
ECS510���
Algorithms and Data Structures in an���

Object Oriented Framework���
“ADSOOF”���

 ���
Using Arrays	

 	

Array Types	

•  In Java, for any type adding [] to the type gives a

new type which we call “array of …” where … is
the original type (called the “base type”)	

•  So:	

–  int[] 	

 	

 	

array of integers	

–  String[] 	

 	

array of strings	

–  DrinksMachine[] 	

array of DrinksMachines	

–  int[][] 	

 	

array of array of integers	

Use of Array Types/Variables	

•  You can use array types in the same way as you

can use any other type:	

–  Declare variables of the type	

–  Have method parameters of the type 	

–  Have it as a method return type	

•  You can use variables of an array type in the same
way as any other variables 	

–  Assign to them	

–  Pass them as arguments to methods	

–  Use them in return statements in methods	

Arrays as objects	

An array type is an object type, so	

•  Declaring a variable of an array type does not

create an object of that type	

	

int[] a,b;	

•  Assignment of array type variables leads to
aliasing	

!b=a;!

•  So when an array is an argument to a method call,
the local variable when the method is evaluated is
initialised to an alias of the argument variable	

Array Syntax	

•  Arrays are an indexed collection of items of the

base type	

•  If a refers to an array, a[expr] refers to an item

in the array, where expr evaluates to an integer
value when the code is run	

•  You can treat a[expr] as a variable, use it in
expressions, assign to it:	

! !n=a[i]+1;!
! !m=test(a[i*2]);!
! !a[i]=n*2;	

Array construction	

•  An array object is constructed by	

	

 	

new t[expr]	

	

where t is the base type, and expr evaluates to
an integer value when the code is run	

•  If v is the value of expr when the code runs, then
the array object is fixed at having v items, indexed
from 0 to v-1.	

•  Although an array object is of fixed size, an array
variable can be reassigned from referring to an
array of one length to referring to an array of
another length.	

Other array issues	

•  If a is a variable of an array type, a.length is the

length of the array it currently refers to	

•  With a[expr] if expr evaluates to a negative

integer or one equal to or greater than a.length,
an ArrayIndexOutOfBoundsException is
thrown	

•  Arrays are the only objects which have special
symbols for accessing parts of them. All other
collection objects only use ordinary method calls	

Array Aliasing	

•  If a and b are array variables and currently

aliases, and expr1 and expr2 evaluate to the
same value, then a[expr1] and b[expr2] are
the same variable 	

•  So changing one changes the other, a[i]=val
changes b[i]because a[i] and b[i] are the
same location	

•  Usual aliasing rules apply, so b=c causes b to
stop being an alias of a and become an alias of c	

Searching for an item in an array	

public static boolean isIn(String[] a, String str)!
{!
 for(int i=0; i<a.length; i++)!
 if(a[i].equals(str))!
 return true;!
 return false;!
}

•  When isIn(dict,word) is called, a is an alias for
dict (and str is an alias for word)	

•  This is linear search, if we know the array is ordered, we
can use binary search	

•  Same algorithm used for any base type (String here)	

Position of an item in an array	

public static int isIn(String[] a, String str)!
{!
 for(int i=0; i<a.length; i++)!
 if(a[i].equals(str))!
 return i;!
 return -1;!
}

•  Returning -1 for “not found” is a common convention	

•  If the item occurs more than once, this would return the

lowest index where it occurs	

•  Best to specify exactly what is wanted when there is more

than one possibility	

Biggest item in an array	

static int biggest(int[] a)!
{!
 int biggestSoFar=a[0];!
 for(int i=1; i<a.length; i++)!
 if(a[i]>biggestSoFar)!
 biggestSoFar=a[i];!
 return biggestSoFar;!
}

•  Same algorithm can be used for “most …” t in an array of
t by varying base type and test	

•  Java has ways of generalising code to enable one method
to be used in a variety of circumstances (see later)	

•  Assumes array length is not 0

Loop invariant	

In:! !biggestsofar=a[0];!
! !for(int i=1; i<a.length; i++)!

 ! !if(a[i]>biggestSoFar)!
 ! ! biggestSoFar=a[i];!

•  Each time the loop body starts, biggestsofar holds the
largest integer in the portion of the array up to but not
including position i. 	

•  When the loop finishes, we know i is equal to a.length	

•  So when the loop finishes, we know biggestsofar

holds the largest integer in the whole array	

•  A condition which holds each time a loop body starts is

known as a “loop invariant”, and is a way we can prove
algorithms to be correct	

Naming conventions	

•  Java recommends initial upper case letter for class

names, initial lower case letter for method names
and variable names	

•  Class and method names should always be
meaningful	

•  Meaningful variable names are good if it helps
explain what they are being used for	

•  Variable names can be short in short generalised
code, where the use of the variable is obvious	

•  Short names also have conventions	

Short name conventions	

•  Use i, j for integers that loop through ranges, but

not anywhere else	

•  Array parameters are commonly named a or arr,
b for further arrays	

•  Use m, n for integer parameters	

•  Use x, y for floating point values only	

•  Use str, or str1, str2 for Strings (or name,
word, key etc if appropriate)	

•  Short abbreviations for other types	

•  Be cautious of temp and flag (can indicate

poorly structured code in their conventional uses)	

Changing arrays destructively	

public static void dchange(String[] a, String w1, String w2)!
{!
 for(int i=0; i<a.length; i++)!
 if(a[i].equals(w1))!
 a[i]=w2;!
}	

means 	

	

dchange(b,word1,word2); 	

changes each word1 in b to word2!
•  Works because a in the method call aliases b outside	

Changing arrays constructively	

public static String[] cchange(String[] a, String w1, String w2)!
{!
 String[] a1 = new String[a.length];!
 for(int i=0; i<a.length; i++)!
 if(a[i].equals(w1))!
 a1[i]=w2;!
 else!
 a1[i]=a[i];!
 return a1;!
}!

means 	

	

c=cchange(b,word1,word2); 	

makes a new array which is like b but each word1 is changed to 	

word2, sets c to that array	

Using constructive array methods	

•  c=cchange(b,word1,word2);!
	

The new array is created in the method call, but remains in
existence because c aliases it	

•  b=cchange(b,word1,word2);!
	

Does not change b destructively, seems to because b is
assigned to refer to the new array 	

•  cchange(b,word1,word2);!
	

On its own achieves nothing, because nothing is assigned
to alias the array created in the method call!

Effect on aliases	

• c=b;!
!dchange(b,word1,word2);	

	

changes c as well, it is an alias to b, the old
value of the array is destroyed.	

• c=b;!
!b=cchange(b,word1,word2);	

	

does not change c, it continues to refer to
what was the old value of b	

Changing the size of an array	

•  The contents of an array can be changed
destructively, but its size cannot	

•  So any operation which changes the size of
an array must be done constructively	

•  Technique is to create a new array of the
required size, copy items into required
position, return array	

Copying an array	

public static String[] copy(String[] a)!
{!
 String[] b = new String[a.length];!
 for(int i=0; i<a.length; i++)!
 b[i]=a[i];!
 return b;!
}

•  Be careful to distinguish between a copy of an array and an
alias of an array	

•  Note b[i]=a[i] means the contents of the copy are
aliases if the base type is an object type …

Adding an item to an array	

public static String[] add(String[] a, String str)!
{!
 String[] b = new String[a.length+1];!
 for(int i=0; i<a.length; i++)!
 b[i]=a[i];!
 b[a.length]=str;!
 return b;!
}!

•  means 	

	

c=add(c,word);	

	

“adds” word to the end of c

This won’t work!	

public static void add(String[] a, String str)!
// THIS IS SILLY CODE!!
{!
 String[] b = new String[a.length+1];!
 for(int i=0; i<a.length; i++)!
 b[i]=a[i];!
 b[a.length]=str;!
 a=b;!
}

	

will not cause add(c,word) to add word to the end of
c destructively because a starts aliasing c, but the a=b
causes a to alias b while leaving c as it was

Removing item at a position	

public static String[] removePos(String[] a, int pos)!
{!
 String[] b = new String [a.length-1];!
 for(int i=0; i<pos; i++)!
 b[i]=a[i];!
 for(int i=pos+1; i<a.length; i++)!
 b[i-1]=a[i];!
 return b;!
}!
•  New array one less in size	

•  Items before pos put into same position	

•  Items after pos put one place before previous position	

•  Throw an ArrayIndexOutOfBoundsException if pos is not a

position in the array. Specify this? Add check to code?

Destructive removal of an item at a position?	

public static void removePos(String[] a, int pos)!
{!
 a[pos]="";!
}!
!
•  No, this is replacing the element at position pos by "", not removing it.	

•  The array:	

	

["apple","pear","plum","","peach","banana"]	

 is not the same as:	

	

["apple","pear","plum","peach","banana"]	

•  Neither is:	

	

["apple","pear","plum",null,"peach","banana"]	

•  Setting a position to null does not cause following elements to be

moved down by one position.	

Removing a particular item	

public static String[] remove(String[] a, String w) !
{!
 int i=0;!
 for(; i<a.length; i++)!
 if(a[i].equals(w))!
 break;!
 if(i<a.length) !
 {!
 String[] b = new String[a.length-1];!
 for(int j=0; j<i; j++)!
 b[j]=a[j];!
 for(int j=i+1; j<a.length; j++)!
 b[j-1]=a[j];!
 return b;!
 }!
 else !
 {!
 String[] b = new String[a.length];!
 for(i=0; i<a.length; i++)!
 b[i]=a[i];!
 return b;!
 }!
}

Removing a particular item	

•  We did not know whether the item occurred, so

we could not create the new array until we found
out	

•  If the item occurred, the new array is one less in
size of the argument array	

•  If the item did not occur, we still create a new
array (copy of argument) because otherwise after	

	

b=remove(a,str);	

	

we would not know if b is an alias of a or not,
better to know it can’t be	

Recursion	

•  Recursion is when a problem is solved by solving a smaller

version of the problem and using that to get the required
result	

•  In coding terms it means a method that makes a call to the
same method 	

•  Binary recursion is when the problem is solved by solving
two smaller versions and putting the results together, so
two calls to the same method 	

•  For processing arrays, it is generally better to use iteration
(that is, loops) rather than recursion 	

•  So the following examples are just given to illustrate some
of the concepts, and to help you understand recursion	

Finding the biggest recursively (1)	

 public static int biggest(int[] a) {!
 return biggest(a,a[0],1);!
 }!
!

 private static int biggest(int[] a,!
 int biggestSoFar, int i) {!
 if(i<a.length)!
 if(a[i]>biggestSoFar)!
 return biggest(a,a[i],i+1);!
 else!
 return biggest(a,biggestSoFar,i+1);!
 else!
 return biggestSoFar;!
 }!

•  This is tail recursion, as the result of a recursive call is returned
directly. 	

Tail Recursion and Iteration	

•  Tail recursion is identical in terms of algorithm to the use of a

loop (iteration)	

•  However, where a loop involves changing the value of a

variable or variables each time round the loop, tail recursion
involves creating new variables of the same name but with the
different values as the arguments to recursive calls	

•  So in this example, instead of one variable called i giving the
current position, each call has its own variable called i	

•  Also, each call has its own variable called a, but they all alias
the same array object	

•  Each call has its own variable called biggestSoFar, setting
it to a different value is equivalent to assignment in iteration	

•  Tail recursion takes up space due to the old environments
remaining in place even though they are not used again	

Finding the biggest recursively (2)	

 public static int biggest(int[] a) {!
 return biggest(a,0);!
 }!
!

 private static int biggest(int[] a, int from) {!
 if(from==a.length-1)!
 return a[from];!
 else {!
 int biggestOfRest = biggest(a,from+1);!
 if(a[from]>biggestOfRest)!
 return a[from];!
 else!
 return biggestOfRest;!
 }!
 }!

•  This is not tail recursion because the result of the recursive call is
processed to give the return value instead of just being returned	

Thinking recursively	

•  The way of thinking about this second example of finding

the biggest expressed recursively is:	

–  To find the biggest element in the portion of an array starting at

position from, find the biggest in the portion starting at position
from+1, and return whichever is the biggest of that and the
element at position from	

–  If from is the last position, just return the element at that position
(the base case)	

•  When from is 0, that means the biggest of the whole array
is returned	

•  It can help develop algorithms to be able to think
recursively	

•  However, tail recursion should be converted to iteration	

Finding the biggest recursively (3)	

 public static int biggest(int[] a) {!
 return biggest(a,0,a.length);!
 }!
!

 private static int biggest(int[] a, int from, int to) {!
 if(to==from+1)!
 return a[from];!
 else if(to==from+2)!
 return a[from]>a[from+1] ? a[from] : a[from+1];!
 else {!
 int mid=(from+to+1)/2;!
 int biggest1=biggest(a,from,mid);!
 int biggest2=biggest(a,mid,to);!
 return biggest1>biggest2 ? biggest1 : biggest2;!
 }!
 }!
•  This is an example of binary recursion	

Recursion and arrays	

•  In the binary recursion example, finding the biggest uses

the algorithm:	

–  Cut the array in half, find the biggest in each half and return

whichever of those is the biggest	

–  Or, if the array portion being considered has just one element, just

return that element (the base case)	

–  Or if it has two elements, return the biggest of the two	

•  What this actually involves is having an array and indexes
to the start and finish positions of the portion being
considered	

•  This technique is also used in the binary search and
quicksort algorithms when used with arrays	

•  However, recursion makes more sense when used with
data structures that can more naturally be divided into
pieces	

Removing an item recursively (1)	

 public static int[] remove(int[] a, int n)!
 // Works, but very inefficient!
 {!
 if(a.length==0)!
 return a;!
 int[] b = new int[a.length-1];!
 for(int i=0; i<b.length; i++)!
 b[i]=a[i+1];!
 if(a[0]==n)!
 return b;!
 int[] c = remove(b,n);!
 int[] d = new int[c.length+1];!
 d[0]=a[0];!
 for(int i=0; i<c.length; i++)!
 d[i+1]=c[i];!
 return d;!
 }!

Removing an item from an array recursively (1):���
Algorithm	

•  If the array is of length 0, return the array	

•  If the first item in the array (index 0) is the item to be

removed, return a new array consisting of all elements
except the first element	

•  Otherwise, get the result of removing the item from an
array consisting of all elements except the first element,
and create and return a new array consisting of that result
plus the original first element put at the front	

•  This is very inefficient because each recursive call involves
creating an entire new array and copying references into it	

•  It is a more efficient approach when used with a data
structure where something similar can be done but without
copying every reference	

Removing an item from an array recursively (2)���
	

 public static int[] remove(int[] a, int n) {!

 return remove(a,0,n);!
 }!
!
 private static int[] remove(int[] a, int pos, int n) {!
 if(pos==a.length)!
 return new int[a.length];!
 if(a[pos]==n) {!
 int[] b = new int[a.length-1];!
 for(int i=pos; i<b.length; i++)!
 b[i]=a[i+1];!
 return b;!
 }!
 int[] c = remove(a,pos+1,n);!
 c[pos]=a[pos];!
 return c;!
 }!
!

Removing an item from an array recursively (2)���
	

•  This is efficient because it only creates one new array	

•  The new array is created when the position of the item
being removed is found, or the end of the array is
reached and it has not been found 	

•  These are the “base cases” (no further recursion)	

•  What is passed to a recursive call is a reference to the

original array and a position	

•  What is returned from the recursive calls is a reference

to the one new array created	

•  References to elements are copied into the new array

after the recursive call returns a reference to it	

•  It is still better to use iteration for processing arrays in

most cases	

Using Arrays	

•  Arrays are the oldest way of structuring data, they

have been in programming languages since the
earliest days, and reflect the underlying hardware	

•  But they are inflexible, fixed length, cannot insert/
delete items	

•  Arrays are a building block for constructing other
more flexible “abstract data types” (see later)	

•  In this section we also considered issues such as
destructive/constructive which apply more
generally	

