
Exceptions and Testing

6.170
Michael Ernst
Saman Amarasinghe

Generic Types

Bugfix to the last lecture

public class List<T> {
private T lst[];
public void add(int, T) { … }
public T get(int) { … }
…

}

List<Integer> lst = new List<Integer>();
Integer fst = lst.get(0);

How to handle abnormal situations?

public static int Search(int[] lst, int key)

 requires: none
 modifies: none
 effects: none
 returns: some i such that lst[i] = key if such an i exists,

 otherwise -1

 Returning {(insertion point), - 1} is very
ugly, and an invitation to bugs and confusion.

How to handle abnormal situations?

public static int Search(int[] lst, int key)

 requires: key is in lst
 modifies: none
 effects: none
 returns: i where lst[i] = key

 Partial procedures make the world more complicated.
 Who is going to check if key is in a?
 Too much burden on the client.

Use an exception

public static int Search(int[] lst, int key)

 requires: none
 modifies: none
 effects:
 throws: NoSuchElementException if key is not in lst
 returns: some i such that lst[i] = key if such an i exists

How to use an Exception
Declaration:

public static int Search(int[] lst, int key)
throws NoSuchElementException {

for(int i = 0; i < lst.length; i++)
if(lst[i] == k) return i;

throw new NoSuchElementException();
}

Use:

try {
j = s.Search(mylist, k);

} catch (NoSuchElementException e) {
Handle the exception

}
... continue for both normal and exceptional cases

Catching Exceptions

 Caught by catch associated with nearest enclosing try
 If no such catch

 Exception propagated up call stack

 If not caught at all
 Program terminates

Two Kinds of Exceptions

 Checked exceptions
 E.g., class MissingException extends Exception

 Compiler error unless
 There exists a catch clause, or
 Caller declared to throw that exception

 ∴ There is guaranteed to be a dynamically enclosing catch
 Unchecked exceptions

 E.g., class ArithmeticException extends RuntimeException

 Compiler doesn’t complain
 Rule of thumb

 Stick to checked exceptions most of the time
 Use unchecked exceptions to mean failure

 Expect program to terminate

Why Catch Exceptions Locally?

 Failure to catch exceptions violates modularity
 Call chain: A → IntegerSet.insert → IntegerList.insert

 IntegerList.insert throws an exception
 Implementer of IntegerSet.insert knows how list is being used
 Implementor of A may not even know that IntegerList exists

 Procedure up the line may think that it is handling an
exception raised by a different call

 Even if exception is better handled up a level
 May be better to catch it and throw it again (“chaining”)
 Makes it clear to reader of code that it was not an

omission

Exceptions in Review

 Use an exception when
 Used in a broad or unpredictable context
 Checking the condition is feasible

 Use a precondition when
 Checking would be prohibitive

 E.g., requiring that a list be sorted

 Used in a narrow context in which calls can be checked

 Preconditions should be avoided because
 Caller may violate precondition
 Program can fail in uninformative or dangerous way
 Want program to fail as early as possible

Exceptions in Review, cont.

 Use checked exceptions most of the time
 Handle exceptions sooner rather than later
 Don’t think of them as errors

 A program structuring mechanism
 Used for exceptional (unpredictable) circumstances

 Documentation standards and conventions
 Will be covered in recitation

 Also see Bloch’s Effective Java

Building Quality Software
 What Impacts the Software Quality?

 External
 Correctness Does it do what it suppose to do?

 Reliability Does it do it accurately all the time?

 Efficiency Does it do with minimum use of resources?

 Integrity Is it secure?

 Internal
 Portability Can I use it under different conditions?

 Maintainability Can I fix it?

 Flexibility Can I change it or extend it or reuse it?

 Quality Assurance
 The process of uncovering problems and improving the quality of software.

 Testing is a major part of QA.

The Phases of Testing

 Unit Testing
 Is each module does what it suppose to do?

 Integration Testing
 Do you get the expected results when the parts are put

together work?

 Validation Testing
 Does the program satisfy the requirements

 System Testing
 Does it work within the overall system

Unit Testing

 A test is at the level of a method/class/interface
Check if the implementation matches the
specification.

Black box testing
 Choose test data without looking at implementation

 Glass box (white box) testing
 Choose test data with knowledge of implementation

How is testing done?

 Basic steps of a test
1) Choose input data/configuration
2) Define the expected outcome
3) Run program/method against the input and record

the results
4) Examine results against the expected outcome

What’s So Hard About Testing ?

 "just try it and see if it works..."
 int proc1(int x, int y, int z)

 // requires: 1 <= x,y,z <= 1000

 // effects: computes some f(x,y,z)

 Exhaustive testing would require 1 billion runs!
 Sounds totally impractical

 Could see how input set size would get MUCH bigger
 Key problem: choosing test suite (set of partitions of inputs)

 Small enough to finish quickly
 Large enough to validate the program

Approach: Partition the Input Space

 Input space very large, program small
 ==> behavior is the “same” for sets of inputs

 Ideal test suite:
 Identify sets with same behavior
 Try one input from each set

 Two problems
 1. Notion of the same behavior is subtle

 Naive approach: execution equivalence
 Better approach: revealing subdomains

 2. Discovering the sets requires perfect knowledge
 Use heuristics to approximate cheaply

Naive Approach: Execution Equivalence

int abs(int x) {
// returns: x < 0 => returns -x
// otherwise => returns x

if (x < 0) return -x;
else return x;

}

All x < 0 are execution equivalent:
program takes same sequence of steps for any x < 0

All x >= 0 are execution equivalent

Suggests that {-3, 3}, for example, is a good test suite

Why Execution Equivalence Doesn't Work

 Consider the following buggy code:
 int abs(int x) {
 // returns: x < 0 => returns -x

// otherwise => returns x

if (x < -2) return -x;
else return x;

}

 {-3, 3} does not reveal the error!

Two executions:
x < ‐2 x >= ‐2

Three behaviors:
x < ‐2 (OK) x = ‐2 or ‐1 (bad) x >= 0 (OK)

Revealing Subdomain Approach
 “Same” behavior depends on specification
 Say that program has “same behavior” on two inputs if

 1) gives correct result on both, or
 2) gives incorrect result on both

 Subdomain is a subset of possible inputs
 Subdomain is revealing for an error, E, if

1) Each element has same behavior
2) If program has error E, it is revealed by test

 Trick is to divide possible inputs into sets of revealing
subdomains for various errors

 For buggy abs,what are revealing subdomains?

 int abs(int x) {
if (x < -2) return -x;
else return x;

 }

 Which is best?

Example

{−1} {−2} {−2, −1} {−3, −2, −1}

{−2, −1}

Heuristics for Designing Test Suites

 A good heuristic gives:
 few subdomains
 ∀ errors e in some class of errors E,
 high probability that some subdomain is revealing for e

 Different heuristics target different classes of errors
 In practice, combine multiple heuristics

Black Box Testing
 Heuristic: Explore alternate paths through specification

 Procedure an interface is a black box, internals hidden

 Example
 int max(int a, int b)

// effects: a > b => returns a
// a < b => returns b
// a = b => returns a

 3 paths, so 3 test cases:
(4, 3) => 4 (i.e. any input in the subdomain a > b)
(3, 4) => 4 (i.e. any input in the subdomain a < b)

 (3, 3) => 3 (i.e. any input in the subdomain a = b)

Black Box Testing: Advantages

 Process not influenced by component being tested
 Assumptions embodied in code not propagated to test data.

 Robust with respect to changes in implementation
 Test data need not be changed when code is changed

 Allows for independent testers
 Testers need not be familiar with code

More Complex Example

 Write test cases based on paths through the specification

 int find(int[] a, int value) throws Missing
// returns: the smallest i such
// that a[i] == value
// throws: Missing if value not in a

 Two obvious tests:
([4, 5, 6], 5) => 1
([4, 5, 6], 7) => throw Missing

 Have I captured all the paths?

 Must hunt for multiple cases in effects or requires

([4, 5, 5], 5) => 1

Heuristic: Boundary Testing

 Create tests at the edges of subdomains
 Why do this?

 off-by-one bugs
 forget to handle empty container
 overflow errors in arithmetic
 program does not handle aliasing of objects

 Small subdomains at the edges of the “main”
subdomains have a high probability of revealing
these common errors

Boundary Testing
 To define boundary, must define adjacent points
 One approach:

 Identify basic operations on input points
 Two points are adjacent if one basic operation away
 A point is isolated if can’t apply a basic operation

 Example: list of integers
 Basic operations: create, append, remove
 Adjacent points: <[2,3],[2,3,3]>, <[2,3],[2]>
 Isolated point: [] (can’t apply remove integer)

 Point is on a boundary if either
 There exists an adjacent point in different subdomain
 Point is isolated

Other Boundary Cases

 Arithmetic
 Smallest/largest values
 Zero

 Objects
 Null
 Circular
 Same object passed to multiple arguments (aliasing)

boundary cases: Arithmetic Overflow

 public int abs(int x)

 // returns: |x|

 Tests for abs
 what are some values or ranges of x that might be worth probing?

 x < 0 (flips sign) or x ≥ 0 (returns unchanged)
 around x = 0 (boundary condition)
 Specific tests: say x = -1, 0, 1

 How about…
 int x = -2147483648; // this is Integer.MIN_VALUE

System.out.println(x<0); // true
System.out.println(Math.abs(x)<0); // also true!

 From Javadoc for Math.abs:
 Note that if the argument is equal to the value of Integer.MIN_VALUE, the

most negative representable int value, the result is that same value, which is
negative

boundary cases: duplicates and aliases
<E> void appendList(List<E> src, List<E> dest) {

// modifies: src, dest
// effects: removes all elements of src and
// appends them in reverse order to
// the end of dest

while (src.size()>0) {
E elt = src.remove(src.size()-1);
dest.add(elt)

}
}

 What happens if src and dest refer to the same thing?
 This is aliasing – often forgotten
 Watch out for shared references in inputs

Glass-box Testing
 Goal:

 Ensure test suite covers (executes) all of the program
 Measure quality of test suite with % coverage

 Assumption:
 high coverage
 (no errors in test suite output
 few mistakes in the program)

 Focus: features not described by specification
 Control-flow details
 Performance optimizations
 Alternate algorithms for different cases

glass-box motivation

 There are some subdomains that black-box testing won't give:
 boolean[] primeTable = new boolean[CACHE_SIZE];

 boolean isPrime(int x) {

 if (x>CACHE_SIZE) {

 for (int i=2; i<x/2; i++) {

 if (x%i==0) return false;

 }

 return true;

 } else {

 return primeTable[x];

 }

 }

 Important transition around x = CACHE_SIZE

Glass Box Testing: Advantages

 Insight into test cases
 Which are likely to yield new information

 Finds an important class of boundaries
 Consider CACHE_SIZE in isPrime example

 Need to check numbers on each side of CACHE_SIZE
 CACHE_SIZE-1, CACHE_SIZE, CACHE_SIZE+1

 If CACHE_SIZE is mutable, we may need to test with
different CACHE_SIZE’s

Glass-box Challenges
 Definition of all of the program

 What needs to be covered?
 Options:

 Statement coverage
 Decision coverage
 Loop coverage
 Condition/Decision coverage
 Path-complete coverage

 100% coverage not always reasonable target

increasing
number of
Cases
(more or
less)

100% may be unattainable (dead code)
High cost to approach the limit

pragmatics: regression testing

 Whenever you find and fix a bug
 Store input that elicited that bug
 Store correct output
 Put into test suite

 Why is this a good idea
 Helps to populate test suite with good tests
 Protects against reversions that reintroduce bug
 Arguably is an easy error to make (happened at least

once, why not again?)

Rules of Testing

 First rule of testing: Do it early and do it often
 Best to catch bugs soon, before they have a chance to hide.
 Automate the process if you can
 Regression testing will save time.

 Second rule of testing: Be systematic
 If you randomly thrash, bugs will hide in the corner until you're gone
 Writing tests is a good way to understand the spec

 Think about revealing domains and boundary cases
 If the spec is confusing write more tests

 Spec can be buggy too
 Incorrect, incomplete, ambiguous, and missing corner cases

 When you find a bug fix it first and then write a test for it

summary
 Testing matters

 You need to convince others that module works
 Catch problems earlier

 Bugs become obscure beyond the unit they occur in
 Don't confuse volume with quality of test data

 Can lose relevant cases in mass of irrelevant ones
 Look for revealing subdomains

 Choose test data to cover
 Specification (black box testing)
 Code (glass box testing)

 Testing can't generally prove absence of bugs
 But can increase quality by reducing the bugs

