
ECS510���
Algorithms and Data Structures in an���

Object Oriented Framework���
���

“ADSOOF” ���
���

Lisp Lists and Recursion	

 	

Recursion with Strings	

How do we know if str1 starts with str2?	

•  If first character of str1 not equal to first

character of str2, then no!
•  Otherwise depends on whether rest of str1

starts with rest of str2	

•  If str2 is empty, then yes	

•  If str1 is empty and str2 is not, then no	

This is thinking about a problem recursively	

Recursive method	

 public static boolean startsWith(String str1,String str2)!
 // Returns true if str1 starts with str2, false otherwise!
 {!
 if(str2.length()==0)!
 return true;!
 else if(str1.length()==0)!
 return false;!
 else if(str1.charAt(0)!=str2.charAt(0))!
 return false;!
 else!
 return startsWith(str1.substring(1),str2.substring(1));!
 }

Lisp Lists	

•  Not provided as standard part of Java	

•  Introduced in this module because useful for recursion

examples	

•  Also introduced as an example of an immutable data

structure	

•  A generic type LispList<E>	

•  A Lisp list of type LispList<T> is either empty or

consists of two parts, its “head” (the first element, of type
T), and its “tail” (the rest, of type LispList<T>)	

•  Similar to str.charAt(0) and str.substring(1)	

Lisp List methods	

For LispList<E>	

•  E head()!
•  LispList<E> tail()!
•  LispList<E> cons(E item)!
•  boolean isEmpty()!
•  static LispList<E> empty()	

There are no other methods, and no constructors

(tail, cons and empty are factory methods)	

Abstract Data Type	

•  Lisp lists are also introduced to illustrate the general

idea of an abstract data type (ADT)	

•  An ADT is defined only by its methods in terms of

their specified interaction with other code	

•  LispList<E> will be used to illustrate the general

principle of an ADT implemented by an internal
concrete data structure	

•  So do not confuse LispList<E> with the data
structure used to implement it (linked list, but for
illustration we will also see an array implementation)	

Lisp List properties	

•  List of elements, each has a position	

•  But not indexable (no ls.get(i))	

•  Immutable - no method changes the list it is

called on, cons, tail both return new
lists, so	

	
 	
ls=ls.cons(w); 	
works	

	
 	
ls.cons(w);	
 	
achieves nothing	

Input/Output	

•  For practical purposes add method	

	
 	
String toString()!

•  So ls.toString() returns e.g. "[5,8,2]" 	

•  toString is used automatically e.g in
System.out.print(ls);	

•  We also have	

	
static LispList<Integer>
parseIntLispList(String str)!
	
to do the reverse e.g
ls=parseIntLispList(str);	

Recursive methods with Lisp lists	

•  Consider what you want	

•  Consider what happens when you apply the same

operation to the tail	

•  See how you can put together the result of the

recursive method on the tail with what you have to
get what you want	

•  Example: sum of all integers in a Lisp List of
integers is the head plus the sum of all integers in
the tail (sum of empty list is 0)	

 ���
	

•  What is the sum of [5,3,8,4,2,7]?	

 ���
	

•  What is the sum of [5,3,8,4,2,7]? 	
29	

	

 ���
	

•  What is the sum of [5,3,8,4,2,7]? 	
29	

•  How can we work this out?	

	

 ���
	

•  What is the sum of [5,3,8,4,2,7]? 	
29	

•  What is the sum of [3,8,4,2,7]?	

	

 ���
	

•  What is the sum of [5,3,8,4,2,7]? 	
29	

•  What is the sum of [3,8,4,2,7]? 	
24	

	

 ���
	

•  What is the sum of [5,3,8,4,2,7]? 	
29	

•  What is the sum of [3,8,4,2,7]? 	
24	

•  29=5+24	

	

 ���
	

•  What is the sum of [5,3,8,4,2,7]? 	
29	

•  What is the sum of [3,8,4,2,7]? 	
24	

•  29=5+24	

•  Is this general (doesn’t matter what numbers)?	

	

 ���
	

•  What is the sum of [5,3,8,4,2,7]? 	
29	

•  What is the sum of [3,8,4,2,7]? 	
24	

•  29=5+24	

•  Is this general (doesn’t matter what numbers)? Yes

	
 	
	

	

 ���
	

•  What is the sum of [5,3,8,4,2,7]? 	
29	

•  What is the sum of [3,8,4,2,7]? 	
24	

•  29=5+24	

•  Is this general (doesn’t matter what numbers)? Yes	

•  So the sum of all the numbers in a list is its head

plus the sum of all the numbers in its tail for any
list of numbers 	
 	
	

	

 ���
	

•  What is the sum of [5,3,8,4,2,7]? 	
29	

•  What is the sum of [3,8,4,2,7]? 	
24	

•  29=5+24	

•  Is this general (doesn’t matter what numbers)? Yes	

•  So the sum of all the numbers in a list is its head

plus the sum of all the numbers in its tail for any
list of numbers 	
	

•  So we have a complete algorithm 	
	

	

 ���
	

•  What is the sum of [5,3,8,4,2,7]? 	
29	

•  What is the sum of [3,8,4,2,7]? 	
24	

•  29=5+24	

•  Is this general (doesn’t matter what numbers)? Yes	

•  So the sum of all the numbers in a list is its head

plus the sum of all the numbers in its tail for any
list of numbers 	
	

•  So we have a complete algorithm 	
	

•  Almost - we need to consider the case of a list

which doesn’t have a head and tail	

	

 ���
	

•  What is the sum of [5,3,8,4,2,7]? 	
29	

•  What is the sum of [3,8,4,2,7]? 	
24	

•  29=5+24	

•  Is this general (doesn’t matter what numbers)? Yes	

•  So the sum of all the numbers in a list is its head

plus the sum of all the numbers in its tail for any
list of numbers 	
	

•  So we have a complete algorithm 	
	

•  Almost - we need to consider the case of a list

which doesn’t have a head and tail	

•  Sum of all the numbers in [] is 0	

	

Sum of Lisp List of integers ���
using recursion	

static int sum(LispList<Integer> ls)!
{!
 if(ls.isEmpty())!
 return 0;!
 else!
 return ls.head()+sum(ls.tail());!
}

!

Base Case	

Empty list will be one case, there may be

others when we have a solution in one step	

!
static <T> boolean isIn(LispList<T> ls, T item)!
{!
 if(ls.isEmpty())!
! return false;!

 else if(ls.head().equals(item))!
! return true;!

 else!
! return isIn(ls.tail(),item);!

}	

Building Lisp Lists recursively	

 public static <T> LispList<T> change(LispList<T> ls,T p,T q)!
 {!
 if(ls.isEmpty())!
 return LispList.<T>empty();!
 else!
 {!
 LispList<T> t = change(ls.tail(),p,q);!
 T h = ls.head();!
 if(h.equals(p))!
 return t.cons(q);!
 else!
 return t.cons(h);!
 }!
 }!

 	

•  To change all 6s to 7s in [3,6,5,7,6,4,3]	

 	

•  To change all 6s to 7s in [3,6,5,7,6,4,3]	

•  Answer is [3,7,5,7,7,4,3]	

 	

•  To change all 6s to 7s in [3,6,5,7,6,4,3]	

•  Answer is [3,7,5,7,7,4,3]	

•  Change all 6s to 7s in [6,5,7,6,4,3] is

[7,5,7,7,4,3]	

 	

•  To change all 6s to 7s in [3,6,5,7,6,4,3]	

•  Answer is [3,7,5,7,7,4,3]	

•  Change all 6s to 7s in [6,5,7,6,4,3] is

[7,5,7,7,4,3]	

•  Answer is to change all 6s to 7s in tail, then

cons head to front?	

 	

•  To change all 6s to 7s in [3,6,5,7,6,4,3]	

•  Answer is [3,7,5,7,7,4,3]	

•  Change all 6s to 7s in [6,5,7,6,4,3] is

[7,5,7,7,4,3]	

•  Answer is to change all ps to qs in tail, then

cons head to front?	

 	

•  To change all 6s to 7s in [3,6,5,7,6,4,3]	

•  Answer is [3,7,5,7,7,4,3]	

•  Change all 6s to 7s in [6,5,7,6,4,3] is

[7,5,7,7,4,3]	

•  Answer is to change all ps to qs in tail, then

cons head to front?	

•  Not general for all numbers, change all 6s to

7s in [6,5,7,6,4,3] is [7,5,7,7,4,3] not
[6,5,7,7,4,3]	

 	

•  To change all 6s to 7s in [3,6,5,7,6,4,3]	

•  Answer is [3,7,5,7,7,4,3]	

•  Change all 6s to 7s in [6,5,7,6,4,3] is

[7,5,7,7,4,3]	

•  Answer is to change all ps to qs in tail, then

cons head to front?	

•  Not general for all numbers, change all 6s to

7s in [6,5,7,6,4,3] is [7,5,7,7,4,3] not
[6,5,7,7,4,3]	

•  Special case - if head is p, cons q to front of
result of recursive call	

 	

•  To change all 6s to 7s in [3,6,5,7,6,4,3]	

•  Answer is [3,7,5,7,7,4,3]	

•  Change all 6s to 7s in [6,5,7,6,4,3] is [7,5,7,7,4,3]	

•  Answer is to change all ps to qs in tail, then cons

head to front?	

•  Not general for all numbers, change all 6s to 7s in

[6,5,7,6,4,3] is [7,5,7,7,4,3] not [6,5,7,7,4,3]	

•  Special case - if head is p, cons q to front of result

of recursive call	

•  Plus base case - change all ps to qs in [] is []	

Sum of Lisp List of integers ���
using iteration	

static int sum(LispList<Integer> ls)!
{!
 int sumSoFar=0;!
 for(; !ls.isEmpty(); ls=ls.tail())!
 {!
 int n = ls.head();!
 sumSoFar = sumSoFar+n;!
 }!
 return sumSoFar;!
}!

Stack and reverse	

 public static <T> LispList<T> change(LispList<T> ls1, T p, T q)!
 {!
 LispList<T> ls2 = LispList.empty();!
 for(; !ls1.isEmpty(); ls1=ls1.tail())!
 {!
 T h = ls1.head();!
 if(h.equals(p))!
 ls2 = ls2.cons(q);!
 else!
 ls2 = ls2.cons(h);!
 }!
 LispList<T> ls3 = LispList.empty();!
 for(; !ls2.isEmpty(); ls2=ls2.tail())!
 ls3 = ls3.cons(ls2.head());!
 return ls3;!
 }

A Sort Algorithm	

•  To sort a Lisp list	

–  If list is empty, return empty	

–  Otherwise, sort its tail	

–  and insert its head into correct position in sorted tail	

•  To insert item into a sorted Lisp list	

–  If list is empty, return list of one item	

–  If item is less than head, cons to front	

–  Otherwise, insert item into tail, and cons head to front	

•  Remember, all operations are constructive	

Insertion Sort and Quicksort	

•  The previous algorithm is insertion sort	

•  You may have covered insertion sort before, but you may

not have seen the link between how it was described
previously and how it was described just now	

•  The reason is that insertion sort is often introduced in
introductory programming in a form that involves
swapping the position of elements in an array	

•  The underlying algorithm is as just described, swapping
elements in an array is one way to implement it, so long as
it is with an array and done destructively	

•  Similar applies to quicksort	

Recursion and ���
Algorithm Description	

•  One of the reason for considering recursion is that
description of algorithms in recursive terms tends to
closely match the code for the algorithms implemented
recursively	

•  It is often easier to reason logically that an algorithm will
work correctly when it is described recursively rather than
iteratively	

•  Separating out the core aspects from secondary
implementation details should make it easier to understand
an algorithm from its description	

•  The above assumes that you have reached the point where
you can think recursively: some seem to find that difficult	

Recursion and ���
Algorithm Development	

•  Once you are used to thinking recursively, it can become
easier to develop new algorithms and write code by
starting off thinking of solutions recursively	

•  You can think of the solution in terms of the algorithm,
and then add the code details to implement it, rather than
thinking of it purely in terms of code details	

•  If the recursive algorithm you develop is tail recursive, it
can be modified to give iterative code	

•  In some programming languages, the compiler will
automatically convert tail recursive code to iterative code
at the machine or virtual machine level	

•  Java does not yet do this, although it is being considered	

Insertion sort code (recursive)	

 public static LispList<Integer>

sort(LispList<Integer> ls)!
 {!
 if(ls.isEmpty())!
 return LispList.<Integer>empty();!
 else!
 return insert(ls.head(),sort(ls.tail()));!
 }

Insert code (recursive)	

 private static LispList<Integer> !
 insert(Integer n, LispList<Integer> ls1)!
 {!
 if(ls1.isEmpty())!
 return LispList.empty().cons(n);!
 Integer h = ls1.head();!
 if(h.compareTo(n)>0)!
 return ls1.cons(n);!
 else!
 {!
 LispList<Integer> ls2 = insert(n,ls1.tail());!
 return ls2.cons(h);!
 }!
 }

Quicksort algorithm	

•  Split tail of list into two:	

– All items less than head	

– All items greater than or equal to head	

•  Sort the two lists	

•  Join sorted lists together, with old head in

middle	

•  Base case: sort of empty list is empty list	

 	

 public static LispList<Integer> sort(LispList<Integer> ls)!
 {!
 if(ls.isEmpty()||ls.tail().isEmpty()) return ls;!
 Integer pivot = ls.head();!
 ls = ls.tail();!
 LispList<Integer> smaller = LispList.empty();!
 LispList<Integer> greater = LispList.empty();!
 for(; !ls.isEmpty(); ls=ls.tail())!
 {!
 Integer h = ls.head();!
 if(h.compareTo(pivot)<0)!
 smaller = smaller.cons(h);!
 else!
 greater = greater.cons(h);!
 }!
 smaller = sort(smaller);!
 greater = sort(greater);!
 greater = greater.cons(pivot);!
 return append(smaller,greater);!
 }

Merge sort algorithm	

•  Split list into two lists of equal size, doesn’t
matter how	

•  Sort the two lists	

•  Merge sorted lists together	

 	

 pub1ic static LispList<Integer> sort(LispList<Integer> ls)!
 {!
 if(ls.isEmpty()||ls.tail().isEmpty())!
 return ls;!
 LispList<Integer> ls1 = LispList.empty();!
 LispList<Integer> ls2 = LispList.empty();!
 for(;!ls.isEmpty(); ls=ls.tail())!
 {!
 ls1 = ls1.cons(ls.head());!
 ls = ls.tail();!
 if(!ls.isEmpty())!
 ls2 = ls2.cons(ls.head());!
 else!
 break;!
 }!
 ls1 = sort(ls1);!
 ls2 = sort(ls2);!
 return merge(ls1,ls2);!
 }

 	

 public static LispList<Integer> !
 merge(LispList<Integer> ls1,LispList<Integer> ls2)!
 {!
 if(ls1.isEmpty()) return ls2;!
 else if(ls2.isEmpty()) return ls1;!
 else!
 {!
 Integer h1 = ls1.head();!
 Integer h2 = ls2.head();!
 if(h1.compareTo(h2)<0)!
 {!
 LispList<Integer> ls3 = merge(ls1.tail(),ls2);!
 return ls3.cons(h1);!
 }!
 else!
 {!
 LispList<Integer> ls3 = merge(ls1,ls2.tail());!
 return ls3.cons(h2);!
 }!
 }!
 }

How method calls work	

•  Remember, a method call executes in its own

environment	

•  The variables in its environment are not linked to

variables of the same name in other environments	

•  But the variables in a method call environment

may alias objects from the environment where the
method call was made	

•  When a method call finishes, computation returns
to the environment where the method call was
made	

Recursion example	

 public static <T> LispList<T> !
 append(LispList<T> ls1,LispList<T> ls2)!
 {!
 if(ls1.isEmpty()) return ls2;!
 T h = ls1.head();!
 LispList<T> ls3 = append(ls1.tail(),ls2);!
 return ls3.cons(h);!
 }
•  Consider a call to append where ls1 is [1,2,3] and ls2 is

[4,5,6]	

•  In this environment, h will be set to 1	

•  The recursive call will have its own environment with its own ls1 set

to [2,3], its own ls2 also set to [4,5,6] and its own h set to 2.	

•  When the recursive call finished, it returns [2,3,4,5,6], and

computation goes back to the old environment where h is 1	

•  So [1,2,3,4,5,6] is returned	

 ���
	

ls1=[1,2,3] ls2=[4,5,6] h=1	

 ���
	

ls1=[1,2,3] ls2=[4,5,6] h=1 calls	

ls1=[2,3] ls2=[4,5,6] h=2	

 ���
	

ls1=[1,2,3] ls2=[4,5,6] h=1 calls	

ls1=[2,3] ls2=[4,5,6] h=2 calls!
ls1=[3] ls2=[4,5,6] h=3	

 ���
	

ls1=[1,2,3] ls2=[4,5,6] h=1 calls	

ls1=[2,3] ls2=[4,5,6] h=2 calls!
ls1=[3] ls2=[4,5,6] h=3 calls!
ls1=[] ls2=[4,5,6]	

 ���
	

ls1=[1,2,3] ls2=[4,5,6] h=1 calls	

ls1=[2,3] ls2=[4,5,6] h=2 calls!
ls1=[3] ls2=[4,5,6] h=3 calls!
returns [4,5,6]	

 ���
	

ls1=[1,2,3] ls2=[4,5,6] h=1 calls	

ls1=[2,3] ls2=[4,5,6] h=2 calls!
ls1=[3] ls2=[4,5,6] h=3 ls3=[4,5,6] !

	

 ���
	

ls1=[1,2,3] ls2=[4,5,6] h=1 calls	

ls1=[2,3] ls2=[4,5,6] h=2 calls!
returns [3,4,5,6] !

	

 ���
	

ls1=[1,2,3] ls2=[4,5,6] h=1 calls	

ls1=[2,3] ls2=[4,5,6] h=2 ls3=[3,4,5,6]!

	

 ���
	

ls1=[1,2,3] ls2=[4,5,6] h=1 calls	

returns [2,3,4,5,6]!

	

 ���
	

ls1=[1,2,3] ls2=[4,5,6] h=1 ls3=[2,3,4,5,6]!

	

 ���
	

returns [1,2,3,4,5,6]!

	

Thinking recursively (induction)	

•  Just think of the recursive call as a separate
program which goes off, calculates what is
wanted, and returns it	

•  Check the base case works	

•  Show that if the recursive call works, the

whole method works	

So …	

•  If the base case works, the call whose
recursive call is the base case works	

•  So the call whose recursive call is the call
whose recursive call is the base case works	

•  So the call whose recursive call is the call
whose recursive call is the call whose
recursive call is the base case works	

•  And so on for as long as you like	

Tail Recursion	

•  Tail recursion is when the result of a recursive call is returned

directly as the return value of the call that the recursive call is in	

•  In all the examples we have seen, something is done with the

result of the recursive call to give the value that is returned, so
they are not tail recursive	

•  Tail recursion is almost identical to iteration, because recursive
calls are repeated, but when the base case is reached, the
calculation is done	

•  With recursion that is not tail recursion, work that is to be done
after the recursive call is in effect stacked up in the environments
that are returned to	

•  With tail recursion there is no return to access the environment
of previous recursive calls	

Tail Recursion Example	

static int sum(LispList<Integer> ls, int acc) {!
 if(ls.isEmpty())!
 return acc;!
 else!
 return sum(ls.tail(),acc+ls.head());!
}!

Tail Recursion Example	

static int sum(LispList<Integer> ls, int acc) {!
 if(ls.isEmpty())!
 return acc;!
 else!
 return sum(ls.tail(),acc+ls.head());!
}!

•  Note this is NOT an acceptable solution	

Tail Recursion Example	

static int sum(LispList<Integer> ls, int acc) {!
 if(ls.isEmpty())!
 return acc;!
 else!
 return sum(ls.tail(),acc+ls.head());!
}!

•  Note also that writing this as:	

static int sum(LispList<Integer> ls, int acc) {!
 if(ls.isEmpty()) return acc;!
 else {!
 acc=acc+ls.head();!
 ls=ls.tail();!
 return sum(ls,acc);!
 }!
}!

suggests a way of thinking that is purely iterative	

Java Method Calls (recap)	

•  Java method calls pass values not variables	

•  So every call to a method has its own set of variables, initially those

named by the method parameters	

•  The parameter variables in a method call are assigned the values

passed as the method arguments	

•  Java variables of an object type hold references to objects	

•  Assignment of reference to an object results in an alias to that

object	

•  Changing the value of a variable inside a method call does not

cause the value of a variable of the same name in another method
call to get changed	

•  Changing the value of a variable inside an object does change it for
aliases of that object	

Mutability and Immutability (recap)	

•  An immutable object is one that cannot have its state changed by

calling a method on it	

•  Java Strings are immutable, but Java ArrayLists are mutable	

•  LispList<E> is an example of an immutable collection type	

•  For example, arr.add(val) changes the actual object to which

arr refers 	

•  But ls.cons(val) does not change the actual object to which

ls refers, instead it returns a new object representing the change	

•  So ls.cons(val) only makes sense if a variable is assigned to

refer to what it returns, the same applies to ls.tail()!
•  If ls.cons(val) or ls.tail() is used as an argument to a

method call, it is actually an assignment to a parameter variable of
the method call	

Tail Recursion Example	

private static int sum1(LispList<Integer> ls, int acc) {!
 if(ls.isEmpty())!
 return acc;!
 else!
 return sum(ls.tail(),acc+ls.head());!
}!
!
static int sum(LispList<Integer> ls) {!
 return sum1(ls,0);!
}!

•  If you are asked to write a method which takes some arguments
and returns a value, it is not acceptable to supply code that takes
an extra argument which the calling code has to set to a particular
value	

•  You can get round this by putting the code into a helper method,
as is done here	

Tail Recursion and Iteration	

private static int sum1(LispList<Integer> ls, int acc) {!
 if(ls.isEmpty())!
 return acc;!
 else!
 return sum(ls.tail(),acc+ls.head());!
}!

•  Almost the same as:	

static int sum2(LispList<Integer> ls) {!
 int acc=0;!
 while(!ls.isEmpty()) {!
 acc=acc+ls.head();!
 ls=ls.tail();!
 }!
 return acc!
}!

•  But the recursion means separate variables for each iteration,
rather than reassignment of one set of variables	

Lisp Lists	

•  Introduced as particularly suitable for
demonstrating and practicing recursion	

•  You can use them with iteration as well	

•  Immutable, so all operations must be

constructive	

•  Quicksort and merge sort algorithms easy to

show on them, no additional complication
of array indexes	

Recursion	

•  If the solution to a problem can be given as putting

together solutions to smaller versions of the same
problem, it is a complete solution 	

•  So long as all base cases are covered	

•  Should be intuitively obvious after practice, but

the untrained human mind seems happier with
iteration	

•  So train yourself to think recursively, and practice
- Lisp list programming will help	

•  Don’t try to convert it mentally to iteration	

Recursion and Iteration	

•  Recursion can be a good way of thinking about a solution

to a problem, experienced programmers often find
recursive code easier to read and write	

•  Recursive code which is tail recursive can be easily
converted to iteration	

•  However, if you are asked to solve a problem using
recursion and come up with a tail recursive solution, it may
mean you have not really thought about it in recursive
terms	

•  Recursive code which is not tail recursive can be turned
into iterative code through the use of an explicit stack to
represent the environments returned to	

•  The stack and reverse technique in effect does this	

