // (i.e. iff there exists A,B s.t. full=A+sub+B)
 boolean contains(String full, String sub);

 User reports that method sometimes fails
 Points out that it can't find the string "very happy"within:
 "Fáilte, you are very welcome! Hi Seán! I am very very
happy to see you all."

 Wrong response:
 See accented characters, panic about not having thought about

unicode, and go diving for your Java texts to see how that is
handled.

18

example

 Right response – clarify symptom
 Find good, simple test case
 Pare test down – can't find "very happy"within:

- "Fáilte, you are very welcome! Hi Seán! I am very
very happy to see you all."

- "I am very very happy to see you all."

- "very very happy"

 CAN find "very happy"within:
- "very happy"

 Can't find "ab"within "aab"
 (We saw what might cause this bug in lecture 3)

19

example

 Sometimes it is helpful to find two almost identical test
cases where one gives the correct answer and the other
does not

 Can't find "very happy"within:
- "I am very very happy to see you all."

 Can find "very happy"within:
- "I am very happy to see you all."

20

general strategy

 In general: find simplest input that will provoke bug
 Usually not the input that revealed existence of the bug

 Start with data that revealed bug
 Keep paring it down (binary search can help)
 Often leads directly to an understanding of the cause

 When not dealing with simple method calls
 Think of “test input” as the set of steps needed to reliably

trigger the bug
 Same basic idea

21

searching for bugs

 Take advantage of modularity
 Start with everything, take away pieces until bug goes
 Start with nothing, add pieces back in until bug appears

 Take advantage of modular reasoning
 Trace through program, viewing intermediate results

 Can use binary search to speed things up
 Bug happens somewhere between first and last statement
 So can do binary search on that ordered set of statements

22

binary search on buggy code
 public class MotionDetector {
 private boolean first = true;
 private Matrix prev = new Matrix();

 public Point apply(Matrix current) {
 if (first) {
 prev = current;
 }
 Matrix motion = new Matrix();
 getDifference(prev,current,motion);
 applyThreshold(motion,motion,10);
 labelImage(motion,motion);
 Hist hist = getHistogram(motion);
 int top = hist.getMostFrequent();
 applyThreshold(motion,motion,top,top);
 Point result = getCentroid(motion);
 prev.copy(current);
 return result;
 }
 }

no problem yet

problem exists

Check
intermediate

result
at half-way

point

23

binary search on buggy code
 public class MotionDetector {
 private boolean first = true;
 private Matrix prev = new Matrix();

 public Point apply(Matrix current) {
 if (first) {
 prev = current;
 }
 Matrix motion = new Matrix();
 getDifference(prev,current,motion);
 applyThreshold(motion,motion,10);
 labelImage(motion,motion);
 Hist hist = getHistogram(motion);
 int top = hist.getMostFrequent();
 applyThreshold(motion,motion,top,top);
 Point result = getCentroid(motion);
 prev.copy(current);
 return result;
 }
 }

no problem yet

problem exists

Check
intermediate

result
at half-way

point

Quickly home in
on bug in O(log n) time
by repeated subdivision

24

binary search on buggy code
 public class MotionDetector {
 private boolean first = true;
 private Matrix prev = new Matrix();

 public Point apply(Matrix current) {
 if (first) {
 prev = current; first = false;
 }
 Matrix motion = new Matrix();
 getDifference(prev,current,motion);
 applyThreshold(motion,motion,10);
 labelImage(motion,motion);
 Hist hist = getHistogram(motion);
 int top = hist.getMostFrequent();
 applyThreshold(motion,motion,top,top);
 Point result = getCentroid(motion);
 prev.copy(current);
 return result;
 }
 }

no problem yet

problem exists

Check
intermediate

result
at half-way

point

25

binary search on buggy code
 public class MotionDetector {
 private boolean first = true;
 private Matrix prev = new Matrix();

 public Point apply(Matrix current) {
 if (first) {
 prev = current; first = false;
 }
 Matrix motion = new Matrix();
 getDifference(prev,current,motion);
 applyThreshold(motion,motion,10);
 labelImage(motion,motion);
 Hist hist = getHistogram(motion);
 int top = hist.getMostFrequent();
 applyThreshold(motion,motion,top,top);
 Point result = getCentroid(motion);
 prev.copy(current);
 return result;
 }
 }

problem exists

no problem yet
Check

intermediate
result

at half-way
point

26

regression testing

 Whenever you find and fix a bug
 Add a test for it
 Re-run all your tests

 Why this is a good idea
 Often reintroduce old bugs while fixing new ones
 Helps to populate test suite with good tests
 If a bug happened once, it could well happen again

 Run regression tests as frequently as you can afford to
 Automate process
 Make concise test sets, with few superfluous tests

27

keep in mind

 The bug is not where you think it is
 Ask yourself where it cannot be; explain why

 Try simple things first, e.g.,
 Reversed order of arguments: Collections.copy(src,dest)
 Spelling of identifiers: int hashcode()

- @override can help catch method name typos
 Same object vs. equal: a == b versus a.equals(b)
 Failure to reinitialize a variable
 Deep vs. shallow copy

 Make sure that you have correct source code
 Recompile everything

28

when the going gets tough

 Reconsider assumptions
 E.g., has the OS changed? Is there room on the hard drive?
 Debug the code, not the comments

 Start documenting your system
 Gives a fresh angle, and highlights area of confusion

 Get help
 We all develop blind spots
 Explaining the problem often helps

 Walk away
 Trade latency for efficiency – sleep!
 One good reason to start early

29

Detecting Bugs in the Real World

 Real Systems are…
 Large and complex (duh!)
 Collection of modules, written by multiple people
 Complex input
 Many external interactions
 Non-deterministic

 Replication can be an issue
 Infrequent bug
 Instrumentation eliminates the bug

 Bugs cross abstraction barriers
 Large time lag from corruption to detection

