
���
ECS510 “ADSOOF”���
Using Objects	

The DrinksMachine examples	

Code vs Execution���
(Static vs Dynamic)	

•  Code (i.e. what we write when we write programs)
is a description	

•  When we execute code on a computer, something
is created according to that description	

•  In the algorithmic view, what is created is the
computer’s performance of a task	

•  In the object-oriented view, what is created is
“objects” which interact with each other 	

Classes vs objects ���
methods vs method calls	

•  A class is a description of an object, a “blueprint”
or a “recipe”	

•  An object is what is created when the code is run,
like a machine built to a blueprint, or a cake made
from a recipe	

•  Objects interact through methods	

•  A method is a description of an interaction	

•  A method call is what happens when the

interaction takes place according to the description
in the method	

Parameters vs arguments	

•  A parameter is something in a description that can

be varied to tailor what we build from that
description	

•  For example, a recipe for a cake might have a
parameter “fruit” we could fill in with whatever
fruit we like, or a parameter “amount” we could
fill in depending on what size cake we want	

•  An argument is the value we fill the parameter
with when we use the description to make
something	

Constructors and methods	

•  The constructor of an object is the
“blueprint” or “recipe” used to create it	

•  A class contains one or more constructors,
the constructors have parameters used to
tailor the objects created by them	

•  A method in a class describes an interaction
with an object of that class, it may also have
parameters used to tailor the interaction	

Abstraction and example	

•  The classes we write in algorithms and data

structures tend to be abstract, describing things
like “list” or “set” or “comparison operator”	

•  To start off, though, we’ll look at something more
“concrete”	

•  We can often be helped to understand abstract
concept by considering more concrete examples	

•  The details of the examples are not important, the
more more general principles they are trying to
illustrate are	

Insert	

coins	

Balance

Price

Coke	

Fanta	

Empty

Empty!

Change

Cans here Change here!

+ additional operations for machine owner!

Objects as machines	

•  Many machines (objects) built to the same design

(class)	

•  We can use the machine without knowing how it

works inside	

•  But we know how it interacts with us

(specification)	

•  We can only interact with it through its public

interface (methods)	

DrinksMachine methods	

 void insert(int n)!
 int getBalance()!
 int getPrice()!
 boolean cokesEmpty()!
 boolean fantasEmpty()!
 int pressChange()!
 Can pressCoke()!
 Can pressFanta()!
 void loadCoke(Can can)!
 void loadFanta(Can can)!
 void setPrice(int p)!
 int collectCash()

An object method may …	

•  Take arguments (inserting coin into machine)	

•  Return a value (show balance, show emptiness,

deliver can)	

•  Change the state of the object it is called on

(machine behaves differently next time)	

•  Change the state of an argument (no direct

equivalent with drinks machine)	

	
The types tell us what sort of thing can be inserted
where and what sort of thing will be shown/
delivered	

Take/return v. read/write	

•  Do not confuse “take as argument” with “read”	

•  or “return” with “write”	

•  although we sometimes (sloppily) say “input” and

“output” for both	

•  In this course we are concerned with methods

interacting with other methods - invisibly	

•  Good programming practice is that the part of

program which interacts with outside world (GUI/
files/network) is separate from the rest (Model-
View-Controller)	

Objects and variables	

In Java, a variable name always refers to an
object of its type (or is null)	

	

	

DrinksMachine m1;!
!
	

m1	

Objects and variables	

In Java, a variable name always refers to an
object of its type (or is null)	

	

	

DrinksMachine m1;!
!
m1 = new DrinksMachine(50);	

m1	

50	

Constructors	

•  A constructor creates a new object of its
class	

•  A constructor is called by the word new
followed by the name of the class followed
by arguments	

DrinksMachine constructors	

 !DrinksMachine(int p)!
 DrinksMachine(int p, int c, int f)

 	

!
DrinksMachine m1;!
m1 = new DrinksMachine(50);!
DrinksMachine m2 = new DrinksMachine(60);!
!

	
 50	
 60	

m1	
 m2!

 	

!
DrinksMachine m1;!
m1 = new DrinksMachine(50);!
DrinksMachine m2 = new DrinksMachine(60);!
…!
m2=m1;!

	

50	

m1	
 m2!

Aliasing	

before!
m2=m1;	

50	
 60	

m1! m2! m3!

Aliasing	

after!
m2=m1;	

50	
 60	

m1! m2! m3!

Method calls	

•  A call to a non-static method must be “attached”
to a reference to an object, usually a variable name	

•  The class of the variable says what methods can
be called on it	

•  The method works on the object the variable it is
called on refers to	

•  The arguments in the method call must be of the
correct types as given by its signature	

Side effect	

before!
m1.setPrice(70);!

50	
 60	

m1! m2! m3!

Side effect	

after!
m1.setPrice(70);	

70	
 60	

m1! m2! m3!

Mutable v. Immutable	

•  If a class has no methods which can change the

state of objects of that class, objects of that class
are called immutable.	

•  Otherwise, objects are mutable	

•  Immutable objects do not suffer from the problem

of side-effects	

•  A method call with particular arguments on an

immutable object will always return the same
value	

Return values	

•  A method call which changes the state of the

object it is called on can be a statement on its own:	

	
m.setPrice(70);	

•  A method call which returns a value is normally
used as part of a statement which uses that value:	

!int p=m.getPrice();!
!…!
!System.out.println(m.getPrice());	

Static methods	

•  When a static method is called, it is not attached to

an object	

•  A static method call runs in its own environment	

•  This means it uses only its own variables named

from the method header and local declarations	

•  Each static method call creates a new

environment, there is no connection between
variables in this environment and variables of the
same name in another environment (even for the
same method)	

How static method calls work	

•  Method call:	

cans = spendOnCokes(amount,machine);	

•  Method header (signature):	

public static !
 int spendOnCokes(int sum,DrinksMachine mach)!

•  Effect:	

	
sum=amount;!
	
mach=machine;	

	
obey code in method using new environment	

	
cans = return value	

 	

 public static int!
 spendOnCokes(int sum,DrinksMachine mach)!
 {!
 int count=0;!
 mach.insert(sum);!
 while(!mach.cokesEmpty()&&!
 mach.getBalance()>=mach.getPrice())!
 {!
 mach.pressCoke();!
 count++;!
 }!
 return count;!
 }!

How method calls change ���
object arguments	

0! 200!

count! sum! mach!

200!

cans! amount! machine!

Scope of objects and ���
factory methods	

•  An object remains in existence so long as at least
one variable refers to it	

•  An object created in a method will remain in
existence if (a reference to) it is returned from the
method:	

	
m1 = cheaperBy10p(m2);	

•  A method which creates and returns an object is
sometimes known as a “factory method”	

 	

 public static DrinksMachine

cheaperBy10p(DrinksMachine mach1)!
 {!
 int p = mach1.getPrice()-10;!
 DrinksMachine mach2 = new DrinksMachine(p);!
 return mach2;!
 }

 Constructive v. Destructive	

	
Be careful to distinguish between the previous method and
the following:	

	

 public static void
reduceBy10p(DrinksMachine mach1)!

 {!
 int p = mach1.getPrice()-10;!
 mach1.setPrice(p);!
 }!
!

	
The previous method constructed and returned a new
DrinksMachine object, this method changes the actual
DrinksMachine object passed to it.	

Method calls leading to aliasing	

•  A method call may return (a reference to) an

object that was passed to it as an argument:	

!mach3 = cheaper(mach1,mach2);	

•  This leads to aliasing, here mach3 could be an
alias of mach1 or mach2	

•  We can test for aliases:	

	
if(mach3==mach1) …	

•  Note == with objects only tests for aliasing,
mach3.equals(mach1) may be more general	

	

 	

public static DrinksMachine !
cheaper(DrinksMachine m1,DrinksMachine m2)!
{!
 if(m1.getPrice()<m2.getPrice())!
 return m1;!
 else!
 return m2;!
}

Exceptions	

c = mach.pressCoke();	

	
with c of type Can, mach of type
DrinksMachine normally returns a
(reference to a) Can object	

How do we represent “no can returned”?	

•  Return null - simple, but poor Java	

•  Throw an exception - good Java	

 ���
	

•  Signature of method which throws exception:	

Can pressCoke() throws EmptyMachineException!

•  Code for catching exception:	

try {!
 …!
 c = mach.pressCoke();!
 …!
 }!
catch(EmptyMachineException e)!
 {!
 …!
 }!

Checked and unchecked
exceptions	

•  Checked exceptions have to be caught in a
try-catch statement, or indicated as thrown
in the method signature	

•  Unchecked (“run-time”) exceptions can be
caught in a try-catch statement, but it’s not
compulsory	

Using objects	

•  This section concentrated on using objects,
nothing on writing classes to define objects	

•  Most of it should have been revision	

•  Practice on the code examples to make sure

you understand the principles	

•  Generalise - DrinksMachine was used to

illustrate more general principles	

