
ECS510���
Algorithms and Data Structures in an���

Object Oriented Framework���
���

“ADSOOF” ���
Sorting and Efficiency 	



  	





Constructive Insertion Sort of ArrayList	


 public static ArrayList<Integer> sort(ArrayList<Integer> a)!
 {!
  ArrayList<Integer> b = new ArrayList<Integer>();!
  for(int i=0; i<a.size(); i++)!
     insert(a.get(i),b);!
  return b;!
 }!
!
 private static void insert(Integer n,ArrayList<Integer> b)!
 {!
  int i;!
  for(i=0; i<b.size()&&b.get(i).compareTo(n)<0; i++) {}!
  b.add(i,n);!
 }




Same algorithm	


 public static ArrayList<Integer> sort(ArrayList<Integer> a)!
 {!
  ArrayList<Integer> b = new ArrayList<Integer>();!
  for(int i=0; i<a.size(); i++)!
     {!
      int n = a.get(i);!
      int j;!
      for(j=0; j<b.size()&&b.get(j).compareTo(n)<0; j++) {}!
      b.add(j,n);!
     }!
  return b;!
 }!
!

	

When asked to write “a method” for a problem, it’s always 
acceptable and often leads to easier to understand code to 
write one which uses a separate helper method !

!



Insertion Sort Algorithm	


•  To sort ArrayList a, set up new empty ArrayList b	


•  Then go through each item of a and insert into its 

ordered position in b	


•  To insert n into b, go through each position in b, 

starting at 0, until you have a position where the 
item is greater than n, or you have reached the end	



•  Insert n into that position (following items will be 
moved up one place)	



•  Loop invariant for sort is that b has the first i 
items of a in order	





       ���
	



a![30,25,47,99,8,12,28,63,16,20]!
       ^	


i=0!
b []	





       ���
	



a![30,25,47,99,8,12,28,63,16,20]!
             ^	


i=1!
b [30]	





       ���
	



a![30,25,47,99,8,12,28,63,16,20]!
                    ^	


i=2!
b [25,30]	





       ���
	



a![30,25,47,99,8,12,28,63,16,20]!
                           ^	


i=3!
b [25,30,47]	





       ���
	



a![30,25,47,99,8,12,28,63,16,20]!
                                   ^	


i=4!
b [25,30,47,99]	





       ���
	



a![30,25,47,99,8,12,28,63,16,20]!
                                       ^	


i=5!
b [8,25,30,47,99]	





       ���
	



a![30,25,47,99,8,12,28,63,16,20]!
                                              ^	


i=6!
b [8,12,25,30,47,99]	





       ���
	



a![30,25,47,99,8,12,28,63,16,20]!
                                                      ^	


i=7!
b [8,12,25,28,30,47,99]	





       ���
	



a![30,25,47,99,8,12,28,63,16,20]!
                                                             ^	


i=8!
b [8,12,25,28,30,47,63,99]	





       ���
	



a![30,25,47,99,8,12,28,63,16,20]!
                                                                    ^	


i=9!
b [8,12,16,25,28,30,47,63,99]	





       ���
	



a![30,25,47,99,8,12,28,63,16,20]!
                                                                    	


i=10!
b [8,12,16,20,25,28,30,47,63,99]	





Insertion Sort on ArrayList “In Place” 	


 public static void sort(ArrayList<Integer> a)!
 {!
  for(int i=1; i<a.size(); i++)!
     insert(a.get(i),a,i);!
 }!
!
 private static void insert(Integer n,ArrayList<Integer> a,int i)!
 {!
  for(; i>0&&a.get(i-1).compareTo(n)>0; i--)!
     a.set(i,a.get(i-1));!
  a.set(i,n);!
 }




Sorting in place	


•  There is only one collection	


•  Sorting is done by moving items in the collection	


•  Here insert(a.get(i),a,i); has the effect 

“move items from position i-1 up one place, until 
the correct position for the item which was at 
position i is found, then put that item at that 
position”	



•  As it does not rely on expanding the ArrayList, it 
works on arrays as well	





Insertion sort on arrays in place	


 public static void sort(Integer[] a)!
 {!
  for(int i=1; i<a.length; i++)!
     insert(a[i],a,i);!
 }!
!
 private static void insert(Integer n, Integer[] a, int i)!
 {!
  for(; i>0&&a[i-1].compareTo(n)>0; i--)!
     a[i]=a[i-1];!
  a[i]=n;!
 }




Loop invariant for sort	


 public static void sort(Integer[] a)!
 {!
  for(int i=1; i<a.length; i++)!
     insert(a[i],a,i);!
 }!
!

	

Each time round the loop, the array a has the first 
i items from the array as it was initially but 
rearranged in order




      ���
	



[30|25,47,99,8,12,28,63,16,20]!
!
i=1!



      ���
	



[25,30|47,99,8,12,28,63,16,20]!
!
i=2!



      ���
	



[25,30,47|99,8,12,28,63,16,20]!
!
i=3!



      ���
	



[25,30,47,99|8,12,28,63,16,20]!
!
i=4!



      ���
	



[8,25,30,47,99|12,28,63,16,20]!
!
i=5!



      ���
	



[8,12,25,30,47,99|28,63,16,20]!
!
i=6!



      ���
	



[8,12,25,28,30,47,99|63,16,20]!
!
i=7!



      ���
	



[8,12,25,28,30,47,63,99|16,20]!
!
i=8!



      ���
	



[8,12,16,25,28,30,47,63,99|20]!
!
i=9!



      ���
	



[8,12,16,20,25,28,30,47,63,99]!
!
i=10!



Inserting 	



Environment for sort	


i=6	


a=[8,12,25,30,47,99|28,63,16,20]!
Environment for insert!
n=28!
a= alias to above!
i=6!



   	



[8,12,25,30,47,99,28,63,16,20]!
                  ^!
before a[i]=a[i-1]!
n=28!
i=6!



   	



[8,12,25,30,47,99,99,63,16,20]!
                  ^!
after a[i]=a[i-1]!
n=28!
i=6!



   	



[8,12,25,30,47,99,99,63,16,20]!
               ^!
before a[i]=a[i-1]!
n=28!
i=5!



   	



[8,12,25,30,47,47,99,63,16,20]!
               ^!
after a[i]=a[i-1]!
n=28!
i=5!



   	



[8,12,25,30,47,47,99,63,16,20]!
             ^!
before a[i]=a[i-1]!
n=28!
i=4!



   	



[8,12,25,30,30,47,99,63,16,20]!
            ^!
after a[i]=a[i-1]!
n=28!
i=4!



   	



[8,12,25,30,30,47,99,63,16,20]!
         ^!
At end of loop!
n=28!
i=3!



   	



[8,12,25,28,30,47,99,63,16,20]!
         ^!
After a[i]=n!
n=28!
i=3!



Selection Sort Algorithm	



Another sort in place algorithm	


•  Find lowest item, swap with item at position 0	


•  Find second lowest item, swap with item at position 1	


•  Find third lowest item, swap with item at position 2	


…	


•  Find n‑1th lowest item, swap with item at position n‑2  

(n items in total – this deals with last two)	





Selection Sort Code	


public static void sort(Integer[] a)!
 {!
  for(int i=0; i<a.length-1; i++)!
     {!
      int pos = findMinPos(a,i);!
      Integer temp = a[pos];!
      a[pos]=a[i];!
      a[i]=temp;!
     }!
 }!
 !
 private static int findMinPos(Integer[] a,int pos)!
 {!
  for(int i=pos+1; i<a.length; i++)!
     if(a[i].compareTo(a[pos])<0)!
        pos=i;!
  return pos;!
 }







   ���
	



[30,25,47,99,8,12,28,63,16,20]!
 ^           ^!
i=0!
pos=4!



   ���
	



[8|25,47,99,30,12,28,63,16,20]!
 ^          ^!
i=0!
pos=4!



   ���
	



[8|25,47,99,30,12,28,63,16,20]!
   ^           ^!
i=1!
pos=5!



   ���
	



[8,12|47,99,30,25,28,63,16,20]!
   ^           ^!
i=1!
pos=5!



   ���
	



[8,12|47,99,30,25,28,63,16,20]!
       ^                 ^!
i=2!
pos=8!



   ���
	



[8,12,16|99,30,25,28,63,47,20]!
       ^                 ^!
i=2!
pos=8!



   ���
	



[8,12,16|99,30,25,28,63,47,20]!
         ^                 ^!
i=3!
pos=9!



   ���
	



[8,12,16,20|30,25,28,63,47,99]!
         ^                 ^!
i=3!
pos=9!



   ���
	



[8,12,16,20|30,25,28,63,47,99]!
             ^  ^!
i=4!
pos=5!



   ���
	



[8,12,16,20,25|30,28,63,47,99]!
             ^  ^!
i=4!
pos=5!



   ���
	



[8,12,16,20,25|30,28,63,47,99]!
                ^  ^!
i=5!
pos=6!



   ���
	



[8,12,16,20,25,28|30,63,47,99]!
                ^  ^!
i=5!
pos=6!



   ���
	



[8,12,16,20,25,28|30,63,47,99]!
                  ^^!
i=6!
pos=6!



   ���
	



[8,12,16,20,25,28,30|63,47,99]!
                  ^^!
i=6!
pos=6!



   ���
	



[8,12,16,20,25,28,30|63,47,99]!
                      ^  ^!
i=7!
pos=8!



   ���
	



[8,12,16,20,25,28,30,47|63,99]!
                      ^  ^!
i=7!
pos=8!



   ���
	



[8,12,16,20,25,28,30,47|63,99]!
                        ^^!
i=8!
pos=8!



   ���
	



[8,12,16,20,25,28,30,47,63,99]!
                        !
i=9!
!



Quicksort	



•  Choose pivot (simple version:first item)	


•  Divide rest of collection into two parts:	



–  Items smaller than pivot	


–  Items greater than or equal to pivot	



•  Sort each part	


•  Join two parts together with pivot in middle	





Constructive Quicksort	


 public static ArrayList<Integer> sort(ArrayList<Integer> a) {!
  if(a.size()<=0)!
     return a;!
  ArrayList<Integer> smaller = new ArrayList<Integer>();!
  ArrayList<Integer> greater = new ArrayList<Integer>();!
  Integer pivot = a.get(0);!
  for(int i=1; i<a.size(); i++) {!
      Integer n=a.get(i);!
      if(n.compareTo(pivot)<0)!
         smaller.add(n);!
      else!
         greater.add(n);!
     }!
  smaller=sort(smaller);!
  greater=sort(greater);!
  smaller.add(pivot);!
  smaller.addAll(greater);!
  return smaller;!
 }




   ���
	



[30,25,47,99,8,12,28,63,16,20]!
!
pivot=30!
smaller=[]!
greater=[]!



   ���
	



[30,25,47,99,8,12,28,63,16,20]!
!
pivot=30!
smaller=[25,8,12,28,16,20]!
greater=[47,99,63]!



   ���
	



[30,25,47,99,8,12,28,63,16,20]!
!
pivot=30!
smaller=[8,12,16,20,25,28]!
greater=[47,99,63]!



   ���
	



[30,25,47,99,8,12,28,63,16,20]!
!
pivot=30!
smaller=[8,12,16,20,25,28]!
greater=[47,63,99]!



   ���
	



[30,25,47,99,8,12,28,63,16,20]!
!
pivot=30!
smaller=[8,12,16,20,25,28,30]!
greater=[47,63,99]!



   ���
	



[30,25,47,99,8,12,28,63,16,20]!
!
pivot=30!
smaller=!
[8,12,16,20,25,28,30,47,63,99]!
greater=[47,63,99]!



   ���
	



[30,25,47,99,8,12,28,63,16,20]!
!
!
return!
[8,12,16,20,25,28,30,47,63,99]!
!



An issue with constructive 
quicksort of arrays	



•  We do not know the size of the two parts in advance	


•  With ArrayLists it did not matter, as we created two empty 

ArrayLists for the two parts and added elements as 
appropriate to one or the other	



•  Arrays, however are of fixed size	


•  So do we have to go through the array checking each 

element twice the first time to count the number of 
elements greater or less than the pivot, the second time to 
actually put the elements into the new arrays created after 
the counting has been done?	





 ���
	



…!
Integer pivot = a[0];!
int count=0;!
for(int i=0; i<a.length; i++) !
    if(a[i].compareTo(pivot)<0)!
       count++;!
Integer[] smaller = new Integer[count];!
Integer[] greater = new Integer[a.length-count-1];!
for(int i=1, j=0, k=0; i<a.length; i++)!
   if(a[i].compareTo(pivot)<0)!
       smaller[j++]=a[i];!
   else!
       greater[k++]=a[i];!
…!

•  We can avoid doing this, see next slide:	





 ���
	



…!
 Integer pivot = a[0];!
 boolean[] greaterthan = new boolean[a.length];!
 int count=0;!
 for(int i=0; i<a.length; i++)!
    if(a[i].compareTo(pivot)<0)!
       count++;!
    else!
       greaterthan[i]=true;!
 Integer[] smaller = new Integer[count];!
 Integer[] greater = new Integer[a.length-count-1];!
 for(int i=1, j=0, k=0; i<a.length; i++)!
    if(greaterthan[i])!
       greater[j++]=a[i];!
    else!
       smaller[k++]=a[i];!
…!



What are ArrayLists?	


•  Remember that ArrayLists are just objects with an array and count 

inside, that is how the change of size is managed	


•  Consider from this what is actually happening underneath in the code:	


  ArrayList<Integer> smaller = new ArrayList<Integer>();!
   ArrayList<Integer> greater = new ArrayList<Integer>();!
   Integer pivot = a.get(0);!
   for(int i=1; i<a.size(); i++) {!
      Integer n=a.get(i);!
      if(n.compareTo(pivot)<0)!
         smaller.add(n);!
      else!
         greater.add(n);!
     }	


•  It would be very inefficient if every call of add(n) involved creating 

a new array underneath	


•  Using an abstract data type hides some of the complexity of code, but 

when considering efficiency we need to know what happens 
underneath	





Quicksort in place	



•  Instead of constructing two new arrays for 
smaller and greater items, swap items 
around in array until first part is smaller, 
second part is greater	



•  Then sort two parts – sort method has 
parameters saying which part of array is 
being sorted	





Code for Quicksort in place	


•  The recursive code takes the start and finish positions of the portion of 

the array each call is sorting as its arguments, along with the array 
itself.	



•  So each call has its own from and to arguments, and a variable 
which aliases the one array	



•  The from and to arguments are initially set to 0 and the length of the 
array, this must be done in the public method which calls the 
private recursive method which takes these extra arguments:	



    public static void sort(Integer[] a)!
    {!
     sort(a,0,a.length);!
    }!



   ���
	



    private static void sort(Integer[] a, int from, int to) !
    {!
     if(to>from+1) {!
         Integer pivot = a[from];!
         int low=from+1,high=to-1;!
         while(low<high) {!
             while(low<high&&a[low].compareTo(pivot)<0)!
                 low++;!
             while(pivot.compareTo(a[high])<0)!
                 high--;!
             if(low<high) {!
                swap(a,high,low);!
                low++;!
                high--;!
               }!
            }!
         while(pivot.compareTo(a[high])<0)!
            high--;!
         swap(a,from,high);!
         sort(a,from,high);!
         sort(a,high+1,to);!
        }!
    }!



   Helper Methods	


    !

   private static void swap(Integer[] a, int pos1, int pos2)!
   {!
    Integer temp = a[pos1];!
    a[pos1]=a[pos2];!
    a[pos2]=temp;!
   }!

•  Always provide only the public methods you were asked to 
provide, with only the parameters that were asked for	



•  One method call should do all the work asked for	


•  That method call may make further method calls, to other methods to 

perform subtasks (such as swap here), they are “helper” methods if 
they are defined just for that purpose	



•  Always make helper methods private	


•  Making a helper method public means any other code could use it, 

which in some cases could cause problems	





  	



[30,25,47,99,8,12,28,63,16,20]!
!
Sort portion of array 	


from position 0 	


to position 9!



  	



[30,25,47,99,8,12,28,63,16,20]!
!
!
pivot=30!



  	



[30,25,47,99,8,12,28,63,16,20]!
        ^                   ^!
!
pivot=30!



  	



[30,25,20,99,8,12,28,63,16,47]!
        ^                   ^!
!
pivot=30!



  	



[30,25,20,99,8,12,28,63,16,47]!
           ^             ^!
!
pivot=30!



  	



[30,25,20,16,8,12,28,63,99,47]!
           ^             ^!
!
pivot=30!



  	



[30,25,20,16,8,12,28,63,99,47]!
                   ^^!
!
pivot=30!



  	



[28,25,20,16,8,12|30|63,99,47]!
                   ^!
!
pivot=30!



  	



[28,25,20,16,8,12|30|63,99,47]!
 Sort this part 	


	

from position 0 	


	

to position 5               !
!
!



  	



[8,12,16,20,25,28|30|63,99,47]!
  Sorted	


	

               !
!
!



  	



[8,12,16,20,25,28|30|63,99,47]!
! ! ! ! ! !  Sort this part	


	

 	

 	

 	

 	

 	

     from pos 7	


	

 	

 	

 	

 	

 	

     to pos 9	


	

               !
!
!



  	



[8,12,16,20,25,28|30|47,63,99]!
! ! ! ! ! !   Sorted	


	

 	

 	

 	

 	

 	

	


	

               !
!
!



  	



[8,12,16,20,25,28,30,47,63,99]!
! ! ! !!
              Sorted	


	

 	

 	

 	

 	

 	

	


	

               !
!
!



Recursion expressed using Iteration	


•  A recursive algorithm can be expressed using 

iteration if the implicit stack of environments 
produced by recursive calls is represented by an 
explicit stack of values	



•  There is no real reason for doing this, the idea that 
recursion is always less efficient is false	



•  Looking at how it works, however, may help you 
understand how recursion works underneath	



•  To express quicksort purely iteratively, there 
would have to be a stack of start and finish 
positions	



	





 	

   public static void sort(Integer[] a) {!
     ArrayList<Pair> stack = new ArrayList<Pair>();!
     stack.add(new Pair(0,a.length));!
     while(stack.size()>0)!
        {!
         Pair p=stack.remove(stack.size()-1);!
         int from=p.from;!
         int to=p.to;!
         if(to>from+1) {!
             Integer pivot = a[from];!
             int low=from+1,high=to-1;!
             while(low<high) {!
                 while(low<high&&a[low].compareTo(pivot)<0)!
                     low++;!
                 while(pivot.compareTo(a[high])<0)!
                     high--;!
                 if(low<high) {!
                    swap(a,high,low);!
                    low++;!
                    high--;!
                   }!
                }!
             while(pivot.compareTo(a[high])<0)!
                high--;!
             swap(a,from,high);!
             stack.add(new Pair(from,high));!
             stack.add(new Pair(high+1,to));!
            }!
        }!
    }!



Nested Classes	


•  A nested class is the class equivalent of a helper method	


•  It is a class declared inside another class	


•  It can be used if you want a collection of objects which just 

store data values	


•  The nested class Pair just stores two int values:	


    !
    private static class Pair!
    {!
     int from, to;!

     Pair(int f,int t)!
     {!
      from=f;!
      to=t;!
     }!
    }!

•  Do not use multi-dimensional arrays when a collection of 
objects like this is what you really need	





Merge Sort	



•  Divide collection into two, arbitrarily	


•  Sort two parts	


•  Merge two parts together	


	





    ���
	



[30,25,47,99,8,12,28,63,16,20]!
!
half1=[30,25,47,99,8]!
!
half2=[12,28,63,16,20]!



    ���
	



[30,25,47,99,8,12,28,63,16,20]!
!
half1=[8,25,30,47,99]!
!
half2=[12,28,63,16,20]!



    ���
	



[30,25,47,99,8,12,28,63,16,20]!
!
half1=[8,25,30,47,99]!
!
half2=[12,16,20,28,63]!



    ���
	



[_,_,_,_,_,_,_,_,_,_]!
i=0!
half1=[8,25,30,47,99]!
j=0!
half2=[12,16,20,28,63]!
k=0!



    ���
	



[8|_,_,_,_,_,_,_,_,_]!
i=1!
half1=[8|25,30,47,99]!
j=1!
half2=[12,16,20,28,63]!
k=0!



    ���
	



[8,12|_,_,_,_,_,_,_,_]!
i=2!
half1=[8|25,30,47,99]!
j=1!
half2=[12|16,20,28,63]!
k=1!



    ���
	



[8,12,16|_,_,_,_,_,_,_]!
i=3!
half1=[8|25,30,47,99]!
j=1!
half2=[12,16|20,28,63]!
k=2!



    ���
	



[8,12,16,20|_,_,_,_,_,_]!
i=4!
half1=[8|25,30,47,99]!
j=1!
half2=[12,16,20|28,63]!
k=3!



    ���
	



[8,12,16,20,25|_,_,_,_,_]!
i=5!
half1=[8,25|30,47,99]!
j=2!
half2=[12,16,20|28,63]!
k=3!



    ���
	



[8,12,16,20,25,28|_,_,_,_]!
i=6!
half1=[8,25|30,47,99]!
j=2!
half2=[12,16,20,28|63]!
k=4!



    ���
	



[8,12,16,20,25,28,30|_,_,_]!
i=7!
half1=[8,25,30|47,99]!
j=3!
half2=[12,16,20,28|63]!
k=4!



    ���
	



[8,12,16,20,25,28,30,47|_,_]!
i=8!
half1=[8,25,30,47|99]!
j=4!
half2=[12,16,20,28|63]!
k=4!



    ���
	



[8,12,16,20,25,28,30,47,63|_]!
i=9!
half1=[8,25,30,47|99]!
j=4!
half2=[12,16,20,28,63]!
k=5!



    ���
	



[8,12,16,20,25,28,30,47,63,99]!
i=10!
half1=[8,25,30,47|99]!
j=5!
!



    ���
	



 public static void sort(Integer[] a) {!
  if(a.length>1) {!
      int i,mid = a.length/2;!
      Integer[] half1 = new Integer[mid];!
      Integer[] half2 = new Integer[a.length-mid];!
      for(i=0; i<mid; i++)!
         half1[i]=a[i];!
      for(; i<a.length; i++)!
         half2[i-mid]=a[i];!
      sort(half1);!
      sort(half2);!
      int j=0, k=0;!
      for(i=0; j<half1.length&&k<half2.length; i++)!
         if(half1[j].compareTo(half2[k])<0) {!
             a[i]=half1[j];!
             j++;  !
            }!
         else {!
             a[i]=half2[k];!
             k++;  !
            }!
      for(; j<half1.length; i++, j++)!
         a[i]=half1[j];!
      for(; k<half2.length; i++, k++)!
         a[i]=half2[k];!
     }!
 }!

!



What you need to know	


•  You don’t need to know the exact code for every 

algorithm	


•  You should have a general feel for each algorithm, 

and be able to describe it in precise English	


•  Relating the description of the algorithm to the 

code will improve your programming skills	


•  The aim is to reach the point where you can think 

in terms of algorithm, and translate to code as and 
when needed	





Java’s Built-in Sorting	



•  You don’t really need to write sorting code, 
Java has library code to do it for you	



•   Arrays.sort(a) will sort a 
destructively if a is of an array type	



•   Collections.sort(a) will sort a 
destructively if a is of an ArrayList type	





Natural Ordering	



•   Arrays.sort(a) will sort a in ascending 
numerical ordering if its base type is primitive	



•  Otherwise, it and Collections.sort(a) sort 
in the order given by the compareTo operator 
called on objects of their base type	



•  This is referred to as the base type’s “natural 
order”	





compareTo	


•  With str1 and str2 of type String, 
str1.compareTo(str2) returns	


–  A negative integer if str1 comes before str2 

alphabetically	


–  A positive integer if str1 comes after str2 

alphabetically	


–  0 if they are equal	



•  This means the natural order of strings is 
alphabetical	



•  You could imagine other orderings, e.g. by length	





Generalising sorting	


•  If you write your own class to describe a type of 

object, you can write your own compareTo 
method for the class, this means Java’s built-in 
sort code will sort collections of that type using 
that ordering	



•  Java’s built-in sort code has a way of giving a 
different ordering, so collections can be sorted in 
an order different from natural order	



•  More details on this later	





Efficiency	



•  We have seen several different algorithms 
for the one problem of sorting	



•  When we run them and time them:	


– Some run much faster than others, particularly 

for large amounts of data	


–  It’s always the same algorithms which run 

fastest	





Efficiency analysis	



•  Instead of just running experiments with 
code, try and use reason to see why one 
algorithm runs faster than another	



•  Consider the main action of an algorithm 
and how many times this action takes place	



•  For example, with sorting, the main action 
is to compare one item with another	





Searching	


•  Searching is a simpler problem than sorting, and 

easily demonstrates an algorithm difference when 
searching an ordered collection e.g.	


![8,12,16,20,25,28,30,47,63,99]	



•  Problem is to find whether a particular item is in a 
collection	



•  There are two algorithms:	


–  Linear search	


–  Binary search	





Linear Search	


•  Look at each item in turn until we have 

found the one we want, or found one greater 
than it (as the collection is ordered this 
means the one we want isn’t there)	



 public static boolean search(Integer[] a, Integer n)!
 {!
  int i;!
  for(i=0; i<a.length&&a[i].compareTo(n)<0; i++) {}!
  return (i<a.length&&a[i].equals(n));!
 }!



   ���
	



[8|12,16,20,25,28,30,47,63,99]!
 ^!
n=27!
i=0!



   ���
	



[8,12|16,20,25,28,30,47,63,99]!
    ^!
n=27!
i=1!



   ���
	



[8,12,16|20,25,28,30,47,63,99]!
       ^!
n=27!
i=2!



   ���
	



[8,12,16,20|25,28,30,47,63,99]!
          ^!
n=27!
i=3 !



   ���
	



[8,12,16,20,25|28,30,47,63,99]!
             ^!
n=27!
i=4 !



   ���
	



[8,12,16,20,25,28|30,47,63,99]!
                ^!
n=27!
i=5 !



Best case, Worst case	



•  Best case - item being searched for is first item or 
less than first item, halt after one comparison	



•  Worst case - item being searched for is last item, 
or larger than last item, halt after N comparisons 
for N items	



•  Average case - depends on distribution, N/2 
comparisons if the item occurs and there is an 
equal chance of any item	





Binary Search	



•  Look at middle item	


–  If it is the item we want, halt	


–  If it is greater than the item we want, repeat 

search only on items below it	


–  If it is less than the item we want, repeat search 

only on items above it	


– Halt search with item not found when range 

being searched in is of size 0	





   	

 public static boolean search(Integer[] a, Integer n)!
 {!
  int from=0, to=a.length;!
  while(from!=to)!
     {!
      int mid = (from+to)/2;!
      int res = n.compareTo(a[mid]);!
      if(res==0)!
         return true;!
      else if(res<0)!
         to=mid;!
      else!
         from=mid+1;!
     }!
  return false;!
 }




     ���
	



[|8,12,16,20,25,28,30,47,63,99|]!
                 ^!
n=27!
from=0!
to=10!
mid=5!



     ���
	



[|8,12,16,20,25|28,30,47,63,99]!
        ^                !
n=27!
from=0!
to=5!
mid=2!



     ���
	



[8,12,16|20,25|28,30,47,63,99]!
             ^                !
n=27!
from=3!
to=5!
mid=4!



     ���
	



[8,12,16,20,25||28,30,47,63,99]!
                             !
n=27!
from=5!
to=5!
!



Binary search v. Linear search	



•  Linear search – each step reduces the size of the 
portion to be looked at by 1	



•  Binary search – each step reduces the size of the 
portion to be looked at by half its original size	



•  Linear search – up to N steps for a collection of 
size N	



•  Binary Search - maximum number of steps is the 
number of times N can be cut in half	





How many times can 1000 be cut in half?	


•  1000	


•  500	


•  250	


•  125	


•  62	


•  31	


•  15	


•  7	


•  3	


•  1	


•  0 	

 	

 	

 	

Ten times	





Logarithms	


•  2×2×2×2×2×2×2×2×2×2 = 1024	


•  210 = 1024	


•  log2 1024 = 10	


•  In general if ab=c, we define logac=b	


•  If each step in an algorithm involves one action and 

cutting a collection of original size N into half, it will 
do no more than log2N actions	



•  For large values of N, log2N is much smaller than N	



	





Selection Sort steps	


•  We make N-1 comparisons to find the smallest 

item out of N items	


•  Then N-2 comparisons to find the smallest item 

out of the remaining N-1 items	


•  Then N-3 comparisons to find the smallest item 

out of the remaining N-2 items	


…	


•  Then 2 comparisons to find the smallest item out 

of the remaining 3 items	


•  Finally, 1 comparison to find the smallest item out 

of the remaining 2 items	





Number of comparisons in 
selection sort	



!(N-1)+(N-2)+(N-3)+…+3+2+1	





Number of comparisons in 
selection sort	



!    N+(N-2)+(N-3)+…+3+2	





Number of comparisons in 
selection sort	



!        N+N+(N-3)+…+3	





Number of comparisons in 
selection sort	



!        N+N+N+…  !
	





Number of comparisons in 
selection sort	



!        N+N+N+…  !
N added together (N-1)/2 times	


which is (N2-N)/2	


When N is large, this is almost N2/2	


	





Order of Computation	


!        N+N+N+…  !
N added together (N-1)/2 times	


With (N2-N)/2 steps, when N is large, this is 

almost N2/2	


With a faster or slower computer, the time taken 

could be doubled or halved, but it is still 
proportional to N2	



So we say selection sort is “Order N2” or O(N2)!
	





Big O Notation	



•  Binary search is O(log N)	


•  Linear search is O(N)!
In general:	


•  Find a formula which gives the number of steps	


•  Consider only the most significant term in this 

formula	


•  Ignore constant multiplying factors	





Number of Comparisons in 
Insertion Sort	



–  0 to insert first item into empty sorted list	


–  1 to insert second item into list of 1 item	


–  1-2 to insert third item into list of 2 items	


–  1-3 to insert fourth item into list of 3 items	


…	


–  1-(N-1) to insert Nth item into list of (N-1) items	



•  Best case N-1 comparisons	


•  Worst case (N-1)+(N-2)+…+2+1 comparisons	


•  So insertion sort is O(N2) as well	





Number of Comparisons in 
Merge Sort	



•  None to split list of size N into two	


•  Up to N to merge the two sorted lists of size N/2	


•  Two lists of size N/2 each required N/2 

comparisons to merge two sorted lists of size N/4	


•  Four lists of size N/4 each required N/4 

comparisons to merge two sorted lists of size N/8	


…	


	





N	



N/2	

 N/2	



N/4	

 N/4	

 N/4	

 N/4	



•	


•	


•	



log2N	





Order of Merge Sort	



•  Merge sort can be considered as breaking 
into log2N layers each merging a total of 
up to N items	



•  So merge sort is O(N log N)	


•  When N is large, N log N is much smaller 

than N2	


•  So merge sort is much more efficient than 

selection sort and insertion sort	





Number of comparisons in 
Quicksort	



•  Like merge sort, but the comparisons are 
made when the list is split into two rather 
than when the two sorted lists are joined	



•  If the items are randomly distributed, the 
two lists after the split will be roughly equal 
in size, so same reasoning as merge sort can 
be made	



•  This makes quicksort O(N log N)	





Quicksort - worst case	


•  Suppose the pivot is the first item, and it is always 

the case that all the items are greater than the pivot 
(i.e. list is already sorted)	



•  Then a list of size N will be split into an empty list 
and a list of size N-1 taking N-1 comparisons	



•  Sorting the list of size N-1 takes N-2 
comparisons to give an empty list and a list of size 
N-2	



…	


•  So worst case for quicksort is O(N2)	





Efficiency	


•  Different algorithms for the same problem can 

have big differences in efficiency	


•  For large amounts of data, the algorithm used is 

more important than any other factor in the speed 
of finding a solution	



•  We can use reasoning to categorise algorithms 
under the “big-O” notation	



•  We need to be aware that some algorithms have 
best/worst cases of a different order than their 
average case	




